Quasi-Best Match Graphs

$38^{\text {th }}$ TBI Winterseminar in Bled

Annachiara Korchmaros
joint work with David Schaller, Marc Hellmuth, Peter F. Stadler

Bioinformatics Group, University of Leipzig

February 16, 2023

BMG References

围 Geiß，Manuela，Edgar Chávez，et al．（2019）．＂Best match graphs＂．In：Journal of mathematical biology 78.
圁 Geiß，Manuela，Marcos E González Laffitte，et al．（2020）．＂Best match graphs and reconciliation of gene trees with species trees＂．In：Journal of mathematical biology 80．5．
罡 Hellmuth，Marc，Manuela Geiß，and Peter F Stadler（2020）．＂Complexity of modification problems for reciprocal best match graphs＂．In：Theoretical Computer Science 809.
䓯 Korchmaros，Annachiara（2021）．＂The structure of 2－colored best match graphs＂．In：Discrete Applied Mathematics 304.

目 Manuela，Geiß，Peter F Stadler，and Marc Hellmuth（2020）．＂Reciprocal best match graphs＂．In：Journal of Mathematical Biology 80．3．
图 Schaller，David，Manuela Geiß，Edgar Chávez，et al．（2021）．＂Corrigendum to＂Best match graphs＂＂．In：Journal of Mathematical Biology 82.
：Schaller，David，Manuela Geiß，Marc Hellmuth，et al．（2021a）．＂Arc－completion of 2－colored best match graphs to binary－explainable best match graphs＂．In：Algorithms 14.4
围－（2021b）．＂Heuristic algorithms for best match graph editing＂．In：Algorithms for Molecular Biology 16．1．
－（2021c）．＂Least resolved trees for two－colored best match graphs＂．In：arXiv preprint arXiv：2101．07000．
E Schaller，David，Manuela Geiß，Peter F Stadler，et al．（2021）．＂Complete characterization of incorrect orthology assignments in best match graphs＂．In：Journal of mathematical biology 82．3．
围 Schaller，David，Marc Hellmuth，and Peter F Stadler（2021）．＂A simpler linear－time algorithm for the common refinement of rooted phylogenetic trees on a common leaf set＂．In：Algorithms for Molecular Biology 16．1．
圁 Schaller，David，Peter F Stadler，and Marc Hellmuth（2021）．＂Complexity of modification problems for best match graphs＂．In：Theoretical Computer Science 865.
围 Stadler，Peter F et al．（2020）．＂From pairs of most similar sequences to phylogenetic best matches＂．In：Algorithms for Molecular Biology 15．1．

围 Geiß，Manuela，Edgar Chávez，et al．（2019）．＂Best match graphs＂．In：Journal of mathematical biology 78.
（ Geiß，Manuela，Marcos E González Laffitte，et al．（2020）．＂Best match graphs and reconciliation of gene trees with species trees＂．In：Journal of mathematical biology 80.5
罡 Hellmuth，Marc，Manuela Geiß，and Peter F Stadler（2020）．＂Complexity of modification problems for reciprocal best match graphs＂．In：Theoretical Computer Science 809.
显 Korchmaros，Annachiara（2021）．＂The structure of 2－colored best match graphs＂．In：Discrete Applied Mathematics 304.

目 Manuela，Geiß，Peter F Stadler，and Marc Hellmuth（2020）．＂Reciprocal best match graphs＂．In：Journal of Mathematical Biology 80．3．
圊 Schaller，David，Manuela Geiß，Edgar Chávez，et al．（2021）．＂Corrigendum to＂Best match graphs＂＂．In：Journal of Mathematical Biology 82.
軎 Schaller，David，Manuela Geiß，Marc Hellmuth，et al．（2021a）．＂Arc－completion of 2－colored best match graphs to binary－explainable best match graphs＂．In：Algorithms 14.4
目－（2021b）．＂Heuristic algorithms for best match graph editing＂．In：Algorithms for Molecular Biology 16．1．
－（2021c）．＂Least resolved trees for two－colored best match graphs＂．In：arXiv preprint arXiv：2101．07000．
囦 Schaller，David，Manuela Geiß，Peter F Stadler，et al．（2021）．＂Complete characterization of incorrect orthology assignments in best match graphs＂．In：Journal of mathematical biology 82．3．
圊 Schaller，David，Marc Hellmuth，and Peter F Stadler（2021）．＂A simpler linear－time algorithm for the common refinement of rooted phylogenetic trees on a common leaf set＂．In：Algorithms for Molecular Biology 16．1．
固 Schaller，David，Peter F Stadler，and Marc Hellmuth（2021）．＂Complexity of modification problems for best match graphs＂．In：Theoretical Computer Science 865.
国 Stadler，Peter F et al．（2020）．＂From pairs of most similar sequences to phylogenetic best matches＂．In：Algorithms for Molecular Biology 15．1．

