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Theory is dead!
<<

By Chris Anderson 

THE PETABYTE AGE:  
Sensors everywhere. Infinite storage. Clouds 
of processors. Our ability to capture, 
warehouse, and understand massive 
amounts of data is changing science, 
medicine, business, and technology. As our 
collection of facts and figures grows, so will 
the opportunity to find answers to 
fundamental questions. Because in the era of 
big data, more isn't just more. More is 
different. 

THE END OF THEORY:  
Essay: The Data Deluge Makes the 
Scientific Method Obsolete 
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Tracking the News 
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Sorting the World 
Watching the Skies 
Scanning Our Skeletons 
Tracking Air Fares 
Predicting the Vote 
Pricing Terrorism 
Visualizing Big Data 
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Illustration: Marian Bantjes 
"All models are wrong, but some are useful." 

So proclaimed statistician George Box 30 years ago, and he was right. But 
what choice did we have? Only models, from cosmological equations to 
theories of human behavior, seemed to be able to consistently, if imperfectly, 
explain the world around us. Until now. Today companies like Google, which 
have grown up in an era of massively abundant data, don't have to settle for 
wrong models. Indeed, they don't have to settle for models at all.

Sixty years ago, digital computers made information readable. Twenty years 
ago, the Internet made it reachable. Ten years ago, the first search engine 
crawlers made it a single database. Now Google and like-minded companies 
are sifting through the most measured age in history, treating this massive 
corpus as a laboratory of the human condition. They are the children of the 
Petabyte Age.

The Petabyte Age is different because more is different. Kilobytes were 
stored on floppy disks. Megabytes were stored on hard disks. Terabytes were 
stored in disk arrays. Petabytes are stored in the cloud. As we moved along 
that progression, we went from the folder analogy to the file cabinet analogy 
to the library analogy to — well, at petabytes we ran out of organizational 
analogies.

At the petabyte scale, information is not a matter of simple three- and four-
dimensional taxonomy and order but of dimensionally agnostic statistics. It 
calls for an entirely different approach, one that requires us to lose the tether 
of data as something that can be visualized in its totality. It forces us to view 
data mathematically first and establish a context for it later. For instance, 
Google conquered the advertising world with nothing more than applied 

mathematics. It didn't pretend to know anything about the culture and conventions of advertising — it just assumed that 
better data, with better analytical tools, would win the day. And Google was right.

Google's founding philosophy is that we don't know why this page is better than that one: If the statistics of incoming links 
say it is, that's good enough. No semantic or causal analysis is required. That's why Google can translate languages without 
actually "knowing" them (given equal corpus data, Google can translate Klingon into Farsi as easily as it can translate 
French into German). And why it can match ads to content without any knowledge or assumptions about the ads or the 
content.

Speaking at the O'Reilly Emerging Technology Conference this past March, Peter Norvig, Google's research director, 
offered an update to George Box's maxim: "All models are wrong, and increasingly you can succeed without them."

1http://www.wired.com/print/science/discoveries/magazine/16-07/pb_theory

"... The scientific method is built around testable hypotheses. These 
models, for the most part, are systems visualized in the minds of 
scientists. The models are then tested, and experiments confirm or falsify 
theoretical models of how the world works. This is the way science has 
worked for hundreds of years.

...

... But faced with massive data, this approach to science — 
hypothesize, model, test — is becoming obsolete. 

...the science equivalent of Fukuyama's "end of history"...
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Molecularly interpretable microscopy?
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Inferring pixel level segmentations:
The Comparative Segmentation Network
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Supervised learning and inductive inference
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Why generalization is difficult in philosophy
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ARTICLE Communicated by Steven Nowlan 

The Lack of A Priori Distinctions Between Learning 
Algorithms 

David H. Wolpert 
The Santa Fe Institute, 1399 Hyde Park Rd., 
Santa Fe, N M ,  87501, U S A  

