

# Automated gating of flow cytometry data

Carmen Bruckmann

tbi Winterseminar 2023

Leipzig, February 16, 2023



# Introduction to flow cytometry

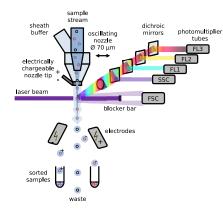



Figure: Adapted from: J. Lambrecht, The community sensor - Monitoring and control of microbiome dynamics in anaerobic processes, *PhD Dissertation*, 2020



# Introduction to flow cytometry

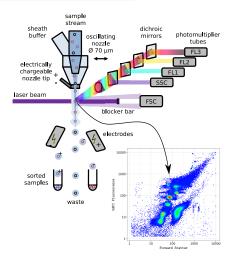
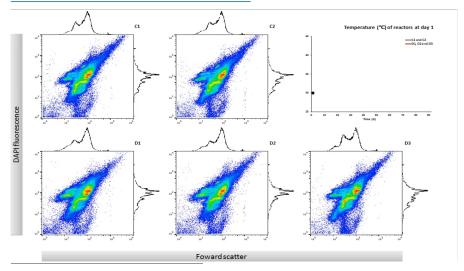




Figure: Adapted from: J. Lambrecht, The community sensor - Monitoring and control of microbiome dynamics in anaerobic processes, *PhD Dissertation*, 2020

# Introduction to flow cytometry





Liu et al., Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis, Environmental Microbiology, 2019

# Manual Gating

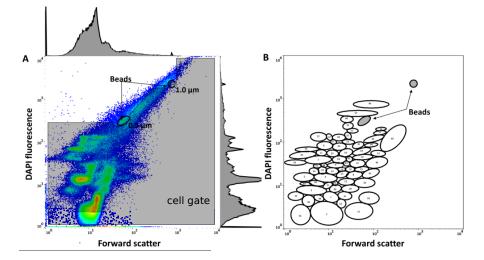



Figure: Liu et al., Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis, Environmental Microbiology, 2019





• How diverse is the community?

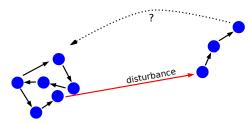




- How diverse is the community?
- How does the microbial community develop over time?



- How diverse is the community?
- How does the microbial community develop over time?



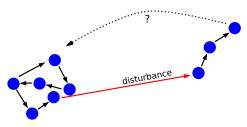



• How diverse is the community?

• ...

- How does the microbial community develop over time?
- Is the community able to recover from a disturbance?






• How diverse is the community?

. . .

- How does the microbial community develop over time?
- Is the community able to recover from a disturbance?

For all of this we need the cell numbers per subcommunity over time, and thus **gating** 





• How diverse is the community?

• ...

- How does the microbial community develop over time?
- Is the community able to recover from a disturbance?

For all of this we need the cell numbers per subcommunity over time, and thus **gating** 

Gating is still done by hand but this is

• user dependent



• How diverse is the community?

• ...

- How does the microbial community develop over time?
- Is the community able to recover from a disturbance?

For all of this we need the cell numbers per subcommunity over time, and thus **gating** 

Gating is still done by hand but this is

- user dependent
- not reproducible



• How diverse is the community?

• ...

- How does the microbial community develop over time?
- Is the community able to recover from a disturbance?

For all of this we need the cell numbers per subcommunity over time, and thus **gating**  Gating is still done by hand but this is

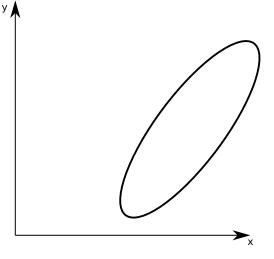
- user dependent
- not reproducible
- time-consuming

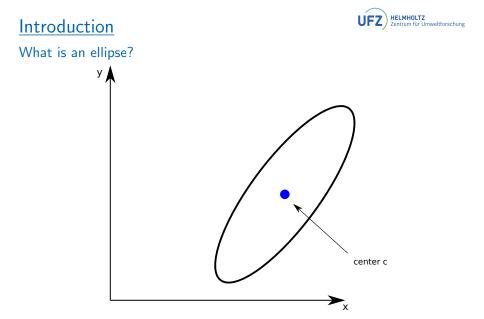


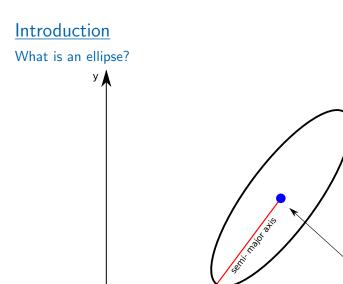
• How diverse is the community?

