
DISSERTATION

Titel der Dissertation

Grammatical Approaches to Problems in RNA Bioinformatics

Verfasser

Christian Höner zu Siederdissen

angestrebter akademischer Grad

Doktor der Naturwissenschaften (Dr.rer.nat.)

Wien, 2013

Studienkennzahl lt. Studienblatt: A 091 490

Dissertationsgebiet lt. Studienblatt: Molekulare Biologie

Betreuerin / Betreuer: Univ.Prof Dipl.Phys. Dr. Ivo L. Hofacker

ii

Contents

1 Of Grammars and Lambdas 1

1.1 The Past 60 Years . 1

1.1.1 RNA Structure Prediction . 1

1.1.2 RNA Homology Search . 7

1.1.3 Grammatical Adventures . 9

1.1.4 Functional Programming Languages 10

1.2 This Thesis . 11

2 The Structure of RNA 13

2.1 The Structure of Nucleotides . 14

2.2 RNA Secondary Structure . 18

2.3 Scoring Schemes, Optimal Structure, and the Partition Function 19

2.4 RNA Structural Modules . 21

2.5 RNA Families . 22

3 Formal Grammars and ADP 25

3.1 Regular and Context-free Grammars . 26

3.1.1 Alphabets and Strings . 26

3.1.2 Formal Grammars . 26

3.1.3 The CYK Parser . 29

3.1.4 Syntactic, Structural, and Semantic Ambiguity 31

3.2 Algebraic Dynamic Programming (ADP) 33

3.2.1 Methodology . 33

3.2.2 Implementations of the ADP Idea 36

4 Efficient Algorithms in Haskell 39

4.1 Being Lazy with Class . 40

4.1.1 Ad-hoc Polymorphism Using Type Classes 41

4.1.2 Monads . 42

4.1.3 Algebraic Data Types . 43

4.1.4 Existential Quantification . 44

4.2 Deforestation and Fusion . 44

4.2.1 Call-pattern Specialization . 46

iii

iv

4.2.2 Stream Fusion . 47
4.2.3 The case-of-case Transformation 50
4.2.4 A Worked Stream Fusion Example 50

5 Semantics and Ambiguity of Stochastic RNA Family Models 53

6 Discriminatory Power of RNA Family Models 79

7 A Folding Algorithm for Extended RNA Secondary Structures 87

8 Sneaking Around concatMap:
Efficient Combinators for Dynamic Programming 97

9 Outlook 111
9.1 Generalizing the Language of Grammars . 111
9.2 Performance, Automatic Parallelization, and SIMD extensions 112
9.3 Extended Secondary Structures . 115
9.4 RNA Family Models . 117
9.5 From Functions to Grammars and Back . 120

Acknowledgements

First and foremost, thanks to Ivo for not only being a kind boss, but actually letting me
explore some of the stranger corners of our scientific field, including pure and lazy λ’s
(being lazy with class is such a great motto!).

I had some truly great co-authors, of which Ivo, Robert, Peter, and Stephan were
involved in the papers presented in this thesis. Thank you Robert for introducing me to
Ivo and ongoing cooperation in exploring the grammatical wonders of RNA families. A
lot of my later work was and is done in close collaboration with Peter in Leipzig. It is a
pleasure working with you and I am looking forward to our next adventures.

I was lucky enough to have been able to work with many other people in the past
couple of years. Thanks go to Ronny, Florian, Andrea, Fabian, Andreas, and Christoph.
Jan invited me repeatedly to Copenhagen, and working with him, Corinna, Britta, and
Christian is a lot of fun. Thank you Sven for being such a friendly Raumteiler. Many
thanks also to Jing, Manja, Stefanie, Stefan, Jörg, Irma, Lydia, and Katja for discussions,
ongoing work, and future publications, . . . and gin (I think).

Many thanks to everybody else at the TBI in Vienna, to the people at Robert’s group
in Bielefeld, Jan’s in Copenhagen, and Peter’s in Leipzig.

I am also indebted to all the Haskell people for maintaining such a kind and helpful
community. Special thanks to Roman for explaining the intricacies of stream fusion. I
also remember the ICFP’12 conference in Copenhagen fondly.

Thanks to the ISCB for providing monetary support after the conclusion of ISMB’11.

Many thanks and my gratitude go to my family Ulrike, Rüdiger, and Annette for
always supporting me. I am deeply indebted to you for giving me all the support I needed
– even if it was about (sneakily) writing a paper under the Christmas tree.

v

vi

Abstract

Formal languages and grammars are a classical topic in computer science and a powerful
tool to deal with complexity in terms of algorithmic design. In this thesis, four scientific
works are presented that aim to solve problems in computational biology. These problems,
from the area of RNA bioinformatics, are prediction of RNA secondary structure and
the search for homologous sequences of known non-coding (nc-) RNA families. Also, an
efficient embedding of these grammars in a functional programming language is presented.

First, two algorithms on structural non-coding RNA families are presented. A struc-
tural ncRNA family is an alignment of related RNA sequences together with their consen-
sus structure. From it a stochastic model can be calculated which, in turn, can be used to
search for further related sequences on a genome-wide scale. A number of different pos-
sibilities exist to produce a stochastic model from a structural alignment. In Semantics
and Ambiguity of Stochastic RNA Family Models (Giegerich and Höner zu Siederdissen,
2011) the ramifications of different encodings are discussed.

The algorithm in Discriminatory power of RNA family models (Höner zu Siederdissen
and Hofacker, 2010) provides a solution to another problem on ncRNA families. In order
to facilitate quality control on ncRNA family libraries, a method is provided to determine
whether an RNA family is sufficiently well separated from all other families.

The algorithm on extended RNA secondary structures presented in A folding algorithm
for extended RNA secondary structures (Höner zu Siederdissen, Bernhart, Stadler, and
Hofacker, 2011) extends the nearest-neighbor secondary structure model toward better
reflection of the knowledge gained from RNA tertiary structure. In particular, base pairing
beyond the six canonical Watson-Crick pairs is taken into account. Some regions of the
RNA with important biological roles contain almost exclusively non-canonical base pairs
which can now be predicted in contrast to previous approaches which would model such
regions as essentially unstructured.

Finally, in Sneaking Around concatMap (Höner zu Siederdissen, 2012), a domain-
specific language embedded in the functional programming language Haskell is presented.
This embedding allows for simplified algorithmic development on a high level. In particu-
lar, this embedded language makes it possible to write and extend the previous algorithms
easily, while providing performance close to that of the C programming language.

vii

viii

Zusammenfassung

Formale Sprachen und Grammatiken sind ein klassisches Thema in der Informatik und
mächtiges Werkzeug um die Komplexität algorithmischen Designs zu beherrschen. In
dieser Arbeit werden vier wissenschaftliche Arbeiten zur Lösung von Problemen in der
computergestützten Biologie präsentiert. Diese Probleme, ausgewählt aus dem Bereich der
RNA-Bioinformatik, sind die Vorhersage von RNA Sekundärstrukturen und die Suche nach
homologen Sequenzen bekannter nichtkodierender (nc-) RNA Familien. Ausserdem wird
eine effiziente Einbettung dieser Grammatiken in eine funktionale Programmiersprache
vorgestellt.

Zuerst werden zwei Algorithmen zu strukturellen RNA Familien präsentiert. Eine
strukturelle ncRNA Familie is ein Alignment von verwandten RNA Sequenzen zusammen
mit ihrer gemeinsamen Struktur. Sie kann in ein stochastisches Modell verwandelt wer-
den. Solch ein Modell ermöglicht das Auffinden von weiteren verwandten Sequenzen auf
genomweiter Ebene. Verschiedene Möglichkeiten existieren um solche Modelle zu erzeu-
gen. In Semantics and Ambiguity of Stochastic RNA Family Models (Giegerich and Höner
zu Siederdissen, 2011) werden die Konsequenzen verschiedener Kodierungen diskutiert.

Der Algorithmus in Discriminatory power of RNA family models (Höner zu Siederdis-
sen and Hofacker, 2010) bietet eine Lösung für ein anderes Problem mit ncRNA Fami-
lien. Um die Qualität der vorhandenen Familien sicherzustellen wird eine Methode bere-
itgestellt, die es erlaubt festzustellen ob eine Familie genügend stark von allen anderen
Familien differenziert.

Der Algorithmus zu erweiterten RNA Sekundärstrukturen in A folding algorithm for
extended RNA secondary structures (Höner zu Siederdissen, Bernhart, Stadler, and Ho-
facker, 2011) erweitert das nearest-neighbor Sekundärstrukturmodell zu einem das das
bekannte Wissen zu RNA Strukturen besser reflektiert. Insbesondere sind Basenpaarun-
gen über das kanonische Watson-Crick Paarungsmodell hinaus möglich. Solch ein erweit-
ertes Modell dient der besseren Vorhersage von Basenpaarungen in Regionen welche als
wichtig in der biologischen Rolle vieler RNAs erkannt wurden.

