

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─ 注

An Application of Graph Products in Rule Inference

Akbar Davoodi

Algorithmic Cheminformatics Group Department of Mathematics and Computer Science(IMADA) University of Southern Denmark(SDU)

> 38th TBI Winterseminar, Bled, Slovenia February 12-17, 2023

Double Push-Out Approach

Akbar Davoodi

An Application of Graph Products in Rule Inference

Rule Inference

Our Problem

A list of reactions $L := \{R_1, R_2, \ldots, R_n\}$ is given. For every reaction $R_i : G_i \longrightarrow H_i$, an atom map $f_i : G_i \rightarrow H_i$ is given, as well. The goal is to find a minimum size list of subrules such that if we apply them on educts, then the result is L.

<回と < 目と < 目と = 目

Combined Graph

An Application of Graph Products in Rule Inference

2

프 에 세 프 어

Combined Graph

An Application of Graph Products in Rule Inference

Maximal Common Subgraph

Akbar Davoodi

An Application of Graph Products in Rule Inference

4 A >

Definition

The modular product of two graphs G = (V, E) and G' = (V', E') is a graph with vertex set $V \times V'$ and two vertices (u, u') and (v, v') are adjacent iff $(u, v) \in E(G)$ and $(u', v') \in E(G')$ or $(u, v) \notin E(G)$ and $(u', v') \notin E(G')$.

An Application of Graph Products in Rule Inference

- E - N

Definitions

Definition (Anchored Subgraph)

Let $A \subseteq H$. If we can extend this A in H to a copy of G in H, then G is called an anchored subgraph of H to A.

Definition (Maximal Common Subgraph)

Let A be a subgraph of both graphs H_1 and H_2 . Then, G is called a maximal common subgraph of graphs H_1 and H_2 with respect to A if

- G is an anchored subgraph of both H_1 and H_2 to A.
- For every graph K, which is an anchored subgraph of H_i 's to A, we have $G \not\subseteq K$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Edge induced and vertex induced subgraphs

Akbar Davoodi

An Application of Graph Products in Rule Inference

3

- T

Edge induced and vertex induced subgraphs

Maximum common vertex induced subgraph: 5 vertices and 4 edges

An Application of Graph Products in Rule Inference

(B)

Edge induced and vertex induced subgraphs

Maximum common edge induced subgraph: 7 vertices and 7 edges

Akbar Davoodi

An Application of Graph Products in Rule Inference

(B)

Inputs: $\{H_1, H_2, \ldots, H_t\}$ and A. **Output:** Connected MCS of H_i 's with respect to anchor A.

$$\underbrace{\overbrace{H_1\times H_2}^{c_3}\times H_3}_{c_2}\times \cdots\times H_t$$

- Step 1 Constructing the labelled modular product of H and H' with two edge types: $(u, v) \in E(H)$ and $(u', v') \in E(H')$ $(u, v) \notin E(H)$ and $(u', v') \notin E(H')$
- Step 2 Obtaining $N := \bigcap_{x \in A} N_{H \times H'}(x)$
- Step 3 Removing blue connected components of N which are not connected to A by blue.

Akbar Davoodi

An Application of Graph Products in Rule Inference

◆□> ◆□> ◆目> ◆目> ◆目> ○○○

MCS(H, H', A)

Inputs:ListN(list of remained blue components) and AOutput: Connected MCS's Anchored in A.

Line Graphs

Definition (Line graph)

Let G = (V, E) be a simple graph. The line graph L(G) is another simple graph. Each vertex of L(G) represents an edge of G and two vertices in L(G) are adjacent iff the corresponding edges are adjacent in G.

An Application of Graph Products in Rule Inference

A (1) < A (2) < A (2) </p>

Line Graphs

Definition (Line graph)

Let G = (V, E) be a simple graph. The line graph L(G) is another simple graph. Each vertex of L(G) represents an edge of G and two vertices in L(G) are adjacent iff the corresponding edges are adjacent in G.

Akbar Davoodi

An Application of Graph Products in Rule Inference

- E - N

From MCS to MCES

$$G \text{ and } G' \xrightarrow{L} L(G) \text{ and } L(G') \xrightarrow[algorithm]{any induced}} \mathsf{MCS}(L(G), L(G'))$$
$$\xrightarrow{L^{-1}} \mathsf{MCES}(G, G')$$

An Application of Graph Products in Rule Inference

Thanks for Your Attention.