• ...

- How does the microbial community develop over time?
- Is the community able to recover from a disturbance?


For all of this we need the cell numbers per subcommunity over time, and thus **gating**  Gating is still done by hand but this is


- user dependent
- not reproducible
- time-consuming
- $\Rightarrow$  Need of automated gating!



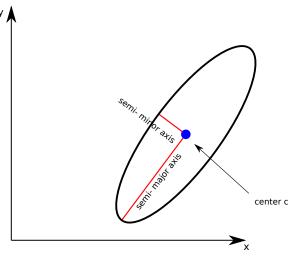


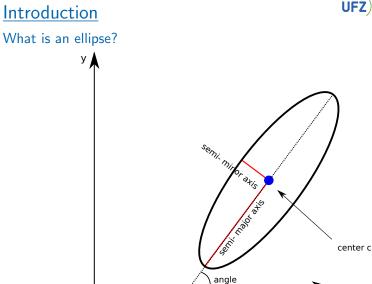

#### What is an ellipse?





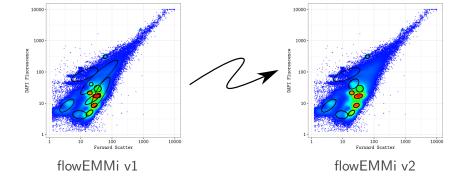






center c






#### What is an ellipse?







# Introduction







#### Merging

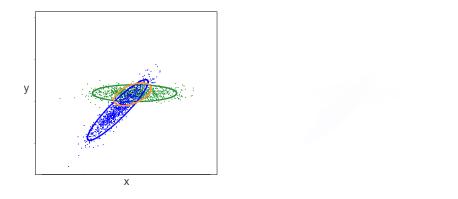
• Let  $E_1$  and  $E_2$  be two ellipses that overlap more than a given threshold, and let  $w_1$  and  $w_2$  be the weights of  $E_1$  and  $E_2$ , respectively.



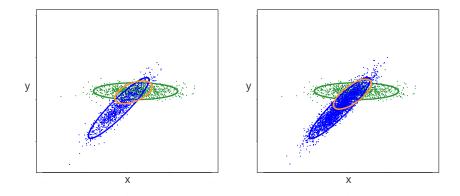
- Let  $E_1$  and  $E_2$  be two ellipses that overlap more than a given threshold, and let  $w_1$  and  $w_2$  be the weights of  $E_1$  and  $E_2$ , respectively.
- Then, they will be "merged" into a new ellipse  $E_c$ .  $E_c$  will be more similar to the ellipse with the highest weight.



- Let  $E_1$  and  $E_2$  be two ellipses that overlap more than a given threshold, and let  $w_1$  and  $w_2$  be the weights of  $E_1$  and  $E_2$ , respectively.
- Then, they will be "merged" into a new ellipse  $E_c$ .  $E_c$  will be more similar to the ellipse with the highest weight.
- Let  $\Sigma_1$  and  $\Sigma_2$  be the covariance matrices and let  $\mu_1$  and  $\mu_2$  be the centers of  $E_1$  and  $E_2$ , respectively.



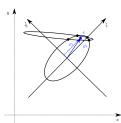

- Let  $E_1$  and  $E_2$  be two ellipses that overlap more than a given threshold, and let  $w_1$  and  $w_2$  be the weights of  $E_1$  and  $E_2$ , respectively.
- Then, they will be "merged" into a new ellipse  $E_c$ .  $E_c$  will be more similar to the ellipse with the highest weight.
- Let  $\Sigma_1$  and  $\Sigma_2$  be the covariance matrices and let  $\mu_1$  and  $\mu_2$  be the centers of  $E_1$  and  $E_2$ , respectively.
- $E_c$  is the product of the two Gaussian densities, since we want the probability distribution of points lying in *both* ellipses.




