Prokrastinator

Combining long and short sequencing reads for de novo genome assembly

Sarah von Löhneysen - Bioinf Leipzig

Prokrastinator | overview of the pipeline

 \rightarrow assemble short reads and align them to long nanopore reads

b)

figure: adapted from T. Gatter et al.

 \rightarrow short read unitigs connect and direct long nanopore reads as "anchors"

 \rightarrow nanopore reads are vertices; edge is drawn if anchor indicates an overlap

 \rightarrow short read unitigs connect and direct long nanopore reads as "anchors"

 \rightarrow cycles with contradiction in orientation are removed

 \rightarrow short read unitigs connect and direct long nanopore reads as "anchors"

 \rightarrow Graph is directed

 \rightarrow best supported paths are translated into contigs

The perfect anchor Set | requirements

figure: adapted from T. Gatter et al.

- \rightarrow correct
- → cover genome to sufficient degree
- → unique

→ different combinations of k-mer size and cut-offs filter Data to different degree

unique anchors | k-mer filtering

25

50

75

choose medium k-mer \rightarrow size don't filter too much \rightarrow cut-off right next to \rightarrow main peak

- \rightarrow anchors are mapped to nanopore reads
- → calculate coverage profile for every unitig

unique anchors | unitig filtering

with previous k-mer filtering

without previous filtering

- → find outlier unitigs regarding the max of their coverage profile
- \rightarrow exclude those from the anchor set

unique anchors | unitig filtering

- → cut peak regions from outlier unitigs
- → rescue regions >= 500 bp that fall under threshold and reinsert to anchor set

filter strategies | results

Table 1: Impact of short-read filtering strategies on Prokrastinator assembly quality in fruit fly. Column descriptions: **compl**eteness of the assembly, **#ctg** number of contigs, **#MA** number of mis-assemblies (breakpoints relative to the reference assembly).

Filter strategy	$\operatorname{compl.}[\%]$	#ctg	#MA
no filter	82.81	457	302
k-mer filter	82.354	572	117
unitig filter	82.254	572	120
k-mer and unitig filter	81.614	604	110

validation of anchor alignments

 \rightarrow alignment with anchor

validation of anchor alignments

Table 3: Assessment of different parameters to verify long-read overlaps and their impact on Prokrastinator assembly quality on fruit fly. Overlaps are indicated by anchors and evaluated by pairwise long-read alignments. Column descriptions: **compl**eteness of the assembly, **#ctg** number of contigs, **#MA** number of misassemblies (breakpoints relative to the reference assembly).

Varification parameters	$\mathbf{compl.}[\%]$	#ctg	#MA
none	81.614	604	110
direction	81.617	608	111
direction $+$ offset	81.561	622	103
direction + offset + incomplete mapping	81.472	1263	121
	01 797	0.01	119
no mapping	01.121	001	110

 \rightarrow 4.6% of the anchor links don't fulfill the 75% requirement

 \rightarrow Removing those has negative effect on the final Prokrastinator assembly and tends to break correct contigs apart

validation of anchor alignments

→ we can't distinguish between true and false negatives

 \rightarrow alignment strategy should be improved

outlook

How can we reliably align long reads with high InDel counts?

Thank you for your attention