Genomics on a Shoestring Budget

Thomas Gatter

17.02.2023

Bioinformatics, Leipzig University

Can we study the genome of novel organisms on a small budget?

Can we study the genome of novel organisms on a small budget? Don't do it. You just get a lot of money or it won't be worth it. But thats also way to much spending for this proposal. So you won't get it here.

– Every Reviewer

Proposed Solution:

Get a lot of Money (somehow) \rightarrow Sequence with PacBio HiFi + Hi-C \rightarrow Process with Super-Computer \rightarrow Profit (?)

Option 1: Short Read Sequencing

Read length: 2 × 75-150 bp Accuracy: > 99% Provider: Illumina, Thermofischer, Roche

Option 2: Long Read Sequencing

Read length: avrg. > 10 kbp, often much longer Accuracy: \approx 90% \rightarrow better with newer iterations Provider: Oxford Nanopore(, Pacific Biosciences)

Short Read Assembly

- + cheap
- + accurate
- + well established with de Bruijn or String-Graphs
- cannot resolve longer repeats

Short Read Assembly

- + cheap
- + accurate
- + well established with de Bruijn or String-Graphs
- cannot resolve longer repeats

Long Read Assembly

- + resolve long complex regions
- less accurate
- more expensive
- expensive pairwise overlapping
- require high coverage

Short Read Assembly

- + cheap
- + accurate
- + well established with de Bruijn or String-Graphs
- cannot resolve longer repeats

Long Read Assembly

- + resolve long complex regions
- less accurate
- more expensive
- expensive pairwise overlapping
- require high coverage

Combine both!

The LazyB Workflow

Short reads are assembled to build accurate anchors between long reads.

Then some ma(th)gic happens...

LazyB- Benchmarks

Fruit Fly

	Х	Tool	compl.[%]	#ctg	#MA	NA50
Γ	$\sim 5 \times$	LazyB	71.624	1879	68	64415
		Canu	-	-	-	-
		Wtdbg2	6.351	2293	2	-
		HASLR	24.484	1407	10	-
		DBG20LC	25.262	974	141	-
		Wengan	81.02	2129	192	77215
	$\sim 10 \times$	LazyB	80.111	596	99	454664
		Canu	49.262	1411	275	-
		Wtdbg2	41.82	1277	155	-
		HASLR	67.059	2463	45	36979
		DBG20LC	82.52	487	468	498732
		Wengan	84.129	926	237	221730
	\sim 45 \times	ABySS	83.628	5811	123	67970

Advances in Nanopore Sequencing

LazyB- Benchmarks

Fruit Fly - R 8 vs R10

Х	Tool	Chem.	compl.[%]	#ctg	#MA	NA50
$\sim 5 \times$	LazyB	R8	71.624	1879	68	64415
		R10	71.028	708	91	189244
	DBG20LC	R8	25.262	974	141	-
		R10	33.413	895	161	-
	Wengan	R8	81.02	2129	192	77215
		R10	78.564	1645	140	117504
$\sim 10 \times$	LazyB	R8	80.111	596	99	454664
		R10	78.206	191	91	1031893
	DBG20LC	R8	82.52	487	468	498732
		R10	87.519	230	281	1016141
	Wengan	R8	84.129	926	237	221730
		R10	83.037	483	182	528879
\sim 45×	ABySS		83.628	5811	123	67970

Meccus longipennis

- \cdot blood sucking bug
- \cdot native to latin america
- host for Trypanosoma cruzi
- vector for Chagas disease

Genome virtually unexplored...

Lets get practical...

Assembly Statistics for M. longipennis (with BUSCO Hemiptera ODB10)

Tool	#ctg	Assembled bp	N50	BUSCO C + F
DBG20LC	-	-	-	-
Wengan	677	5,681,409	8,642	50 (2.0%) + 2 (0.1%)
HASLR	68,585	416,784,090	8,326	1280 (51.0%) + 232 (9.2%)
ABySS	695,368	893,209,008	1,582	1314 (52.4%) + 500 (19.9%)
LazyB	48,074	788,046,408	22,713	1596 (63.5%) + 181 (7.2%)

Annotation

- + RepeatModeler + BRAKER2 \rightarrow 19353 Proteins
- \cdot OrthoFinder for related organisms \rightarrow 7592 Orthologues to R. prolixus
- including orthologues for hematophagy und immune related proteins

Peter Stadler Javier T Granados Riverón

Sarah von Löhneysen Kevin Klein Felix Kühnl DEUTSCHE Forschungsgemeinschaft

SAB

SÄCHSISCHE AUFBAUBANK