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Chemical reaction networks, two problems

)  How does the structure of a CRN relate to what it can and cannot do?
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[1) How do | know what CRN I'm looking at*?
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Chemical reaction networks in chemistry, two problems

)  How does the structure of a CRN relate to what it can and cannot do?
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[1) How do | know what CRN I'm looking at*?

*(in a way where [ can quantitatively account for all my experiments with a chemically sovnd
description)




CRNs in Chemistry R |

* (RNs allow us to better understand chemistry.

* Chemistry provides clues towards understanding CRNs, and in turn better understanding
dynamical systems.

* To pursue these goals, we need CRNs with ‘chemical properties
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(RNs in Chemistry R~

What makes a reaction network “chemical”?

Stefan Miiller' ®, Christoph Flamm?® and Peter F. Stadler?*#>67*

Miller et al. Journal of Cheminformatics (2022) 14:63
https://doi.org/10.1186/513321-022-00621-8

* To pursue these goals, we need CRNs with ‘chemical properties

* What makes a reaction network chemical? [

Conservation laws with chemical interpretations, local energy conservation (detailed balance),

* What else makes a reaction network ‘chemical’?




Chemists assume implicit detail <g3% | -
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“My colleagues can see more”  <23%—~|
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Different representations, but not contradictory: we're talking about the same thing




Resolution of CRNs: no ‘absolute’ representation 53 —|
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Different representations, but not contradictory: we're talking about the same thing




Resolution of CRNs: no ‘absolute’ representation c@%ﬁ—-

L. Pasteur, L. Pasteur,
A. Edelfelt (1885) A. Edelfelt (1885)

Different representations, but not contradictory: we’re talking
about the same thing




“reactions are not absolute”
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“reactions are not absolute”

* Robustness to detail: predicted phenomenology is not
expected to be altered by adding in more intermediates.

What else makes a reaction network ‘chemical’?

A system doesn’t have ‘one reaction network’, but a
family of agreeing* reaction networks of varying detail

Experimental resolution dictates the CRN we can see.

R |

L. Pasteur, A.
Edelfelt (1885)

L. Pasteur, A.
Edelfelt (1885)




Nonrobustness, a very small example -3~

* Robustness to detail: predicted phenomenology is not

expected to be altered by adding in more intermediates.

2X — 3X

Blows up in finite time
Ny =2

<ty ,3>=<1t3,49>

2X—> X, > 3X
No blow up in finite time

2X — 3X intrinsically fails to be a good
approximation on all but the shortest times.




No “absolute” (RN as a theoretical requirement <3 —~|
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Compendium of
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Terminology

Second edition

Several concepts in chemistry (e.g. catalysis)
are explicitly defined in terms of hierarchy
of descriptions.
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No “absolute” CRN as a theoretical requirement o3 —| o

Typel Typell Typelll TypelV — TypeV Universal motifs and the diversity of

-
autocatalytic systems
Alex Blokhuis ©, David Lacoste, and Philippe Nghe & Authors Info & Affilistions
M M Edited by Peter Schuster, University of Vienna, Vienna, Austria, and approved September 1, 2020 {received for review June 30, 2020)
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Several concepts in chemistry (e.g. catalysis)

E.g. to formalize autocatalysis in chemistry we use are explicitly defined in terms of hierarchy
that reaction networks have family of of descriptions.

representations.

See also:

Defining Autocatalysis in Chemical Reaction Networks
Jakob L. Andersen, Christoph Flamm, Daniel Merkle, Peter F. Stadler

L. Pasteur, A. L. Pasteur, A.
Edelfelt (1885) Edelfelt (1885)




No “absolute” CRN as a theoretical requirement o3 —| o
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Nonambiguity:
reactants % products in the same reaction

Several concepts in chemistry (e.g. catalysis)
are explicitly defined in terms of hierarchy
of descriptions.

A+B 2 2A;

A+B2 AB22A

L. Pasteur, A. L. Pasteur, A.

Edelfelt (1885) Edelfelt (1885)




No “absolute” CRN as a theoretical requirement o3 —| o
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Nonambiguity:
reactants % products in the same reaction

A+B22A; A+BZ2AB212A

A methodological advantage:

— Under nonambiguity, list of reactions maps 1-to-1 to
stoichiometric matrix.
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No “absolute” CRN as a theoretical requirement o3 —| o

Typel Typell Typelll TypelV — TypeV Universal motifs and the diversity of

Q QD QQ ‘ autocatalytic systems

y (1] . T g -] sk T Daidscoste snd Fpps e T Aufemme ATt
U d G 6@ September 28, 2020 117 (41)25230-25236  https://doi.org/10.1073/pnas. 2013527117

Nonambiguity:
reactants % products in the same reaction

A+B22A; A+BZ2AB212A

A methodological advantage:
— Under nonambiguity, list of reactions maps 1-to-1 to
stoichiometric matrix.