Zuletzt wird eine domänenspezische Sprache, eingebettet in die funktionale Program-
miersprache Haskell, in Sneaking Around concatMap (Höner zu Siederdissen, 2012) be-
sprochen. Eine solche Einbettung ermöglicht ein einfacheres Entwickeln in einer Hochsprache.
Insbesondere ist es möglich die vorherigen Algorithmen einfach zu formulieren und zu er-
weitern ohne auf C-nahe Geschwindigkeit verzichten zu müssen.

ix

x

Chapter 1

Of Grammars and Lambdas

This thesis is mostly about grammars. They are used to provide a more formal treatment
of several algorithms from the area of RNA bioinformatics. More specifically prediction of
RNA secondary structure and the search for homologs of non-coding RNA. Along the way,
additional problems are being tackled, including how to actually implement an algorithm
efficiently in two senses: runtime efficiency and programmer time efficiency.

The story begins with some history on relevant topics (Chapter 1.1) followed by a
discussion of what this thesis is about (Chapter 1.2). Background information on RNA,
nucleotides, and their representations is given in Chapter 2. Chapter 3 is devoted to a
small introduction to formal languages. The final background Chapter 4 explores some of
the language concepts in the Haskell programming language.

In the four publications, advances in RNA bioinformatics are described. Two of these
deal with RNA secondary structure prediction (Chapter 7, Höner zu Siederdissen et al.
(2011)) and the search for homologs of non-coding RNA (Chapter 5, Giegerich and Höner
zu Siederdissen (2011)). The other two publications give answers to two further questions.
The calculation of the discriminatory power of a trained ncRNA model can be reduced
to the comparison of pairs of stochastic context-free grammars (Chapter 6, Höner zu
Siederdissen and Hofacker (2010)), while the final paper describes efficient implementations
of grammars in a functional language (Chapter 8, Höner zu Siederdissen (2012)).

The final Chapter 9 yields some conclusions from the work so far and provides hints
to future research in a number of directions.

1.1 The Past 60 Years

1.1.1 RNA Structure Prediction

In this thesis, the focus is on the secondary structure of RNA. Chapter 2 provides details
on structure, definitions, and abstractions. Here, a history of algorithms in structure
prediction is given.

We can recognize at least five major developments in RNA secondary structure predic-
tion that have bearing on the results presented in later chapters. These developments are

1

2 CHAPTER 1. OF GRAMMARS AND LAMBDAS

roughly in order of appearance, but such an order can not always be maintained or they
don’t quite fit. Simple base pair counting, for example, is certainly a non-physics based
model but does not capture the quite involved statistical calculations that went into such
models.

First Algorithms and First Scoring Schemes

Tinoco et al. (1971) proposed a “simple method for estimating the secondary structure”
(direct quote) of RNA based on a number of small building blocks. Namely hairpin loops,
interior loops, bulges, and stacking regions in helices. Each such building block was given
a simple score depending on if the block is stabilizing or destabilizing the structure. Loop
regions are given negative scores, corresponding to a positive change in free energy, while
stacking regions get a positive score. Such a simplification was necessary to keep the base
pairing matrix simple enough. This matrix contains the positive base pairing score for
each possible base pair. By using both, the base pairing matrix as well as the negative
scores from loop region building blocks one could, by hand, find possible structures and
sum up their scores.

However, Tinoco et al. (1971) did not make use of advanced computing techniques.
The base pairing matrix was simply that, a matrix with positive scores whenever two
nucleotides could base pair, and was as such only a visual aid. Once such a scoring scheme
was introduced, Nussinov et al. (1978) were able to cast it as a dynamic-programming
algorithm. Using a dynamic-programming algorithm has several nice properties. While
the number of RNA secondary structures grows exponentially with the length of the RNA
sequence (Smith and Waterman, 1981), calculating the full dynamic-programming ma-
trices, from which the optimal structure can be extracted, takes only polynomial time.
Granted, dynamic-programming requires scoring functions that obey certain restrictions
(namely the Principle of Optimality by Bellman (1952)), but both simple additive scoring
schemes and simple thermodynamic energy schemes follow those restrictions.

Nussinov et al. (1978) also made use of the planar graph model of secondary structures,
wherein pairing nucleotides form edges in the graph together with the edges given by the
RNA backbone. By allowing only a single pairing edge in addition to those formed by the
backbone, base-pair triplets are forbidden. As the graph is also forced to be outerplanar,
pseudo-knots are equally forbidden. In total, Nussinov et al. (1978) set the stage for
algorithm designs on RNA secondary structure that is still followed today. Hence, most
of the algorithms mentioned below extend on the ideas given in said paper.

The Nearest-neighbor Energy Model

Simple base pair counting models (Tinoco et al., 1971) break down if the input sequences
become too long to handle. While the algorithm by Nussinov et al. (1978) can handle
longer input, it still does not provide accurate predictions. Some improvement was possible
by not just counting base pairs but to actually look at free energy changes. Tinoco et al.
(1971) and Nussinov et al. (1978) ultimately consider such energy changes. It however soon
became possible to consider not just free energies for simple base pairs but for stacking

1.1. THE PAST 60 YEARS 3

0 1

G
C
C
A
A
U
GU

A
GCUC

AGC
C

U
G

G U A
G A G CAUUCG

C
C
U
U

G
U
A A G

C
G

AA
A
G
G
U

C

G A G G G U U C
A

A
AGCCCUC

C
A
U
U
G
G
C
U

RF00005;tRNA

G C C A A U G U A G C U C A G C C U G G U A G A G C A U U C G C C U U G U A A G C G A A A G G U C G A G G G U U C A A A G C C C U C C A U U G G C U

G C C A A U G U A G C U C A G C C U G G U A G A G C A U U C G C C U U G U A A G C G A A A G G U C G A G G G U U C A A A G C C C U C C A U U G G C UG
C

C
A

A
U

G
U

A
G

C
U

C
A

G
C

C
U

G
G

U
A

G
A

G
C

A
U

U
C

G
C

C
U

U
G

U
A

A
G

C
G

A
A

A
G

G
U

C
G

A
G

G
G

U
U

C
A

A
A

G
C

C
C

U
C

C
A

U
U

G
G

C
U

G
C

C
A

A
U

G
U

A
G

C
U

C
A

G
C

C
U

G
G

U
A

G
A

G
C

A
U

U
C

G
C

C
U

U
G

U
A

A
G

C
G

A
A

A
G

G
U

C
G

A
G

G
G

U
U

C
A

A
A

G
C

C
C

U
C

C
A

U
U

G
G

C
U

Figure 1.1: Left: A tRNA minimum-free energy structure. Each nucleotide is colored ac-
cording to its probability to be paired or unpaired.
Right: McCaskill (1990) - style dotplot. The edges are annotated with the sequence. The
upper-triangular matrix shows the probability for each nucleotide to be paired depending on
the size of the square filling each cell. The lower triangular matrix gives the minimum-free
energy structure. The upper-triangular matrix provides evidence for an alternative struc-
ture for one of the stems.
The plots have been produced using the Vienna RNA Websuite (Gruber et al., 2008).

interactions (Tinoco et al., 1973). Stacking interactions were discussed by Nussinov et al.
(1978) but not to satisfaction.

Such an algorithmic improvement using both stacking (negative free energies) and
loop energies (positive, destabilizing free energies) was finally given by Zuker and Stiegler
(1981). This algorithm also began a trend to more and more complex recursions – or
grammars in the terminology preferred by us. Compared to the more humble beginnings
ten years earlier, calculating the free energy and the folded secondary structure of RNAs
of around 500 nucleotides was feasible.

One especially important derivative algorithm was presented by McCaskill (1990).
With longer sequences and an exponential number of candidate structures, the structure
with minimum free energy might no longer be the best representative of the structure
space. McCaskill derived a set of recursive equations together with an outward-inward
calculation approach that results in a base pairing probability matrix as depicted in Fig. 1.1.
Conceptually similar to the base pairing matrix used by Tinoco et al. (1971), the base
pairing probability matrix states for a given input sequence the pairing probability of each
possible base pair.

Using this matrix it is possible to determine if a certain structure dominates the struc-
ture space, or if multiple different structures have non-negligible probability. As with the
work by Nussinov et al. (1978), many derivative works would be based on the work by

4 CHAPTER 1. OF GRAMMARS AND LAMBDAS

McCaskill (1990).
The number of wet-lab experiments measuring melting temperatures of small oligonu-

cleotides increased substantially, allowing for increased accuracy of the predicted struc-
tures. Works along the lines of Walter et al. (1994); Xia et al. (1998); Mathews et al.
(1999) introduced energies for coaxial stacking of otherwise independent helical regions
in multi-branched loops, energies for dangling nucleotides next to helices, and further
improvements.

The algorithms presented in Hofacker et al. (1994); Lorenz et al. (2011) round off the
set of algorithms based on the nearest-neighbor model. They are efficiently implemented,
explore novel concepts (for RNA structure folding) like parallel computation of the dy-
namic programming matrices and provide some derivative results, like RNA structure
comparison or the inverse folding problem.

Non-physics Based Models

A second wave of non-physics based models (if we count the simple base pair maximiza-
tion schemes) was introduced to make use of the availability of multiple alignments of
homologous RNA sequences, or RNA families. Such alignments will be taken up again
below. Here it is simply assumed that such multiple alignments exist and that they are
accurate and annotated with the correct consensus secondary structure.