- Let  $E_1$  and  $E_2$  be two ellipses that overlap more than a given threshold, and let  $w_1$  and  $w_2$  be the weights of  $E_1$  and  $E_2$ , respectively.
- Then, they will be "merged" into a new ellipse  $E_c$ .  $E_c$  will be more similar to the ellipse with the highest weight.
- Let  $\Sigma_1$  and  $\Sigma_2$  be the covariance matrices and let  $\mu_1$  and  $\mu_2$  be the centers of  $E_1$  and  $E_2$ , respectively.
- $E_c$  is the product of the two Gaussian densities, since we want the probability distribution of points lying in *both* ellipses.
- In the end, the original ellipses  $E_1$  and  $E_2$  will be deleted and replaced by  $E_c$ , i.e. by  $\mu_c$  and  $\Sigma_c$ .





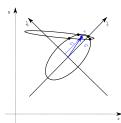







#### Shrinking

Let  $E_1$  and  $E_2$  be two ellipses that overlap with  $o={\rm size}$  of intersection area.

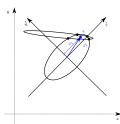





#### Shrinking

Let  $E_1$  and  $E_2$  be two ellipses that overlap with o = size of intersection area.

- Let  $w_1$  and  $w_2$  be the weights of  $E_1$  and  $E_2$  in the mixture model, respectively. Then:
  - 1. Reduce the angle between the given ellipses by a given threshold.

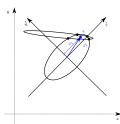





#### Shrinking

Let  $E_1$  and  $E_2$  be two ellipses that overlap with o = size of intersection area.

- Let  $w_1$  and  $w_2$  be the weights of  $E_1$  and  $E_2$  in the mixture model, respectively. Then:
  - 1. Reduce the angle between the given ellipses by a given threshold.
  - 2. Transform the coordinate system to the center of  $E_1$  such that it is aligned with the semi-axes of  $E_1$ .

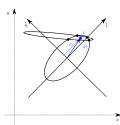





#### Shrinking

Let  $E_1$  and  $E_2$  be two ellipses that overlap with o = size of intersection area.

- 1. Reduce the angle between the given ellipses by a given threshold.
- 2. Transform the coordinate system to the center of  $E_1$  such that it is aligned with the semi-axes of  $E_1$ .
- 3. Determine the intersection points of  $E_1$  and  $E_2$ .






#### Shrinking

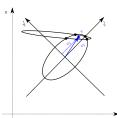
Let  $E_1$  and  $E_2$  be two ellipses that overlap with o = size of intersection area.

- 1. Reduce the angle between the given ellipses by a given threshold.
- 2. Transform the coordinate system to the center of  $E_1$  such that it is aligned with the semi-axes of  $E_1$ .
- 3. Determine the intersection points of  $E_1$  and  $E_2$ .
- 4. Calculate the average of the intersection points; call this vector  $v = (v_1, v_2)$ .





#### Shrinking


Let  $E_1$  and  $E_2$  be two ellipses that overlap with o = size of intersection area.

- 1. Reduce the angle between the given ellipses by a given threshold.
- 2. Transform the coordinate system to the center of  $E_1$  such that it is aligned with the semi-axes of  $E_1$ .
- 3. Determine the intersection points of  $E_1$  and  $E_2$ .
- 4. Calculate the average of the intersection points; call this vector  $v = (v_1, v_2)$ .

5. Recalculate 
$$E_1$$
:  

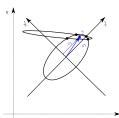
$$\min_{new} = \min \cdot \left( 1 - \sqrt{\frac{o}{|E_1|} \cdot \frac{|v_1|}{|v_1| + |v_2|} \cdot \frac{w_2}{w_1 + w_2}} \right)$$

$$\min_{new} = \min \cdot \left( 1 - \sqrt{\frac{o}{|E_1|} \cdot \frac{|v_2|}{|v_1| + |v_2|} \cdot \frac{w_2}{w_1 + w_2}} \right)$$





#### Shrinking


Let  $E_1$  and  $E_2$  be two ellipses that overlap with o = size of intersection area.

Let  $w_1$  and  $w_2$  be the weights of  $E_1$  and  $E_2$  in the mixture model, respectively. Then:

- 1. Reduce the angle between the given ellipses by a given threshold.
- 2. Transform the coordinate system to the center of  $E_1$  such that it is aligned with the semi-axes of  $E_1$ .
- 3. Determine the intersection points of  $E_1$  and  $E_2$ .
- 4. Calculate the average of the intersection points; call this vector  $v = (v_1, v_2)$ .