This is the first of two papers that use off-training set (OTS) error 
to investigate the assumption-free relationship between learning algo- 
rithms. This first paper discusses the senses in which there are no 
a priori distinctions between learning algorithms. (The second paper 
discusses the senses in which fhere are such distinctions.) In this first 
paper it is shown, loosely speaking, that for any two algorithms A 
and B, there are "as many" targets (or priors over targets) for which A 
has lower expected OTS error than B as vice versa, for loss functions 
like zero-one loss. In particular, this is true if A is cross-validation 
and B is "anti-cross-validation'' (choose the learning algorithm with 
largest cross-validation error). This paper ends with a discussion of 
the implications of these results for computational learning theory. It 
is shown that one cannot say: if empirical misclassification rate is low, 
the Vapnik-Chervonenkis dimension of your generalizer is small, and 
the training set is large, then with high probability your OTS error is 
small. Other implications for "membership queries" algorithms and 
"punting" algorithms are also discussed. 

"Even after the observation of the frequent conjunction of ob- 
jects, we have no reason to draw any inference concerning 
any object beyond those of which we have had experience." 
David Hume, in A Treatise of Human Nature, Book I, part 3, 
Section 12. 

1 Introduction 

Much of modern supervised learning theory gives the impression that 
one can deduce something about the efficacy of a particular learning al- 
gorithm (generalizer) without the need for any assumptions about the 
target input-output relationship one is trying to learn with that algo- 
rithm. At most, it would appear, to make such a deduction one has 
to know something about the training set as well as about the learning 
algorithm. 

Consider for example the following quotes from some well-known 
papers: "Theoretical studies link the generalization error of a learning 

Neural Computation 8, 1341-1390 (1996) @ 1996 Massachusetts Institute of Technology 

(1739)

The Problem of Induction:



Why generalization is difficult in biology



Why generalization is difficult in medicine
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Why generalization is difficult in mathematics
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"No-free-lunch theorem"



The no-free-lunch theorem in a nutshell
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If machine learning is so 
unreliable, why can we 
trust scientific reasoning?



Explanation is at the heart of the scientific method
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Learning from targeted observation
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Machine learning models as hypotheses?

Ground Truth Experiment

Primary Experiment

Sample 1

Ground Truth Experiment

Primary Experiment

Sample 2

Ground Truth Experiment

Primary Experiment

Sample N

x1 y1

y2x2

xN yN

Training Data

T ✓ X ⇥ Y

(x1, y1)

(x2, y2)

(xN , yN )

...
...

...

...

Training Data

Ground truth
Experiment

Neural
NetworkPrimary 

Experiment

Data    Output

Prediction

x 2 X

T ✓ X ⇥ Y

Sample y 2 Yf : X ! Y

Scope of data
(no-free-lunch theorem)

Physical Reality
(“free lunches”)

Primary Experiment

Sample 1

Primary Experiment

Sample 2

Primary Experiment

Sample N

y1

y2x2

xN yN

Training Data

T ✓ X ⇥ Y

Annotationx1

Annotation

Annotation

(x1, y1)

(x2, y2)

(xN , yN )

...

...
...

...

Scope of data
(no-free-lunch theorem)

Physical Reality
(“free lunches”)

Training Data

Neural
NetworkPrimary 

Experiment

Data    Output
x 2 X

T ✓ X ⇥ Y

Sample y 2 Yf : X ! Y

Weak ground truth (e.g. ImageNet)

Weak falsifiability

Strong ground truth (e.g. protein folding)

Strong falsifiability



Hypotheses as explanations
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Hypotheses as explanations
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Deductive conjecture-and-refutation reasoning

System	/	Process Conjecture Refutation Description	/	storage	of	
conjecture

Scientific	method Hypothesis Falsification Scientific	Literature

Evolution Mutation Death,	inhibted	
reproduction Genome

Human/animal	
cognition	(concept	
learning)

Concepts Pain,	fear,	
dissatisfaction,	... Brain

Deductive conjecture-first reasoning as knowledge generating process

Supervised learning is not conjecture-first learning!



Can explainable artificial intelligence (XAI) rescue 
supervised learning from the problem of induction?
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2 G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15

meaning we assign to these words in this tutorial, as well as the 
type of techniques that are covered.

