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Abstract

RNAs are very important biological molecules. Previously they were thought
of as being only the intermediary between DNA, which carries the genetic
information, and proteins, which catalyze biochemical reactions. Today we
know about the existence of diverse classes of RNAs which exhibit catalytic
functions themselves. The function of an RNA molecule is dependent on
its three-dimensional structure (the tertiary structure), which is in turn
dependent on the base pairing within the RNA molecule (the secondary
structure).

In order to draw functional conclusions from the linear sequence of an RNA
molecule (the primary structure), one would ideally be able to predict the
whole three-dimensional fold based on the sequence alone. But because the
folding process of RNA is mainly a hierarchical process, with the secondary
structure forming before any tertiary interactions, the secondary structure
can already be used as a starting point for functional analysis. Therefore
prediction of the secondary structure of RNAs is a central problem in bioin-
formatics.

The majority of all RNA base pairs are perfectly nested, meaning that all
nucleotides enclosed by a specific base pair do not interact with any nu-
cleotides outside of this base pair. This property allows the decomposition
of the whole RNA secondary structure into simpler and independent sub-
structures called loops, for which free energy parameters exist. The most
common approach to predicting RNA secondary structures is based on dy-
namic programming, which relies heavily on this loop decomposition.

A certain group of RNA secondary structures called pseudoknots, of which
more and more have been discovered in recent years, do not allow this sim-
plification. In a pseudoknot nucleotides within a loop form base pairs with
nucleotides outside of the loop, violating the condition of perfectly nested
secondary structures. Pseudoknots are therefore more difficult and more ex-
pensive to handle computationally and the standard RNA secondary struc-
ture prediction algorithms simply do not take pseudoknots into account.

Approaches for predicting pseudoknots have only been developed in recent
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years, some of them based on dynamic programming, others on heuristic
methods. In this diploma thesis I present PKplex, a new dynamic pro-
gramming based algorithm for the prediction of RNA secondary structures
including pseudoknots. After describing the basic idea behind PKplex and
its implementation, the algorithm is then evaluated against a large set of
known RNA pseudoknots and its performance compared with other pub-
lished algorithms.
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Zusammenfassung

RNAs sind sehr wichtige Biomoleküle. Früher sah man in ihnen nur die
Zwischenstufe zwischen DNA, dem Träger der genetischen Information, und
Proteinen, den Katalysatoren biochemischer Reaktionen. Heute wissen wir
von der Existenz verschiedenster Klassen von RNAs, die selbst katalyti-
sche Eigenschaften haben. Die Funktion eines RNA-Moleküls ist von seiner
dreidimensionalen Struktur (der Tertiärstruktur) abhängig, die wiederum
von den Basenpaarung innerhalb des RNA-Moleküls (der Sekundärstruktur)
abhängig ist.

Um von der linearen Sequenz (der Primärstruktur) auf die Funktion eines
RNA-Moleküls schließen zu können, sollte man im Idealfall in der Lage sein,
allein von der Sequenz die komplette dreidimensionale Struktur vorhersagen
zu können. Weil aber RNA-Faltung als hierarchischer Prozess betrachtet
werden kann, wobei sich die Sekundärstruktur vor jeglichen tertiären Inter-
aktionen ausbildet, kann schon die Sekundärstruktur als Ausgangspunkt für
die funktionelle Analyse dienen. Dementsprechend ist RNA-Sekundärstruk-
turvorhersage ein zentrales Problem der Bioinformatik.

Der Großteil aller RNA-Basenpaare ist perfekt verschachtelt, was bedeutet,
daß alle Nukleotide, die von einem Basenpaar umschlossen sind, nicht mit
Nukleotiden außerhalb dieses Basenpaars interagieren. Diese Eigenschaft
erlaubt es, die gesamte RNA Sekundärstruktur in einfachere und voneinan-
der unabhängige Substrukturen, die sogenannten Loops, für deren freie En-
ergien man Parameter kennt, zu zerlegen. Dynamic Programming, der am
häufigsten verwendete Ansatz zur RNA-Sekundärstrukturvorhersage, ist auf
diese Loop-Zerlegung angewiesen.

Pseudoknoten, von denen man in letzter Zeit immer mehr entdeckt hat,
sind RNA-Strukturen, die diesen vereinfachenden Schritt nicht zulassen.
Bei einem Pseudoknoten formen Nukleotide innerhalb eines Loops Basen-
paare mit Nukleotiden außerhalb des Loops und verletzen damit die Be-
dingung der perfekt verschachtelten Sekundärstrukturen. Deshalb ist die
Berücksichtigung von Pseudoknoten rechnerisch komplizierter und aufwän-
diger und herkömmliche Algorithmen zur RNA-Sekundärstrukturvorhersage
schließen Pseudoknoten der Einfachkeit halber aus.
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Erst in den letzten Jahren wurden Ansätze zur Vorhersage von Pseudo-
knoten entwickelt, die entweder auf Dynamic Programming oder auf heuris-
tischen Methoden beruhen. In dieser Diplomarbeit präsentiere ich PKplex,
einen neuen, Dynamic Programming-basierten Algorithmus zur Vorhersage
von RNA Sekundärstrukturen mit Pseudoknoten. Zuerst wird die grundle-
gende Idee hinter PKplex und ihre Umsetzung beschrieben, und dann wird
der Algorithmus auf einen großen Datensatz bekannter RNA Pseudoknoten
angewandt und seine Ergebnisse mit denen anderer publizierter Algorithmen
verglichen.
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Chapter 1

Introduction

Not many decades ago RNA was thought of as mainly being messenger RNA,
the passive intermediary between the gene-encoding DNA in the nucleus and
the ribosomes, which translate the genetic information into the amino acid
sequence of proteins, which then carry out the actual biochemical functions.
This view has since then changed a lot:

RNAs do not only carry information, they are functionally active units them-
selves. They can act regulatorily or exhibit catalytic activity, both functions
previously only attributed to proteins. In addition to tRNAs and rRNAs,
which are vital for protein synthesis, entire classes of functional RNAs in-
volved in diverse processes such as RNA splicing, gene regulation and chro-
mosome structure have been discovered. This versatility of RNA has even
lead to the formulation of the RNA world hypothesis, which states that our
current biological world based on DNA for information storage and proteins
for enzymatic activity evolved out of an era in which both of these functions
were fulfilled by RNA [Gilbert, 1986; Joyce, 1989, 1991].

The function of an RNA molecule depends strongly on its three-dimensional
structure, which is in turn dependent on its sequence. RNA structure for-
mation is mainly a hierarchical process which can be separated into two
steps [Brion and Westhof, 1997]: The first step is the formation of the sec-
ondary structure consisting of the set of base pairs between individual pairs
of nucleotides in the RNA sequence. The second step, the formation of
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the tertiary structure, consists of the bending and folding of the secondary
structure leading to the final three-dimensional fold of the RNA sequence.

The majority of all RNA base pairs are non-crossing, which means that for
every base pair (i, j) with i < j there is no base pair (k, l) (k < l) with
k < i < l < j or i < k < j < l. Secondary structures elements which do
not fulfill this condition are called pseudoknots. Pseudoknots are therefore
defined as structures where bases enclosed by at least one base pair form
base pairs with bases outside of the enclosing base pair. Pseudoknots can
be interpreted as being part of both secondary and tertiary interactions: on
the one hand the formation of nucleotide base pairs is the defining feature
of secondary structure elements, on the other hand pseudoknots often form
between parts of the RNA molecule that seem to be spatially distant from
each other if only the pseudoknot-free secondary structure is taken into ac-
count, thereby directly influencing the RNA tertiary structure. It is known
that pseudoknots play an important functional role in many RNA mediated
processes. Examples include self-splicing group I introns [Cech, 1988], ribo-
somal RNAs [Cannone et al., 2002], Ribonuclease P [Brown, 1996], various
prion mRNAs [Barette et al., 2001], transfer messenger RNAs [Andersen
et al., 2006], viral pseudoknots involved in genome replication or ribosomal
frameshifting [Giedroc and Cornish, 2009], and telomerase RNAs [Staple
and Butcher, 2005].

Predicting the structure of RNA or protein biopolymers from sequence in-
formation alone is an important area in bioinformatics. While the sequence
information is abundantly available, gaining the functionally relevant struc-
tural information experimentally requires extensive laboratory work. Since
all necessary information determining the three-dimensional structure is in
principle already contained in the linear sequence of the biopolymers’ build-
ing blocks a theoretical approach seems obvious.

The RNA tertiary structure is difficult to obtain experimentally and com-
putationally intractable to predict, because the secondary structure base
pairing and base stacking energies already contribute the major part of the
energy gained by folding the RNA. Tertiary structure interactions only play
a minor role energy-wise and are therefore a lot more difficult to predict.
Nevertheless, the RNA secondary structure is often sufficient to perform a
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successful functional analysis and is therefore generally accepted as a valid
starting point.

The commonly used algorithms for predicting RNA secondary structures are
based on thermodynamic models, searching for the structure with minimum
free energy (MFE)[Zuker, 2000]. Despite their importance, pseudoknots are
excluded in the standard approach, because their absence allows the use of
fast and efficient dynamic programming routines. A free implementation of
these algorithms is provided by the Vienna RNA Package [Hofacker et al.,
1994], which is available at http://www.tbi.univie.ac.at/~ivo/RNA/.

While including arbitrary pseudoknots into the analysis has been shown to
be NP-complete [Akutsu, 2000; Lyngsø and Pedersen, 2000], advances in
predicting pseudoknots have nevertheless been made. Some approaches re-
duced the time complexity of the problem by using a simpler energy model,
but still considering all possible pseudoknots [Akutsu, 2000; Tabaska et al.,
1998; Ruan et al., 2004]. Others restricted the types of predictable pseu-
doknots to improve the computational cost of their algorithms [Rivas and
Eddy, 1999; Dirks and Pierce, 2003; Lyngsø and Pedersen, 2000; Reeder
and Giegerich, 2004]. Finally, heuristic approaches have also been employed
[Gultyaev et al., 1995; Cai et al., 2003; Xayaphoummine et al., 2003; Ruan
et al., 2004; Ren et al., 2005; Andronescu et al., 2010; Sperschneider and
Datta, 2010].

In this diploma thesis I am presenting PKplex, a new dynamic programming
algorithm for predicting RNA secondary structures with pseudoknots. I am
starting in chapter 2 with a review of RNA and its biological relevance and
talk about RNA structures in chapter 3. Chapter 4 focuses on RNA energy
models and chapter 5 presents existing RNA folding algorithms, some of
them including pseudoknots, some of them not. PKplex is introduced in
chapter 6 and its results and performance evaluated in chapter 7. Finally,
an outlook and conclusion is given in chapter 8.
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Chapter 2

RNA - Biological

Background

2.1 RNA Composition

Ribonucleic acids (RNAs) are linear biopolymers and one of the most im-
portant class of macromolecules in any living cell. An RNA molecule is built
by a chain of nucleotides, its monomeric building blocks, which consist of a
nitrogenous hetero-cyclic purine or pyrimidine base, the pentose sugar ribose
and a phosphate group. The base, generally either one of the purines ade-
nine (A) or guanine (G), or one of the pyrimidines cytosine (C) or uracil (U),
is attached to the 1’ carbon atom of the ribose as depicted in Figure 2.1. A
phosphate group links the 3’ carbon of one nucleoside with the 5’ carbon of
the next via a phosphodiester bond creating the sugar-phosphate backbone
of RNA. According to the carbon atom not linked to another nucleotide the
two ends of an RNA strand are called 5’- and 3’-end.

RNA is very similar to DNA (deoxyribonucleic acid), but differs in four
main ways: First, DNA is double-stranded while RNA is generally single-
stranded. Second, RNAs are usually shorter than DNAs. Third, instead of
the sugar ribose DNA contains deoxyribose, which has no hydroxyl group
attached to the 2’ carbon. This causes DNA to be chemically more stable
than RNA because it is less prone to hydrolysis. And fourth, instead of
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Figure 2.1: Chemical structure of the RNA building blocks. The bases adenine
(A), guanine (G), cytosine (C) and Uracil (U) are linked to the sugar-phosphate
backbone (highlighted in purple). (Image reproduced from www.mathcell.ru)

uracil the fourth base in DNA is the chemically very similar pyrimidine
thymine. In addition, while both RNA and DNA can form helices, there
exist different helix types depending on the exact spatial arrangement of
the atoms in the helix. For DNA, the most common form is B-DNA while
RNA typically exists in an A-DNA like conformation, also called A-RNA.