Given such information, one can count the frequency with which each unique RNA
structural feature occurs. Say the number of GC-on-GC stacks in the number of all stacks,
or the relative frequency of multi-branched loops given the choice of continuing a stack,
creating a multi-branched loop, an interior loop, or a bulge. In order to collect the fre-
quency of each feature in the ensemble of all features correctly the underlying grammar
or recursions need to be structurally unambiguous. The term structurally unambiguous
will be taken up again in the following chapters. Here it should suffice to say that a single
structure can have only (at most) one way to create it using the algorithm. It is possible
to exclude certain structures in the inference process (pseudoknots, for example), but each
structural feature should be counted only once.

The CONTRAfold algorithm by Do et al. (2006) is quite well-known and has compara-
tive performance to modern physics-based models. CONTRAfold is based on a stochastic
context-free grammar, more specifically a conditional log-linear model, and uses discrim-
inative statistical methods. The CONTRAfold training algorithm effectively learns param-
eters for the same type of features as used previously in the Turner model, including
parameters for the lengths of unpaired regions in different structural features and the
sequence-dependency of stacking parameters.

It is also possible to train generative probabilistic models which is generally much
simpler and requires fewer resources in terms of runtime. Rivas et al. (2012) have shown
that generative probabilistic models of comparable complexity to RNAfold and CONTRAfold

have comparable accuracy. Said work also provides a simple ranking of structural features
in terms of their importance toward accurate secondary structure predictions.

Finally, one does not have to choose between either a completely physics-based model
or one driven solely by learned parameters. Andronescu et al. (2007); Andronescu (2008);

1.1. THE PAST 60 YEARS 5

Andronescu et al. (2010a) proposed an algorithm that starts with initial physics-based
parameters for RNA secondary structure which are then driven via different constrained
optimization schemes toward better prediction accuracy. One advantage of this approach
is that the optimized parameters can still be interpreted as energy contributions of different
features. Such energy calculations are of use for certain derived algorithms which model
RNAs based on target free energy values – and the optimized parameters can be used in
algorithms such as RNAfold or Mfold.

Derived Algorithms

The availability of modern, efficient physics- and non-physics based algorithms has lead to
a wealth of derived algorithms. The basic secondary structure folding algorithm determines
the globally optimal structure according to the energy or scoring model. By turning the
evaluation part of the algorithm (later to be called algebra in some works) into an inside-
outside scheme McCaskill (1990) derived an important variation of the general algorithm
wherein the pairing probability of each potential base pair can be calculated.

A conceptually simple (but only in retrospect!) extension of the minimum free energy
solution is to provide the option to backtrace all suboptimal solutions within a certain
energy band (Wuchty et al., 1999). Backtracing all such suboptimal structures requires
a structurally non-ambiguous grammar. That is, there must not be two different back-
traces that yield the same secondary structure. While it is in principle possible to use a
structurally ambiguous grammar, this would yield multiple parses of the same secondary
structure which need to be filtered out in a subsequent step. Such a step is normally
prohibitive with larger energy bands as the number of secondary structures increases ex-
ponentially. Zuker (1989) uses a different algorithm to generate suboptimal structures that
are “not too close” to each other but will possibly not capture all suboptimal structures,
leaving part of the search space unexplored (Wuchty et al., 1999).

It is also possible to extend the RNA folding problem to two interacting RNA se-
quences. Solving the problem of interacting RNA sequences requires the solution of the
two folding problems which interact via an alignment procedure. The runtime and mem-
ory requirements for the direct solution are quite high (O(n3m3) time / O(n2m2) space)
and the grammar or recursions involved are very complex (Pervouchine, 2004; Alkan et al.,
2006). In case not only the minimum free energy structure, but the partition function is
to be calculated, the number of non-terminals (the number of structural elements involved
in the decomposition) again increases a lot in order to keep the decomposition structurally
non-ambiguous. The implementations by Huang et al. (2009) and Chitsaz et al. (2009)
both provide fairly involved decompositions.

It is, however, also possible to restrict the problem of interacting RNAs in certain
ways. In case only one binding site between the two RNAs is allowed the problem can be
solved more efficiently as demonstrated by Mückstein et al. (2006, 2008).

Another direction for extensions of the basic folding algorithm is RNAalifold by Ho-
facker et al. (2002); Bernhart et al. (2008). RNAalifold takes a set of aligned sequences
and calculates the consensus structure based on both, energy contributions from loops and
stacks, as well gaps in the alignment. The earlier algorithm (Hofacker et al., 2002) uses

6 CHAPTER 1. OF GRAMMARS AND LAMBDAS

an energy-like score based on covariation, while the later (Bernhart et al., 2008) improves
predictions using an advanced model that calculates using RIBOSUM-like matrices. The
problem RNAalifold aims to solve, in addition, points to questions regarding RNA family
models being dealt with later.

An extension and generalization of the idea of RNAalifold is provided by LocARNA

(Will et al., 2007, 2012). While RNAalifold finds the consensus structure given an existing
alignment, LocARNA calculates a structural alignment given two unaligned sequences, in the
spirit of Sankoff (1985) but with improved asymptotic runtime. In its extension mLocARNA,
known and putative RNA families can be discovered on a large scale.

Genome-wide scans are possible using modified and extended versions of RNA folding
algorithms. This allows, for example, to predict non-coding RNAs in regions of genomes
that exhibit some sequence conservation among a number of species. The RNAz algorithms
(Washietl et al., 2005; Gruber et al., 2010) are designed to work on multiple sequence
alignments. By combining information from the predicted consensus secondary structure
(using RNAfold (Hofacker et al., 1994) and RNAalifold (Hofacker et al., 2002)) and per-
sequence minimum free energy a support vector machine-based classifier can be used to
predict if a local structure is a likely non-coding RNA.

Beyond Canonical Secondary Structures

The notion of secondary structures can be generalized in several different ways. In general
RNAs fold into the secondary structure first while tertiary elements follow later on. The
reason for this behaviour is the comparatively strong binding in helices, which stabilizes
the secondary structure.

Once the secondary structure is formed, additional elements like pseudoknots are
formed. A number of computational approaches to pseudoknot prediction exist. These ap-
proaches can be classified by the types of pseudoknots that can be predicted. More general
classes of pseudoknots, that allow for more complex structures, require algorithms that
are computationally more demanding while pseudoknot prediction in general is NP-hard
(Lyngsø and Pedersen, 2000).

One could also classify by the method used (i.e. dynamic programming) or param-
eter model (physics vs. non-physics) but given the general sparsity of thermodynamic
information and few known pseudoknotted structures, such distinctions are of less rele-
vance and mostly determined by the underlying secondary structure model. Andronescu
et al. (2010b), for example, trained pseudoknot parameters in the same vein as for their
improvements on secondary structure energy parameters (Andronescu et al., 2010a).

Different algorithms have been formulated for different classes and complexities of
pseudoknots (Akutsu, 2000; Rivas and Eddy, 2000; Cai et al., 2003; Reeder and Giegerich,
2004; Meyer and Miklós, 2007; Sato et al., 2011) with a formal treatment based on topology
given in Reidys et al. (2011). The latter treatment classifies pseudoknots by topological
genus, provides an algorithm for almost all known naturally occurring pseudoknots, and
describes models for pseudoknots of higher genus.

Some structural elements classified here as beyond secondary structure, such as G-
quadruplexes (Wong et al., 2009), can actually be implemented in terms of context-free

1.1. THE PAST 60 YEARS 7

grammars (Lorenz et al., 2012, 2013) where they are established as a distinct element like
stems, bulges, interior loops, or a multi-branched loop. G-quadruplexes are, on the other
hand, not composed of canonical base pairs and require separately determined energies.

The ultimate goal of structure prediction is to predict the complete tertiary structure
up to and including atomic resolution accuracy, complete with potential interactions with
other biomolecules. Compared to secondary structure prediction, this goal is much harder.
While polynomial-time models (based on dynamic programming) are well established for
secondary structures, pseudoknots, and secondary structure interactions, tertiary structure
is mostly determined by two different methods. Either a stochastic simulation is run, as
established for protein simulations (Das and Baker, 2007; Das et al., 2010), or programs
try to insert small building blocks into a scaffold. (Parisien and Major, 2008; Reinharz
et al., 2012) A more general overview including 3D prediction performance is given by
Cruz et al. (2012).

1.1.2 RNA Homology Search

RNA homology search combines elements of RNA secondary structure, sequence align-
ment, statistics, and (stochastic) context-free grammars. The over-arching question is,
given a number of homologous (related) RNA sequences, can one find novel sequences
from different species that belong to this set? BLAST (Altschul et al., 1990) provided a
first step toward fast genome-wide similarity searches by allowing a heuristic local align-
ment search to be run over whole genomes. BLAST however, is restricted to fairly closely
related sequences as only one sequence is used as the query. In order to find more remote
homologs, one has to run BLAST iteratively with a more and more diverse sequence set.

By using an aligned set of sequences, one can derive a statistical description of the
set of these sequences to search with. For families of protein sequences, where long-range
interactions are not modelled explicitly, the HMMer tools (Eddy, 1998) can be used. These
create hidden-Markov models from the input set of sequences and can deal with larger
insertions and deletions in the sequences to search for. The Pfam database contains 13 672
protein families as of November 2011.