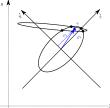
$$\begin{split} \text{major}_{\mathsf{new}} &= \text{major} \cdot \left(1 - \sqrt{\frac{o}{|E_1|} \cdot \frac{|v_1|}{|v_1| + |v_2|} \cdot \frac{w_2}{w_1 + w_2}}\right) \\ \text{5. Recalculate } E_1 \\ \text{minor}_{\mathsf{new}} &= \text{minor} \cdot \left(1 - \sqrt{\frac{o}{|E_1|} \cdot \frac{|v_2|}{|v_1| + |v_2|} \cdot \frac{w_2}{w_1 + w_2}}\right) \end{split}$$

Recalculate E<sub>2</sub> in the same way.





#### Shrinking


5.

Let  $E_1$  and  $E_2$  be two ellipses that overlap with o = size of intersection area.

- 1. Reduce the angle between the given ellipses by a given threshold.
- 2. Transform the coordinate system to the center of  $E_1$  such that it is aligned with the semi-axes of  $E_1$ .
- 3. Determine the intersection points of  $E_1$  and  $E_2$ .
- 4. Calculate the average of the intersection points; call this vector  $v = (v_1, v_2)$ .

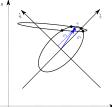
$$\begin{array}{l} \operatorname{major}_{\mathsf{new}} = \operatorname{major} \cdot \left( 1 - \sqrt{\frac{o}{|E_1|} \cdot \frac{|v_1|}{|v_1| + |v_2|} \cdot \frac{w_2}{w_1 + w_2}} \right) \\ \\ \operatorname{Recalculate} E_1: \\ \\ \operatorname{minor}_{\mathsf{new}} = \operatorname{minor} \cdot \left( 1 - \sqrt{\frac{o}{|E_1|} \cdot \frac{|v_2|}{|v_1| + |v_2|} \cdot \frac{w_2}{w_1 + w_2}} \right) \end{array} \right) \\ \end{array}$$

- Recalculate E<sub>2</sub> in the same way.
- 7. Repeat steps 1. to 6. until  $E_1$  and  $E_2$  do not overlap anymore or until one ellipse gets too small.





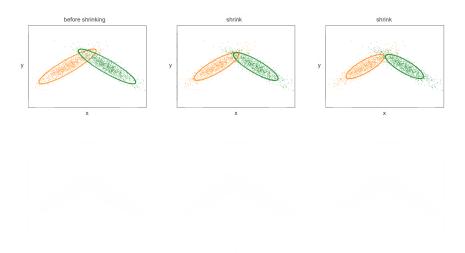
#### Shrinking


5.

Let  $E_1$  and  $E_2$  be two ellipses that overlap with o = size of intersection area.

- 1. Reduce the angle between the given ellipses by a given threshold.
- 2. Transform the coordinate system to the center of  $E_1$  such that it is aligned with the semi-axes of  $E_1$ .
- 3. Determine the intersection points of  $E_1$  and  $E_2$ .
- 4. Calculate the average of the intersection points; call this vector  $v = (v_1, v_2)$ .

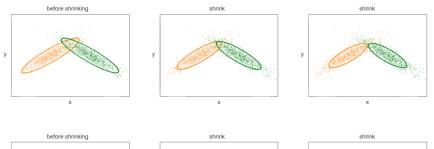
$$\begin{split} \text{major}_{\mathsf{new}} &= \text{major} \cdot \left(1 - \sqrt{\frac{o}{|E_1|} \cdot \frac{|v_1|}{|v_1| + |v_2|} \cdot \frac{w_2}{w_1 + w_2}}\right) \\ \text{Recalculate } E_1 &: \\ \text{minor}_{\mathsf{new}} &= \text{minor} \cdot \left(1 - \sqrt{\frac{o}{|E_1|} \cdot \frac{|v_2|}{|v_1| + |v_2|} \cdot \frac{w_2}{w_1 + w_2}}\right) \end{split}$$


- Recalculate E<sub>2</sub> in the same way.
- 7. Repeat steps 1. to 6. until  $E_1$  and  $E_2$  do not overlap anymore or until one ellipse gets too small.
- 8. If one ellipse gets too small, then merge the original  $E_1$  and  $E_2$  instead.