The primary structure of an RNA molecule is the nucleotide sequence, which
is usually presented as a sequence of the letters A, G, C and U starting from
the 5’-end through to the 3’-end. This four letter encoding of a sequence
can be easily stored in and retrieved from databases and is used as starting
point for various bioinformatical methods of analysis. Typical RNA sequence
lengths vary from not much more than a dozen nucleotides to several million
nucleotides.

The bases in a nucleic acid can form hydrogen bonds to other bases, thereby
creating base pairs. This base pairing mechanism is dependent on the base
types involved, not all combinations of two bases can form bonds under
normal conditions. The most common base pairs AU and GC (and their
inverses UA and CG) are called Watson-Crick base pairs in honor of James
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Watson and Francis Crick who discovered the base pairing mechanism during
their effort to determine the three-dimensional structure of DNA in 1953
[Watson and Crick, 1953]. An AU base pair is made up of two hydrogen
bonds, whereas a GC base pair contains three hydrogen bonds, which is one
of the reasons why the latter base pair is more stable than the first (Figure
2.2). The energetically weaker GU base pairs also occur frequently and are
called wobble pairs.

N
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N O

HN

N

NH

NH

O

H

H

H

N

N

HN

N HN

N

NH

O

OH

H

AU base pair

A U CG

GC base pair

Figure 2.2: AU and GC base pairs. The purines adenine (A) and guanine (G) are
shown on the left hand side of base pair, the pyrimidines uracil (U) and cytosine
(C) are on the right. Dashed lines indicate hydrogen bonds. (Image reproduced
from [Lorenz, 2007])

DNA usually consists of two complementary strands which can form base
pairs from end to end, thus creating its famous double helix structure. Be-
cause of its single-strandedness RNA is able to form intramolecular base
pairs. Multiple successive base pairs form helical stems interspersed with
unpaired loop regions. The resulting structure is referred to as the RNA
secondary structure. Figure 2.3b shows an example of an RNA secondary
structure. The properties of secondary structures will be covered in more
detail in chapter 3.

The embedding of an RNA molecule with its secondary structure in three-
dimensional space is called the tertiary structure. This three-dimensional
fold is often the result of stabilizing non-standard base pairs, triple base pairs
and backbone-loop interactions. These interactions are usually weaker than
the interactions responsible for the canonical base pairs of the secondary
structure and as a consequence the secondary structure contributes the big-
ger part of the stabilizing energy of the whole RNA fold. RNA folding can
therefore be seen as a hierarchical process with the base pairs forming first,
before the full three-dimensional arrangement of the RNA molecule in its
tertiary structure takes place [Tinoco et al., 1999]. This hierarchical nature
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Figure 2.3: Hierarchic folding of an RNA molecule. (A) The primary structure
is the nucleotide sequence. (B) Formation of base pairs leads to the secondary
structure. (C) The tertiary structure consists of the complete three-dimensional
fold of the molecule. (The sequence of the RNA hammerhead ribozyme was taken
from [Tuschl et al., 1994]; secondary structure predicted with the Vienna RNA
package; 3D-structure based on PDB-ID 1RMN and displayed with PyMOL).

of RNA folding is also the reason why it makes sense to draw conclusions
about the function of an RNA molecule from its secondary structure predic-
tion without knowing the precise tertiary fold, which is much more difficult
to predict due to its smaller energy contribution to the fold. These func-
tional predictions are usually done by comparing the predicted secondary
structure to the structures of RNAs with known functions.

2.2 RNA Functions

For decades the central dogma of molecular biology - formulated by Francis
Crick [Crick, 1958, 1970] - heavily influenced the opinion on the role of
RNAs in cellular processes. The dogma, which is often summarized as ”DNA
makes RNA makes protein”, states that the general flow of information in
a cell goes from DNA to RNA to protein with some exceptions like reverse
transcription being allowed under special circumstances (see Figure 2.4).
According to this view the genetic information stored in the genomic DNA
located in the nucleus is transcribed into messenger RNA (mRNA), which in
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turn transmits this information to the ribosomes in the cytoplasm, where it
is translated into a protein sequence with the mRNA serving as a template.

Figure 2.4: The central dogma of molecular biology. The general transfers of se-
quence information occur under normal circumstances in most cells. The special
transfers only occur under specific circumstances.

This protein-centric view of life with all RNAs being just mRNAs, an in-
termediate between DNA and protein, has changed only gradually. Altman
and Cech showed that not only proteins, but RNAs too could catalyze bi-
ological reactions [Guerrier-Takada et al., 1983; Cech et al., 1981]. They
were awarded the Nobel Prize in Chemistry in 1989 for the discovery of
ribozymes, which are RNAs showing enzymatic properties.

Today we know a whole number of diverse classes of RNAs which are tran-
scribed from DNA, but are not translated into proteins. Among the best
known of those non-coding RNAs (ncRNAs) are transfer RNAs (tRNAs)
and ribosomal RNAs (rRNAs), both involved in protein synthesis. tRNAs
transport amino acids to the ribosomes and act as adaptors to translate the
mRNA triplet code into the according amino acid. Ribosomes, the sites
of protein synthesis, are complexes made out of both proteins and RNAs.
It has been shown that the catalytic activity of ribosomes, which is the
formation of the peptide bond between amino acids, is solely performed by
rRNAs while the ribosomal proteins are mostly responsible for the structural
integrity of the complex.

Ribonuclease P (RNAse P) cleaves RNA and is responsible for the process-
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ing of the 5’-leader sequence of precursor tRNAs to form mature tRNAs
[Guerrier-Takada et al., 1983]. Small nuclear RNAs (snRNAs), which are
associated together with proteins in complexes called small nuclear ribonu-
cleoproteins (snRNPs) are involved in mRNA intron splicing, regulation of
transcription and telomer maintenance [Valadkhan, 2005]. Small nucleolar
RNAs (snoRNAs) are responsible for targeting the site for chemical mod-
ifications (methylation or pseudouridylation) of nucleotides of other RNAs
[Bachellerie et al., 2002]. Transfer-messenger RNA (tmRNA) is a bacterial
RNA with tRNA- and mRNA-like properties. It rescues ribosomes that
have stalled in the middle of protein synthesis by recycling the stalled ribo-
some, adding a proteolysis-inducing tag to the unfinished polypeptide, and
facilitating the degradation of the aberrant messenger RNA [Keiler et al.,
1996].

MicroRNAs (miRNAs) were first discovered in 1993 [Lee et al., 1993]. To-
gether with small interfering RNAs (siRNAs) [Hamilton and Baulcombe,
1999; Elbashir et al., 2001] they play a crucial role in the RNA interference
(RNAi) pathway, which most commonly results in post-transcriptional gene
silencing, but in some cases RNAi can be activating as well. Today RNAi is
a valuable research tool, both in vitro and in vivo because this pathway en-
ables researchers to suppress specific genes of interest in a simple and cheap
way by introducing synthetic short double-stranded RNAs into cells. The
2006 Nobel Prize in Physiology or Medicine was awarded to Andrew Fire
and Craig Mello for their work on RNAi in the nematode worm C. elegans
[Fire et al., 1998]. These examples highlight the versatility of RNA (see
Figure 2.5) and show that RNAs can catalyze chemical reactions of various
types including phosphoryl group transfers, isomerization of C-C bonds and
hydrolytic reactions.

RNAs are the only known biological macromolecules with the ability to
act as both carrier of genetic information as well as catalytically active
substance, thereby combining genotype and phenotype in one molecule. This
property has lead to the formulation of the RNA world hypothesis [Gilbert,
1986; Joyce, 1989, 1991], which proposes some form of Darwinian evolution
based on RNA alone, prior to our current world of life based on DNA as
carrier of information and protein as catalytically active substance.



RNA - Biological Background 11

Figure 2.5: Summary of the biological processes RNA molecules are involved in.
(Image reproduced from [Gruber, 2007])

Another piece of evidence for the importance of RNA comes from the huge
amount of sequence data which has become available only in recent years.
Protein coding genes amount to only about 1.5% of the human genome and
the estimated number of human protein-coding genes is 23000, which is a
lot lower than expected [Stein, 2004]. This number does not appropriately
reflect the increased complexity of humans compared to much simpler organ-
isms such as C. elegans with about 20000 genes. Combined with the knowl-
edge that a big fraction of the human genome is being transcribed [Birney
et al., 2007; Johnson et al., 2005], while many transcripts lack protein-coding
potential, this results in the assumption that functional RNAs comprise a
significant part of the human genome. John Mattick states that the com-
plexity of higher organisms cannot solely be achieved by proteins, but that
there has to be an additional layer of regulatory ncRNAs [Mattick, 2003].

All these findings have contributed to a switch away from a protein dom-
inated view of biological life and to an increased effort in scientific RNA
research over the last decades. Our knowledge of RNAs and especially func-
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tional RNAs is still very limited and new discoveries will lead to a better
understanding of the fundamental processes of cellular life. This makes
the analysis and prediction of RNA structures and functions an important,
challenging and interesting task.
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Chapter 3

RNA Secondary Structure

Solving the full structure problem for RNA is difficult, because the number
of degrees of freedom of the RNA chain is very high. However, there are
several reasons why the secondary structure can be used as a valid substitute
for the full three-dimensional fold:

• The secondary structure with its base pairing and base stacking ener-
gies is responsible for the major part of the free energy of folding.

• RNA folding is a hierarchical process causing the secondary structure
to be the starting point for the tertiary folding.

• RNA secondary structure provides distance constraints for the forma-
tion of the full tertiary fold.

• RNA secondary structures are evolutionary conserved and can be used
to successfully predict RNA function.

RNA secondary structures are discrete, easy to visualize and compare, and
can be handled efficiently by computational methods. All these factors con-
tribute to the fact that RNA secondary structure prediction is an important
and popular task in bioinformatics.
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3.1 Definitions

An RNA sequence is defined as a string s over the nucleotide alphabet
{A,C,G,U}. n denotes the length of s and (i, j) with i < j denotes base
pairing between si and sj , the nucleotides at positions i and j. A secondary
structure is defined as a set S of base pairs with the allowed base pairs being
(A,U), (G,C), (G,U) and their reversals. For any two base pairs (i, j) ∈ S
and (k, l) ∈ S with i < k, the following must hold [Waterman and Smith,
1978]:

1. j − i > 3.

2. i = k if and only if j = l.

The first condition imposes a minimal hairpin loop size of three nucleotides
and the second condition states that each base can be part of at most one
base pair and forbids e.g. triple base pair interactions. A secondary structure
S is called pseudoknot-free if for any two base pairs (i, j) ∈ S and (k, l) ∈ S
the condition

3. Either i < j < k < l or i < k < l < j.

also holds. Otherwise S contains at least one pseudoknot. In a pseudoknot-
free secondary structure all base pairs either precede each other or are prop-
erly nested, while pseudoknots consist of overlapping base pairs.

A base k is called immediately interior to the base pair (i, j) if i < k < j

and if there is no base pair (p, q) such that i < p < k < q < j. A base
pair (p, q) is called immediately interior to a base pair (i, j) if p and q are
immediately interior to (i, j) [Zuker and Sankoff, 1984].

All bases immediately interior to the same base pair (i, j) form the loop
enclosed by the exterior pair (i, j). The external loop is defined as the set of
bases which are not immediately interior to any base pair, i.e. all nucleotides
not enclosed by any base pair.

Loops are characterized by their size u, the number of unpaired bases in the
loop, and by their degree k. k − 1 is the number of base pairs in the loop
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(not counting the enclosing base pair), therefore k is the number of base
pairs delimiting the loop (including the enclosing base pair).

The different loop types, which are depicted in Figure 3.1, are the building
blocks for the loop-based RNA energy model described in section 4.1. Loops
of degree 1 have no immediately interior base pair and are called hairpin
loops. Loops with a degree of 2 and a size of 0 are stacked (base) pairs.
Loops with k = 2 and u > 0 are called interior loops. Bulge loops are a
special case of interior loops where the immediately interior base pair (p, q)
lies directly next to the enclosing base pair (i, j), i.e. p = i+ 1 or q = j − 1.
Loops with a degree greater than 2 are called multiloops.

Figure 3.1: Loop types in RNA secondary structures. The bases being part of the
same loop are colored in red, the respective enclosing base pairs in blue.

NcRNAs often have similar secondary structures without having very similar
primary sequences. With the help of multiple sequence alignments and sta-
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tistical covariance models the RNA secondary structures of known ncRNAs
have been categorized into families which are based on evolution from a com-
mon ancestor. The known information about these ncRNA families is stored
in the Rfam database, which is among other things very useful for comparing
potential new functional RNAs with known ncRNAs [Griffiths-Jones et al.,
2005].