As will be further explained in Sec. 2.5, structural non-coding RNAs conserve structure
more than they conserve sequence information. For this reason, base pairing needs to be
considered when trying to define a statistical model of a set of aligned homologous RNA
sequences, or RNA families. While HMMer models can be designed as stochastic regular
grammars (Chapter 3), non-coding RNA models require the use of stochastic context-free
grammars. The Infernal (Eddy and Durbin, 1994; Nawrocki et al., 2009) tools provide
programs to both, create RNA family models and search for novel homologs in genomes.
The, Rfam (Gardner et al., 2011) database collects these models and currently contains
over 2 000 models.

Using Infernal for model building and search requires an aligned set of RNA se-
quences, together with their common structure. The question of how to create such a
family model is still an active research subject. Different algorithms try to solve the
multiple-sequence alignment problem, the problem of estimating a consensus secondary
structure, or both at the same time. The RNAalifold tool has already been mentioned,

8 CHAPTER 1. OF GRAMMARS AND LAMBDAS

which requires aligned sequences and predicts the common structure. The afore-mentioned
LocARNA tool (Will et al., 2007) aims to speed up the Sankoff-style (Sankoff, 1985) simulta-
neous folding and alignment process to provide structural alignments automatically. More
details on the model building process and complications are found in Sec. 2.5.

One interesting approach is to base RNA motif discovery on automatic creation and
refinement of RNA family models, in particular the covariance models used by CMfinder

(Yao et al., 2006).

In another recent work, Lessa et al. (2011) improved upon the statistical prior informa-
tion that influences the model construction process to increase the accuracy of non-coding
RNA search.

The introduction of Infernal has spawned additional research on heuristic speed im-
provements regarding stochastic CFG approaches on whole genomes. While it is possible to
scan whole genomes with an RNA family model, the process is extremely time-consuming,
requiring upwards of hundreds of hours for a single (mammalian) genome and one RNA
family. Approaches to speed up the process include BLAST and HMMer pre-filters (Nawrocki
et al., 2009; Kolbe and Eddy, 2011), and Query-dependent banding (QDB) (Nawrocki and
Eddy, 2007). Using the QDB heuristic, parts of the dynamic-programming matrix are ig-
nored if individual parse trees rooted at the matrix cell(s) have low probability of being
part of the final result.

Another possibility is to split a large RNA model into multiple sub-models (Smith,
2009). Multibranched loops increase the asymptotic running time from O(n3) to O(n4).
If individual helices are being searched, a faster algorithm can be used and the slower
multi-branch enabled algorithm is run only for those regions not excluded by this helix-
based filter.

In this thesis, two questions are being considered that deal with the construction and
search process. While Infernal covariance models can be created from any RNA family,
that is a set of structurally aligned RNA sequences, there is no guarantee that said model
represents a well-defined family. The Rfam database, for example, contains a number of
RNA families that are biologically related but whose sequences have diverged far enough
that a single family model does not adequately capture the sequence and structure diversity
anymore. Using a dynamic programming method, Höner zu Siederdissen and Hofacker
(2010) (Chapter 6) provide a way to calculate how well an RNA family model discriminates
against other RNA family models. This allows for quality control of existing and novel
families on a large scale, including the whole Rfam database. This quality control measure
can be used to provide further information in determining if newly designed families are
unique (Lange et al., 2012; Chen and Brown, 2012).

The second work on RNA family models (Giegerich and Höner zu Siederdissen, 2011)
(Chapter 5) provides an in-depth evaluation of the context-free grammar underlying
Infernal. In particular, different formal semantics of the query to consensus matching
are developed, and the semantics used by Rfam models is discussed. The results provide
long-term goals for a novel grammar which might be able to capture remote homologs
better in the case of larger structure and sequence diversity.

1.1. THE PAST 60 YEARS 9

1.1.3 Grammatical Adventures

In the Chomsky hierarchy of grammars (Chomsky, 1956; Grune and Jacobs, 2008, Chap-
ter 2.3), two types of grammars are of particular interest for (RNA) bioinformatics. Reg-
ular and context-free grammars (CFGs) combine enough expressive power to formulate
and encode a number of algorithms that solve important problems. They are, at the same
time, restrictive enough that there exist efficient implementations of these algorithms.

Formal languages have been used for decades to create parsers for artificial languages
(Grune and Jacobs, 2008), especially programming languages (Aho et al., 2007). Their
stochastic counterparts are used to model natural languages as well. Stochastic context-
free languages may be used for speech recognition (Jurafsky et al., 1995), and similarities
to the Sankoff algorithm on simultaneous folding and alignment (Sankoff, 1985) can be
observed in machine translation (Burkett et al., 2010).

Biological problems are often treated using dynamic programming formalism without
explicitly stating connections to a formal grammar. Bompfünewerer et al. (2008) con-
sider structural decomposition schemes for RNA secondary structure in terms of dynamic
programming recursions. Similarly, in the Vienna RNA package (Lorenz et al., 2011), one
speaks of recursions, not of grammars. Nevertheless, a direct correspondence between
these recursions and context-free grammars does exist. Rivas et al. (2012) formulate the
RNAfold 2.x algorithm in terms of a stochastic CFG and train a set of parameters that
yield the same prediction accuracy as the physics-based nearest-neighbor energies by Lu
et al. (2006).

Alignment, search, and structure prediction are handled using grammars in the book on
Biological sequence analysis (Durbin et al., 1998). Though the emphasis is on probabilistic
models, not on grammars. Algorithms are most often explained in terms of recursions.
This is easy to understand if one considers that one of the most used parsers with regard
to works discussed here, the CYK parser (Grune and Jacobs, 2008, Chapter 4.2; Durbin
et al., 1998, Chapter 10) uses dynamic programming to calculate the optimal parse in
stochastic applications, or the correct parse(s) in non-stochastic applications1.

Another addition to a more formal treatment of dynamic programming algorithms
for RNA bioinformatics is Algebraic dynamic programming (ADP) (Giegerich and Meyer,
2002). ADP makes explicit the notion of parse trees. Each parse tree is an exact repre-
sentation of one of the many possible ways how to parse an input string with a dynamic
program written in ADP. This also emphasizes the notion that there are many parse trees
for dynamic programs or grammars handling RNA bioinformatics problems. This is be-
cause one generally has not only one optimal parse or result but many co- or suboptimal
ones, too.

Algebraic dynamic programming will be dealt with again in Chapter 3 as it is used
in one way or another in the works described in Chapters 5,6, and 8 though sometimes
implicitly.

ADP has evolved since its original inception in the functional programming language
Haskell. In general, the performance of Haskell code is noticeably less than code written

1In programming language parsing, there should be only one correct parse

10 CHAPTER 1. OF GRAMMARS AND LAMBDAS

in C. One solution to speeding up ADP algorithms was the ADP compiler (Steffen, 2006).
As Haskell was not only a barrier in terms of performance but also in terms of adoption
by potential users not well-versed in using a functional language, a second domain-specific
language for dynamic programs on sequence input was designed. The GAP language and
GAP compiler (Sauthoff et al., 2011, 2013) provide a terse language well-suited for RNA
bioinformatics problems on sequence data that is compiled directly to C++.

With ADPfusion (Höner zu Siederdissen, 2012) (Chapter 8) the ideas of ADP have come
full circle. ADPfusion is again written in Haskell and provides performance very close to
C and is typically faster2 than an equivalent program written in the GAP language and
compiled using the GAP compiler.

1.1.4 Functional Programming Languages

Functional programming languages like Lisp (Steele, 1990), Scheme (Dybvig, 2003), or
Haskell (Hudak et al., 2007) are not common in bioinformatics (Fourment and Gillings,
2008). Imperative and object-oriented languages like C and C++ are used to code performance-
critical algorithms, while scripting languages (Perl, Python) are used to glue different al-
gorithms together. This is, of course, a simplified view. One may write complete programs
in Python or glue different programs or algorithms together in C. Functional programming
approaches are, however, rarely used. Experience reports (Daniels et al., 2012) describe a
number of positive and negative aspects of using such a language.

One aspect, performance, is of major importance. Programs like RNAfold or Infernal
are regularly used on a large scale, either with many inputs, input of large size or both. In
such cases it is simply not acceptable to pay for the joys of functional programming with
an overhead of ×100 in performance compared to C.

Pure, functional languages like Haskell do not need to concern themselves with topics
like side effects when compiling code. Being free of side effects means that a function
will always return the same output when given the same input and may not perform
any task other than calculating the result3. This allows aggressive optimizations and code
manipulations to take place while guaranteeing that the optimized function (or algorithm)
is semantically equivalent to its non-optimized version. A number of advances in recent
years (Coutts et al., 2007; Peyton Jones, 2007; Leshchinskiy, 2009) have recently led to
the result that Haskell can indeed beat C in performance-critical algorithms (Mainland
et al., 2013).

A number of these improvements will be discussed further in Chapter 4 where the main
aspects of the Haskell programming language are introduced. These improvements also
played a major role in allowing ADPfusion to come close to the performance of C code for
dynamic programs in RNA bioinformatics.

2this was true at least for the Nussinov78 and RNAfold algorithms in Benasque, 2012 (personal com-
munication with S. Janssen).

3an often-used example is that a function in Haskell may not launch missiles while calculating a result
as that would be a side effect

1.2. THIS THESIS 11

1.2 This Thesis

In this thesis four papers are presented that deal, in one way or another, with grammatical
approaches to problems in RNA bioinformatics. The set of problems that are either solved
or require (better) solutions is growing and diverse as mentioned above in the historical
review. Despite this diversity, it is possible to find and name common themes. The
commonalities between seemingly disparate problems sometimes require generalizations
before shared ideas can be extracted and used to solve additional problems.