# But how to remove the overlaps?




### Shrinking




### But how to remove the overlaps?



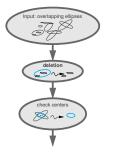
### Shrinking





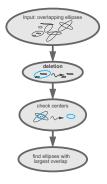




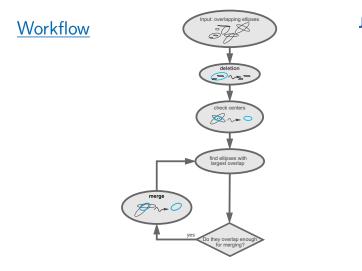



### Workflow

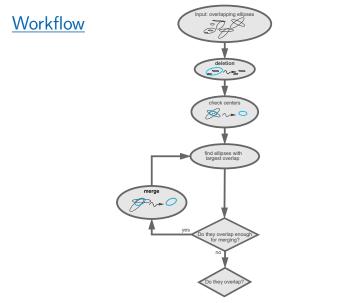




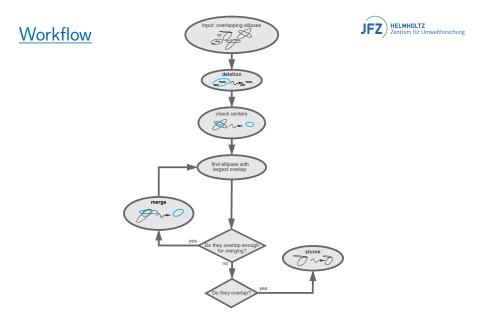

# Workflow

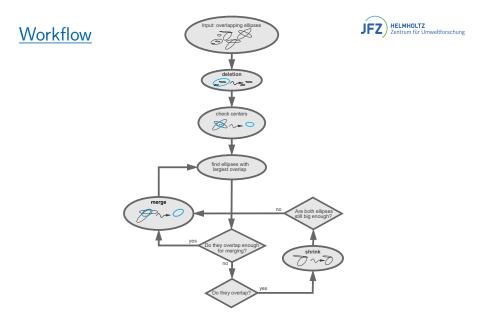


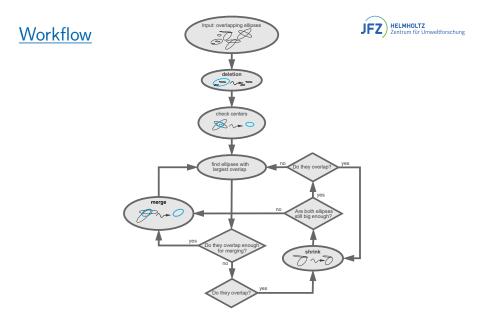


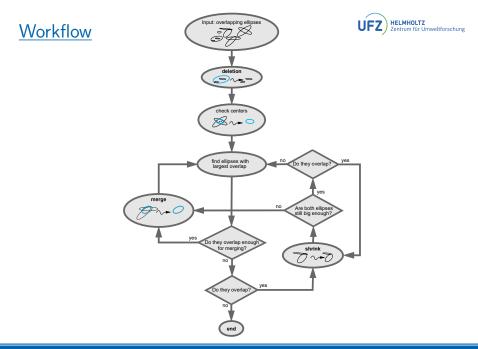


# Workflow



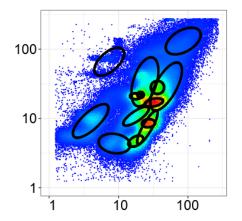




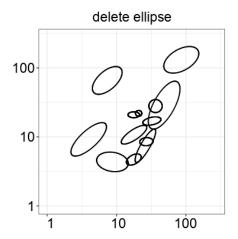






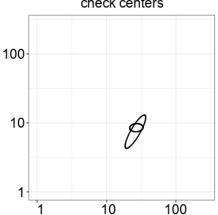








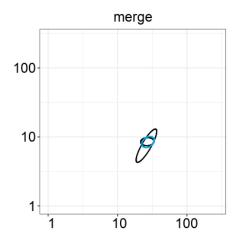


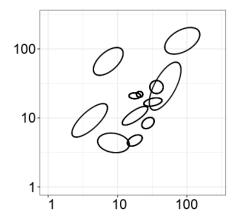






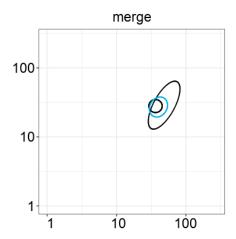





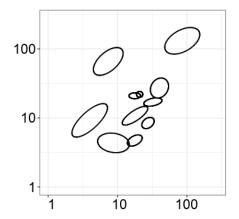


### check centers





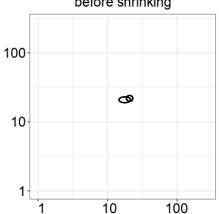






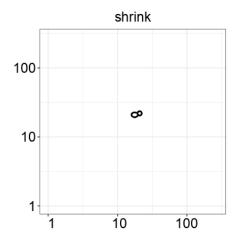




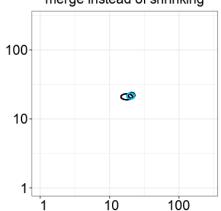




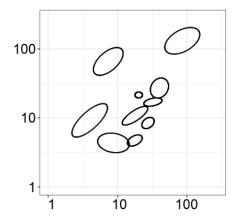



#### before shrinking



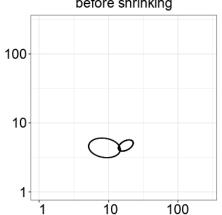






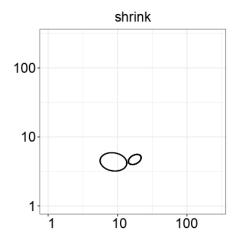




### merge instead of shrinking

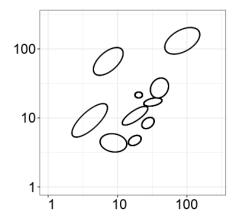






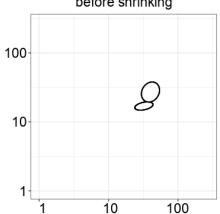






#### before shrinking



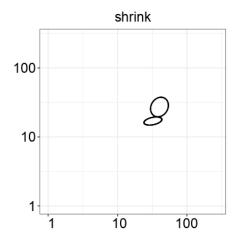




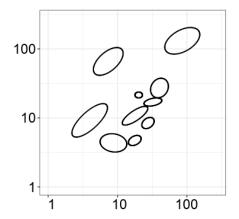




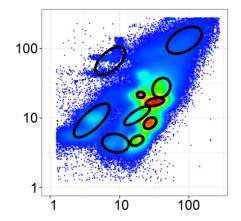




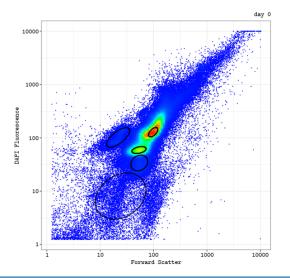


#### before shrinking
















#### Automated gating of single samples







• If we are given a time series of flow cytometry data, we would like to have a gate template that approximately fits every time point.





- If we are given a time series of flow cytometry data, we would like to have a gate template that approximately fits every time point.
