Graph Transformations in an Enzymatic Context

MASTER THESIS PROJECT

MIKKEL PILEGAARD

DANIEL MERKLE & JAKOB LYKKE ANDERSEN

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

UNIVERSITY OF SOUTHERN DENMARK

About me

Computer Science master student from the University of Southern Denmark

At the start of thesis

Looking for interesting ideas and difficult problems!

Project Overview

Exploratory work for *hopefully* novel results and applications

Novo Nordisk Foundation thinks it's exciting too! cheminf.imada.sdu.dk/novo-synergy

A **lot** of work

Presented here is the overarching plan

My role:

- Hopefully help with pre-work
- Method development
- Being kind of naïve on purpose

From Category Theory to Enzyme Design: Unleashing the Potential of Computational Systems Chemistry

This webpage provides an introduction to the project "From Category Theory to Enzyme Design: Unleashing the Potential of Computational Systems Chemistry". The project is funded by the Novo Nordisk Foundation (2020-2022) as a grant under the Exploratory Interdisciplinary Synergy Programme. The project combines the expertise from the Algorithmic Cheminformatics Group at IMADA (Daniel Merkle, Rolf Fagerberg, Jakob L. Andersen),

Applications

Novel enzyme design

Synthetic biology

One-pot designs

MØD + Kappa

Supporting tools for existing discovery techniques

Concrete Steps

- 1. Rule mining
 - 1. M-CSA
 - 2. Infer rules
- 2. Rule modelling
 - 1. Generalize to "base knowledge" rule set
 - 2. Idea: Re-check reaction mechanisms
- 3. Stochastic simulation
- 4. Catalytic mechanisms
- 5. Causality and pathways
- 6. ...

Rules

Modelling of Molecules

Def: a molecule is a labelled, connected, simple, undirected graph.

(a) Chemical depiction.

(b) Visualisation of underlying model.

 $\begin{array}{l} \mbox{Vertex label} \equiv \mbox{chemical element and charge} \\ \{\mbox{H, He, Li, Be, B, C, N, O, \dots, Uuo}\} \times \mathbb{Z} \\ \mbox{Edge label} \equiv \mbox{bond type} \\ \{\mbox{SINGLE, DOUBLE, TRIPLE, AROMATIC}\} \end{array}$

Graph Transformation Rules

Vertices and edges are either deleted, preserved, or added. As a Double Pushout (DPO) rule $p = (L \xleftarrow{l} K \xrightarrow{r} R)$:

Semantics

- $L \setminus K$ is deleted.
- ► *K* is preserved.
- \triangleright $R \setminus K$ is added.
- Both *I* and *r* are monomorphisms.

Rule Application

50 Shades of Rule Composition From Chemical Reactions to Higher Levels of Abstraction

Jakob Lykke Andersen¹, Christoph Flamm², Daniel Merkle¹, and Peter F. Stadler²⁻⁷

 ¹ Department of Mathematics and Computer Science University of Southern Denmark, Denmark {daniel,jlandersen}@imada.sdu.dk
² Institute for Theoretical Chemistry, University of Vienna, Austria xtof@tbi.univie.ac.at

 ³ Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig, Germany
⁴ Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
⁵ Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
⁶ Center for Non-coding RNA in Technology and Health University of Copenhagen, Denmark
⁷ Santa Fe Institute, USA studla@bioinf.uni-leipzig.de

Abstract. Graph rewriting has been applied quite successfully to model

β-Lactamase

The Mechanism of β -lactamase

© Walter Fontana

Rule Composition - β-Lactamase

 $i_G \circ r_1 \circ r_2 \circ r_3 \circ r_4 \circ r_5 \circ i_H$

Stochastic Simulation

Rules implicitly define transitions for stochastic simulations

Network-free Gillespie-like simulations

Reaction rates are needed

Can potentially be used to verify one-pot systems

Stoch-sims are in development for MØD

Reaction Network

Example: Formose

Starting graphs:

- Formaldehyde
- Glycolaldehyde

Transformation rules:

- **p**₀: keto-enol-tautomerism, one direction
- **p**₁: keto-enol-tautomerism, the other direction
- **p**₂: aldol addition, one direction
- **p**₃: aldol addition, the other direction

Catalytic Mechanisms

From networks we find catalytic reactions

• What is a rigorous definition of catalysis? Is it useful?

Essential for enzyme-like action

From base rule set, compute super-set of likely amino-acid catalyzed reactions

- Can hopefully suggest amino acids in active site based on educt and product
- Will represent the non-3D embedded active site in beginning

Summary

What is already there:

- Modelling formalisms for chemical reactions
- Tools for computing reaction networks
- Drive to push the methods forward

Next steps:

- Building of "base" rule set
- Explore the nuances of enzyme mechanisms

Come talk to me about what is hard in enzymatic design!

Thanks!