Formalising problems and algorithms in a more general and extensively researched
language is advisable as this allows inferring solutions in a more general framework. The
more general framework used here are formal languages and their grammars. Using formal
languages to model problems in RNA bioinformatics is, of course, not new to this thesis.

Sakakibara et al. (1994) and Eddy and Durbin (1994) have employed stochastic context-
free grammars (SCFGs) to model structural non-coding RNA families. SCFGs are an
appropriate method to model RNA families composed of RNA sequences from different
species with the same function. An SCFG can capture the secondary structure induced
by base pairing as well as the sequence-based statistical signal. The statistical models
produced by tools like Infernal can then be used to search for homologous sequences for
each RNA family. This makes it possible to annotate newly sequenced genomes.

What was mostly ignored is the question of the semantics of aligning a part of the
genome to an RNA family model – the essential part of the homology search process. In
“Semantics and Ambiguity of Stochastic RNA Family Models” Giegerich and Höner zu
Siederdissen (2011) (Chapter 5) explore three different semantics for RNA family models.
The results therein give a proof that Infernal-models (Eddy and Durbin, 1994) are actu-
ally correct with regards to one of the three semantics, namely the alignment semantics.
It is also shown how to construct a formal grammar that implements the trace seman-
tics. Traces have the potential to better capture remote homologs than is possible with
the alignment semantics as one trace subsumes many alignments with the same biological
semantics.

Given the topic of RNA family models, one can consider another problem, namely the
quality of RNA family models. The Rfam database (Griffiths-Jones et al., 2003; Gardner
et al., 2011) contains more than 2200 RNA families (as of Rfam 11.0, August 2012) but no
obvious means of quality control. If an RNA family (model) is constructed and then used
to search for homologs, there should be some measure of . . . what? It is not possible to
determine in silico if a family is correct. It should model actually existing structural RNAs
but using the structural alignment alone, this can not be inferred. In “Discriminatory
power of RNA family models” (Höner zu Siederdissen and Hofacker, 2010) (Chapter 6) an
algorithm is developed that calculates a score, the Link Score, for pairs of Infernal RNA
family models. This score gives, using Infernal bit scores, a measure of how similar two
RNA families are – viewed through the Infernal scoring model. Whenever two families
yield a high Link Score it is likely that there exist genomic regions where both models
will claim to have found a possibly homologous sequence, an event the Rfam curators try
to prevent (Gardner et al., 2011).

12 CHAPTER 1. OF GRAMMARS AND LAMBDAS

Algorithmically speaking, the CMCompare algorithm which calculates the Link Score

is novel as it provides a way to align two stochastic context-free grammars. This is possible
because the underlying grammar used by Infernal constructs full models from a small
set of building blocks.

With “A folding algorithm for extended RNA secondary structures” (Höner zu Siederdis-
sen et al., 2011) (Chapter 7) the focus switches from RNA families to single non-coding
RNA sequences. With more features of the global three-dimensional structure and lo-
cal interactions becoming known, it is appreciated that the canonical rules of RNA base
pairing do not describe the whole picture. Individual nucleotides engage in more complex
pairing than just a single other nucleotide, especially in regions of the RNA that are active
binding sites or show an unusual structure. The RNAwolf algorithm provides an efficient
polynomial-time algorithm to predict the extended secondary structure of an RNA includ-
ing non-canonical base pairs and base triplets. The existence of base pair triplets in real
structures and the desire to predict them requires the construction of a novel grammar
with higher complexity compared to the grammars used by RNAfold or CONTRAfold.

The work done on these and other problems has led the author to the conclusion that
a terse, high-level domain-specific language with a number of special characteristics is
required. Resulting code should produce fast programs – ideally within a factor of ×2 or
less compared to a well-optimized C implementation of the same algorithm. It should also
be possible to experiment with new features, not only of the algorithm to implement, but
the domain-specific language itself. Finally, the language should be embedded in Haskell
as the host language, making it possible to “break out” of the domain-specific language
at any point and use features available to the host language. These desiderata have
been successfully met in the creation of the ADPfusion framework in “Sneaking Around
concatMap” (Höner zu Siederdissen, 2012) (Chapter 8). In the spirit of Algebraic dynamic
programming, terse implementations of the algorithms presented in this thesis are possible
and ADPfusion can be extended by every user without having to change the ADPfusion

library itself.
It is to be expected that the individual topics presented here will lead to further

developments that join and merge individual ideas. Some of these ideas for future research
are presented in Chapter 9 – and some of the ideas have already been implemented.

The three following chapters give short introductions to the topics of the structure of
RNA, formal grammars, and efficient algorithms in a functional language.

Chapter 2

The Structure of RNA

Ribonucleic (RNA) and deoxyribonucleic (DNA) acids are long bio-polymers. DNA is
the carrier of genetic information for all known organisms (Deonier et al., 2005, p.2)1.
For decades the central dogma of molecular biology has stated that “DNA makes RNA
makes protein” as indicated by “probable transfers” according to Crick (1970). Only in
recent years has RNA become an object of considerable interest of its own, and not just
the messenger. Mattick and Makunin (2006) give an overview of non-coding RNA and
its role that “determine[s] most of our complex characteristics, play[s] a significant role in
disease and constitute[s] an unexplored world of genetic variation both within and between
species.”

In this chapter, the focus is on the structure of RNA and its abstractions. In RNA
bioinformatics, one can typically deal with abstract models that have little resemblance
to the actual physical, atomic structure of the molecules in question. In particular, RNA
and DNA are sequences in the computer science sense, and individual nucleotides are
characters in an alphabet. In another view, nucleotides are nodes in a graph and RNA
secondary structure is represented by edges between those nodes.

While this provides a nice abstraction, it also means a loss of information. In particular,
it abstracts away the question of how many edges a node may have – or how many pairings
are possible for an individual nucleotide. This question is explored in Chapter 7 with
extended secondary structures. The extended structure space aims to more faithfully
represent the possible structural conformations of real RNA structures. Some of the less
canonical aspects of RNA structure also play a role in designing scanning algorithms for
whole-genome non-coding RNA search (Chapter 5). For ncRNA search it seems enough,
however, to consider the sixteen possible pairings independent of the exact nucleotide edge
involved, and without considering base triplets.

13

14 CHAPTER 2. THE STRUCTURE OF RNA

edge

edge

Hoogsteen

Sugar

Watson/Crick

edge

OCH2

base

pentose
sugar

phosphate
group

PO4

3’

5’

3’

5’

5’
5’

3’

3’

5’

3’

3’

Figure 2.1: Left: The three building blocks of nucleotides. The phosphate group and pentose
sugar form the backbone of the nucleic acid. The bases (ACGU in RNA) are attached to the
pentose sugar. Bases can pair with each other. The edges available for pairing are depicted
in more detail in Fig 2.2.
Right: Part of an RNA chain. Nucleobases are colored white with sketched Watson/Crick
pairing. The pentose sugar is colored grey, the phosphate group in light grey.

2.1 The Structure of Nucleotides

Abstractions of nucleotide molecules play a central role in RNA bioinformatics. Depending
on the task, anything from full-atom models for tertiary structure prediction (Das et al.,
2010) to single characters in the alphabet {A,C,G,U} (e.g. RNAfold, Lorenz et al. (2011))
or {A,C,G,T} (e.g. Infernal, Nawrocki et al. (2009)) may be considered.

The algorithms above have in common that they exploit that RNA nucleotides pair
with each other. As the focus of the algorithms presented later is on RNA secondary
structure, the three-dimensional full-atom structure of RNA nucleotides is not considered
and a flat two-dimensional representation as in Fig. 2.2 is enough.

Nucleotides are composed of three distinct building blocks, the phosphate group, the
sugar pentose, and the purine or pyrimidine (Campbell and Reece, 2003, pp.97–98), as
depicted in Fig. 2.1. The sugar and phosphate groups form the backbone in RNA or
DNA chains via covalent bonds, while individual nucleotides may base pair with each
other, thereby forming long-range interactions. It is those long-range interactions which
are predicted by RNA secondary structure tools.

1Yes, we cite basic biological information from a book on Computational Genome Analysis, named as
such!

2.1. THE STRUCTURE OF NUCLEOTIDES 15

NN

N

O

N

N
H

H

H

HO

Watson/CrickHoogsteen

Sugar guanine

NN

N N

N
H

H

H

O H

Watson/Crick

Hoogsteen

Sugar adenine

O N

N

N

H
H

H

OH

Watson/Crick
Hoogsteen

Sugar cytosine

O

O N

N

H
H

OH

Watson/Crick

Hoogsteen

Sugar uracil

CH
3

O

O

HN

N

thymine

Figure 2.2: The building blocks of RNA and DNA. Cytosine (C), uracil (U), and thymine
(T) are pyrimidines, adenine (A), and guanine (G) are purines. Thymine (T) is used in DNA,
Uracil in RNA, the other nucleotides are found in both nucleic acids. The three possible
binding sites, for the nucleotides found in RNA, are annotated. Watson/Crick pairs engage
in up to three hydrogen bonds. For non- cWW C-G / A-U pairs consult Leontis et al. (2002)
for exact bond locations for each pair and conformation.

