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Introduction
CV:
▶ Physics 2016-2018
▶ Computer Science 2018-2022
▶ Ph.D. Student in Algorithmic Cheminformatics

(MATOMIC project, SDU)
▶ Still learning how to speak chemistry

Current project:
▶ Developing a framework for atom tracing in chemical networks

Other projects:
▶ Boltzmann random sampling of RNA secondary structures

with pseudoknots using Analytic Combinatorics
▶ Alternate solution to isomer generation and bond perception

using ILP
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Atom Tracing

Example – ANRORC mechanism:
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Motivation

Some potential use-cases:
▶ Hypothesis generation: Given marking of input compounds,

by which mechanism is an observed marking of another
compound created?

▶ Isotope-marking Experiment design: Given multiple
candidate pathways, how to label input compounds such that
the pathways can be distinguished by observing the marking
of some other set of compounds?
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Petri Nets
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Petri Nets for Chemistry

Chemical Example: 2 H2 + O2 → 2 H2O
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Coloured Petri Nets

For each place p ∈ P , a set of possible token
colours Σ(p).

For each transition t ∈ T , a function C which
maps from the colour space of in-places to the
colour space of out-places.

▶ Colours can be arbitrary mathematical
objects

▶ Transition functions can be arbitrarily
complex

▶ When firing, make a non-deterministic
choice of token colours (‘binding’)
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Coloured Petri Nets for Atom Tracing

The following model is used:
▶ Token Colours – Compound marking (list of booleans)
▶ Transition function – Atom map

1 2

3
4

Colour representation:

(0, 1, 0, 0)

Atom maps obtained from
database or from other tools

▶ Potentially exponential increase in size of state space
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Abstraction levels

More coarse-grained abstraction levels can be used, depending on
the use-case. These differ on how markings are represented in the
state space.

Level 1
Full simulation

Store a multiset of
markings for each
compound.

Level 2
Full simulation with
underlying
unmarked network
Store a multiset of
marked compounds,
but do not track the
count of unmarked
compounds.

Level 3
Omega-marking

Store a set of
markings for each
compound, but do
not store counts.
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State Space Reduction

Two main phases:
Pre-computation (Static)
State space expansion (Dynamic) ← Performance bottleneck!

The goal is to use the pre-computation to optimise the
performance and memory usage of the dynamic phase.
▶ Atom Transition Network
▶ Canonicalise and compute automorphism groups
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State Space Reduction

The corresponding Atom Transition Network (ATN) is used to
optimise state space expansion.

The atoms reached in the ATN represent a superset of reachable
atoms.
▶ A trace only exists in the CPN if it exists in the ATN.
▶ We can greatly reduce the number of atoms we need to track

explicitly, reducing memory use of the state space.
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Atom Transition network
TCA cycle (simplified):
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Atom Transition Network

▶ Reaction and
automorphism
edges

▶ Subnetwork
generated
based on
source/sink
atoms
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Atom Transition Network

▶ Reaction and
automorphism
edges

▶ Subnetwork
generated
based on
source/sink
atoms

Automorphism edges generate the automorphism group of the
compound. The orbit of a vertex O(v) is the set of vertices
reahable by the automorphism edges.
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State Space Reduction

Reducing the size of each state in the state
space:
▶ ATN subnetwork specifies a set of atoms

to track in each compound.
▶ Only track reachable atoms of desired

type of element.

(0, 0, 1, 1, 0, 0, 1, 0)
↓
(0, 0, 1, 1, 0, 0, 1, 0)
↓
(1, 1, 0, 1)

Given graph G = (V, E) and a subset of tracked vertices V ′ ⊂ V :

∀v ∈ V ′ : O(v) ⊆ V ′,

so the automorphism group Aut(V ′) is trivially calculated due to
the construction of V ′.
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Labeled graph canonicalisation

State space is reduced by only storing canonical labelled
compound:
▶ Canonicalisation can be optimised based on the automorphism

group of the underlying graph.
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Labeled graph canonicalisation

State space is reduced by only storing canonical labelled
compound:
▶ Canonicalisation can be optimised based on the automorphism

group of the underlying graph.

Problem: Let G = (V, E) be a graph with labels l : V → Z+, and
automorphism group Aut(G, l). Given an additional set of labels
l′ : V → Z+, canonicalise the graph according to the labelling
l∗ : V → (Z+ × Z+):

l∗(x) = (l(x), l′(x)).

In this case, l is the labeling which is given statically (element,
charge, ...), l′ is a binary labeling representing whether a given
atom is marked with an isotope.
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Challenges

▶ Unreliable atom maps
▶ Accuracy of atom mappers greatly depends on reaction type

(60% to 99%)1

▶ Compounding errors lead to incorrect traces
▶ Incomplete chemical networks

1Preciat Gonzalez, G. A. et al. Comparative evaluation of atom mapping
algorithms for balanced metabolic reactions. J Cheminform 9, 1–15 (2017).
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Progress & Next Steps

▶ Currently implementing state space search algorithms
▶ Experiment modelling

▶ Model fragmentation patterns
▶ User interface
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Thank you!
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