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CRISPR - Cas9
CRISPR: Clustered, Regularly Interspaced, Short Palindromic Repeats
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¢ Produces double strand breaks (DSBs) on DNA

¢ A single guide RNA (sgRNAs) drives the spCas9 endonuclease
enzyme
- 20nt complementary sequence
- Adjacent to the protospacer adjacent motif (PAM) site

(Belhke, Genetic Engineering & Biotechnology News, 2016)



dgRNA design
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CRISPRon data for training and testing
Creating training, validation and independent test set of the in total
23,902 gRNAs.

e 6 fold; one held out as independent test set
e 5-fold cross-validation
e gRNAs with up to 4nt differences were grouped together

* gRNAs > 4nt to other gRNAs were distributed randomly over the
folds

Yonglun Luo
DREAM team Giulia Corsi
RTH

iXiangﬂ, Corsiﬂ, Anthonﬂ, et al., Nat Comm, 2021 ; TPanﬂ, et al.,. Nat Comm, 2022



CRISPRon network
Deep network for gRNA efficiency predictiont

protospacer + PAM
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AGg developed in the CRISPRoff program, is the resulting gRNA:DNA binding energy taking

gRNA self-folding and DNA opening energy into account!.

Giulia Corsi  Christian Anthon
RTH RTH

Ixiang¥, Corsi¥, Anthon ¥, et al., Nat Comm, 2021
T Alkan, et al., Genome Biol, 2018.



dgRNA context matters

Cas9 gRNAs work in a constrained binding energy interval while being

PAM context dependentf
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CRISPRon performance

Evaluation on external data sets is critically important!
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Benchmarking on external data is needed

* DeepCRISTL': novel set of models
- pre-trained on large-scale datasets (surrogate gRNAs)
- refined by transfer learning on smaller datasets (non-surrogates)

Held-out
test sets
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Elkayam and Orenstein, Bioinformatics, 2022.
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Benchmarking on external data is needed

* DeepCRISTL': novel set of models

- pre-trained on large-scale datasets (surrogate gRNAs)
- refined by transfer learning on smaller datasets (non-surrogates)
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Benchmarking on external data is needed

CRISPRon perform overall better on mdependent data than
DeepCRISTL
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TCorsi, Bioinformatics, 2023.



Base editing
Precise genome editing by directly changing a targeted base
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(Illustration by SeHee Park: https://biotech.ucdavis.edu/news/dna-base-editors-genome-editing)

Pros: no double-strand breaks / no donor DNA template required
Cons: unwanted concurrent mutations



Base editing data

In complement to published data, we generated in house data
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Base editing window
Bystander bases are edited as well
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Base editing outcome

Two numbers: gRNA editing efficiency and outcome frequency

Example (ABE):
Target sequence  TATCTCCAGG GGAGGTGGTACGGCTGTAGC GGG GGAC # reads measured by sequencing
Outcomel (WT): TATCTCCAGG GGAGGTGGTACGGCTGTAGC GGG GGAC rl
Outcome2: TATCTCCAGG GGGGGTGGTACGGCTGTAGC GGG GGAC 2
Outcome3: TATCTCCAGG GGAGGTGGTGCGGCTGTAGC GGG GGAC 3
Outcome4: TATCTCCAGG GGEGGTGGTGCGGCTGTAGC GGG GGAC r4
total=r1+ r2+r3+r4
. L. # total reads of all sequences with intended target nucleotide transitions r2+r3+r4
gRNA editing efficiency = =
# total reads total
# reads of specific base-edited outcome sequence r2
outcome fr = = —
: # total reads total

gRNA editing efficiency = Z edited outcome frequency



Base editing data

gRNA edtiting efficiencies
ABE: CBE:
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Data sources: our dataset: Sun et al., (in prep); Song training and test: Song, et al., Nat. Biotechnol., 2020;
Arbab dataset: Arbab, et al., Cell, 2020; Marquart test set: Marquart, et al., Nat. Comm., 2021



Base editing data

Current prediction methods evaluate the performance individually of
gRNA efficiency and outcome frequency.

Here: evaluate the numbers jointly with a fused correlation coefficient

TGorodkin, Comput Chem, 2004.



Extending Pearson’s correlation coefficient

Consider two N'x K tables: X and Y. Define'

K K
1 _ _
COV(X.Y) = » wCOV(X,.Y,)= 10> > (Xok—X)( Yok~ Vi)
k=1 n=1 k=1

where Xy = 1 3 Xo and Y are the respective means of column k. Use
("prior") wx = 1/K.

COV(X,Y)

Rk =
\Jeov(x. xjcov(y. v)

JrGorodkin, Comput Chem, 2004.



The Discrete version of Rk

The K x K confusion matrix C '

RK: kl

\/N2 -l

e C, the kth row of C.

NTHC) ~ Yl
(/N2 =5 (C)E

o Q, the /th column of C.
 C is C transposed.

TGorodkin, Comput Chem, 2004.



The Rank version of Rx

Using ranks for k vectors each with n numbers.
Equivantly for the distance d.x = (X.x — Vax) One can obtain’

K
ok =1— 1 63 0102
K K £ N(N? —1)

With ties (two or more variables with the same rank) we use the full
version.

TSun & Gorodkin (in prep)



CRISPRon-ABE data for training and testing

Our set is matched into the splits as for CRISPRon?.
¢ 6 fold; same fold as independent test set
e Same 5-fold cross-validation for training
° gRNAs with up to 4nt differences were grouped together when
adding new datasets
* gRNAs > 4nt to other gRNAs were distributed randomly over the
folds

Ying Sun
RTH

iXiangﬂ, Corsiﬂ, Anthonﬂ, et al., Nat Comm, 2021



CRISPRon-ABE deep network

Deep network extended on the one for CRISPRon?
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Song Test SURRO-seq Test

Arbab Test
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CRISPRon-CBE performance
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CRISPR
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CRISPR

Webservers for CRISPR Cas9 on- and off-target predictions.
CRISPRon

State of the art on-target efficiency predictions for CRISPR-Cas9 based

on deep leaming utiizing the binding energy model developed for
CRISPROff.

Try the CRISPRon webserver for on-target effiency prediction

CRISPRroots

Computational pipeline for the analysis of RNA-seq data from
CRISPR/Cas9 edited and control cells. The pipeline offers on-target edit
verification and detection of possible offtargets affecting the
transcripome.

CRISPRroots

(et o e

Download the CRISPRroots pipeline here.

tools at RTH

EVENTS JOBS NEWS CONTACT

CRISPR
CRIsPRON
CRISPRoff CRISPRoft

Off-target predictions for CRISPR-Cas9 based on an energy model for o "%

the RNA-DNA duplex binding. The model out-performs machine
learning models on existing off-target data.

e

CRISPR course

«(AGu - AGy - AGo)

Try the CRISPRoff webserver to predict CRISPR-Cas9 specificity and
off-targets.

https://rth.dk/resources/crispr/




Conclusions and perspectives

CRISPR data is crucial to make good design models
More is desirable

Evaluation simultaneous on gRNA efficiency and outcome
frequency

Evaluation on external data sets (although data sets are diverse)
Deep learning with flagging specific data sets
Advancing base editing prediction
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