An Application of Graph Products in Rule Inference

Akbar Davoodi

Algorithmic Cheminformatics Group
Department of Mathematics and Computer Science(IMADA)
University of Southern Denmark(SDU)

Double Push-Out Approach

Rule Inference

Our Problem

A list of reactions $L:=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ is given. For every reaction $R_{i}: G_{i} \longrightarrow H_{i}$, an atom map $f_{i}: G_{i} \rightarrow H_{i}$ is given, as well. The goal is to find a minimum size list of subrules such that if we apply them on educts, then the result is L.

Combined Graph

Combined Graph

Combined Graph

Maximal Common Subgraph

Definition

The modular product of two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a graph with vertex set $V \times V^{\prime}$ and two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent iff $(u, v) \in E(G)$ and $\left(u^{\prime}, v^{\prime}\right) \in E\left(G^{\prime}\right)$ or $(u, v) \notin E(G)$ and $\left(u^{\prime}, v^{\prime}\right) \notin E\left(G^{\prime}\right)$.

Definitions

Definition (Anchored Subgraph)

Let $A \subseteq H$. If we can extend this A in H to a copy of G in H, then G is called an anchored subgraph of H to A.

Definition (Maximal Common Subgraph)

Let A be a subgraph of both graphs H_{1} and H_{2}. Then, G is called a maximal common subgraph of graphs H_{1} and H_{2} with respect to A if

- G is an anchored subgraph of both H_{1} and H_{2} to A.
- For every graph K, which is an anchored subgraph of H_{i} 's to A, we have $G \nsubseteq K$.

Edge induced and vertex induced subgraphs

Edge induced and vertex induced subgraphs

Maximum common vertex induced subgraph: 5 vertices and 4 edges

Edge induced and vertex induced subgraphs

Maximum common edge induced subgraph:
7 vertices and 7 edges

Inputs: $\left\{H_{1}, H_{2}, \ldots, H_{t}\right\}$ and A.
Output: Connected MCS of H_{i} 's with respect to anchor A.

Step 1 Constructing the labelled modular product of H and H^{\prime} with two edge types:
$(u, v) \in E(H)$ and $\left(u^{\prime}, v^{\prime}\right) \in E\left(H^{\prime}\right)$ $(u, v) \notin E(H)$ and $\left(u^{\prime}, v^{\prime}\right) \notin E\left(H^{\prime}\right)$
Step 2 Obtaining $N:=\bigcap_{x \in A} N_{H \times H^{\prime}}(x)$
Step 3 Removing blue connected components of N which are not connected to A by blue.

$\operatorname{MCS}\left(H, H^{\prime}, A\right)$

Inputs:ListN(list of remained blue components) and A
Output: Connected MCS's Anchored in A.

```
Algorithm 1 (pseudocode)
    1: Answer=\{\}
    2: for \(N_{i} \in \operatorname{List} N\) do
    3: \(\quad \mathrm{L}=\operatorname{MaxCliques}\left(N_{i}\right)\)
    4: \(\quad\) for \(l \in L\) do
    5: \(\quad\) if \(l\) has no blue edge to \(A\) then
    6: \(\quad\) Remove \(l\) from \(L\)
    7: end if
    8: end for
    9: \(\quad\) Answer=Answer \(\cup\{l \cup A \mid l \in L\}\)
10: end for
```


Line Graphs

Definition (Line graph)

Let $G=(V, E)$ be a simple graph. The line graph $L(G)$ is another simple graph. Each vertex of $L(G)$ represents an edge of G and two vertices in $L(G)$ are adjacent iff the corresponding edges are adjacent in G.

G

$L(G)$

Line Graphs

Definition (Line graph)

Let $G=(V, E)$ be a simple graph. The line graph $L(G)$ is another simple graph. Each vertex of $L(G)$ represents an edge of G and two vertices in $L(G)$ are adjacent iff the corresponding edges are adjacent in G.

Whitney's Theorem (1932)

Every graph, except triangle or claw, is uniquely determined by its line graph.

From MCS to MCES

$$
\begin{aligned}
& G \text { and } G^{\prime} \stackrel{L}{\Longrightarrow} L(G) \text { and } L\left(G^{\prime}\right) \underset{\substack{\text { any } \\
\text { algorithm }}}{\text { induced }} \operatorname{MCS}\left(L(G), L\left(G^{\prime}\right)\right) \\
& \stackrel{L^{-1}}{\Longrightarrow} \operatorname{MCES}\left(G, G^{\prime}\right)
\end{aligned}
$$

Example:

Thanks for Your Attention．