Best Match Graphs - Definition

- (T, σ) rooted gene tree, leaf coloring σ on leaf set $L(T)$

v, t, w duplications/speciations

Best Match Graphs - Definition

- (T, σ) rooted gene tree, leaf coloring σ on leaf set $L(T)$
- $y \in L(T)$ is a best match of $x \in L(T)$ if

1. $\sigma(x) \neq \sigma(y)$ and
2. $\operatorname{lca}(x, y) \preceq \operatorname{lca}(x, z)$ for all $z \in L(T)$ with $\sigma(z)=\sigma(y)$

v, t, w duplications/speciations

Best Match Graphs - Definition

- (T, σ) rooted gene tree, leaf coloring σ on leaf set $L(T)$
- $y \in L(T)$ is a best match of $x \in L(T)$ if

1. $\sigma(x) \neq \sigma(y)$ and
2. $\operatorname{lca}(x, y) \preceq \operatorname{lca}(x, z)$ for all $z \in L(T)$ with $\sigma(z)=\sigma(y)$

(T, σ)

$\operatorname{BMG}(T, \sigma)$

Best Match Graphs - Definition

- (T, σ) rooted gene tree, leaf coloring σ on leaf set $L(T)$
- $y \in L(T)$ is a best match of $x \in L(T)$ if

1. $\sigma(x) \neq \sigma(y)$ and
2. $\operatorname{lca}(x, y) \preceq \operatorname{lca}(x, z)$ for all $z \in L(T)$ with $\sigma(z)=\sigma(y)$

- (G, σ) is $\mathbf{B M G}(T, \sigma)$ if vertices=leaves colored by σ and $x \rightarrow y$ iff y is a best match of x on (T, σ)

$\operatorname{BMG}(T, \sigma)$

[^0]
Best Match Graphs - Definition

- (T, σ) rooted gene tree, leaf coloring σ on leaf set $L(T)$
- $y \in L(T)$ is a best match of $x \in L(T)$ if

1. $\sigma(x) \neq \sigma(y)$ and
2. lca $(x, y) \preceq \operatorname{lca}(x, z)$ for all $z \in L(T)$ with $\sigma(z)=\sigma(y)$

- (G, σ) is $\operatorname{BMG}(T, \sigma)$ if vertices=leaves colored by σ and $x \rightarrow y$ iff y is a best match of x on (T, σ)
- Bio connection: orthologs \Longrightarrow reciprocal best matches (symmetric best matches)

$\operatorname{BMG}(T, \sigma)$

[^1]
Best Match Graphs - Definition

- (T, σ) rooted gene tree, leaf coloring σ on leaf set $L(T)$
- $y \in L(T)$ is a best match of $x \in L(T)$ if

1. $\sigma(x) \neq \sigma(y)$ and
2. $\operatorname{lca}(x, y) \preceq \operatorname{lca}(x, z)$ for all $z \in L(T)$ with $\sigma(z)=\sigma(y)$

- (G, σ) is $\mathbf{B M G}(T, \sigma)$ if vertices=leaves colored by σ and $x \rightarrow y$ iff y is a best match of x on (T, $\sigma)$
- Bio connection: orthologs \Longrightarrow reciprocal best matches (symmetric best matches)