We will focus in this tutorial on post-hoc interpretability, i.e. a 
trained model is given and our goal is to understand what the 
model predicts (e.g. categories) in terms what is readily inter-
pretable (e.g. the input variables) [5,55]. Post-hoc interpretability 
should be contrasted to incorporating interpretability directly into 
the structure of the model, as done, for example, in [54,17,76,37,
73].

Also, when using the word “understanding”, we refer to a func-
tional understanding of the model, in contrast to a lower-level 
mechanistic or algorithmic understanding of it. That is, we seek 
to characterize the model’s black-box behavior, without however 
trying to elucidate its inner workings or shed light on its internal 
representations. Furthermore, while some methods aim at reaching 
a comprehensive functional understanding of the model [32,41,8], 
we will focus here on interpreting the outputs of a DNN, and ex-
plaining individual predictions.

Throughout this tutorial, we will make a distinction between 
interpretation and explanation, by defining these words as follows.

Definition 1. An interpretation is the mapping of an abstract con-
cept (e.g. a predicted class) into a domain that the human can 
make sense of.

Examples of domains that are interpretable are images (arrays 
of pixels), or texts (sequences of words). A human can look at 
them and read them respectively. Examples of domains that are 
not interpretable are abstract vector spaces (e.g. word embeddings 
[45]), or domains composed of undocumented input features (e.g. 
sequences with unknown words or symbols).

Definition 2. An explanation is the collection of features of the 
interpretable domain, that have contributed for a given example to 
produce a decision (e.g. classification or regression).

The features that form the explanation can be supplemented by 
relevance scores indicating to what extent each feature contributes. 
Practically, the explanation will be a real-valued vector of same 
size as the input, where relevant features are given positive scores, 
and irrelevant features are set to zero.

An explanation can be, for example, a heatmap highlighting 
which pixels of the input image most strongly support the clas-
sification decision [60,34,5]. In natural language processing, expla-
nations can take the form of highlighted text [42,3].

3. Interpreting a DNN model

This section focuses on the problem of interpreting a concept 
learned by a deep neural network (DNN). A DNN is a collection of 
neurons organized in a sequence of multiple layers, where neurons 
receive as input the neuron activations from the previous layer, and 
perform a simple computation (e.g. a weighted sum of the input 
followed by a nonlinear activation). The neurons of the network 
jointly implement a complex nonlinear mapping from the input to 
the output. This mapping is learned from the data by adapting the 
weights of each neuron using a technique called error backpropa-
gation [56]. An example of a neural network is shown in Fig. 1.

The concept that must be interpreted is usually represented 
by a neuron in the top layer. Top-layer neurons are abstract (i.e. 
we cannot look at them), on the other hand, the input domain 
of the DNN (e.g. image or text) is usually interpretable. We de-
scribe below how to build a prototype in the input domain that is 
interpretable and representative of the abstract learned concept. 
Building the prototype can be formulated within the activation 
maximization framework.

Fig. 1. Example of a neural network composed of many interconnected neurons, and 
that assigns to the input x a probability of being associated to a certain concept ωc .

3.1. Activation maximization (AM)

Activation maximization is an analysis framework that searches 
for an input pattern that produces a maximum model response for 
a quantity of interest [11,19,60].

Consider a DNN classifier mapping data points x to a set of 
classes (ωc)c . The output neurons encode the modeled class prob-
abilities p(ωc |x). A prototype x" representative of the class ωc can 
be found by optimizing:

max
x

log p(ωc|x) − λ‖x‖2.

The class probabilities modeled by the DNN are functions with a 
gradient [13]. This allows for optimizing the objective by gradient 
ascent. The rightmost term of the objective is an $2-norm regular-
izer that implements a preference for inputs that are close to the 
origin. When applied to image classification, prototypes thus take 
the form of mostly gray images, with only a few edge and color 
patterns at strategic locations [60]. These prototypes, although pro-
ducing strong class response, can look unnatural.

3.2. Improving AM with an expert

In order to obtain more meaningful prototypes, the $2-regular-
izer can be replaced by a more sophisticated one [44,52] called 
“expert”. The expert can be, for example, a model p(x) of the data. 
This leads to the new optimization problem:

max
x

log p(ωc|x) + log p(x).