- Some ellipses are allowed to be empty if the corresponding sub-community is not present in that sample.





- If we are given a time series of flow cytometry data, we would like to have a gate template that approximately fits every time point.
- Some ellipses are allowed to be empty if the corresponding sub-community is not present in that sample.
- Input: The ellipses of all the samples (combined into a single set)





- If we are given a time series of flow cytometry data, we would like to have a gate template that approximately fits every time point.
- Some ellipses are allowed to be empty if the corresponding sub-community is not present in that sample.
- Input: The ellipses of all the samples (combined into a single set)
- Take out ellipses with a weight below a given threshold

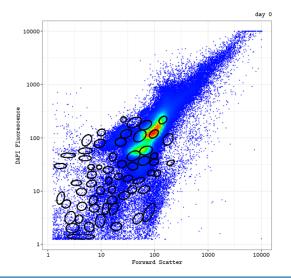




- If we are given a time series of flow cytometry data, we would like to have a gate template that approximately fits every time point.
- Some ellipses are allowed to be empty if the corresponding sub-community is not present in that sample.
- Input: The ellipses of all the samples (combined into a single set)
- Take out ellipses with a weight below a given threshold
- Remove the overlaps in this set of ellipses

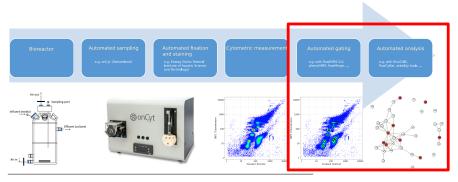


- If we are given a time series of flow cytometry data, we would like to have a gate template that approximately fits every time point.
- Some ellipses are allowed to be empty if the corresponding sub-community is not present in that sample.
- Input: The ellipses of all the samples (combined into a single set)
- Take out ellipses with a weight below a given threshold
- Remove the overlaps in this set of ellipses
- For computational reasons this is done recursively