$\operatorname{rBMG}(T, \sigma)$
v, t, w duplications/speciations

Best Match Graphs - NON-HEREDItary

BMGs are

- properly colored, no loops, no multiple edges

Best Match Graphs - Non-hereditary

BMGs are

- properly colored, no loops, no multiple edges
- color-sink-free (every vertex has a best match for every species)

Best Match Graphs - Non-Hereditary

BMGs are

- properly colored, no loops, no multiple edges
- color-sink-free (every vertex has a best match for every species)
- not a hereditary class (induced subgraphs are not necessary BMGs)

Best Match Graphs - Non-hereditary

BMGs are

- properly colored, no loops, no multiple edges
- color-sink-free (every vertex has a best match for every species)
- not a hereditary class (induced subgraphs are not necessary BMGs)
F is induced subgraph of G if $x, y \in V(F)$ and $(x, y) \in E(G) \Rightarrow(x, y) \in E(F)$

$\operatorname{BMG}(T, \sigma)$

$\operatorname{BMG}(T, \sigma)\left[\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}\right]$

Best Match Graphs - Non-hereditary

BMGs are

- properly colored, no loops, no multiple edges
- color-sink-free (every vertex has a best match for every species)
- not a hereditary class (induced subgraphs are not necessary BMGs)
F is induced subgraph of G if $x, y \in V(F)$ and $(x, y) \in E(G) \Rightarrow(x, y) \in E(F)$

Bio connection: Can we recognize BMGs?

$\operatorname{BMG}(T, \sigma)$

$\operatorname{BMG}(T, \sigma)\left[\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}\right]$

Best Match Graphs - Triples

- $a b \mid c$ is a (rooted) triple if $1 \mathrm{ca}(a, b)$ is descendent in T of $l_{c a}(a, c)=\operatorname{lca}(b, c)$

Best Match Graphs - Triples

- $a b \mid c$ is a (rooted) triple if $1 \mathrm{ca}(a, b)$ is descendent in T of $\operatorname{lca}(a, c)=\operatorname{lca}(b, c)$

- (G, σ) digraph, vertex-colored by σ
- $\mathcal{R}(G, \sigma):=\left\{a b \mid b^{\prime}: \sigma(a) \neq \sigma(b)=\sigma\left(b^{\prime}\right), a b \in E(G)\right.$, and $\left.a b^{\prime} \notin E(G)\right\}$ informative triples

$$
x y \mid y^{\prime} \in \mathcal{R}(G, \sigma)
$$

$$
(G, \sigma)
$$

Best Match Graphs - Triples

- $a b \mid c$ is a (rooted) triple if $\operatorname{lca}(a, b)$ is descendent in T of $\operatorname{lca}(a, c)=\operatorname{lca}(b, c)$

- (G, σ) digraph, vertex-colored by σ
- $\mathcal{R}(G, \sigma):=\left\{a b \mid b^{\prime}: \sigma(a) \neq \sigma(b)=\sigma\left(b^{\prime}\right), a b \in E(G)\right.$, and $\left.a b^{\prime} \notin E(G)\right\}$ informative triples
- $\mathcal{F}(G, \sigma):=\left\{a b \mid b^{\prime}: \sigma(a) \neq \sigma(b)=\sigma\left(b^{\prime}\right), b \neq b^{\prime}\right.$, and $\left.a b, a b^{\prime} \in E(G)\right\}$ forbidden triples

(G, σ)

Best Match Graphs - Triples

- $a b \mid c$ is a (rooted) triple if $1 \mathrm{ca}(a, b)$ is descendent in T of $1 \mathrm{ca}(a, c)=1 \mathrm{ca}(b, c)$

- (G, σ) digraph, vertex-colored by σ
- $\mathcal{R}(G, \sigma):=\left\{a b \mid b^{\prime}: \sigma(a) \neq \sigma(b)=\sigma\left(b^{\prime}\right), a b \in E(G)\right.$, and $\left.a b^{\prime} \notin E(G)\right\}$ informative triples
- $\mathcal{F}(G, \sigma):=\left\{a b \mid b^{\prime}: \sigma(a) \neq \sigma(b)=\sigma\left(b^{\prime}\right), b \neq b^{\prime}\right.$, and $\left.a b, a b^{\prime} \in E(G)\right\}$ forbidden triples