The prototype x" obtained by solving this optimization problem 
will simultaneously produce strong class response and resemble 
the data. By application of the Bayes’ rule, the newly defined objec-
tive can be identified, up to modeling errors and a constant term, 
as the class-conditioned data density log p(x|ωc). The learned pro-
totype will thus correspond to the most likely input x for class ωc .

A possible choice for the expert is the Gaussian RBM [25]. It can 
represent complex distributions and has a gradient in the input 
domain. Its log-probability function can be written as:

log p(x) = ∑
j f j(x) − λ‖x‖2 + cst.,

where the terms f j(x) = log(1 + exp(w#
j x + b j)) are learned from 

the data, and come in superposition to the original $2-norm regu-
larizer. When interpreting concepts such as natural images classes, 
more complex density models such as convolutional RBM/DBMs 
[38], or pixel-RNNs [69] can be used instead. In practice, the choice 
of the expert p(x) plays an important role in determining the 
appearance of the resulting prototype. The dependence of the pro-
totype on the choice of expert is illustrated in Fig. 2.

On one extreme a coarse expert (a) reduces the optimiza-
tion problem to the maximization of the class probability function 
p(ωc |x). On the other extreme an overfitted expert (d) essentially 
reduces the optimization problem to the maximization of the ex-
pert p(x) itself.
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size as the input, where relevant features are given positive scores, 
and irrelevant features are set to zero.

An explanation can be, for example, a heatmap highlighting 
which pixels of the input image most strongly support the clas-
sification decision [60,34,5]. In natural language processing, expla-
nations can take the form of highlighted text [42,3].

3. Interpreting a DNN model

This section focuses on the problem of interpreting a concept 
learned by a deep neural network (DNN). A DNN is a collection of 
neurons organized in a sequence of multiple layers, where neurons 
receive as input the neuron activations from the previous layer, and 
perform a simple computation (e.g. a weighted sum of the input 
followed by a nonlinear activation). The neurons of the network 
jointly implement a complex nonlinear mapping from the input to 
the output. This mapping is learned from the data by adapting the 
weights of each neuron using a technique called error backpropa-
gation [56]. An example of a neural network is shown in Fig. 1.

The concept that must be interpreted is usually represented 
by a neuron in the top layer. Top-layer neurons are abstract (i.e. 
we cannot look at them), on the other hand, the input domain 
of the DNN (e.g. image or text) is usually interpretable. We de-
scribe below how to build a prototype in the input domain that is 
interpretable and representative of the abstract learned concept. 
Building the prototype can be formulated within the activation 
maximization framework.

Fig. 1. Example of a neural network composed of many interconnected neurons, and 
that assigns to the input x a probability of being associated to a certain concept ωc .

3.1. Activation maximization (AM)

Activation maximization is an analysis framework that searches 
for an input pattern that produces a maximum model response for 
a quantity of interest [11,19,60].

Consider a DNN classifier mapping data points x to a set of 
classes (ωc)c . The output neurons encode the modeled class prob-
abilities p(ωc |x). A prototype x" representative of the class ωc can 
be found by optimizing:

max
x

log p(ωc|x) − λ‖x‖2.

The class probabilities modeled by the DNN are functions with a 
gradient [13]. This allows for optimizing the objective by gradient 
ascent. The rightmost term of the objective is an $2-norm regular-
izer that implements a preference for inputs that are close to the 
origin. When applied to image classification, prototypes thus take 
the form of mostly gray images, with only a few edge and color 
patterns at strategic locations [60]. These prototypes, although pro-
ducing strong class response, can look unnatural.

3.2. Improving AM with an expert

In order to obtain more meaningful prototypes, the $2-regular-
izer can be replaced by a more sophisticated one [44,52] called 
“expert”. The expert can be, for example, a model p(x) of the data. 
This leads to the new optimization problem:

max
x

log p(ωc|x) + log p(x).

The prototype x" obtained by solving this optimization problem 
will simultaneously produce strong class response and resemble 
the data. By application of the Bayes’ rule, the newly defined objec-
tive can be identified, up to modeling errors and a constant term, 
as the class-conditioned data density log p(x|ωc). The learned pro-
totype will thus correspond to the most likely input x for class ωc .