3.2 Representations

Instead of as a list of base pairs, which is not intuitive to the human mind,
RNA secondary structures are commonly displayed in one of the following
ways:

3.2.1 Squiggle Plot

The most common representation of an RNA secondary structure is the
so-called squiggle plot. The nucleotide labels are placed along a curved
line representing the sugar-phosphate backbone and base pairs are visual-
ized by (usually) short straight lines. Figure 3.2 shows an example. Only
pseudoknot-free structures are guaranteed to result in a planar graph, i.e. a
graph that can be drawn without any crossing lines.

3.2.2 Dot-Bracket Notation

The computer science community commonly uses the dot-bracket notation,
where the RNA sequence is aligned next to a row of symbols: a dot represents
an unpaired nucleotide and each base pair is symbolized by a pair of opening
and closing brackets of the same type. For pseudoknot-free structures only
one type of brackets is needed, pseudoknotted structures require more than
one type. The following lines show an example of an RNA sequence and its
secondary structure in dot-bracket notation:

Human Gln-tRNA

UAGGACGUGGUGUAGUAGGUAGCAUGGAGAAUGUUGAAUUCUCAGGGGUAGGUUCAAUUCCUAUAGUUCUAG

((((((...((((........)))).((((((.....))))))....(((((.......))))).)))))).
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Figure 3.2: Squiggle plot of a human tRNA. (Image generated with Pseudoviewer3
[Byun and Han, 2009])

3.2.3 Arc Plot

Here the RNA backbone is drawn as a straight line and the nucleotides of
each base pair are connected by an arc (see Figure 3.3). For pseudoknot-free
secondary structures all arcs can be drawn on the same side of the backbone
line without intersecting each other.

Figure 3.3: Arc plot of a human tRNA. (Image generated with jViz.Rna 2.0 [Wiese
et al., 2005])
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3.2.4 Circular Graph

In a circular RNA secondary structure graph the backbone is represented by
a circle. The base pairs are symbolized by arcs in the interior of the circle
exactly like in an arc plot (see Figure 3.4). Only pseudoknot-free secondary
structures can be drawn in this way without any crossing of arcs. In graph
theory, the formal equivalent of circular RNA graphs are called outerplanar
graphs. Outerplanar graphs can be drawn in the plane without crossing of
any edges in such a way that all of the vertices belong to the unbounded
face of the drawing. Every outerplanar graph is planar, but not every planar
graph is outerplanar.

Figure 3.4: Circular graph of a human tRNA. (Image generated with jViz.Rna 2.0
[Wiese et al., 2005])

3.2.5 Dot Plot

Dot plots can convey more information about the RNA sequence than just a
single secondary structure. In these two-dimensional graphs the nucleotide
sequence is written along both x- and y-axis and the whole graph is divided
into two parts by a diagonal from the top-left to the bottom-right corner
(see Figure 3.5). In the lower left half of the plot, a dot at the intersection
of column i and row j represents a base pair (i, j). Typically, the secondary
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structure with the minimum free energy is displayed in the lower left part.
In the upper right half, more than one structure is visualized. The dot
sizes in this part of the plot are proportional to the probabilities of the
corresponding base pairs being formed. This allows the visualization of a
weighted set of secondary structures such as the Boltzmann ensemble.

Figure 3.5: Dot plot of human tRNA. The single structure with minimum free
energy is displayed in the lower left half, and the base pair probabilities in the
upper right half. (Image generated with the Vienna RNA package)
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3.2.6 Mountain Plot

A mountain plot is another two-dimensional graph to display an RNA sec-
ondary structure. The nucleotide index number is plotted against the x-axis
and the number of enclosing base pairs against the y-axis (a nucleotide k
is enclosed by a base pair (i, j) if i < k < j). The resulting plot usually
looks similar to a mountain range (see Figure 3.6). Peaks correspond to
hairpin loops, showing the unpaired bases enclosed by slopes representing
the stem. Plateaus within a sloped region represent bulge loops or, if they
are paired with another plateau on the other side of the mountain, interior
loops. Mountain plots are not suited to display pseudoknotted secondary
structures because pseudoknots cause mountain plots to be ambiguous.

3.3 RNA Pseudoknots

3.3.1 Pseudoknot Types

An RNA pseudoknot is a secondary structure element where unpaired bases
within a loop pair with complementary bases in a single-stranded region
outside the loop, therefore violating the condition of perfectly nested base
pairing which only holds for pseudoknot-free secondary structures. Formally,
an RNA secondary structure S is said to contain a pseudoknot if and only
if there exist base pairs (i, j) ∈ S and (k, l) ∈ S, such that i < k < j < l.

The simplest type of pseudoknot is called H-type pseudoknot. In these
structures the bases in a hairpin loop interact with bases outside of the
stem enclosing the hairpin. This generates a second stem and loop with
the two stems stacking on top of each other, forming a quasi-continuous
helix consisting of one continuous and one discontinuous strand (see Figure
3.7). Another typical and simple pseudoknot structure, the kissing hairpin,
is produced by the unpaired bases in a hairpin loop interacting with the
unpaired bases in another hairpin loop (see Figure 3.8).

H-type pseudoknots, kissing hairpins and most other observed pseudoknots
are planar pseudoknots, i.e. they can be drawn on a plane (as a squiggle or
arc plot) without any crossing of arcs. All bi-secondary structures, which
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Figure 3.6: Mountain plot for the MFE structure (red), the thermodynamic en-
semble of RNA structures (green), and the centroid structure (blue) of a human
tRNA. The lower part of the figure displays the positional entropy of the sequence.
(Image generated with the RNAfold web server [Gruber et al., 2008])
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Figure 3.7: H-type pseudoknot architecture.
(A) Linear arrangement of the elements forming the pseudoknot. Base pairing in-
dicated by dashed lines.
(B) Bases within the initial hairpin pair with bases outside of the loop.
(C) Schematic view of the final H-type pseudoknot fold.
(D) 3-dimensional fold of the SAM-II riboswitch, an H-type pseudoknot. The stack-
ing helices are shown in black and gray, the connecting loops in yellow and green
and the bound SAM in red.
(Images (A)-(C) reproduced from [Staple and Butcher, 2005], Image (D) reproduced
from [Brierley et al., 2008])
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are defined as the superposition of two disjoint pseudoknot-free secondary
structures (see Figure 3.9), are planar. The converse is not true, since there
are planar structures which are not bi-secondary. An example for such
a planar, not bi-secondary structure would be a helix crossing scheme of
ABCA’B’C’ with X-X’ denoting one or more consecutive base pairs. For
circular RNAs, bi-secondary structures and planar structures are equivalent
[Witwer et al., 2004].

Even more complex non-planar folds, which cannot be drawn in a plane
without crossing of arcs, are possible as well. A helix crossing scheme such
as ABCDA’C’B’D’ results in the formation of a non-planar pseudoknot. So
far, pseudoknots of this type are quite rare. An example is the ribosome
binding site of the E. coli α operon (see Figure 3.10).

As an extension to bi-secondary structures, k-partite structures are the
union of k pseudoknot-free sub-structures. These structures can be intu-
itively visualized by imagining a book. The spine of the book represents
the RNA sequence, which is shared by all sub-structures. Each of the k

pages of the book then contains the arcs of one of the k pseudoknot-free
disjoint sub-structures. Rigorous definitions and the mathematical proper-
ties of bi-secondary and k-partite RNA secondary structures can be found
in [Haslinger and Stadler, 1999].

Figure 3.8: Kissing hairpin type pseudoknot. The dotted lines indicate the pseu-
doknot interaction.
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Figure 3.9: A bi-secondary structure is formed by the union of two disjoint
pseudoknot-free sub-structures. (Image reproduced from [Witwer et al., 2004])

Figure 3.10: The non-planar pseudoknot of the ribosome binding site of the E. coli
α operon (Image reproduced from [Schlax et al., 2001])

3.3.2 Examples of Pseudoknots

It is known that pseudoknots play an important role in many RNA mediated
processes and often the pseudoknots are not only structurally relevant, but
are directly responsible for the RNA molecule’s function.

A lot of catalytically active RNAs have been discovered to contain pseu-
doknots. Human telomerase is a riboprotein complex. The 5′ end of the
telomerase RNA forms a highly conserved pseudoknot, which is required for
the activity of the complex [Staple and Butcher, 2005]. Mutations within
this H-type pseudoknot have been shown to be connected to the diseases au-
tosomal dyskeratosis congenita [Marciniak et al., 2000] and aplastic anemia
[Vulliamy et al., 2002]. Most of the ribosomal RNAs contain pseudoknots
as well, although in this case they do not seem to sit at the catalytically
active site and are assumed to be of mainly structural importance [Cannone
et al., 2002]. Another ribozyme is Ribonuclease P, which is responsible for
cleaving of a precursor sequence on tRNA molecules. Its catalytically active
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subunit contains a pseudoknot which is required for the RNase P’s function
[Brown, 1996; Mann et al., 2003]. The versatile tmRNAs, which are involved
in translation by rescuing stalled ribosomes and facilitating the degradation
of aberrant messenger RNAs, contain multiple pseudoknots. Although these
pseudoknots are evolutionarily conserved, they seem to be not directly in-
volved in the tmRNA’s function [Andersen et al., 2006; Nameki et al., 2000].
Other pseudoknots were found in the mRNA of prion proteins [Barette et al.,
2001].

In eukaryotic life, introns have to be removed from pre-mRNA to get mature
mRNA. This is usually done by the spliceosome riboprotein. Some introns,
however, are self-cleaving, catalyzing their removal from the pre-mRNA on
their own [Staple and Butcher, 2005; Cech, 1988]. In one group of such
introns, the group I self-splicing introns, the catalytic core consists of a
pseudoknot [Adams et al., 2004]. Self-cleaving RNA pseudoknots can also
be found in various viral genomes: the pseudoknotted self-cleaving Hepatitis
delta virus ribozyme is essential for the virus’ replication. It is responsible for
cutting the replicated multi-genome RNA strand into genome-length units
required for virus packaging. It is the fastest-known self-cleaving ribozyme
with a reaction rate of one per second [Brierley et al., 2007]. Pseudoknots
can also be involved in other viral processes, such as the regulation of viral
protein synthesis [Brierley et al., 2008].

Not only catalytically active RNAs contain pseudoknots. Pseudoknots are
also involved in ribosomal frameshifting, again commonly found in viruses.
Ribosomes normally translate mRNAs without shifting the translational
reading frame, but specific pseudoknots together with ”slippery” nucleotide
sequences can cause the ribosome to change its reading frame during trans-
lation [Giedroc and Cornish, 2009; Staple and Butcher, 2005]. Viruses typ-
ically have small genomes with very densely packed information because
there is no room for bigger genomes in the virus envelope. A lot of viruses
are therefore employing a −1 frameshifting mechanism which allows two
proteins to be encoded within one genomic region. Because this frameshift-
ing is necessary for the survival of all retroviruses, the pseudoknots involved
in this mechanism are attractive targets for drug development. Other ex-
amples of viruses with ribosomal frameshift inducing pseudoknots are the
severe respiratory syndrome (SARS) coronavirus and other coronaviruses,
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the mouse mammary tumor virus, the beet western yellow virus and the pea
enation mosaic virus.

RNA pseudoknots have been discovered in nearly every organism and have
been found to be of functional relevance for ribozymes, self-splicing introns,
ribonucleoprotein complexes, viral genomes and other biological systems.
The determination of their structure is therefore of great importance.
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Chapter 4

RNA Energy Models

In order to predict RNA secondary structures a method of comparing and
evaluating different structures is needed. RNA energy models condense the
whole secondary structure information into a single number representing
the structure’s free energy. Energy models therefore serve as scoring func-
tions for RNA folding algorithms. The simplest scoring method employed in
the first secondary structure prediction algorithm was to just maximize the
number of base pairs [Nussinov and Jacobson, 1980]. A structure with more
base pairs than another was assumed to be energetically favorable. This
approach has been replaced by the loop-based energy model, which evalu-
ates RNA structures by decomposing them into loops and assigning energy
values to these loops (RNA loops have been described in section 3.1).

4.1 The Loop-based RNA Energy Model

The loop-based energy model scores different secondary structures according
to their free energy. This idea in its principles has first been proposed
about 30 years ago [Waterman and Smith, 1978; Waterman, 1978; Zuker
and Stiegler, 1981]. Today’s standard model [Mathews et al., 1999; Turner
and Mathews, 2009] has been refined several times since then.