Theorem

(G, σ) properly colored digraph is a BMG iff $(i)(G, \sigma)$ is color-sink free, and (ii) there exists (T, σ) displaying all triples in $\mathcal{R}(G, \sigma)$ but none of the triples in $\mathcal{F}(G, \sigma)$

Best Match Graphs - Unique LRT

- Problem: different trees associated to $B M G(G, \sigma)$, how to choose the most parsimonious???

Best Match Graphs - Unique LRT

- Problem: different trees associated to $\operatorname{BMG}(G, \sigma)$, how to choose the most parsimonious???
- $T_{L^{\prime}}$ is a restriction of T to a subset L^{\prime} of leaves of T

Best Match Graphs - Unique LRT

- Problem: different trees associated to $B M G(G, \sigma)$, how to choose the most parsimonious???
- $T_{L^{\prime}}$ is a restriction of T to a subset L^{\prime} of leaves of T

Best Match Graphs - Unique LRT

- Problem: different trees associated to $\operatorname{BMG}(G, \sigma)$, how to choose the most parsimonious???
- $T_{L^{\prime}}$ is a restriction of T to a subset L^{\prime} of leaves of T

- (T, σ) is LRT if there is NO $T^{\prime}=T_{L^{\prime}}\left(+\right.$ inner edge contractions) st $\operatorname{BMG}(T, \sigma)=B M G\left(T^{\prime}, \sigma\right)$

Best Match Graphs - Unique LRT

- Problem: different trees associated to $B M G(G, \sigma)$, how to choose the most parsimonious???
- $T_{L^{\prime}}$ is a restriction of T to a subset L^{\prime} of leaves of T

- (T, σ) is LRT if there is $\mathrm{NO} T^{\prime}=T_{L^{\prime}}\left(+\right.$ inner edge contractions) st $B M G(T, \sigma)=B M G\left(T^{\prime}, \sigma\right)$

Theorem

- Every BMG has a unique $L R T^{1}$

Best Match Graphs - Unique LRT

- Problem: different trees associated to $B M G(G, \sigma)$, how to choose the most parsimonious???
- $T_{L^{\prime}}$ is a restriction of T to a subset L^{\prime} of leaves of T

- (T, σ) is LRT if there is $\mathrm{NO} T^{\prime}=T_{L^{\prime}}\left(+\right.$ inner edge contractions) st $B M G(T, \sigma)=B M G\left(T^{\prime}, \sigma\right)$

Theorem

- Every BMG has a unique LRT ${ }^{1}$
- Build the LRT in polynomial time with MTT algorithm ${ }^{2}$

[^2]
Best Match Graphs - Unique LRT

- Problem: different trees associated to $B M G(G, \sigma)$, how to choose the most parsimonious???
- $T_{L^{\prime}}$ is a restriction of T to a subset L^{\prime} of leaves of T

- (T, σ) is LRT if there is $\mathrm{NO} T^{\prime}=T_{L^{\prime}}\left(+\right.$ inner edge contractions) st $B M G(T, \sigma)=B M G\left(T^{\prime}, \sigma\right)$

Theorem

- Every BMG has a unique LRT ${ }^{1}$
- Build the LRT in polynomial time with MTT algorithm ${ }^{2} \Rightarrow$ recognize a BMG in polynomial time

[^3]Quasi-Best Match Graphs - Definition

- How do we relate far-away genes?