More steps, simpler steps Q@D—»&_

On®,

We only need two types of reactions




More steps, simpler steps

sB@ =3

A species involved in >3 reactions
can be reduced to several

triconnected species




2 Fundamental building blocks

A+B2D+E
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A+B2C
C2D+E

A2B+C

A2 2B

A methodological advantage

More variables, reactions <= less structural elements, more regularity
- Dramatically reduces # cases to check in proofs

- Facilitates constructions

- Endows mathematical constructions with ‘nice’ properties

A 2B+C
Ba2C

B
P




Simple building blocks <~ Many equivalent representations

w + + Mass action (+Nonambiguity)

Upon regularizing structure, representations hecome

Normally in CRN Theory, equivalent, and new representations become available
Stoichiometric matrix = hypergraph # dynamic equations Stoichiometric matrix = hypergraph = dynamic equations =
Freaction list # characteristic polynomial(s) # Reaction list = characteristic polynomial(s) = Big polynomial =

generalized Jacobian = Jacobian for currents = Hamiltonian = . ..




Simple building blocks <~ Many equivalent representations

On®,

+

+ Mass action

(+Nonambiguity)

Directed* Hypergraph

Dynamic Equations

Reaction List

Stoichiometric Matrix

Big Polynomial

Hamiltonian

7, =x;[X]-x [Y]
7,= Y] [Z]
7,='[Z]-[X]
d[X]=-7, +17,
d[Y]=-7,+7,
d[Z]=-7,+1,

(] [] [=]

+ + 4+ o+
B=Q.7,+0.9,+Q.7.

a9 1 +0,9,+9,7,+9.7,
=11 -1 0 Y o xpyeviz/z g =[x1/6-11/2
0 1 -1)Z | gt=v/e-1z12/2  Q,=[Y]*/6-[2]%/2
Qi=[Z]%/6-[X]>/2  Q,=[Z]*/6-[X]%/2

H=7(z,z
+7, (23-22)
+17, (21-23)




Simple building blocks <~ Many equivalent representations

w + + Mass action (+Nonambiguity)

Upon regularizing structure, representations become
equivalent, and new representations hecome available
Stoichiometric matrix = hypergraph = dynamic equations =
Reaction list = characteristic polynomial(s) = Big polynomial =
generalized Jacobian = Jacobian for currents = Hamiltonian = . ..

Ipso facto,

— questions can be reformulated as questions about the object of our choice.
— representations acquire deeper, more regular structure

— we can go back and forth between representations to look for easy insights,
simple(r) proofs
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Regularized CRNs are never divergence-free

9“B
AeXe= 5%z
B
le(th) — W <0
k

r r

B=Y B.=Y (@ JF +Q;J;)

CRN properties that critically rely on divergence-free dynamics
are not robust and should not be expected in chemistry (nor ecology)




Regularized CRNs are never divergence-free

Lotka-Volterra

oscillates

X-2X X+Y - 2Y,

Y- 0

Rock-Paper-Scissers (RPS-3)
oscillates Stable, but not
X+Y->2XY+Z-2Y, asymptotically stable
7+ X — 27

(RPS-4)

quasi-periodic
X+Y-2XY+Z-2Y,
Z+W->27Z,W+X->2W

CRN properties that critically rely on divergence-free dynamics
are not robust and should not be expected in chemistry




Regularized CRNs are never divergence-free

Lotka-Volterra Lotka-Volterra
oscillates Fixed point, extinction
X-2X X+Y-2Y, X - 2X,

Y>>0 X+ Y|- XY|]- 2Y,
Rock-Paper-Scissers (RPS-3) Y-0

oscillates Rock-Paper-Scissers (RPS-3)
X+Y>2XY+7Z-2Y, — | Fixed point, extinction

Z+ X - 27

(RP>-4) (RPS-4)

quasi-periodic Fixed point, extinction

X+Y-2XY+7Z - 2Y,
7Z+W->27Z2W+X->2W

CRN properties that critically rely on divergence-free dynamics
are not robust and should not be expected in chemistry




Regularized CRNs are never divergence-free

Lotka-Volterra

oscillates

X-2X X4+Y - 2Y,
Y—->0
Rock-Paper-Scissers (RPS-3)
oscillates
X+Y->2XY+Z-2Y,
7+ X- 27

(RPS-4)

quasi-periodic
X+Y->2XY+Z-2Y,
7Z+W->27Z2W+X->2W

Lotka-Volterra

Fixed point, extinction
X-2X,

X+ Y- XY[|]> 2Y,

Y- 0

Rock-Paper-Scissers (RPS-3)
Fixed point, extinction

(RPS-4)
Fixed point, extinction

Regularization

CRN properties that critically rely on divergence-free dynamics
are not robust and should not be expected in chemistry (nor ecology)

I

Lotka-Volterra
Fixed point, extinction

(RPS-3)
Fixed point, extinction

(RPS-4)
Fixed point, extinction




d;Ax = J(z)Azx

dix = J(z/2)x

Jucobian

Linearized dynamics

Full dynamics

For regularized network, the Jacobian
also expresses non-linearized dynamics




Jucobian

d;Ax = J(z)Azx

dix = J(z/2)x

Linearized dynamics

Full dynamics

For regularized network, the Jacobian
also expresses non-linearized dynamics

One can deduce simple rules to construct a characteristic
polynomial P, (J) from (hyper)graph, and vice versa.