Any RNA secondary structure S can be unambiguously decomposed into
loops as shown in Figure 4.1. S consists of all base pair enclosed loops Li,j



28 RNA Energy Models

Figure 4.1: RNA Loop Decomposition. The right hand side shows the loop decom-
position of the secondary structure depicted on the left hand side. The enclosing
base pairs of each loop are indicated by dashed lines. (Image adapted from [Flamm,
1998])

and the external loop L0 which contains all nucleotides not enclosed by any
base pair.

S = L0

⋃  ⋃
(i,j)∈S

Li,j


The energy E of an RNA structure is then assumed to be the sum of the
energy contributions of all loops of the structure:

E(S) = E(L0) +
∑

(i,j)∈S

E(Li,j)

Since absolute energy values are impossible to determine, energy differences
between unfolded and folded states in solution are considered. Base pairs
are formed by the creation of hydrogen bonds between bases. These hydro-
gen bonds themselves do not contribute a lot to the free energy of RNAs in
solution, since unfolded RNA molecules with no base pairs still form hydro-
gen bonds with the surrounding water molecules instead. But base pairing
also causes adjacent base pairs to stack on top of each other creating stems
of stacked base pairs. Base pair stacking is an energetically very favorable
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interaction. Single bases next to stacking base pairs, i.e. at the end of a
stem, can stack onto the stem as well. These dangling end interactions are
energetically favorable too. On the other hand, base pairing causes the for-
mation of loops, and in loops the free movement of the nucleotide chain is
restricted by the fixed end points, which are the bases forming the pair.
This leads to an energetically unfavorable destabilizing entropic effect of all
loops.

The concrete energy parameters for the different structure elements have
been derived empirically by RNA oligomer folding experiments. The values
for stacked bases and small hairpin, internal and bulge loops have been
tabulated explicitly. Longer loops are assigned an estimated logarithmically
increasing penalty as derived from polymer folding theory. For reasons of
computational efficiency, multiloops are usually scored with an affine energy
model with a large penalty for the initiation of a multiloop and a smaller
penalty for each additional stem added.

4.2 Energy Models for RNA Pseudoknots

Because pseudoknotted RNA secondary structures contain overlapping base
pairs, loop decomposition does not work for them, at least not in the way
as described above. Therefore the pseudoknotted parts of secondary struc-
tures cannot be evaluated with the standard loop-based energy model. In
addition, there is also only very limited experimental data on pseudoknot
energies available, making the estimation of pseudoknot energies even more
difficult.

For pseudoknot-free structures, steric considerations are of no concern, be-
cause all secondary structures that can be decomposed into loops are ster-
ically possible. This is not true for pseudoknotted structures and checking
whether a suggested pseudoknotted fold is sterically possible is no trivial
task. Even for the simple H-type pseudoknots there are restrictions con-
cerning the lengths of the different loops depending among other factors
on whether those loops are crossing the minor or the major grove of the
RNA. The first pseudoknot energy model dealing with these problems was
presented by Gultyaev [Gultyaev et al., 1999].
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Consequently, a good energy model for pseudoknots has to be substantially
more complex than the current model for pseudoknot-free RNA structures.
In the absence of any measured parameters for pseudoknots, most pseu-
doknot prediction algorithms resort to estimating the energy parameters by
using simplified energy models. A common approach is to treat pseudoknots
similar to how multiloops are treated in the standard loop decomposition
model. This means that the energy associated with a pseudoknot is de-
scribed by the following linear equation:

Epk = β1 + β2Bp + β3Up (4.1)

β1 is a penalty for introducing a pseudoknot, which depends on whether the
pseudoknot is embedded in the exterior loop, in a multiloop, or in another
pseudoknot. Bp is the number of base pairs that border the interior of the
pseudoknot, β2 is the penalty for each such base pair, Up is the number of
unpaired bases inside the pseudoknot and β3 is the penalty for each unpaired
base.

4.3 The Cao-Chen Energy Model for H-type Pseu-

doknots

Song Cao and Shi-Jie Chen recently presented a more advanced pseudoknot
energy model based on applying polymer physics to the evaluation of pseu-
doknot loops [Cao and Chen, 2006, 2009]. Loop free energies are made up of
enthalpic and entropic contributions, which are depending on factors such
as temperature and ionic strength. In Cao and Chen’s model the enthalpic
contributions are captured by base pairing and stacking energies and their
main effort was to estimate the loop entropies of pseudoknot loops. Unfor-
tunately, their model is only applicable to H-type pseudoknots in which the
two helices are directly stacked on top of each other and to the more general
case in which the two helices are connected by a loop of up to 6 nucleotides.
This restriction unfortunately still severely limits the range of pseudoknots
that can be evaluated with their model.

For a given pseudoknot defined by the lengths of its two stems and three
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loops Cao and Chen employed a three-vector virtual-bond-based RNA con-
formational model to enumerate all possible loop conformations on a grid,
while accounting for excluded volume effects. This information was used to
compute the loop entropies and following that their free energies (see Fig-
ure 4.2). These pre-computed results are stored in tables as loop entropy
parameters and can be easily looked up during the evaluation of an actual
pseudoknot.

Figure 4.2: (A) A schematic view of a pseudoknot covered by the Cao-Chen model.
It is made up of two stems and three loops.
(B) The three vector virtual bond model involves the bonds Pi − C4, C4 − Pi+1

and C4 −N1 (pyrimidine) or C4 −N9 (purine). (Image reproduced from [Cao and
Chen, 2009])

The entropy values of different pseudoknot loops have not been measured
experimentally yet and have often been ignored or treated in a simplified
way by previous models [Ren et al., 2005; Dirks and Pierce, 2003]. Using
the values provided by Cao and Chen allows more accurate calculations of
the free energies of H-type and some other pseudoknots. There are still a
lot of other pseudoknot types where this model is not applicable and a more
general energy model for pseudoknotted RNA secondary structures would
be highly desirable.
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Chapter 5

RNA Secondary Structure

Prediction Algorithms

5.1 Maximizing the Number of Base Pairs

The goal of the first algorithm for RNA secondary structure prediction was
to find the structure with the maximum number of base pairs. This algo-
rithm was published by Ruth Nussinov [Nussinov and Jacobson, 1980] based
on the idea by Michael Waterman [Waterman and Smith, 1978; Waterman,
1978] to use a dynamic programming approach. The basic principle of dy-
namic programming is to decompose the overall problem into a number of
simpler and smaller subproblems for which optimal solutions can be found.

Figure 5.1: Decomposition of RNA structures in the Nussinov algorithm. (Image
reproduced from [Gruber, 2007])

We start with an RNA sequence s of length n. M(i, j) denotes the maxi-
mum number of base pairs of the subsequence si, . . . , sj . The main idea is
that M(i, j) can be calculated recursively in the following way: sj , the last
nucleotide of the subsequence, is either unpaired or paired to some base sk.
In the former case M(i, j) equals M(i, j − 1). In the latter case si, . . . , sj is
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divided into the intervals si, . . . , sk−1 and sk+1, . . . , sj−1 for which the max-
imum number of base pairs is already known. A graphical representation
of this decomposition is shown in Figure 5.1. It produces to the following
recursion:

M(i, j) = max


M(i, j − 1)

max
i≤k<j
(k,j)∈S

(M(i, k − 1) +M(k + 1, j − 1) + 1)

The matrix M(i, j) is filled proceeding from shorter to longer subsequences.
The value stored in M(1, n) contains the maximum number of base pairs
for the whole sequence. The corresponding structure is then deduced via
backtracking. This means going backwards through the calculated matrix
reconstructing the path and therefore the list of base pairs for M(1, n).

Although the matrix can be stored as a triangular matrix the algorithm still
requires O(n2) memory space. The runtime scales with O(n3) because the
algorithm iterates over i, j and k.

This non-thermodynamic base pair maximization model is too simple too
give realistic RNA secondary structure predictions, but it serves as a starting
point for more sophisticated algorithms. The basic principle of dynamic
programming with backtracking stays the same, but base pair maximization
is replaced by thermodynamic considerations.

5.2 Minimizing the Free Energy

Thermodynamic energy models are based on the loop decomposition de-
scribed in section 4.1. Each loop is assigned an energy value and the energy
of the whole structure is the sum of the energies of all loops making up
the structure. The goal of the folding algorithm is to find the secondary
structure with the minimum free energy:

Fmin = min
S∈S

(F (S)) (5.1)

F (S) denotes the free energy of a structure S ∈ S, with S being the set of
all possible secondary structures S.
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MFE folding was first described by Michael Zuker and Patrick Stiegler [Zuker
and Stiegler, 1981]. They make a major simplification by regarding multi-
loops as bifurcation loops, which means that they do not assign an energy
to the multiloop itself, they just add up the energies of its constituent loops.

Today’s models explicitly take multiloops into account. It makes no sense to
determine multiloop energy values experimentally and then use tabulated
values in the energy model because due to a combinatorial explosion the
number of possible multiloops is simply too big. The models therefore often
use a linear approach for the energy of a multiloop M:

M = a+ b · k + c · u

a is the cost of initiating a multiloop, b is the penalty for each helix pro-
truding from the loop, k is the degree of the loop, c is the penalty for each
unpaired base in the loop, and the loop size u is the number of unpaired
bases.

The standard energy model, as implemented for example in the Vienna RNA
package [Hofacker et al., 1994], is based on the model by Zuker and Stiegler.
In addition to scoring multiloops with the described linear approach, this
model also decomposes multiloops unambiguously. This ensures that every
structure is encountered exactly once, which is important for calculating the
partition function as described in the next section.

The array Fi,j stores the minimum free energy of all possible structures on
the subsequence si, . . . , sj . The base si is either unpaired or paired with a
base sk (see Figure 5.2), leading to the following recursion for Fi,j :

Figure 5.2: Recursion for Fi,j . (Image adapted from [Lorenz, 2007])

Fi,j = min

Fi+1,j

min
i<k≤j

Ci,k + Fk+1,j
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Ci,j stores the minimum energy of the subsequence si, . . . , sj provided that
si and sj form a base pair. Every base pair encloses either a hairpin loop, an
interior loop, or a multiloop (see Figure 5.3). The recursion for Ci,j therefore
looks like this:

Figure 5.3: Recursion for Ci,j . (Image adapted from [Lorenz, 2007])

Ci,j = min


H(i, j)

min
i<k<l<j

I(i, j; k, l) + Ck,l

min
i+1<u<j−1

Mi+1,u +M1
u+1,j−1 + a

The energy values H(i, j) for hairpin loops and I(i, j; k, l) for interior loops
are tabulated. Multiloops are decomposed into a left part M , which contains
at least one base pair, and a right part M1 containing exactly one base pair.
a is the cost of initiating a multiloop.

In Mi,j , the final base sj is either unpaired, leading to a penalty of c for
the enclosing multiloop, or it pairs with a base su, causing a penalty b for
a base pair within a multiloop. si, . . . , su−1 is then either unpaired (u − i
unpaired bases within a multiloop) or contains at least one base pair (and
therefore has a minimum energy of Mi,u−1)(see Figure 5.4). This results in
the following recursion for M :

Figure 5.4: Recursion for Mi,j . (Image adapted from [Lorenz, 2007])
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Mi,j = min


Mi,j−1 + c

min
i≤u<j

Cu,j + b+ c(u− i)

min
i<u<j

Cu,j + b+Mi,u−1

b is the penalty for a base pair within a multiloop and c the penalty for an
unpaired base within a multiloop. The recursion for M1

i,j is simple, since si
is paired and there is no further base pair. So sj is either unpaired or it is
paired with si (see Figure 5.5):

Figure 5.5: Recursion for M1
i,j . (Image adapted from [Lorenz, 2007])

M1
i,j = min

M1
i,j−1 + c

Ci,j + b

All matrices are filled gradually, starting with the smallest feasible subse-
quences, which are pentanucleotides due to the minimum loop size for a
hairpin loop which has to enclose at least three bases. Once the matrices
are filled, the MFE can be found in F1,n and the corresponding MFE struc-
ture is determined via backtracking. The algorithm requires O(n2) memory.
When dealing with interior loops, the algorithm has to evaluate I(i, j; k, l)
for all combinations of i, j, k and l. This would result in a time complexity of
O(n4). To reduce this time complexity and because very large interior loops
are biologically irrelevant and energetically unfavorable, the maximum loop
size of interior loops is usually set to some constant, resulting in an overall
time complexity of O(n3).