Quasi-Best Match Graphs - Definition

- How do we relate far-away genes? Limit detection of best matches in (T, σ)

Quasi-Best Match Graphs - Definition

- How do we relate far-away genes? Limit detection of best matches in (T, σ)
- $y \in L(T)$ is a quasi-best match of $x \in L(T)$ if

1. y is a best match of x, and
2. $\operatorname{lca}(x, y) \preceq u(x, \sigma(y)), u: L(T) \times \sigma(L(T)) \rightarrow V(T)$ vertex-set of T

$\operatorname{BMG}(T, \sigma)$

Quasi-Best Match Graphs - Definition

- How do we relate far-away genes? Limit detection of best matches in (T, σ)
- $y \in L(T)$ is a quasi-best match of $x \in L(T)$ if

1. y is a best match of x, and
2. $\operatorname{lca}(x, y) \preceq u(x, \sigma(y)), u: L(T) \times \sigma(L(T)) \rightarrow V(T)$ vertex-set of T

- (G, σ) is $q \mathbf{B M G}(T, \sigma, u)$ if vertices=leaves colored by σ and $x \rightarrow y$ iff y is quasi-best match of x

$u(z, \sigma(x))=z, u(q, \sigma(q))=q, u(q, s)=\rho$ and $s \neq \sigma(q)$

BMGs vs. QBMGs

BMGs vs. QBMGs - Likeness

- Is $B M G(T, \sigma)$ a $q B M G(T, \sigma, u)$?

BMGs vs. QBMGs - LIKENESS

- Is $B M G(T, \sigma)$ a $q B M G\left(T, \sigma, u^{\rho}\right)$? Yes, $u^{\rho}(x, s):= \begin{cases}x & s=\sigma(x) \\ \rho & \text { otherwise }\end{cases}$

BMGs vs. QBMGs - LIKENESS

- Is $\operatorname{BMG}(T, \sigma)$ a $q B M G\left(T, \sigma, u^{\rho}\right)$? Yes, $u^{\rho}(x, s):=\left\{\begin{array}{lc}x & s=\sigma(x) \\ \rho & \text { otherwise }\end{array}\right.$
- When $\operatorname{qBMG}(T, \sigma, u)$ is a $\operatorname{BMG}(T, \sigma)$?

BMGs vs. QBMGs - LIKENESS

- Is $B M G(T, \sigma)$ a $q B M G\left(T, \sigma, u^{\rho}\right)$? Yes, $u^{\rho}(x, s):= \begin{cases}x & s=\sigma(x) \\ \rho & \text { otherwise }\end{cases}$
- When $\operatorname{qBMG}(T, \sigma, u)$ is a $\operatorname{BMG}(T, \sigma)$?

Theorem

- (G, σ) is a BMG iff (G, σ) is a color-sink-free qBMG.

BMGs vs. QBMGs - LIKENESS

- Is $B M G(T, \sigma)$ a $q B M G\left(T, \sigma, u^{\rho}\right)$? Yes, $u^{\rho}(x, s):= \begin{cases}x & s=\sigma(x) \\ \rho & \text { otherwise }\end{cases}$
- When $\operatorname{qBMG}(T, \sigma, u)$ is a $\operatorname{BMG}(T, \sigma)$?

Theorem

- (G, σ) is a BMG $\operatorname{iff}(G, \sigma)$ is a color-sink-free qBMG.

$$
\Uparrow
$$

- (G, σ) is a qBMG iff there is (T, σ, u) displaying all triples in $\mathcal{R}(G, \sigma)$ but none in $\mathcal{F}(G, \sigma)$

BMGs vs. QBMGs - LIKENESS

- Is $B M G(T, \sigma)$ a $q B M G\left(T, \sigma, u^{\rho}\right)$? Yes, $u^{\rho}(x, s):= \begin{cases}x & s=\sigma(x) \\ \rho & \text { otherwise }\end{cases}$
- When $\operatorname{qBMG}(T, \sigma, u)$ is a $\operatorname{BMG}(T, \sigma)$?

Theorem

- (G, σ) is a BMG iff (G, σ) is a color-sink-free qBMG.

$$
\Uparrow
$$

- (G, σ) is a qBMG iff there is (T, σ, u) displaying all triples in $\mathcal{R}(G, \sigma)$ but none in $\mathcal{F}(G, \sigma)$

$$
\mathcal{R}(G, \sigma), \mathcal{F}(G, \sigma) \xrightarrow{\text { input to }} \text { MTT Algorithm } \xrightarrow{\text { polynomial time }}(T, \sigma)
$$

BMGs vs. QBMGs - LIKENESS

- Is $B M G(T, \sigma)$ a $q B M G\left(T, \sigma, u^{\rho}\right)$? Yes, $u^{\rho}(x, s):= \begin{cases}x & s=\sigma(x) \\ \rho & \text { otherwise }\end{cases}$
- When $\operatorname{qBMG}(T, \sigma, u)$ is a $\operatorname{BMG}(T, \sigma)$?