A factor graph.

A factor of coefficients occurs in the characteristic
polynomial if it is not forhidden

Forbidden: i) nearest neighbors, ii) cycles in
factor graph




Jucobian

d;Ax = J(z)Azx Linearized dynamics

dtz = J(I/?)I Full dynamics

For regularized network, the Jacobian
also expresses non-linearized dynamics

One can deduce simple rules to construct a characteristic
polynomial P, (J) from (hyper)graph, and vice versa.

A factor graph.
A factor of coefficients occurs in the characteristic

polynomial if it is not forbidden

(] [ [ (X ° + - - - + - -
Forbidden: i) nearest neighbors, ii) cycles in Ky K3 X, KzKyKi X, K4Kj3

factor gruph More elaborate rules with bimolecular reactions




Jacobian for currents

Re () od; J;.
k. j —
J a7,
diz) = —dizy = —J; diz1 = —dixo = —dizs = —Jq
diJy = ki diey — K dyzs = — (K] + k7)) diJ1 = nfdtml — Ky 23di T2 — Ky TadyT3 = —(H:il_ + Kk (22 +23))J1
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Jacobian for currents — Handshake stability
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Jacobian for currents — Handshake stability

Gershgorin circle theorem

ky —ky — ky 0 ky 0
N = ko 0 —ky —ky ks 0
0 ki_$4 kiﬂ?g —ki_(ﬂ?g —+ .’134) — k; k;

D D

\ k. 0 0 k+ —k —k, )




Jacobian for currents — Handshake stability

If each species in a CRN engages in at most 2 reactions, then the (RN is handshake stable
i.e. all eigenvalues of jacobian for currents are nonpositive.

sG =0 Handshake stable




Deficiency O, invariant deficiency O

“properties of a system” vs “properties of a specific description”

5o, 53 )

00 = € = Co = Cop

Invariant deficiency:

# nontrivial cycles
(cycles that are not purely
unimolecular)

6 = 0 is a well-known guarantee of stability

8o =16=1,s®=9 8o =1,6=0,s®=0




Deficiency O, invariant deficiency O

5o, 53 )

“properties of a system” vs “properties of a specific description”

0o = C—Cy,=Cpyo

Invariant deficiency:

# nontrivial cycles
(cycles that are not purely
unimolecular)

6 = 0 is a well-known guarantee of stability

8o =1,6=1,s®=0 8o =1,6=0,s®=9

Open question:
To what extent are conclusions based on
deficiency robust to regularization?




Generating robust invariants & CRN index laws

L Graph transform

l Structural Law

l Introduced quantities J

SL1

S : # species
r: # reactions

+ S-Ir= fs_ ¢ I.: # conserved quantities
c: # cycles
P 1 q
SL2
. j :# disjoint networks
> S-Ir=] + r -y r_:# bimolecular reactions
P > . ™|
QOO =
) _ B : # bilinkage classes
O S-I= ﬁ - y[> B Co Y, # pointy loops
—
SL4

S-r:lp_r()o_co

Y : # local isomer groups
C,: # trivial cycles

y.S

(hyper)Graph Transform +

Fundamental theorem of Linear Algebra
Robust topological properties of systems +
Structural laws for chemical networks




How do | know what CRN I'm looking at?

Battleship

Try to fit one specific
hypothesis after another.
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How do | know what CRN I'm looking at?

Battleship ool Guess who?

Try to fit one specific
hypothesis after another.

Exponentially narrow down
the options

malar fract
=2 - T - T -
S5 kB &
;\t u':’_"

o 200 400 600 8O0 1000
time {min)




Measurable indices

]

malar fraction
=2 - -1
S5 kB &
\..';_"

=T =
=]

o 200 400 BO0 BOO 1000
time {min)

Exponentially narrow down the options by
measuring various families of indices
characterizing CRN

Guess who?

Exponentially narrow down
the options




Measurable indices
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Measurable indices
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An example of an index, data dimension d

d=1 d=2

(isosbestic point*) (Isoshestic line®) =v-£ “# variables - # constraints”

Rank estimation of mean-subtracted data

d=3




Many chemical phenomena lower data dimension

OO

C—A+B—D

(effectively) irreversible collinear reactions

/-
.

Fast equilibria + chemostats
(e.g. due to phase separation)

Local isomer equilibria
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Dramatic dimension reduction with nanoscopic phase separation
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[k]

Amount of substance

concentration of K — mer

Dramatic dimension reduction with nanoscopic phase separation

[: freely dissolved oligomers

d*=8, s =8, I'=0,P=0
v=8, I'=0, 1"=0

[I: oligomer aggregate

In dynamic combinatorial chemistry,
one oftentimes observes very
low-dimensional data (d=1,2)

in spite of there being many
species that can be isolated
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Chemical reaction networks, two problems

)  How does the structure of a CRN relate to what it can and cannot do?

2b e 2 e 2
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time (min)

[1) How do | know what CRN I'm looking at*?
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Thank you

Ottolab

Hermanslab

Robert Pollice Daan van de Weem
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