In addition, modern RNA secondary structure prediction algorithms usually
take dangling ends into account. The bases immediately next to the end of
helices can stack onto the helix and contribute favorably to the energy of
the structure. Still missing from most modern approaches, however, is the
inclusion of pseudoknots. While more and more pseudoknotted structures
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have been experimentally discovered, they are still being ignored by most
RNA secondary structure prediction algorithms and software packages.

5.3 The Partition Function

MFE calculations only return information about a single secondary struc-
ture, the one with minimum free energy. But this is not the only secondary
structure occurring in nature, in non-equilibrium states it might not even
be the most common structure. RNAs are synthesized in an unfolded state
and only later fold into a secondary structure. The multidimensional fold-
ing space contains many local minima which can be occupied by the RNA
molecule. In order to answer questions about the space of all possible sec-
ondary structures, the likelihood of particular structures, or the frequency
of structures with specific features, one has to look at the partition function
Z. The equilibrium partition function contains information about the whole
set S of possible secondary structures and is defined as

Z =
∑
S∈S

e
−F (S)

RT (5.2)

with F (S) denoting the free energy of a structure S ∈ S. T is the absolute
temperature and R the gas constant (a transformation of the Boltzmann
constant if dealing with energies per mol). After introducing β = 1

RT for
simplicity, the relative frequency P (S) of a specific secondary structure S in
equilibrium is then given by

P (S) =
e−βF (S)

Z
(5.3)

Similarly, the probability of various features, such as the frequency of a spe-
cific base pair, can be calculated by adding the probabilities of all structures
containing that feature.

The number of possible secondary structures and therefore the number of
summands in the partition function grows exponentially with increasing se-
quence length [Waterman, 1978]. Therefore it seems to be impossible to
calculate Z in polynomial time, but McCaskill introduced a dynamic pro-
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gramming algorithm in [McCaskill, 1990] which achieves this computation.
McCaskill’s partition function algorithm is very similar to the MFE algo-
rithm described previously and is implemented in the folding routines of the
Vienna RNA package. The minima in the MFE algorithm are replaced by
sums in the partition function algorithm, because every possible secondary
structure and not just the one with minimum free energy contributes to
the partition function. The additivity of free energies causes in a similar
fashion the multiplicativity of the Boltzmann-weighted contributions to the
partition function. Using the same decomposition of secondary structures
as in the MFE approach described in section 5.2 is only possible because
that decomposition is unambiguous and does not count any structures more
than once. This property is not needed for MFE calculations, as only the
structure with minimum energy is relevant, but it is necessary for the parti-
tion function because every single structure contributes to Z. Overall, this
results in the following recursion for the partition function:

Qi,j = Qi+1,j +
∑
i<k≤j

QBi,k ·Qk+1,j

QBi,j = e−β·H(i,j)

+
∑

i<k<l<j

e−β·I(i,j;k,l) ·QBk,l

+
∑

i+1<u<j−1

QMi+1,u ·QM
1

u+1,j−1 · e−β·a

QMi,j = QMi,j−1 · e−β·c

+
∑
i≤u<j

e−β·(u−i)·c ·QBu,j · e−β·b

+
∑

i<u<j−1

QMi,u ·QBu+1,j · e−β·b

QM
1

i,j = QM
1

i,j−1 · e−β·c +QBi,j · e−β·b (5.4)

The matrix Qi,j is the analogon to Fi,j in the MFE algorithm, storing the
partition function of the subsequence [i, j]. Similarly QBi,j corresponds to Ci,j
and stores the partition function of the subsequence [i, j] with (i, j) forming a
base pair. QM and QM

1
are equivalent to M and M1 and are responsible for

the calculation of multiloops. By summation over all Boltzmann-weighted
energies, starting with the smallest subsequences, the algorithm generates
the partition function Z = Q1,n of the whole sequence.
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5.4 Structure Prediction Including Pseudoknots

The commonly used MFE-based RNA secondary structure prediction al-
gorithms rely on the condition that the structure can be unambiguously
decomposed into independent loops, i.e. that all secondary structure mo-
tifs are non-crossing and self-contained, which allows the application of the
dynamic programming approach. Despite their importance, pseudoknots
are usually excluded in this approach because they violate the restriction
to non-crossing structure elements. While secondary structure prediction
of pseudoknot-free structures with the MFE approach requires O(n3) time
and O(n2) space [Zuker and Stiegler, 1981; Lyngsø et al., 1999], allowing for
arbitrary pseudoknots under the loop-based energy model has been shown
to be NP-complete [Akutsu, 2000; Lyngsø and Pedersen, 2000].

Interestingly, if instead of using the loop-based energy model, one only wants
to maximize the number of base pairs, the problem can be solved: Akutsu
proposed a dynamic programming algorithm for base pair maximization that
requiresO(n4) time andO(n3) space [Akutsu, 2000]. Another approach used
for the prediction of RNA pseudoknots and originating from graph theory
is maximum weighted matching with a time complexity of O(n3) [Tabaska
et al., 1998; Ruan et al., 2004]. Maximum weighted matching was also used
by Witwer in the hxmatch algorithm, which is very useful for predicting
pseudoknots in multiple RNA sequences with known covariances [Witwer
et al., 2004].

Instead of simplifying the energy model, one can also keep the well-proven
combination of dynamic programming and the loop-based energy model
and restrict the types of possible pseudoknots. Rivas and Eddy designed
a secondary structure prediction algorithm which requires O(n6) time and
O(n4) space [Rivas and Eddy, 1999]. Other algorithms, further restricting
the range of predictable pseudoknots, reduced the runtime to O(n5) using
O(n4) or O(n3) space [Dirks and Pierce, 2003; Lyngsø and Pedersen, 2000].

A modern example for a dynamic programming algorithm for the predic-
tion of pseudoknots is pknotsRG, developed by Jens Reeder and Robert
Giegerich, which computes the MFE structure for canonical simple recursive
pseudoknots in O(n4) time and O(n2) space [Reeder and Giegerich, 2004].
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Reeder and Giegerich define simple pseudoknots as H-type pseudoknots. If
the three loops of this simple pseudoknot are allowed to fold internally, even
into further pseudoknots, the resulting structure is called a simple recursive
pseudoknot. Every simple recursive pseudoknot has a canonical representa-
tive which can be handled by pknotsRG. A simple recursive pseudoknot is
canonical if it fulfills the following conditions:

• Both strands in a helix must have the same length and must not con-
tain any bulges.

• The helices making up the pseudoknot must both have the maximum
possible length.

• If the two maximal helices would overlap, their boundary is fixed at
an arbitrary point between them.

Simple recursive pseudoknots are defined by the eight end points of the four
sequence intervals making up the two stems of the pseudoknot. The can-
onization rules reduce these eight independent variables to four (see Figure
5.6), allowing a dynamic programming recursion to find the MFE structure
of an RNA sequence possibly containing canonical simple recursive pseudo-
knots with a runtime of O(n4).

Figure 5.6: pknotsRG defines pseudoknots by their eight boundaries i, j, k, l, r,
s, t and v. The canonization rules requiring bulge-free helices of maximum length
reduce these eight variables to four (i, j, k and l).

Whenever possible, the energy model of pknotsRG uses the standard pa-
rameters for pseudoknot-free secondary structures. For pseudoknots, the
stabilizing effect of nearest neighbor stacking energies of the pseudoknot he-
lices and of dangling bases at the helix ends are being accounted for. The
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coaxial stacking of helices such as in H-type pseudoknots has also been in-
corporated into the energy model. Apart from that, pseudoknots are treated
similar to multiloops in the standard energy model: they are assigned an
initiation penalty of 9 kcal/mol. This value is relatively high in order to pre-
vent the prediction of too many false positive pseudoknots. In addition, each
unpaired nucleotide within a pseudoknot loop is penalized with 0.1 kcal/mol.

So far, pknotsRG is the fastest dynamic programming algorithm for the
prediction of RNA pseudoknots. But it also restricts the type of pseudo-
knots, which it is able to predict, further than other dynamic programming
algorithms (see Figure 5.7). While pknotsRG can handle more than one
pseudoknot per sequence and even recursive pseudoknots, the biologically
quite common cases of kissing hairpins or pseudoknots with helices contain-
ing bulges or interior loops are not covered by pknotsRG. Nevertheless, with
its low computational complexity of O(n4), it is the most useful dynamic
programming pseudoknot prediction algorithm in many cases.

An alternative to dynamic programming are heuristic approaches. Heuristic
methods can handle a wider class of pseudoknots and more complex energy
models. However, they are not guaranteed to find the MFE structure. In the
context of RNA secondary structure prediction including pseudoknots ap-
proaches using genetic algorithms [Gultyaev et al., 1995], stochastic context-
free grammars [Cai et al., 2003], kinetic folding simulations [Xayaphoum-
mine et al., 2003] and iterative stem adding procedures [Ruan et al., 2004]
have all been employed.

A recent representative of the stem adding approach is HotKnots, which first
generates a tree of energetically favorable structures by partially folding the
input sequence with i and j paired, for all i and j with j−1 > 3 [Andronescu
et al., 2010; Ren et al., 2005]. New base pairs are added using a dynamic
programming algorithm leaving the already existing partial structures un-
changed. For the calculation of the energy of folded structures HotKnots
uses the model of Dirks and Pierce [Dirks and Pierce, 2003], which is based
on the standard energy model for pseudoknot-free secondary structures. Its
additional parameters concerning pseudoknots include three different penal-
ties for initiating a pseudoknot, depending on whether the pseudoknot is
not enclosed by another loop, nested within a multiloop, or nested within
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Figure 5.7: The classes of pseudoknots investigated by R&E [Rivas and Eddy, 1999],
D&P [Dirks and Pierce, 2003] and R&G’s pknotsRG [Reeder and Giegerich, 2004].
(Image reproduced from [Hofacker and Stadler, 2007])
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another pseudoknot. Similar to the treatment of multiloops in the stan-
dard energy model, there are additional penalties for each unpaired base
and each stem within a pseudoknot. The actual energy parameter values
used in the latest version of HotKnots are not those published by Dirks and
Pierce. Instead, improved values obtained by applying constraint generation
and Boltzmann likelihood parameter estimation methods to a large dataset
of RNA structures are used.

Pseudoknot detection algorithms are following another heuristic approach,
in which pseudoknot candidates are generated and analyzed before folding
the remaining sequence with the standard MFE approach. An example is
DotKnot [Sperschneider and Datta, 2010], which uses the dot plot generated
by the partition function of the Vienna RNA package as a starting point to
pick stems for the construction of pseudoknots. First, two crossing stems
are selected to form core H-type pseudoknots, which serve as the building
blocks for more complex pseudoknots. Within the loops of these core H-
type pseudoknots recursive secondary structure elements are allowed to form
independently of each other, before the whole recursive H-type pseudoknot
candidate is assembled and verified.

DotKnot uses three different pseudoknot energy models depending on the
type of pseudoknot it encounters. In each case, the stabilizing effect of the
pseudoknot helices are calculated via the standard loop decomposition en-
ergy model. Only the destabilizing entropic effect of the pseudoknot loops
is then calculated via one of three methods: for pseudoknots with helices
without bulge or interior loops and with a loop length between the two pseu-
doknot helices of only 0 or 1 nucleotide, the original energy model by Cao
and Chen [Cao and Chen, 2006] is used. If the loop length is between 2 and
6 nucleotides, Cao and Chen’s extended energy model [Cao and Chen, 2009]
is used. Finally, for pseudoknots with a longer loop connecting the two pseu-
doknot helices or for pseudoknots with bulge or interior loops within their
helices, a simple heuristic energy model is used. This heuristic model penal-
izes the initiation of a pseudoknot loop with 7 kcal/mol and each unpaired
nucleotide within a pseudoknot loop with 0.1 kcal/mol.

The three algorithms described in this section, the dynamic programming
algorithm pknotsRG, and the heuristic algorithms HotKnots and DotKnot,
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will be used as benchmarks to compare the results of PKplex against in
section 7.1. pknotsRG was chosen because it is the leading dynamic pro-
gramming solution to the problem of pseudoknot prediction. And although
dynamic programming and heuristic algorithms are not fully comparable,
HotKnots and DotKnot are included in the analysis as well to show the
strengths and weaknesses of the different general approaches.



46 RNA Secondary Structure Prediction Algorithms



PKplex 47

Chapter 6

PKplex

In this chapter I am describing PKplex, a new dynamic programming RNA
secondary structure prediction algorithm which takes pseudoknots into ac-
count. In the PKplex model, the thermodynamics of an RNA pseudoknot
essentially consist of two components: the energy necessary to make the
residues of a potential pseudoknot accessible, i.e. unpaired, which is calcu-
lated with the algorithm used in RNAplfold [Bernhart et al., 2006], and the
energy gained from the base pairing of the nucleotides involved in the pseu-
doknot interaction. A dynamic programming routine based on the RNAplex
[Tafer and Hofacker, 2008] algorithm combines these two energy values to
compute the optimal pseudoknot for a given RNA sequence.