16 CHAPTER 2. THE STRUCTURE OF RNA

type cWW tSH tHS tsS

pair G-C C-G U-A A-U G-U U-G G-A A-G G-A

count 73 342 68 083 23 606 23 419 10 168 9 644 7 742 6 798 5 121
fraction 0.249 0.231 0.080 0.079 0.035 0.033 0.026 0.023 0.017

type tWH csS tSs tHW cSs csS cSH cSs Rest

pair U-A C-A A-G A-U C-A A-C G-U A-C

count 4 474 3 638 2 863 2 851 2 564 2 109 2 072 1 917 44 302
fraction 0.015 0.012 0.010 0.010 0.009 0.007 0.007 0.007 0.150

Table 2.1: Number of base pairs of each type in the unfiltered (see Sec. 2.1) FR3D derived
from the PDB. Pairs are annotated by orientation (cis, trans), pairing edge (Watson-Crick,
Sugar, Hoogsteen), and nucleotide (ACGU). The six canonical cWW base pairs make up the
bulk of the base pairs. Non-canonical G–A and A–G pairs occur as often as wobble (U–G /
G–U) base pairs. Some pairs occur (almost) never (like non-cWW U–U). In total 294 713 base
pairs are annotated in the FR3D as of June 2012.

The most well-known type of base pairing,that of the four (thereby canonical) pairings
(G-C, C-G, T-A, A-T) in the DNA double helix, is but one of several ways to form a base
pair.

In the model and notation introduced by Leontis and Westhof (2001) for RNA base
pairing (with U replacing T in RNA), each nucleic base presents three edges for hydrogen
bonding: the Watson-Crick, Sugar, and Hoogsteen edge. Of those, the Watson-Crick
edges are engaged in six canonical base pairings. The usual canonical C–G, G–C, A–U, and
U–A, as well as the two wobble pairings G–U, and U–G. All other pairings, even if one or
both edges are of the Watson-Crick type, are non-canonical. Further subdivision occurs
by glycosidic bond orientation (cis or trans) and the local strand orientation (antiparallel
or parallel). The complete description of a base pair using the pair itself, its bond, and
its strand orientation leads to 12 main families (Leontis and Westhof, 2001, Table 1).

The non-Watson-Crick base pairs have received increasing attention in recent years
(Leontis and Westhof, 2001; Leontis et al., 2002) due to their importance in intermolecular
interactions and in the formation of RNA modules, which act as binding sites or induce
compact folding (Leontis and Westhof, 2003).

Leontis et al. (2002) grouped base pairs according to the nucleotides and pairing edges
involved. These isostericity matrices contain information on which base pairs may be
replaced in an RNA structure without disturbing the structure. In particular, the four
base pairs C-G, G-C, A-U, and U-A are isosteric in cis-Watson-Crick conformation and may
be replaced with each other, while G-U and U-G are almost isosteric.

The importance of the non-canonical base pairs may be observed by determining how
often they occur in PDB structures. The PDB (Berman et al., 2000) database contains crystal
and NMR structures of bio-molecules. The FR3D database (Sarver et al., 2008) provides
base pairing information for RNA structures from the PDB. Using this information, it is
possible to create a list of all occurring base pairs, together with the pair type. Of the
almost 300 000 base pairs annotated in the FR3D, roughly 1/3 is non-canonical, while

2.2. RNA SECONDARY STRUCTURE 17

Figure 2.3: The loop types in RNA (extended) secondary structure. Black nodes indicate
nucleotides engaged in base pairing, thick black edges indicate the pairing. Grey nodes are
nucleotides in unpaired regions. Thin black lines indicate the backbone.
Hairpin loops are a stretch of unpaired nucleotides enclosed by a nucleotide pair.
Interior loops enclose two, possibly empty, stretches of unpaired nucleotides.
Multibranched loops are the join point for three or more helices. They may contain unpaired
nucleotides in the loop.
The exterior loop joins the independent substructures of an RNA structure.
Extended secondary structures stand apart. Each nucleotide may pair with up to three
other nucleotides (one being most common, three happening almost never). Each pair is
annotated with the pair type. Filled annotations are in cis orientation, unfilled (white
interior) means trans orientation. A circle denotes the Watson-Crick edge, a triangle the
sugar, and a square the Hoogsteen edge (notation according to Leontis and Westhof (2001)).

almost 1/2 of the base pairs are cis-Watson-Crick C-G/G-C base pairs. A closer look at the
table raises the question of which base pairs to include in structure prediction programs
and which to exclude in order to keep the models simple. The two most often used choices
are to include the six most common base pair types, or to allow all sixteen pairs to occur.
Both choices omit the specific type of pairing. The former choice actually yields algorithms
that consider only Watson-Crick pairings, as the other commonly occurring pairings are
all of the non-Watson-Crick type.

Table 2.1 contains an unfiltered histogram of base pairing in the FR3D database. One
problem when using a database like the PDB or FR3D is the quality of the data – as
with other RNA structure databases as well. For the table all data was taken as is.
Considerations regarding each individual RNA source structure are complex, touching
crystallization or NMR data generation, cleanup, duplicate removal, and compounds of
multiple RNAs and proteins, to name a few. Instead of justifying a particular filter, data
is taken as found in the FR3D for the table.

Once a model is considered that more closely relates to the biochemical reality with
three possible pairing edges, it also becomes possible to consider a nucleotide pairing
with more than one partner. In reality this seems to happen quite frequently in regions
of particular importance for activity or structure, namely in RNA structural modules
(Sec. 2.4).

18 CHAPTER 2. THE STRUCTURE OF RNA

2.2 RNA Secondary Structure

The nearest-neighbor model in RNA secondary structure prediction considers loops of
different types that each convey a specific energy contribution (Lu et al., 2006). The
contribution by each loop is additive, leading to efficient dynamic-programming decompo-
sition schemes (Zuker and Stiegler, 1981; Lorenz et al., 2011). Importantly, it is not the
individual base pair that conveys a certain energy (or score for non-physics based models
like CONTRAfold (Do et al., 2006)), but the stacking of two pairs on top of each other.
In addition, unpaired regions also convey a certain energy. The different loop types are
grouped by the number of branches joining the loop with other loops. Each join point is
a shared base pair. Overall, the structure should provide a minimal free energy, where
stacking pairs provide negative free energy, while unpaired regions positive free energy.
Examples of the loop types are given in Fig. 2.3.

Hairpin loops are a contiguous region of unpaired nucleotides enclosed by a single
base pair. They are connected to a single other loop at the base pair. Hairpins convey
a positive energy that increases with the number of unpaired nucleotides, making large
unpaired regions increasingly unlikely.

Interior loops are defined by two base pairs, an inner and an outer base pair. In
between, two regions of unpaired nucleotides exist. For reasons of efficiency, most folding
algorithms cap the number of unpaired nucleotides in the regions at 30. If one of the two
regions contains 0 unpaired nucleotides, one speaks of a bulge, while two pairs stacking
directly onto each other lead to a stacked pair. Stacked pairs convey negative energy while
the other loops convey a penalty or positive energy. Longer regions of tightly stacked pairs
lead to helices.

Multibranched loops join three or more helices. In the centre of the well-known clover-
leaf shape of the tRNA structure is a multibranched loop, with four stems branching out
from this central loop as can be seen in Fig. 1.1 (left).

Finally, each structured RNA is composed of one or more exterior loops. These loops
are not enclosed by further base pairs and create individual self-contained structures in
terms of the secondary structure of the RNA.

Many refinements of this general view are possible. First, one can improve the pre-
diction accuracy for multibranched and exterior loops by considering coaxial stacking (Lu
et al., 2006). Just as regular stacked pairs convey a beneficial energy term to the total
free energy, so does stacking of the helices in multibranched loops. The resulting model is
more complex as the optimal stacking for each of the loops needs to be considered.

Other refinements require adding completely new loop types to the model. The model
presented in Chapter 7 is an extension of the loop model just described and adds base
triplets as a new loop type. In a base triplet three nucleotides are engaged in a total of two
base pairings. This requires that at least one non-Watson/Crick edge is engaged in the
pairing of the twice-paired nucleotide. Depending on the local structural conformation,
the other nucleotides are paired using any of the three possible edges.

Fig. 2.3 gives an example of base triplets in a stem. The figure does not provide
an exhaustive enumeration of all possible base triplets (even irrespective of the actual

2.3. SCORING SCHEMES, OPTIMAL STRUCTURE, AND THE PARTITION
FUNCTION 19

pair type base pairs base triplets base quadruplets base quintets (?)
number 261 842 15 288 761 3 (?)
fraction 0.942 0.055 0.003 –

Table 2.2: The number of pair types in the FR3D database built from PDB data.
Base pairs are two nucleotides paired with each other and no other nucleotides. This type of
pairing is considered by algorithms like RNAfold, CONTRAfold, Infernal, and many others.
Base triplets are counted when a nucleotide is engaged in pairing with two other nucleotides.
RNAwolf allows pairings of this type.
Base quadruplets saturate the number of possible pairings for a single nucleotide. Their low
incidence makes them an object of less interest in predictions.
Base quintets are not considered in the Leontis and Westhof (2001) model. They could be
a result of mis-annotations.
The total number, 277 894, is less than the number of base pair interactions as each base
triplet accounts for two interactions (quadruplets for three) in Table 2.1.
(Data as of June 2012).

nucleotides involved) as their number is quite large. Figs. 3 and Figs. 4 of Höner zu
Siederdissen et al. (2011) (Chapter 7) provide a grammar (see Chapter 3) with all possi-
bilities for interior-loop like base triplets and how the decomposition affects multibranched
loops. For interior loops, there are four outer cases for triplets, and two to nine cases how
the next inner structure looks like.