- If we are given a time series of flow cytometry data, we would like to have a gate template that approximately fits every time point.
- Some ellipses are allowed to be empty if the corresponding sub-community is not present in that sample.
- Input: The ellipses of all the samples (combined into a single set)
- Take out ellipses with a weight below a given threshold
- Remove the overlaps in this set of ellipses
- For computational reasons this is done recursively
- With the gate template we can calculate *cell numbers per gate and sample*

## Example 3




#### Automatically generated gate template



# $\mathsf{Summary}/\mathsf{Outlook}$





Liu et al., Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis, Environmental Microbiology, 2019

onCyt, https://www.eawag.ch/de/news-agenda/news-plattform/newsarchiv/archiv-detail/online-durchflusszytometrie-sensor-fuer-bakterienkonzentrationen/

Cichocki et al., Bacterial mock communities as standards for reproducible cytometric microbiome analysis, Nature Protocols, 2020

Ludwig et al., flowEMMi: an automated model-based clustering tool for microbial cytometric data, BMC Bioinformatics, 2019

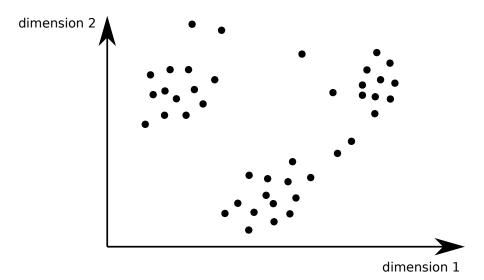
Koch et al., flowCyBar: Analyze flow cytometric data using gate information, R package version 1.30.0, 2019

# $\mathsf{Summary}/\mathsf{Outlook}$



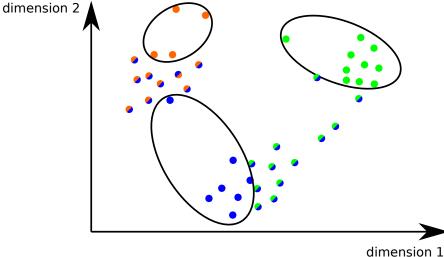
| Aktivitäten Electron 🔻       |                                                                          | 14.Feb 10:39<br>Bitca                                                                              | S) २०२१ की <del>-</del><br>- <b>ट (S</b> )                                                                                                                     |
|------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Edit View Window Help   | flowEMMi v2                                                              | strig of a single sample Gale tamplate Galculate cell numbers                                      | Plu                                                                                                                                                            |
| BiTCa Analyze Tool           | channel x<br>no fcs file found v<br>x start<br>1500                      | threshold for deletion 0,8 threshold for merging 0,8                                               | convergence 0,01 max cluster 15                                                                                                                                |
| flowCHIC                     | x end<br>50000                                                           | inits                                                                                              | min cluster                                                                                                                                                    |
| flowEMMi v2                  | channel y                                                                | init fraction                                                                                      | cluster bracket                                                                                                                                                |
| flowCyBar                    | no fos file found v                                                      | final fraction                                                                                     | select file filepath                                                                                                                                           |
| <ul> <li>settings</li> </ul> | 1500 y end Socio use a celligate from FlowJo central file (reg) Stepsiti | alpha<br>0.7<br>Ø log<br>Ø diable paralelism<br>Ø remove overlaps<br>when to remove overlaps<br>20 | three Hexults           Monitor Directory           Inipath (its directory)           select directory           Monitor Directory           Monitor Directory |
|                              |                                                                          | min minor<br>700                                                                                   |                                                                                                                                                                |