In the next chapter I am taking a look at the strengths and limitations of
PKplex, present the results of evaluating the algorithm on a broad set of
known RNA structures, both with and without pseudoknots, and compare
PKplex with other published RNA pseudoknot prediction algorithms.

6.1 Algorithm

The PKplex algorithm operates within the framework of the Vienna RNA
package [Hofacker et al., 1994]. It uses the standard RNA energy model
described e.g. by Mathews and Turner [Mathews et al., 1999; Turner and
Mathews, 2009] and is based on the classic RNA-folding algorithm by Zuker
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and Stiegler [Zuker and Stiegler, 1981]. The recursions for the equilibrium
partition function are based on those suggested by McCaskill [McCaskill,
1990].

Figure 6.1: Two different secondary structures for the same RNA sequence, one
without pseudoknots (a), and the other with a single big pseudoknot (b). The
dotted lines in (a) indicate the area of the pseudoknot interaction shown in (b).
(Image generated with Pseudoviewer3 [Byun and Han, 2009])

Even though there are plenty of RNAs which contain pseudoknots, the frac-
tion of nucleotides which are part of a pseudoknot is generally pretty low.
That is because the pseudoknot usually comprises only a small part of the
whole sequence. Since we already know how to predict pseudoknot-free
structures decently, the approach used in PKplex starts with a pseudoknot-
free secondary structure and then potentially adds just a single pseudoknot.
The actual kinetic RNA folding process in living cells often follows the same
sequential order: the pseudoknot-free secondary structure is built first, and
only then the sequence forms its pseudoknotted base pairs.

Other pseudoknot-prediction algorithms often have to avoid predicting too
many false positive pseudoknots. PKplex somewhat bypasses this problem
by predicting at most one pseudoknot per sequence. However, if we are
interested in multiple pseudoknots on a single sequence, it is possible to
extend PKplex in such a way as to run multiple times iteratively on the
same sequence and therefore generating structures containing more than
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one pseudoknot.

PKplex constructs pseudoknots by starting with a pseudoknot-free secondary
structure and then picking two non-overlapping intervals and letting the
bases within those two intervals form pairs between each other - indepen-
dent of the base pairing of the remainder of the sequence. If those two
intervals do not lie within the same loop of the pseudoknot-free structure,
this results in the formation of a pseudoknot (see Figure 6.1). This approach
causes all secondary structures predicted by PKplex to contain at most one
pseudoknot. Because the frequency of pseudoknots is low, multiple pseudo-
knots on a single sequence are very rare, and prediction accuracy does not
suffer much by this simplification. In addition, during the construction of
the pseudoknot, base pairing is only allowed between the two sequence in-
tervals, but not within one of the intervals. The resulting pseudoknot stems
can therefore contain bulge and interior loops, but multiloops are not pos-
sible. Since most known pseudoknot stems are quite short, this restriction
should not impair the prediction quality by much either.

The secondary structures covered by PKplex can be decomposed into a
pseudoknot-free structure and additional base pairs responsible for form-
ing the pseudoknot, i.e. one of the stems of the pseudoknot. The free energy
∆G of an RNA structure is then calculated as the sum of ∆Gpkfree and
∆Gpk, the energy of the pseudoknot-free structure and the energy of the
pseudoknot itself.

∆G = ∆Gpkfree + ∆Gpk

In the PKplex model, ∆Gpk consists of ∆Gint, the energy gained through
the base pair interactions and cpk, the cost of initiating a pseudoknot, which
is constant.

∆Gpk = ∆Gint + cpk

∆Gpkfree is the energy of the pseudoknot-free part of the secondary struc-
ture. The two intervals involved in the pseudoknot interaction cannot take
part in the pseudoknot-free structure and therefore have to be accessible
and unpaired. PKplex models ∆Gpkfree as

∆Gpkfree = ∆GMFE + ∆Gu[k, i][j, l]
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∆Gpkfree ≈ ∆GMFE + ∆Gu[k, i] + ∆Gu[j, l]

with ∆GMFE being the the pseudoknot-free MFE and ∆Gu[k, i] and ∆Gu[j, l]
being the energies needed to render the two pseudoknot intervals [k, i] and
[j, l] unpaired and accessible. The approximation of PKplex assumes that
the energy of rendering two different non-overlapping intervals accessible is
the sum of rendering each interval accessible individually, i.e. that these two
processes are independent of each other.

In order to construct the optimum pseudoknot PKplex therefore searches
for the interacting intervals [k, i] and [j, l], which minimize the expression
∆Gu[k, i] + ∆Gu[j, l] + ∆Gint.

6.1.1 Calculation of Accessibility

∆Gu[a, b], the energy necessary to render the sequence interval [a, b] single-
stranded and accessible can be calculated from Pu[a, b], the probability that
[a, b] is unpaired via

∆Gu[a, b] = −RT ln(Pu[a, b]) (6.1)

Pu[a, b] is calculated for all subsequences by RNAplfold [Bernhart et al.,
2006; Bompfünewerer et al., 2008], which is part of the Vienna RNA Pack-
age, following the approach first used in RNAup [Mückstein et al., 2006;
Mückstein et al., 2008].

The equilibrium partition function Z is defined as

Z =
∑
S

e−βF (S) (6.2)

with F (S) denoting the free energy of a secondary structure S and β denot-
ing the inverse of the temperature times Boltzmann’s constant. According
to equation 5.3 we can use the partition function to calculate the probability
of a sequence interval being unpaired via

Pu[a, b] =
1
Z

∑
S∈Su

[i,j]

e−βF (S) (6.3)
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with Su[i,j] denoting the set of secondary structures with the interval [i, j]
being unpaired. [i, j] is either part of the external loop of the secondary
structure or part of a loop enclosed by a base pair (p, q). Pu[i, j] can therefore
be expressed as

Pu[i, j] =
Z(1, i− 1)Z(j + 1, n) +

∑
p<i

∑
j<q Ẑ(p, q)Zpq[i, j]

Z(1, n)
(6.4)

The first term handles the case of [i, j] being part of the external loop by
multiplying the partition functions of all sub-structures upstream and down-
stream of [i, j]. The second term handles the case of [i, j] being part of a
loop enclosed by the base pair (p, q). Ẑ(p, q) denotes the partition function
outside the base pair (p, q) and Zpq[i, j] the partition function inside (p, q)
given that the interval [i, j] is unpaired. The restricted partition functions
Ẑ(p, q) and Zpq[i, j] are then further decomposed according to the type of
loop containing the unpaired interval [i, j].

Depending of the details of the implementation one or more additional ma-
trices compared to the partition function algorithm of McCaskill have to be
stored. In RNAplfold the CPU requirements have been reduced to O(n3)
and for very long sequences a sliding window technique which only looks at
sequence intervals of fixed length instead of at the whole sequence can be
used [Bernhart, 2009]. The implementation of the PKplex algorithm directly
calls RNAplfold to calculate Pu[i, j] which is then transformed into ∆Gu[a, b]
via equation 6.1.

6.1.2 Calculation of the Interaction Energy

∆Gpk is calculated by a dynamic programming recursion based on the one
used in RNAplex [Tafer and Hofacker, 2008] to evaluate RNA-RNA inter-
actions. Every potential pseudoknot can be described as an interaction
between two intervals [k, i] and [j, l] with both (i, j) and (k, l) forming base
pairs. PKplex uses the table Ci,j,k,l to store the best energy of an interaction
between those two intervals. Ci,j,k,l is filled via the following recursion (see
Figure 6.2):
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Figure 6.2: Decomposition of a pseudoknot spanning the intervals [k, i] and [j, l].
(i, j), (k, l) and (p, q) each form a base pair. The minimum energy of an interaction
between [p, i] and [j, q] has been already been calculated and is stored in the table
Ci,j,p,q. L(k, l, p, q), the energy of the loop enclosed by (k, l) and (p, q) can be
calculated directly.

Ci,j,k,l = min
k<p≤min(i,k+v)

max(j,l−v)≤q<l

(Ci,j,p,q + L(k, l, p, q)) (6.5)

with L(k, l, p, q) being the energy of a loop enclosed by the base pairs (k, l)
and (p, q), and v being the maximum size of an interior/bulge loop. The
pseudocode for this recursion is shown in Figure 6.3.

for(i=n...1)
for(j=i+4...n)
for(k=i-1...1)

for(l=j+1...n)
for(p=k+1...min(i,k+v))

for(q=l-1...max(j,l-v))
E = LoopEnergy(p,q;k,l)
C(i,j,k,l) = min(C(i,j,k,l), C(i,j,p,q)+E)

Figure 6.3: Pseudocode for the calculation of the interaction energy.

Ci,j,k,l is initialized by setting Ci,j,i,j to the pseudoknot initialization cost
constant cpk. After the matrix Ci,j,k,l is filled, ∆Gu[i, j] and ∆Gu[k, l], the
energies of rendering the involved intervals unpaired and accessible, which
have been previously calculated by RNAplfold and stored for later use, are
added - resulting in ∆G(i, j, k, l), the free energy change for the complete
pseudoknot interaction. If the minimum of ∆G(i, j, k, l) is greater than
0, no energetically favorable pseudoknot has been found and the optimum
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pseudoknot-free structure according to the Vienna RNA package’s RNAfold
is returned. Otherwise backtracking is employed to get the structure of
the pseudoknot. The non-pseudoknot part of the structure is generated
by RNAfold, using constraints to force the pseudoknot intervals [k, i] and
[j, l] to be not involved in the formation of the remainder of the secondary
structure.

6.2 Time Complexity and Implementation

The time complexity of calculating the accessibilities ∆Gu[a, b] is O(n3).
The recursion for ∆Gpk uses 6 loops for the 6 variables i, j, k, l, p and
q. A näıve implementation would therefore require O(n6) computational
time. Since the pseudoknot helices of known pseudoknots are generally of
very limited length (the longest continuous pseudoknotted helix in the full
dataset is only 9 base pairs long), PKplex uses a parameter w to limit the
maximum length of the intervals [k, i] and [j, l] involved in the pseudoknot
formation. The CPU time required for the ∆Gpk recursion then scales with
O(n2w4), because i and j run over the whole sequence, whereas the ranges
of values for k, l, p and q are limited by w. Adding up both components of
the algorithm, the runtime for PKplex as a whole scales with O(n3 +n2w4).

Instead of storing the whole four-dimensional table Ci,j,k,l, it is sufficient to
only store a single two-dimensional table Ĉk,l for every combination of i and
j which can be discarded as soon as the calculations for the next combination
of i and j are started. The memory consumption of the recursion for ∆Gpk
is therefore O(w2).

The pseudocode of Figure 6.3 shows that the loop energy L(k, l, p, q) is
calculated in every step of the innermost loop. Although the loop energy
function is constant in its time complexity, the amount of times this function
is called still makes this a time consuming step. L(k, l, p, q) is called with
exactly the same parameter values more than once for different combinations
of i and j, therefore unnecessarily repeating some calculations.

I managed to reduce the overall runtime of PKplex by reordering the loops in
such a way that L(k, l, p, q) is called less often, because it is not part of the in-
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nermost loop anymore. This reordering requires the addition of a dimension
to the storing table and keeping track of Cj,k,l. This increases the memory
requirement of the ∆Gpk recursion to O(nw2), which does not cause any
problems since calculating the accessibilities already requires O(n2) mem-
ory space. This loop rearrangement reduces the runtime due to fewer calls
of the loop energy function. The time complexity of the whole algorithm
stays unchanged though, since the loop energy function is of constant time.
The pseudocode for the recursion after implementing the described changes
is shown in Figure 6.4.

for(i=n...1)
for(k=i-1...i-w)
for(l=i+5...n)

for(p=k+1...min(i,k+v))
for(q=l-1...max(i+4,l-v))

E = LoopEnergy(p,q;k,l)
for(j=max(i+4,l-w)...q)
C(j,k,l) = min(C(j,k,l), C(j,p,q)+E)

Figure 6.4: Pseudocode for the calculation of the interaction energy with rearranged
loop order to reduce the runtime.