Theorem

- (G, σ) is a BMG iff (G, σ) is a color-sink-free qBMG.

$$
\Uparrow
$$

- (G, σ) is a qBMG iff there is (T, σ, u) displaying all triples in $\mathcal{R}(G, \sigma)$ but none in $\mathcal{F}(G, \sigma)$

$$
\begin{aligned}
& \mathcal{R}(G, \sigma), \mathcal{F}(G, \sigma) \xrightarrow{\text { input to }} \text { MTT Algorithm } \xrightarrow{\text { polynomial time }}(T, \sigma) \xrightarrow{u^{*}}\left(T, \sigma, u^{*}\right) \\
& \qquad u^{*}(x, s):= \begin{cases}x & x \text { is sink wrt s, or } s=\sigma(x) \\
\rho & \text { otherwise }\end{cases}
\end{aligned}
$$

BMGs vs. QBMGs - UnLIKENESS

BMGs vs. QBMGs - UnLIKENESS

Property	BMG	qBMG
hereditary class	no, color-sink free	yes
disjoint union	yes, if partition sets have same colours	yes
unique LRT	yes 2	no
binary explainable iff finite sets of forbidden graphs	hourglass-free 3	no

[^4]BMGs vs. QBMGs - UNLIKENESS

Property	BMG	qBMG ${ }^{\mathbf{1}}$
hereditary class	no, color-sink free	yes
disjoint union	yes, if partition sets have same colours	yes
unique LRT	yes 2	no
binary explainable iff finite sets of forbidden graphs	hourglass-free 3	no

[^5]${ }^{2}$ Manuela Geiß, Edgar Chávez, et al. (2019). "Best match graphs". In: Journal of mathematical biology 78.
${ }^{3}$ David Schaller, Manuela Geiß, Peter F Stadler, et al. (2021). "Complete characterization of incorrect orthology assignments in best match graphs". In: Journal of mathematical biology

BMGs vs. QBMGs - UNLIKENESS

Property	BMG	qBMG 1
hereditary class	no, color-sink free	yes
disjoint union	yes, if partition sets have same colours	yes
unique LRT	yes 2	no
binary explainable iff finite sets of forbidden graphs	hourglass-free 3	no

(G, σ)

[^6]BMGs vs. QBMGs - UNLIKENESS

[^7]
Outlook

1. q BMGs do NOT have a unique LRT \rightarrow studying different LRTs of the same $\mathrm{qBMG}(G, \sigma)$

Outlook

1. qBMGs do NOT have a unique LRT \rightarrow studying different LRTs of the same $\mathrm{qBMG}(G, \sigma)$ - Do they have a common core? (they all display $\mathcal{R}(G, \sigma)$).

Outlook

1. qBMGs do NOT have a unique LRT \rightarrow studying different LRTs of the same $\mathrm{qBMG}(G, \sigma)$

- Do they have a common core? (they all display $\mathcal{R}(G, \sigma)$).
- Are LRTs of maximal induced BMGs displayed by all LRT of qBMG (G, σ) ?

Outlook

1. qBMGs do NOT have a unique LRT \rightarrow studying different LRTs of the same $\mathrm{qBMG}(G, \sigma)$

- Do they have a common core? (they all display $\mathcal{R}(G, \sigma)$).
- Are LRTs of maximal induced BMGs displayed by all LRT of qBMG (G, σ) ?
- Is there an efficient algorithm to find all maximal induced BMGs in qBMG(G, σ) ?