## Acknowledgements



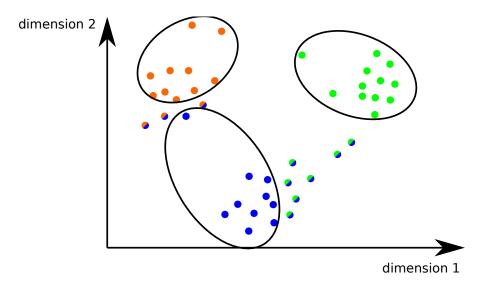



### Thank you for your attention and your support!



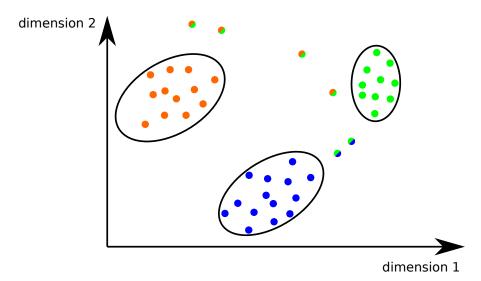




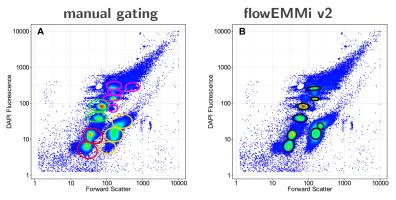









### Appendix: The EM-algorithm

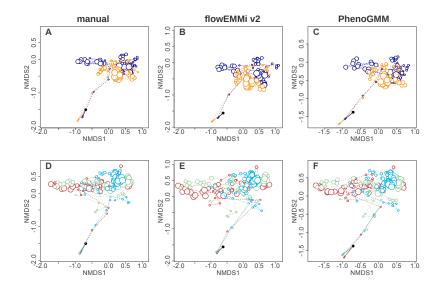




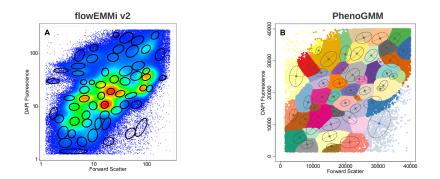

## Appendix: The EM-algorithm



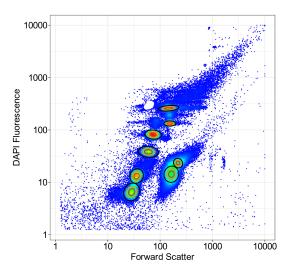



### mock communities

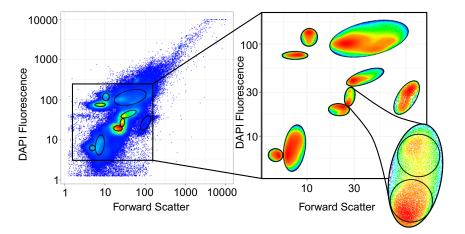



- Stenotrophomonas rhizophila
- Escherichia coli
- Kocuria rhizophila
- Paenibacillus polymyxa

Cichocki et al., Bacterial mock communities as standards for reproducible cytometric microbiome analysis, *Nature Protocols*, 2013


### Appendix: Community dynamics




### Appendix: Community dynamics



## Appendix: Ellipse sizes



### Appendix: Hierarchical Gating



# Merging

### Merging: The mathematical details

•  $\Sigma_1$  and  $\Sigma_2$  of  $E_1$  and  $E_2$  are both symmetric and positive definite  $\Rightarrow$  use the Cholesky decomposition and re-scale them:

$$\begin{split} \Sigma_i &= L_i \cdot D_i \cdot L_i^T & \text{for } i = 1, 2 \quad (1) \\ \Sigma'_i &= L_i \cdot \frac{1}{w_i} \cdot D_i \cdot L_i^T & \text{for } i = 1, 2 \quad (2) \end{split}$$

• Then, the new  $\mu_c$  and  $\Sigma'_c$  of  $E'_c$ , which will be re-scaled to  $E_c$  later, can be derived as the product of two Gaussians:

$$\mu_{c} = \left(\Sigma_{1}^{'-1} + \Sigma_{2}^{'-1}\right) \cdot \left(\Sigma_{1}^{'-1} \cdot \mu_{1} + \Sigma_{2}^{'-1} \cdot \mu_{2}\right)$$
(3)

$$\Sigma_{c}^{\prime} = \left(\Sigma_{1}^{\prime-1} + \Sigma_{2}^{\prime-1}\right)^{-1} = \Sigma_{1}^{\prime} \cdot \left(\Sigma_{1}^{\prime} + \Sigma_{2}^{\prime}\right)^{-1} \cdot \Sigma_{2}^{\prime}$$
(4)

• For the re-adjustment of the weights, we again need to decompose  $\Sigma_c'$  and multiply the diagonal elements by the sum of the weights.

$$\Sigma_c' = L_c' \cdot D_c' \cdot L_c'^T \tag{5}$$

$$\Sigma_{c} = L_{c}' \cdot (w_{1} + w_{2}) \cdot D_{c}' \cdot L_{c}'^{T}$$
(6)