With a time complexity of O(n3 + n2w4) PKplex should theoretically com-
pare favorably with other dynamic programming algorithms for pseudoknot
prediction. Both computation time and the quality of its results are analyzed
in the following chapter.
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Chapter 7

Results and Discussion

7.1 Results

7.1.1 Accuracy Measures

To evaluate the quality of a predicted secondary structure, the prediction
is compared to the experimentally determined true structure (called refer-
ence structure). The following statistical measures are used to evaluate the
prediction quality:

Sensitivity =
correctly predicted base pairs
reference structure base pairs

=
true positives

true positives + false negatives

(7.1)

Selectivity = Positive prediction value (PPV)

=
correctly predicted base pairs

predicted base pairs

=
true positives

true positives + false positives

(7.2)

F-measure =
2× Sensitivity× PPV

Sensitivity + PPV
(7.3)
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The F-measure is the harmonic mean of sensitivity and selectivity. It is close
to the arithmetic mean of sensitivity and PPV when those two numbers are
close to each other, but smaller than their arithmetic mean when they are
further apart.

7.1.2 Results of PKplex for Selected Sample Sequences

The 35-nucleotide sequence HIVRT32 is an inhibitor of the human immu-
nodeficiency virus type 1 reverse transcriptase (HIV-1-RT) and contains a
simple H-type pseudoknot [Tuerk et al., 1992]. PKplex is able to perfectly
predict its secondary structure, while the pseudoknot-free prediction with
RNAfold only returns one of the two stems of the pseudoknot:

HIVRT32

Sequence: UCAAGUAUUCCGAAGCUCAACGGGAAAAUGAGCUA

Reference: .......[[[[[.((((((.]]]]]...)))))).

PKplex: .......[[[[[.((((((.]]]]]...)))))).

RNAfold: .............((((((.........)))))).

Figure 7.1 shows squiggle plots of the reference structure/PKplex prediction
and the RNAfold prediction and compares the two different structures in
an arc plot. For HIVRT32 PKplex simply adds a stem to the pseudoknot-
free MFE structure. This addition does not change the structure of the
remainder of the sequence at all since the bases involved in the additional
pseudoknotted stem are already accessible in the MFE structure.

Figure 7.1: The secondary structure of HIVRT32 as predicted by RNAfold (left)
and its true secondary structure as predicted by PKplex (middle). The arc plot
(right) shows the base pairs contained in both structures in black and the base
pairs contained only in the PKplex prediction in green. (Squiggle plots generated
with Pseudoviewer3 [Byun and Han, 2009], arc plot generated with the help of
hxmatch [Witwer et al., 2004])
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The sequence MMTV contains a short frameshifting pseudoknot of the mouse
mammary tumor virus [Theimer and Giedroc, 2000]. PKplex again manages
to predict the pseudoknot, but in this case it adds a single false positive base
pair to one of the pseudoknot stems. Contrary to the first example though,
RNAfold predicts a completely different structure for MMTV. The PKplex
algorithm therefore first renders the site of the pseudoknot stem accessible
and unpaired, then adds the pseudoknotted stem and finally lets RNAfold
fold the remainder of the sequence, which results in a totally different fold
overall. The following lines show the different structures for MMTV in dot-
bracket notation:

MMTV

Sequence: GGGGCAGUCCCCUAGCCCCACUCAAAAGGGGGAU

Reference: [[[[[..((((((.]]]]]........)))))).

PKplex: [[[[[.(((((((.]]]]]........)))))))

RNAfold: ((((....))))...((((.((....))))))..

Figure 7.2 displays squiggle plots of the different secondary structures for
MMTV and compares the structures in an arc plot.

Figure 7.2: The secondary structure of MMTV as predicted by RNAfold (left) and
by PKplex (middle). The single false positive base pair compared to the reference
structure is marked with a green box. The arc plot (right) shows the base pairs
of the RNAfold prediction in red and the base pairs of the PKplex prediction in
green (true positives) and blue (false positives). (Squiggle plots generated with
Pseudoviewer3 [Byun and Han, 2009], arc plot generated with the help of hxmatch
[Witwer et al., 2004])

PKplex does not improve the prediction results compared to RNAfold for all
sequences though. An example is the pseudoknot of the human telomerase
RNA [Chen et al., 2000]. The following lines show the dot-bracket notation
of reference structure, PKplex prediction and RNAfold prediction:

telo.human

GGGUUGCGGAGGGUGGGCCUGGGAGGGGUGGUGGCCAUUUUUUGUCUAACCCUAACUGAGAAGGGCGUAGGCGCCG

UGCUUUUGCUCCCCGCGCGCUGUUUUUCUCGCUGACUUUCAGCGGGCGGAAAAGCCUCGGCCUGCCGCCUUCCACC
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GUUCAUUCUAGAGCAAACAAAAAAUGUCAGCUGCUGGCCCGUUCGCCCCUCCCGGGGA

Reference:

.................((((((((((((((.(((((...........................((((((((....

.(((((.......(((((((((........[[[[[[[[[)))))))))..)))))....))))).)))........

.....................]]].]]]]]]...)))))...))))))))))))))..

PKplex:

.......[[[[[[[[[.((((((((((((((.(((((....................(((((((((...(((((((

.((....))....)).))))))))))))))((((((......(((((.((......)).)))))]]]]]]]]]...

((((......))))...........))))))...)))))...))))))))))))))..

RNAfold:

.................((((((((((((((.(((((((((((((...........((.(((((.((..((.((((

.((((((.....((((.(((((....((.....))....))))).))))))))))..))))))..)))))))))..

((((......))))..))))))))..........)))))...))))))))))))))..

Arc plots comparing these structures can be seen in Figure 7.3. PKplex adds
a pseudoknot stem for telo.human which does not occur in the reference
structure. This predicted pseudoknot causes the remainder of the structure
to fold differently than in the pseudoknot-free RNAfold prediction. Overall,
the PKplex prediction is worse than the RNAfold prediction for telo.human
as measured by sensitivity (0.50 vs. 0.68), selectivity (0.40 vs. 0.54) and
F-measure (0.44 vs. 0.60).

These three examples offer only a snapshot of the predictions of PKplex.
For a proper evaluation of the algorithm, we compared its results with those
of four other secondary structure prediction algorithms over a big dataset
containing both pseudoknotted and pseudoknot-free RNA structures.

7.1.3 Comparison with Other Algorithms

I am comparing the results of PKplex with the results of three other pro-
grams for pseudoknot prediction and with one pseudoknot-free secondary
structure prediction software: pknotsRG by Reeder and Giegerich [Reeder
and Giegerich, 2004] is based on a dynamic programming algorithm and
requires O(n4) time and O(n2) space. HotKnots uses a heuristic approach
and has been described by Ren et al [Ren et al., 2005]. I am using version
2.0 with improved parameter values [Andronescu et al., 2010]. DotKnot
by Sperschneider and Datta [Sperschneider and Datta, 2010] is a heuristic
pseudoknot detection algorithm. It only predicts pseudoknots, therefore I
use RNAfold to predict the remaining pseudoknot-free structure. And fi-
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Figure 7.3: Arc plots comparing the reference structure for telo.human to the pre-
dictions of RNAfold (top) and PKplex (bottom). In both plots base pairs contained
in both structures (true positives) are black, base pairs contained only in the ref-
erence structure (false negatives) are green, and base pairs contained only in the
structure prediction (false positives) are red. (Images generated with the help of
hxmatch [Witwer et al., 2004])
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nally, the Vienna RNA package’s RNAfold [Hofacker et al., 1994], which
only predicts pseudoknot-free structures, is included in the analysis as well.

7.1.4 Data Sets

I evaluated the different pseudoknot prediction approaches by applying them
to RNA sequences with known secondary structures and comparing the pre-
dictions with the reference structures. The full data set consists of 2253
sequences, both pseudoknotted and pseudoknot-free, and is the union of the
S-Train and S-Test data sets used in [Andronescu et al., 2010]. The sequence-
structure pairs were originally taken from the RNA STRAND v2.0 database
[Andronescu et al., 2008] and from Pseudobase [van Batenburg et al., 2001].
About 80% of the sequences are pseudoknot-free, other properties are shown
in Table 7.1. To evaluate the prediction quality on different types of struc-
tures the data set was split into four subsets: short pseudoknotted sequences
(length <100 nucleotides [nt]), short pseudoknot-free sequences, long pseu-
doknotted sequences and long pseudoknot-free sequences.

Data set Description Number of Percentage Average Standard
sequences (%) length deviation

Complete All sequences 2253 100.0 74.1 40.8
Short PK <100nt, pseudoknotted 327 14.5 46.7 19.6
Short PKfree <100nt, pseudoknot-free 1358 60.3 57.4 23.7
Long PK ≥100nt, pseudoknotted 98 4.3 148.2 41.4
Long PKfree ≥100nt, pseudoknot-free 470 20.9 125.2 23.9

Table 7.1: Properties of the data sets used for testing the pseudoknot prediction
algorithms.

7.1.5 Prediction Accuracy

Table 7.2 shows the results of applying each of the five different secondary
structure prediction algorithms on the test dataset and its subsets. The
parameter values for PKplex were chosen as follows: cpk, the pseudoknot
initialization cost, was set to 8.1 kcal/mol, which results in a good balance
between the quality and the quantity of the pseudoknots returned by PKplex.
The maximum length w of the interacting intervals was set to 12 and the
maximum size v of internal and bulge loops was set to 10. Larger values did
not improve the quality of results and only increased the runtime of PKplex.
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Dataset PKplex pknotsRG DotKnot HotKnots RNAfold

Complete Sensitivity 0.748 0.735 0.694 0.791 0.699
PPV 0.690 0.696 0.656 0.762 0.684
F-measure 0.718 0.715 0.675 0.776 0.691
Containing PK (%) 25.5 22.4 52.2 17.1 0
Runtime (s) 192 140 2100 33290 20.9

ShPK Sensitivity 0.712 0.779 0.797 0.744 0.501
PPV 0.741 0.779 0.801 0.766 0.659
F-measure 0.726 0.779 0.799 0.755 0.569
Containing PK (%) 55.1 71.9 79.8 64.2 0
Runtime (s) 10.8 6.0 186 367 2.1

ShPKfree Sensitivity 0.774 0.743 0.701 0.814 0.752
PPV 0.700 0.695 0.651 0.776 0.705
F-measure 0.735 0.718 0.675 0.794 0.728
Containing PK (%) 12.4 7.2 42.6 7.7 0
Runtime (s) 64.7 32.0 796 2354 12.4

LoPK Sensitivity 0.640 0.594 0.606 0.597 0.496
PPV 0.601 0.556 0.597 0.599 0.510
F-measure 0.620 0.558 0.601 0.598 0.503
Containing PK (%) 80.6 60.2 92.9 53.1 0
Runtime (s) 28.3 33.7 502 16671 2.1

LoPKfree Sensitivity 0.722 0.719 0.619 0.798 0.727
PPV 0.642 0.668 0.582 0.755 0.678
F-measure 0.679 0.692 0.600 0.776 0.701
Containing PK (%) 31.5 24.0 51.9 4.3 0
Runtime (s) 91.6 69.9 677 13983 7.7

Table 7.2: Results of applying the five different prediction algorithms on the data
sets.

For the complete dataset the quality of PKplex’ results as judged by the
F-measure is about the same as the quality of the results derived with
the only other dynamic programming approach, pknotsRG. Looking at the
heuristic approaches, HotKnots returns better results and DotKnot returns
worse results than PKplex. But the computation time is a lot longer for the
heuristic approaches than for the dynamic programming approaches. Inter-
estingly, even the pseudoknot-free secondary structure prediction algorithm
of RNAfold delivers better results than DotKnot and is not far behind the
other algorithms.

When analyzing the predictions for the different subsets of sequences it turns
out that RNAfold performs worse than all pseudoknot-prediction algorithms
on the data sets that contain pseudoknotted sequences, whereas the opposite
is not the case: the secondary structure prediction algorithms that include
pseudoknots do not necessarily perform worse than RNAfold on data sets
that do not contain any pseudoknotted sequences. For ShPKfree, the subset
containing short pseudoknot-free sequences, PKplex returns marginally bet-
ter results than RNAfold. This means that for the sequences where PKplex
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wrongly predicts a pseudoknot, the quality of these predictions is on average
still better than the prediction quality of RNAfold for these sequences.

PKplex performs equally well over all four subsets. The F-measure for the
data sets containing longer sequences is lower than that for the shorter se-
quences. That is a trend that is true for all methods and a consequence of the
fact that secondary structure prediction difficulty increases with sequence
length.

