DE-NOVO CANONICAL MIRNAS A pilot study including iterative models

CRISTIAN A. VELANDIA H TBI UNIVERSITY OF VIENNA

cavelandiah@tbi.univie.ac.at

MICRORNAS ON CIONA ROBUSTA

Chromosome 7 cluster (28 miRNA loci over 3713 nt)

miRBase annotations without 'miR-family' classification.

MICRORNAS ON CIONA ROBUSTA

Homology annotation using miRNAture + miRBase: low coverage.

METHODS: DE NOVO MIRNA ANNOTATION IN CIONA ROBUSTA

Table: Available SRA small-RNA/miRNA-seq for C. robusta

Run	Experiment
SRP002173	small-RNA for two developmental stages
SRP079886	Expression Oral Siphon Regeneration
SRP116990	small-RNA transgenic ascidians

Figure: Ciona robusta. Source: Lindsey Leigh, 2017

Methods: processing patterns \rightarrow MIRNAs

Methods: processing patterns \rightarrow MIRNAs

RESULTS: CANONICAL REFINING

- Only 3.6% candidates detected as *canonical* miRNAs.

RESULTS: CANONICAL REFINING

- Mostly short candidates: maturation by-products?/isomirs? $(\sim 77.4\%)$

RESULTS: GOING BACK TO CHR7 CLUSTER

Canonical de-novo families: One additional candidate on Chr7 : (

Why $\sim 82\%$ loci were not detected?

• C. robusta annotations: 351 loci

- C. robusta annotations: 351 loci
- With Fam.: 18.5% / No Fam: 81.5%.

- C. robusta annotations: 351 loci
- With Fam.: 18.5% / No Fam: 81.5%.
- $13 \times$ than sister specie: *Ciona savignyi*

- C. robusta annotations: 351 loci
- With Fam.: 18.5% / No Fam: 81.5%.
- $13 \times$ than sister specie: *Ciona savignyi*
- Higher loci number than coelacanth and lancelet (!).

RESULTS: DISCOVERING CANONICAL MIRNAS

Finding canonical de-novo families: Structural assessment

• Canonical miRNAs represent $\sim 21\%$ of cluster.

RESULTS: DISCOVERING CANONICAL MIRNAS

Finding canonical de-novo families: Structural assessment

- Canonical miRNAs represent $\sim 21\%$ of cluster.
- Reasons: Position of mature sequences on loop regions, structural constrains, miRNA-offset.

RESULTS: DISCOVERING CANONICAL MIRNAS

Finding canonical de-novo families: Structural assessment

- Canonical miRNAs represent $\sim 21\%$ of cluster.
- Reasons: Position of mature sequences on loop regions, structural constrains, miRNA-offset.

CONCLUSIONS

- Non-trivial miRNA annotation (i.e simplified chordate ~ 120 Mb genome).
- Need to extend miRNAture & MIRfix to non-canonical miRNAs/expression products associated to microRNA maturation.
- Iterative models for miRNAs: expression patterns (blocks, clusters), mature definition, mature position, structural assessment, evolutionary information (+ synteny?).

$\operatorname{Acknowledgements}$

- Prof. Dr. Peter F. Stadler.
- Dr. Jörg Fallmann.
- To your attention.

APPENDIX: MIRNA ANNOTATION ON CHORDATES

Source	\mathbf{Specie}	Ann.	Supp.	Novel	Mapped	Filt.	Accepted
miRBase	S. kowalevskii	91	83	0	72	8	64 (70.3%)
	$S. purpuratus^*$	64	53	6	54	6	48 (75.0%)
	$P. miniata^*$	49	58	0	51	6	45 (91.8%)
	$B. floridae^*$	162	90	0	67	9	58 (35.8%)
	$C. \ robusta^*$	351	141	14	130	78	52~(14.8%)
	L. variegatus	50	NA	NA	50	1	49 (98.0%)
	B. belcherei	118	\mathbf{NA}	NA	110	10	100 (84.7%)
	C. savignyi	27	NA	NA	19	0	19(70.4%)
	O. dioica	66	\mathbf{NA}	NA	47	0	47 (71.2%)
	$P. marinus^*$	244	NA	NA	238	44	194(79.5%)