Outlook

1. qBMGs do NOT have a unique LRT \rightarrow studying different LRTs of the same $\mathrm{qBMG}(G, \sigma)$

- Do they have a common core? (they all display $\mathcal{R}(G, \sigma)$).
- Are LRTs of maximal induced BMGs displayed by all LRT of qBMG(G, σ) ?
- Is there an efficient algorithm to find all maximal induced BMGs in $\mathrm{qBMG}(G, \sigma)$?

2. Study qBMGs where $u(x, s)=u(x)$, i.e. detection limit is color-independent.

Outlook

1. q BMGs do NOT have a unique $\operatorname{LRT} \rightarrow$ studying different LRTs of the same $q B M G(G, \sigma)$

- Do they have a common core? (they all display $\mathcal{R}(G, \sigma)$).
- Are LRTs of maximal induced BMGs displayed by all LRT of qBMG (G, σ) ?
- Is there an efficient algorithm to find all maximal induced BMGs in qBMG(G, σ)?

2. Study qBMGs where $u(x, s)=u(x)$, i.e. detection limit is color-independent.

more details on qBMGs

Outlook

1. q BMGs do NOT have a unique LRT \rightarrow studying different LRTs of the same $\mathrm{qBMG}(G, \sigma)$

- Do they have a common core? (they all display $\mathcal{R}(G, \sigma)$).
- Are LRTs of maximal induced BMGs displayed by all LRT of qBMG (G, σ) ?
- Is there an efficient algorithm to find all maximal induced BMGs in $\mathrm{qBMG}(G, \sigma)$?

2. Study qBMGs where $u(x, s)=u(x)$, i.e. detection limit is color-independent.

more details on qBMGs

[^0]: v, t, w duplications/speciations

[^1]: v, t, w duplications/speciations

[^2]: ${ }^{1}$ Manuela Geiß, Edgar Chávez, et al. (2019). "Best match graphs". In: Journal of mathematical biology 78.
 ${ }^{2}$ Annachiara Korchmaros et al. (2023). "Quasi-best match graphs". In: Discrete Applied Mathematics 331, pp. 104-125.

[^3]: ${ }^{1}$ Manuela Geiß, Edgar Chávez, et al. (2019). "Best match graphs". In: Journal of mathematical biology 78.
 ${ }^{2}$ Annachiara Korchmaros et al. (2023). "Quasi-best match graphs". In: Discrete Applied Mathematics 331, pp. 104-125.

[^4]: ${ }^{1}$ Annachiara Korchmaros et al. (2023). "Quasi-best match graphs". In: Discrete Applied Mathematics 331, pp. 104-125.
 ${ }^{2}$ Manuela Geiß, Edgar Chávez, et al. (2019). "Best match graphs". In: Journal of mathematical biology 78.
 ${ }^{3}$ David Schaller, Manuela Geiß, Peter F Stadler, et al. (2021). "Complete characterization of incorrect orthology assignments in best match graphs". In: Journal of mathematical biology

[^5]: ${ }^{1}$ Annachiara Korchmaros et al. (2023). "Quasi-best match graphs". In: Discrete Applied Mathematics 331, pp. 104-125.

[^6]: ${ }^{1}$ Annachiara Korchmaros et al. (2023). "Quasi-best match graphs". In: Discrete Applied Mathematics 331, pp. 104-125.
 ${ }^{2}$ Manuela Geiß, Edgar Chávez, et al. (2019). "Best match graphs". In: Journal of mathematical biology 78.
 ${ }^{3}$ David Schaller, Manuela Geiß, Peter F Stadler, et al. (2021). "Complete characterization of incorrect orthology assignments in best match graphs". In: Journal of mathematical biology

[^7]: ${ }^{1}$ Annachiara Korchmaros et al. (2023). "Quasi-best match graphs". In: Discrete Applied Mathematics 331, pp. 104-125.
 ${ }^{2}$ Manuela Geiß, Edgar Chávez, et al. (2019). "Best match graphs". In: Journal of mathematical biology 78
 ${ }^{3}$ David Schaller, Manuela Geiß, Peter F Stadler, et al. (2021). "Complete characterization of incorrect orthology assignments in best match graphs". In: Journal of mathematical biology