7.1.6 Computational Performance

The O(n3) algorithm of RNAfold takes only about 21 s to fold all 2253
sequences of the complete data set (on an Intel Core 2 Quad Q6600 with
2.4 GHz and 4 GB RAM). The dynamic programming methods pknotsRG
and PKplex take 140 s and 192 s respectively, while both heuristic methods
compare unfavorably in this regard with runtimes of 2100 s for DotKnot and
33290 s for HotKnots (Table 7.2).

Figure 7.4 shows the runtime of the different secondary structure prediction
algorithms when applied to 20 random RNA sequences of various lengths.
PKplex compares favorably, especially for longer sequences, where it is the
fastest of all tested pseudoknot prediction algorithms. For even longer se-
quences, such as the 1542 bp 16 s E. coli rRNA, the differences in runtime
are substantial. While PKplex’ runtime is 98 s, DotKnot already requires
1404 s and pknotsRG 2811 s.

To summarize this analysis, PKplex is the fastest of the tested pseudoknot
prediction algorithms. For shorter sequences the other dynamic program-
ming algorithm pknotsRG is a little bit faster than PKplex, but for longer
sequences, where differences in runtime are a lot more important, PKplex
is faster due to its lower time complexity of O(n3 + n2w4) versus O(n4) for
pknotsRG. This low time complexity makes PKplex the fastest of all known
dynamic programming pseudoknot prediction algorithms. The heuristic ap-
proaches cannot compete with either of the two tested dynamic program-
ming algorithms regarding computation time and HotKnots in particular is
impractical for longer RNA sequences.
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Figure 7.4: Comparison of the runtime of the secondary structure prediction algo-
rithms for folding 20 random RNA sequences of different lengths.



64 Results and Discussion

The bandwidth of differences in the quality of the results of the tested meth-
ods is a lot smaller than the differences in runtime. The F-measure of the re-
sults of calculating the secondary structures of all 2253 sequences in the data
set varies between 0.67 and 0.78 for the different methods. HotKnots, which
is the slowest algorithm by far, returns the best results. It is followed by the
faster dynamic programming approaches PKplex and pknotsRG. RNAfold
and DotKnot occupy the lower end of that spectrum. As a consequence I rec-
ommend using HotKnots for pseudoknot prediction of short RNA sequences.
For longer sequences or bigger datasets where HotKnots becomes impractical
due to its long runtime, or if one wants to use a dynamic programming ap-
proach instead of a heuristic approach, PKplex is the recommended method
for pseudoknot prediction.

7.2 Discussion

The general idea behind the PKplex algorithm - calculating the cost of ren-
dering two sequence intervals accessible and adding the gain of letting those
two intervals form base pairs among each other - is very simple, but it also
implies some assumptions and restrictions of the algorithm which I want to
mention in this section:

To calculate ∆Gu[a, b], the energy necessary to make a sequence interval ac-
cessible, PKplex employs the algorithm used in RNAplfold. This algorithm
takes an approach based on the partition function, whereas the other parts
of PKplex are based on MFE calculations. During the development process
I also tried an MFE based approach to calculate ∆Gu[ab], but I found that
this did not make a difference on the quality of the results. Because the
implementation based on the partition function is faster, there is no reason
to use an MFE-based approach instead. PKplex therefore returns the en-
ergetically most favorable pseudoknot for the ensemble of pseudoknot-free
structures, not the most favorable pseudoknot for the pseudoknot-free MFE
structure.

In the PKplex algorithm, pseudoknots are constructed by forming base
pairs between two continuous sequence intervals in addition to the regular
pseudoknot-free secondary structure. This results in H-type pseudoknots,
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kissing hairpins and other pseudoknots with only a single helix violating
the condition of perfectly nested structures. The pseudoknotted structures
returned by PKplex are therefore all bi-secondary structures. Non-planar
pseudoknots or k-partite structures with k > 2 cannot be predicted by
PKplex. For the same reason PKplex cannot predict multiple pseudoknots
on a single sequence either. Because a high percentage of the known pseu-
doknotted sequences are planar and contain only a single pseudoknot, this
is not a severe restriction. It should also be possible to adapt the PKplex
algorithm to run multiple times on the same sequence, enabling it to predict
more complex multiple stem pseudoknots.

Figure 7.5: The runtime requirements and classes of pseudoknots covered by R&E
[Rivas and Eddy, 1999], D&P [Dirks and Pierce, 2003], R&G’s pknotsRG [Reeder
and Giegerich, 2004] and PKplex. (Image adapted from [Hofacker and Stadler,
2007])

pknotsRG has other restrictions regarding the pseudoknots it is able to pre-
dict: on the one hand, it cannot handle kissing hairpins or bulge or internal
loops within pseudoknot helices, but on the other hand it is able to generate
structures with more than one pseudoknot and even recursive pseudoknots.
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Other dynamic programming algorithms such as the one suggested in [Ri-
vas and Eddy, 1999] can handle more general pseudoknots, but at the cost
of a severely higher runtime making these algorithms quite impractical to
use. A comparison of the covered pseudoknot classes and runtime require-
ments of different dynamic programming algorithms for pseudoknot predic-
tion is shown in Figure 7.5. In contrast to dynamic programming algorithms,
heuristic algorithms for pseudoknot prediction are not by their very nature
forced to reduce the search space, i.e. restrict the types of pseudoknots they
can handle. But this advantage comes at the cost of not being guaranteed
to find the optimal solution with minimum energy within their search space.

Figure 7.6: The formation of a pseudoknot (dotted lines) changes three loops in
the left sequence (hairpin loop L1, L2 created by the pseudoknot and the external
loop L3) and four loops in the right sequence (hairpin loops L1 and L2, L3 created
by the pseudoknot and the external loop L4).

Whenever two unpaired sequence intervals form a pseudoknot, at least three
secondary structure elements are directly involved (see Figure 7.6): the two
loops enclosing the pseudoknot stems and the new loop created by the pseu-
doknot formation. The pseudoknot energy model of PKplex relies on the
additivity of secondary structure elements and therefore assumes that the
energies of those loops are not changed by the formation of the pseudo-
knot. As a compensation the pseudoknot initialization cost cpk is intro-
duced, which is a constant and does not depend on the actual composition
of the loops changed by the pseudoknot.

In an effort to increase the prediction quality of PKplex, I analyzed the
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loops containing the bases involved in the pseudoknot formation. I found
that PKplex significantly overestimates the amount of pseudoknot stems
forming within multiloops. This lead to the creation of an energy model in
which the pseudoknot initiation cost cpk depends on the loop type enclosing
the pseudoknot stems, with an increased penalty for multiloops. But while
this reduced the amount of pseudoknot stems within multiloops in the pre-
dictions of PKplex, the overall prediction accuracy did not increase and I
returned to the original simpler energy model.

The pseudoknot energy models of pknotsRG, HotKnots and DotKnot are
described in section 5.4. While not as simple as the single constant used
in PKplex, these models are not very complex either and mostly resemble
the linear multiloop valuation in the standard RNA models: in addition to
the pseudoknot initiation constant, they penalize longer loops by adding an
energy penalty for every unpaired base and/or for every base pair within the
pseudoknot loop. These models are not necessarily better than the simple
constant used in PKplex, and in fact all these energy models can be consid-
ered makeshift and in need of improvement, because they do not properly
account for the pseudoknot loop entropies. The problem is not that a more
complex pseudoknot loop energy model would increase the computational
costs too much, the heuristic algorithms at least could easily handle such a
model. The problem rather is that the pseudoknot loop entropies are largely
unknown and no proper model for them exists, apart from the one by Cao
and Chen described in section 4.3 [Cao and Chen, 2009], but unfortunately
their model is only applicable to a subset of the pseudoknots predicted by
each of the four algorithms.

An advantage of the PKplex algorithm, which is caused by the design of
the dynamic programming routine to calculate the energy of an interaction
between two intervals, is the possibility to calculate suboptimal pseudoknot-
ted secondary structures at no additional cost. These structures can then
be further analyzed by either manual inspection or some automated filtering
to potentially further improve the quality of the results.

The pseudoknot energy model by Cao and Chen was used as such a filter
for improving the quality of the prediction results. The suboptimal struc-
tures predicted by PKplex were evaluated with the Cao and Chen energy
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model and the prediction with the best energy according to this evaluation
was picked. But because the Cao and Chen energy model can only han-
dle H-type pseudoknots, a lot of the candidate suboptimal structures could
not be evaluated with it. This resulted in complicated rules for picking the
best structure out of the suboptimal candidates depending on whether the
Cao and Chen model could handle all, some, one or none of the candidate
structures. Overall, this strategy did not improve the quality of the results
significantly, most likely due to the problems with the limited applicability
of the energy model. Other modifications that failed to improve the predic-
tion quality include disallowing bulge and interior loops for the pseudoknot
stems or restricting the loop lengths of the loops involved in the pseudoknot
formation.
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Chapter 8

Conclusion and Outlook

RNAs are a very important class of molecules for the living world. The
unofficial creation of the research area now known as molecular biology was
the discovery of the structure of DNA, the carrier of genetic information in
1953. For the first couple of decades following this discovery, RNA was only
seen as occupying the less interesting role of passively carrying information
from DNA to proteins. Almost all research was focused on the latter two
molecule classes and RNAs were neglected. Only after the discovery that
there existed RNAs which could exhibit catalytic activity themselves, RNA
gained the attention of the scientific community that it deserves.

More and more functional RNAs are still being discovered today. The func-
tion of an RNA molecule strongly depends on its structure, and while a great
number of RNA sequences are known and easily available in various sequence
data bases, determining RNA structures requires a lot of experimental work.
Therefore, predicting the structure of an RNA from its sequence has the po-
tential to accelerate the scientific progress and save a lot of experimental
work as well as money. Theoretically predicting the structure of RNA se-
quences cannot replace classic wet lab work, but it can filter the huge amount
of potential functional RNAs to the most promising candidates, which can
then be analyzed experimentally.

Most RNA secondary structure prediction algorithms are based on a dy-
namic programming approach, breaking apart the structure prediction prob-
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lem into a number of smaller and simpler subproblems which can eventually
be solved easily, and then constructing the solution to the bigger problem
out of the solutions to the smaller problems. This approach depends on
the loop decomposition of RNA structures requiring RNA structures to be
perfectly nested. No bases enclosed by a base pair are allowed to bind with
bases outside of the enclosing base pair. This restriction is only true for
pseudoknot-free secondary structures, but more and more experimentally
determined RNA structures contain pseudoknots, which violate this restric-
tion.

In the effort to include pseudoknots into structure prediction algorithms it
has been found that predicting pseudoknotted RNA structures without any
restrictions is an NP-complete problem. Only after simplifying the energy
model or by restricting the allowed classes of pseudoknots are current dy-
namic programming algorithms able to predict RNA pseudoknots. Some
heuristic algorithms have also been employed for the prediction of pseudo-
knots, but in contrast to dynamic programming algorithms they are not
guaranteed to find the optimum solution.

In this diploma thesis I introduced PKplex, a dynamic programming based
approach within the MFE framework to predict RNA secondary structures
with pseudoknots. The simple idea is to render two sequence intervals un-
paired and accessible and let them interact with each other while the rest
of the sequence is folded by a conventional pseudoknot-free folding algo-
rithm. PKplex achieves a time complexity of O(n3 + n2w4) and a space
complexity of O(nw2). Testing this approach on a large set of pseudoknot-
ted and pseudoknot-free sequences shows that PKplex generates results that
are qualitatively as good as those of other pseudoknot prediction algorithms
while being computationally less expensive. The PKplex algorithm has been
implemented in C as an extension to the Vienna RNA package.

Especially for longer pseudoknotted sequences the prediction quality of all
available algorithms is not satisfying yet. The consensus is that this is less
due to the computational effort required to handle longer sequences, but
due to the fact that there is no general RNA energy model available yet
which takes pseudoknots into account. Pseudoknots contain loops that are
no hairpin-, interior-, bulge- or multiloop and that do not allow a simple
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loop decomposition like in the case of pseudoknot-free structures. Cao and
Chen have created an energy model for H-type pseudoknots with energies
for the pseudoknotted loops occurring in these structures but the energies
of more general pseudoknotted loops are still unknown. An energy model
which is able to handle a wider range of pseudoknots would potentially allow
the creation of new algorithms for the prediction of RNA pseudoknots with
greater accuracy.

Availability

The source code of PKplex and the Vienna RNA package are available on
the web server of the Institute for Theoretical Chemistry of the University
of Vienna at http://www.tbi.univie.ac.at/~wolfgang/PKplex/ and at
http://www.tbi.univie.ac.at/~ivo/RNA/.
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