As shown in Table 2.2, base triplets do occur in around 5% of the cases, and are often
clustered in regions of non-canonical structure in the RNA. These regions, termed RNA
structural modules, are explained in more detail in Sec. 2.4. The small number of base
quadruplets, one nucleotide paired with three others, makes them hard to predict as not
enough statistical information is available.

Another type of extension is the inclusion of G-quadruplex elements (Lorenz et al.,
2012, 2013). G-quadruplex elements are stacks of 4 Gs each, that lead to very stable local
structures. These elements follow an energy model that makes them amenable to inclusion
in secondary structure prediction tools.

2.3 Scoring Schemes, Optimal Structure, and the Partition
Function

Given an RNA sequence x as input sequence, there are a number of useful calculations on
the secondary structure level that can be performed, many of which were introduced in
Chapter 1. Here, two essential algorithms are discussed. The notation is the one used by
the stochastic context-free grammar community. It might come as a surprise to readers
more acquainted with energy-directed folding. From a purely algorithmic standpoint, it is
however only a question of notation. Energy-directed folding algorithms and energy-based
optimization schemes can be implemented without problems in terms of formal grammars
– as done in Chapter 7.

Some definitions are required. Given x the input sequence, a structure S(x) is one of

20 CHAPTER 2. THE STRUCTURE OF RNA

the many structures into which x can fold. Each structure S(x) is a set with elements
s ∈ S(x). The elements s are the loops discussed in Section 2.2. For any pair s1, s2 ∈ S
of loops, s1 ≡ s2 if and only if the nucleotides involved in the loops have the same indices
and the structure is exactly the same. This constraint uniquely identifies each loop. The
set Ω(x) is the set of all structures into which x can fold, so that ∀S(x) : S(x) ∈ Ω(x).
As this text deals mainly with algorithms working on single input (sequences), a more
succinct notation is possible. Whenever it is clear from the context, which S and Ω are
discussed, their dependence on x is dropped.

For physics-based models like RNAfold a function E(x, s) (again, x may be dropped if
it is clear which x is meant) calculates the Turner nearest-neighbor energy for the loop s.
The energy of a structural decomposition S is denoted by E(x, S).

It follows that that the total energy of a structure S can be easily computed given a
loop decomposition:

E(x, S) =
∑

s∈S
E(s).

For non-physics based models, the score of a structure is calculated similarly.
An optimal structure with minimum-free energy (mfe) in a physics-based model is

found by calculating the energy for each individual structure and choosing the structure
with the minimal free energy:

mfe(x) = argmin
S∈Ω

E(S).

Given the exponential number of possible structures S, efficient methods to calculate the
minimum-free energy are required. The CYK algorithm (Section 3.1.3) allows finding the
optimal structure efficiently in polynomial time for energy functions E that follow the
nearest-neighbor model.

McCaskill (1990) calculated the partition function for a given sequence x, from which
it is possible to calculate the probability with which any two nucleotides are involved in
base pairing. The partition function is

Z(x) =
∑

S∈Ω

exp(−E(S)/kT)

with T the temperature and k Boltzmann’s constant. The algorithm calculating Z is
called the Inside algorithm. The CYK parser can be used to calculate Z with minimum
operations replaced by sums and sums by products.

Once the partition function has been calculated, the frequency of occurrence for indi-
vidual structural features can be calculated. The base pair probability matrix in Fig 1.1
(right) for example provides the probability for each base pair (i, j) to be part of any struc-
ture in Ω. Base pairs with a high probability occur in many of the potential structures of
an input sequence.

The algorithm can also be generalized. Given a loop construct c ∈ (
⋃
S ∈ Ω), its

frequency of occurrence as a fraction of Z is calculated by

Zc(x) =
∑

S∈Ω:∃c∈S
exp(−E(S)/kT).

2.4. RNA STRUCTURAL MODULES 21

The summation is over all structures S of the input x, where c occurs, c itself is one of the
possible loops for x. In this way it is possible to calculate how often individual features of
the structure space occur by calculating Zc/Z for all structural features c of interest. For
the McCaskill (1990) algorithm, one chooses the pairing of nucleotide i and j, instead of
a loop construct.

In order to correctly calculate the partition function for energy-directed folding func-
tions, the underlying algorithm needs2 to be structurally unambiguous.

Both, the CYK- and the Inside variants of algorithms on RNA sequences will play a role
in the upcoming discussions on ambiguity. This includes Section 3.1.4 with background
on ambiguity and in Chapter 5 for semantics and ambiguity of RNA family models.

Ambiguity is also dealt with implicitly in Chapter 7 where a grammar for extended
secondary structures is created with careful consideration to make it non-ambiguous.

2.4 RNA Structural Modules

RNA modules are small, highly structured regions of the RNA. They are typically around
20 nucleotides or less in size. Most of the structural modules studied in the literature
(Leontis and Westhof, 2003; Theis et al., 2013) are interior-loop like. They are enclosed
by an inner and an outer canonical base pair. Between the enclosing base pairs, a number
of non-canonical interactions are formed. These interactions include non-Watson/Crick
base pairs, and base triplets. The nucleotides can also form locally crossing interactions.

While it is impossible to model all of these complex interactions in an (extended) sec-
ondary structure model, it is however possible to encode parts of the structure of these
modules. Base triplets and “zig-zag” patterns can be modeled with a nearest-neighbor
like model. Such a model is presented in Chapter 7. The aim is to more accurately de-
scribe non-canonical regions in predicted RNA secondary structures. Apart from improved
structure prediction, it becomes possible to model active parts of RNA and provide more
information for tertiary structure prediction. Regions with many non-canonical bindings
can also be involved in intermolecular binding. Fig. 1 in Chapter 7 gives an example of
an interior loop-like region that is actually a complex non-canonical structure.

Some non-canonical interactions are implicitly included in the well-known Turner pa-
rameters (Mathews et al., 1999; Lu et al., 2006; Turner and Mathews, 2010), e.g. in small,
tabulated interior loops with loop sizes up to four, as these loops give explicit energies
for complete structural modules, albeit without regard to the inner base paired structure.
The inherently three-dimensional structure of many larger RNA modules is, however, a
problem outside of the realm of secondary structure prediction. Detection of structural
modules is mostly done by comparative sequence analysis (Cruz and Westhof, 2011). Pre-
diction of novel modules appears to be a mostly manual process as of yet, though some
progress has recently been made (Theis et al., 2013).

2otherwise efficient calculations are impossible

22 CHAPTER 2. THE STRUCTURE OF RNA

STOCKHOLM 1.0

Sulfolobus_islandicu.1 GCCGCCGU.A.GCUCAGCC.CGGG...AGAGCG.C.CCGGC.UGAAGACCGG.GUU.....
T.pendens.1 GCCGGGGU.C.GCCUAGCC.UGGUCA.AGGGCG.C.CGGAC.UCAUAAUCCG.GUC.....
Pyrobaculum_arsenati.1 GCGGGGGU.G.CCCGAGCCA.GGUCA.AAGGGG.C.AGGGU.UCAGGUCCCU.GU..GGC.
T.tenax.1 GCGGGGGU.G.CCCGAGCCA.GGUCA.AAGGGG.C.AGGGC.UCAAGACCCU.GU..GGC.
H.marismortui.1 GCAGGGAU.A.GCCAAGUU.UGGCCA.ACGGCG.C.AGCGU.UCAGGGCGCU.GU..CCC.
H.volcanii.1 GCCAAGGU.G.GCAGAGUU.CGGCCC.AACGCA.U.CCGCC.UGCAGAGCGG.AAC.....
N.pharaonis.1 GGGCCCAU.A.GCUCAGU...GGU...AGAGUG.C.CUCCU.UUGCAAGGAG.GAU.....
M.fervidus.1 GGGGCCAU.A.GGGUAGCC.UGGUCU.AUCCUU.U.GGGCU.UUGGGAGCCU.GAG.....
Bacillus.3 GGAGAGCU.G.UCCGAGU...GGUCG.AAGGAG.C.ACGAU.UGGAAAUCGU.GU..AGG.
B.halodurans.5 GGGGCCUU.A.GCUCAGCU..GGG...AGAGCG.C.CUGCU.UUGCACGCAG.GAG.....
B.subtilis.6 GGCCCGUU.G.GUCAAGC...GGUU..AAGACA.C.CGCCC.UUUCACGGCG.GUA.....
B.subtilis.7 GGAGAAGU.A.CUCAAGU...GGCUG.AAGAGG.C.GCCCC.UGCUAAGGGU.GUA.GGU.
#=GC SS_cons <<<<<<<....<<<<.............>>>>..<.<<<<........>>>>.>.......

