Exploring Chemical Space
 Two (still immature) ways of traversing in the molecule space

Nico Domschke

Bioinformatik Uni Leipzig
February 17, 2023

Chemical space in numbers

- New innovative molecules are needed for drug discovery.
- Only 12267 approved drugs ${ }^{1}$
- How big is the chemical space? 10^{60} drug like molecules[4]
- Huge untapped potential
${ }^{1}$ on DrugBank 11.02.23
${ }^{2}$ Hoffmann, Torsten. The next level in chemical space navigation: Going far beyond enumerable compound libraries. Drug Discovery Today, 24(5):1148-1156, 2019

A rule based approach

- Using $\mathrm{M} \varnothing \mathrm{D}$ as the underlying framework [1]
- Category theory embedded subgraph matching on molecule graphs
- A restriction on actual chemistry produces synthesizable molecules [5]
- Curated collection of 54 organic reactions by Hartenfeller et al.[3]

Term-Rewriting

- Chemical context needs to be explicity defined
- ConstrainLabelAny gives a lot of flexibility
- A liberal definition should be the sweet spot
- Much Needed: Negative Lists and Subgraph Matches

```
(...)
node [ id 1 label "_U" ]
edge [ source u target v label "_A"]
constrainLabelAny [
    label "Meso(_A,_B,_C,_D,_E,_F)"
    labels [label "Meso(-,=,-,=,-,=)" label "Meso(=,-,=,-,=,-)"]
    ]
constrainLabelAny [
    label "Halo(_U)"
    labels [label "Halo(Cl)" label "Halo(Br)" label "Halo(I)"]
    ]
]
```


Term-Rewriting


```
(...)
node [ id 1 label "_U" ]
edge [ source u target v label "_A"]
constrainLabelAny [
    label "Meso(_A,_B,_C,_D,_E,_F)"
    labels [label "Meso(-,=,-,=,-,=)" label "Meso(=,-,=,-,=,-)"]
    ]
constrainLabelAny [
    label "Halo(_U)"
    labels [label "Halo(Cl)" label "Halo(Br)" label "Halo(I)"]
    ]
]
```


Term-Rewriting

- Chemical context needs to be explicity defined
- ConstrainLabelAny gives a lot of flexibility
- A liberal definition should be the sweet spot
- Much Needed: Negative Lists and Subgraph-Terms
65.1.1 Buchwald-Hartwig-amine


```
Permut(_V,_W,_X,_Y,_Z) G {'Permut (C, C, C, C, C)','Permut (N, C, C, C, C)','Permut (C, C, C, C , N)'
Meso(_A,_B,_C,_D,_E,_F)\in{'Meso(-,=,-,=,-,=)','Meso(=,-,=,-,=,-)'}
Halo(_U) \in {'Halo(Cl)','Halo(Br)','Halo(I)'}
```


Term-Rewriting

65.1.1 Buchwald-Hartwig-amine

Files: out/819_r_418_10300010_\{L, K, R $\}$

A rule based approach

- A first test is planned using the ENAMINE synthesize-on-demand library

Crossover mutations

- Two parent molecules each cut into two fragments
- Corresponds to the formation of radicals in chemistry
- No restriction by relying on reactions

- exhaustive graph bipartitioning

Generating all possible cuts

- k-connected-components for $k=2,3,4$ [6]
- remove sidechains ($\mathrm{k}=2$)
- contract nodes
- remove random seed-edge of graph
- check
k-connected-components after removal
- get minimum-cut of every pair of atoms in these connected components

A superficial look at Sigma Aldrich catalog

- Atleast 1 Ring, 1 Carbon-Atom, no disconnected components
- 117k \rightarrow 62k compounds
- High diversity

Molecular Weight

Ringsize

Ringtypes

Types of Polycycles

A superficial look at Sigma Aldrich catalog

- Found 3.1 M cut combinations

Cuts

Open Questions of the fragment recombination

- Allow Termination of multiple radicals at the same atoms?
- How to proceed with fragments having a missmatched number of radicals?
- Allow Recombination to previous bond pattern?
- Matching of single-node-fragments?

Recombination into "old" bonds

- Essentially point mutations, takes a lot of space ($\sim 32 \%$) in the cut space

Open Questions of the fragment recombination

- Allow Termination of multiple radicals at the same atoms?
- Matching of single-node-fragments?
- How to proceed with fragments having a missmatched number of radicals?
- Allow Recombination to
 previous bond pattern?
- A lot of point mutations, taking lot of space ($\sim 32 \%$) in the cut space

Open Questions of the fragment recombination

- Allow Termination of multiple radicals at the same atoms?
- Matching of single-node-fragments?
- How to proceed with fragments having a missmatched number of radicals?

Recombination of Fragments

- Allow Recombination to previous bond patterns?
- Essentially point mutations, takes a lot of space ($\sim 32 \%$) in the cut space

$\mathrm{H}_{2} \mathrm{C}=\mathrm{NH} \quad$ Diatomic molecules

How to ensure chemical meaningfulness?

- Possible Restrictions and filters:
- Remove unstable functional groups (violating Erlenmeyer-Rule etc.)
- Account for ring strain (violating Bredts-Rule, etc.)
- Most lead compounds are in range $100<\mathrm{MW}<350 \mathrm{Da}$
- Empiric MedChem rules: Lipinski Ro5, Lily Medchem [2]

Thanks to my Supervisors Special Thanks to Bruno! Peter and xtof

Thank You!
Nico Domschke
Bioinformatik Uni Leipzig
dnico@bioinf.uni-leipzig.de
www.bioinf.uni-leipzig.de

Jakob L. Andersen, Christoph Flamm, Daniel Merkle, and Peter F. Stadler.

A Software Package for Chemically Inspired Graph Transformation.
In Rachid Echahed and Mark Minas, editors, Graph Transformation, volume 9761, pages 73-88.
Springer International Publishing, Cham, 2016.
Series Title: Lecture Notes in Computer Science.
Robert F. Bruns and Ian A. Watson.
Rules for Identifying Potentially Reactive or Promiscuous Compounds.
Journal of Medicinal Chemistry, 55(22):9763-9772, November 2012.

Markus Hartenfeller, Martin Eberle, Peter Meier, Cristina Nieto-Oberhuber, Karl-Heinz Altmann, Gisbert Schneider, Edgar Jacoby, and Steffen Renner.
A Collection of Robust Organic Synthesis Reactions for In Silico Molecule Design. Journal of Chemical Information and Modeling, 51(12):3093-3098, December 2011.

Asher Mullard.
The drug-maker's guide to the galaxy.
Nature, 549(7673):445-447, September 2017.
Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Jean-Louis Reymond.
Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17.
Journal of Chemical Information and Modeling, 52(11):2864-2875, November 2012.

Tianhao Wang, Yong Zhang, Francis Y. L. Chin, Hing-Fung Ting, Yung H. Tsin, and
Sheung-Hung Poon.
A Simple Algorithm for Finding All k-Edge-Connected Components.
PLOS ONE, 10(9):e0136264, September 2015.