A possible choice for the expert is the Gaussian RBM [25]. It can 
represent complex distributions and has a gradient in the input 
domain. Its log-probability function can be written as:

log p(x) = ∑
j f j(x) − λ‖x‖2 + cst.,

where the terms f j(x) = log(1 + exp(w#
j x + b j)) are learned from 

the data, and come in superposition to the original $2-norm regu-
larizer. When interpreting concepts such as natural images classes, 
more complex density models such as convolutional RBM/DBMs 
[38], or pixel-RNNs [69] can be used instead. In practice, the choice 
of the expert p(x) plays an important role in determining the 
appearance of the resulting prototype. The dependence of the pro-
totype on the choice of expert is illustrated in Fig. 2.

On one extreme a coarse expert (a) reduces the optimiza-
tion problem to the maximization of the class probability function 
p(ωc |x). On the other extreme an overfitted expert (d) essentially 
reduces the optimization problem to the maximization of the ex-
pert p(x) itself.
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1. Introduction

Machine learning techniques such as deep neural networks 
have become an indispensable tool for a wide range of applica-
tions such as image classification, speech recognition, or natural 
language processing. These techniques have achieved extremely 
high predictive accuracy, in many cases, on par with human per-
formance.

In practice, it is also essential to verify for a given task, that 
the high measured accuracy results from the use of a proper prob-
lem representation, and not from the exploitation of artifacts in 
the data [39,62,35]. Techniques for interpreting and understanding 
what the model has learned have therefore become a key ingredi-
ent of a robust validation procedure [68,22,5]. Interpretability is es-
pecially important in applications such as medicine or self-driving 
cars, where the reliance of the model on the correct features must 
be guaranteed [17,16].

It has been a common belief, that simple models provide higher 
interpretability than complex ones. Linear models or basic decision 
trees still dominate in many applications for this reason. This belief 
is however challenged by recent work, in which carefully designed 
interpretation techniques have shed light on some of the most 
complex and deepest machine learning models [60,74,5,51,55,59].

* Corresponding authors.
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(K.-R. Müller).

Techniques of interpretation are also becoming increasingly 
popular as a tool for exploration and analysis in the sciences. In 
combination with deep nonlinear machine learning models, they 
have been able to extract new insights from complex physical, 
chemical, or biological systems [29,1,65,58].

This tutorial gives an overview of techniques for interpreting 
complex machine learning models, with a focus on deep neural 
networks (DNN). It starts by discussing the problem of interpret-
ing modeled concepts (e.g. predicted classes), and then moves to 
the problem of explaining individual decisions made by the model. 
A second part of this tutorial will look in more depth at the re-
cently proposed layer-wise relevance propagation (LRP) technique 
[5]. The tutorial abstracts from the exact neural network structure 
and domain of application, in order to focus on the more con-
ceptual aspects that underlie the success of these techniques in 
practical applications.

In spite of the practical successes, one should keep in mind that 
interpreting deep networks remains a young and emerging field 
of research. There are currently numerous coexisting approaches 
to interpretability. This tutorial gives a snapshot of the field at 
present time and it is naturally somewhat biased towards the au-
thors view; as such we hope that it provides useful information to 
the reader.

2. Preliminaries

Techniques of interpretation have been applied to a wide range 
of practical problems, and various meanings have been attached to 
terms such as “understanding”, “interpreting”, or “explaining”. See 
[43] for a discussion. As a first step, it can be useful to clarify the 
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Explainable AI science or pseudo-science?
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Machine Learning vs. Scientific Method
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Long live theory!
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An explanation of a machine learning model is a (falsifiable)  
hypothesis that connects the inferred output of a the model  
with the sample that the input data originate from.

Schuhmacher,	Schörner	et	al.,	Medical	Image	Analysis	(2022)
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Machine learning models as hypotheses:
A taxonomy and an analogy
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Outlook: Deductive validation in structural biology
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Conclusions and Outlook

§ Using inductive bias as a modeling tool leads to 
interpretable machine learning

§ Deductive validation escapes the no-free-lunch theorem

§ Falsifiable hypotheses as explanations identify XAI as 
missing link between machine learning and the 
scientific method
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