Sulfolobus_islandicu.1 GU..CCGG.GGU.UCA.AG..UCCCC.G.CGGCGGC.A
T.pendens.1 UU..CCCG.GGU.UCG.AA..UCCCG.G.CCCCGGC.A
Pyrobaculum_arsenati.1 GUA...G.....GCCUG..CGUG.GGU.UCA.AA..UCCCA.C.CCCCCGC.A
T.tenax.1 GUA...G.....GCCUG..CGUG.GGU.UCG.AA..UCCCA.C.CCCCCGC.A
H.marismortui.1 GUA...G.....GGGUC..CGCA.GGU.UCA.AA..UCCUG.C.UCCCUGC.A
H.volcanii.1 CC.CCGCC.GGU.UCA.AA..UCCGG.C.CCUUGGC.U
N.pharaonis.1 GC..CCUG.GGU.UCG.AA..UCCCA.G.UGGGUCC.A
M.fervidus.1 A...CCCC.GGU.UCA.AA..UCCGG.G.UGGCCCC.A
Bacillus.3 CGU.GAA...UA.GCGCCU....CAAG.GGU.UCG.AA..UCCCU.U.GCUCUCC.G
B.halodurans.5 GU..CAGC.GGU.UCG.AU..CCCGC.U.AGGCUCC.A
B.subtilis.6 A...CACG.GGU.UCG.AA..UCCCG.U.ACGGGUC.A
B.subtilis.7 CGU.GUA...A..GCGGCG....CGAG.GGU.UCA.AA..UCCCU.C.CUUCUCC.G
#=GC SS_cons <<<.<<...........>>>>.>.>>>>>>>..
//

Figure 2.4: Part of the Rfam tRNA family model rendered using Emacs Ralee mode (Griffiths-
Jones, 2005). Individual RNA sequences have good alignment via sequence identity or
compensatory mutations in the helical regions of the common secondary structure (last row).
Non-structured regions show a considerable number of mutations, as well as deletions. The
TΨC loop and stem (helix and hairpin in the lower block) are particularly well conserved.

2.5 RNA Families

RNA family models are used by Infernal in the form of covariance models to parametrize
the generic search algorithm for potential homologous sequences of the RNA family (Chap-
ter 5). Via the covariance model representation, it also becomes possible to compare two
RNA families with each other. While the result of the comparison needs to be seen through
the covariance model lens and can therefore be distorted, it is still possible to infer valuable
information (Chapter 6). Finally, RNA family models provide a large source of statisti-
cal information for base pairing which can be used to train RNAwolf secondary structure
folding parameters (Chapter 7).

Due to evolution, individual species’ genomes are diverged from other species. It
is possible, however, to create phylogenetic trees that describe how closely related one
species is to another. In particular, if two sequences (be it protein-coding genes, or in
this case DNA-encoded structural non-coding RNAs) from two species have a common
ancestor sequence in the tree, assuming the tree is complete enough, the two sequences are
homologs. Via sequence alignment (Deonier et al., 2005, p.143) it is possible to calculate

2.5. RNA FAMILIES 23

how similar they are and what operations to undertake to transform one sequence into the
other.

It is, of course, possible to perform an alignment of any two sequences but with homol-
ogous sequences, one may discover similarity of sequences and elucidate structure. The
alignment problem itself presents many questions, and is certainly not restricted to RNA,
with many advances having been made in natural-language processing (Burkett et al.,
2010).

An RNA family is an alignment of many RNA sequences together with a consensus
structure. In general it is a very complex task to create a proper structural alignment.
The basic algorithm to optimize the structure and alignment of just two (k = 2) sequences
by Sankoff (1985) requires O(n(3k)) = O(n6) time and O(n2k) = O(n4) space and is thus
too slow for input of longer length (n large) or the ten or more sequences (larger k) usually
found in RNA family databases like Rfam (Griffiths-Jones et al., 2003).

LocARNA makes use of the idea to only consider significant base pairs, of which there is
only a sparse set, to reduce the runtime of a Sankoff-style algorithm to O(n4). Significant
base pairs are selected using the McCaskill (1990) base pair probability matrix for each
individual sequence (Will et al., 2007, 2012).

The consensus structure of RNA family models leads back to the previously described
base pairing interactions and homology of these sequences. It is to be expected that
homologous sequences will not conserve sequence information due to mutation over longer
evolutionary time scales but will conserve structure as loss of structure will mean loss of
functionality (Leontis et al., 2002). Nucleotides in unpaired, functionally less important
regions should mutate rather freely, those base paired will likely retain the same isostericity
class for longer evolutionary time scales. As an example of different conservation patterns
consider Fig. 2.4 with the more strongly conserved TΨC loop and stem.

From these patterns, one can first deduce the actual consensus structure, and then ad-
ditional information. Programs like Infernal (Eddy and Durbin, 1994; Nawrocki et al.,
2009) create stochastic models, called covariance models (CMs), based on a specific gram-
mar. Covariance models can calculate for each substring of a genome how likely it is that
said substring belongs to the family. These stochastic models find homologs of the RNA
sequences in the family. The same RNA families can be used to train stochastic models
based on the grammar described in Chapter 5. This grammar tries to improve the sensi-
tivity of RNA homology search for remote family members. It does so by making explicit
the notion of a trace in alignments. When a number of deletions or insertions follow each
other in an alignment, it is not possible to say in which order they were accumulated and
usually there is no reason to. Traces in alignments will be more formally explained in
Chapter 5 (II.E).

A final piece of biological information that is important, with regards to how RNA
families are handled by Rfam, are clans (Gardner et al., 2011). As sequences diverge more
and more, a single common model for the sequences can become infeasible due to too much
sequence or even structural variation. The approach taken by Rfam is to simply create
multiple families and group such families in a clan, providing a meta-family.

24 CHAPTER 2. THE STRUCTURE OF RNA

Chapter 3

Formal Grammars and Algebraic
Dynamic Programming

My own ”mental model” of DP does not involve grammars.
anonymous referee commenting1 on “sneaking around concatMap”

Dynamic programs can be developed using a variety of notations. Examples in text
books like Introduction to Algorithms (Cormen et al., 2001) are normally written using
explicit recursions. Groups associated with the Vienna RNA package tend to prefer a
graphical notation (Bompfünewerer et al., 2008) and (tree) grammars have been used as
well (Giegerich and Meyer, 2002).

There is no one true notation that fits all problems and requirements. Depending on
the problem and the audience – see above quote – a different language might be required.
For dynamic programming algorithms on (single) sequences, formal grammars are very
convenient in that they partition an input sequence from left to right. Furthermore, this
partition can be depicted graphically.

In this chapter, formal languages and grammars are described with an emphasis on
grammars for RNA sequences. This background, especially the introduction to ambiguity,
forms the basis for the work in Chapter 5, where different kinds of ambiguity in the context
of stochastic RNA family models are considered. Ambiguity in stochastic models can be
a serious problem as the parse with the single highest probability might not correspond
to the structure with highest probability.

Formal languages are also used to describe all algorithms in Chapters 5–7. For the
extended RNA secondary structure algorithm, a graphical notation was chosen, but it
is a graphical notation depicting a grammar. Together with the ADPfusion framework
presented in Chapter 8, formal languages are elevated from the level of a modelling tool to
a domain-specific language in which the algorithms presented in this thesis can be written,
compiled, and executed.

Section 3.2 introduces the basic concepts of ADP. These concepts form part of the
ADPfusion (Chapter 8) formalism which is a dialect of ADP. While programs have to be

1Giegerich and Meyer (2002) started a beautiful tradition of quoting referees

25

26 CHAPTER 3. FORMAL GRAMMARS AND ADP

ported to ADPfusion, the performance gains are considerable, and most of the original
theory developed for ADP carries through.

3.1 Regular and Context-free Grammars

This introduction to formal grammars is necessarily quite short. Grune and Jacobs (2008)
cover many fields, including formal grammars and parsing, as well as including a list of
several hundred research articles on all topics with further information.

3.1.1 Alphabets and Strings

An alphabet A is a set of (atomic) characters. The set A∗ contains all strings over A,
including the empty string, typically denoted ε. The characters forming the set A can
generally be composed of any finite set. A string is a (possibly empty) sequence of char-
acters.

Some example sets are the set {a . . . z} of lower-case ASCII characters, the set of
all ASCII characters (including those that can not be printed), the nucleotide alphabet
{A,C,G,U} for RNA sequences or {A,C,G, T} for DNA sequences. The individual char-
acters can, of course, be compound objects as well. A grammar describing proteins could
use an alphabet of the (20+1) amino acids, or the amino acids could be stored in codon
form of 64 triplets of DNA sequence characters. The CMCompare algorithm (Chapter 6)
uses an (implicit) alphabet of the states, or subtrees, of a covariance model (RNA family
model).

Generally speaking, the set of characters of the alphabet is defined according to the
problem at hand. While the characters are atomic with regards to the alphabet, their
encoding can be rather complex.

3.1.2 Formal Grammars

A formal grammar G = (N,Σ, R, S) is composed of a set of symbols (N ∪ Σ) and a
set of production rules R. A symbol is either a non-terminal symbol N or a terminal
symbol Σ and the intersection of the set of non-terminals and the set of terminals is
empty (N ∩ Σ = ∅). One of the non-terminal symbols S ∈ N is designated as the start
symbol.

Strictly speaking, the set of terminal symbols Σ forms the alphabet A, though it is
common to extend Σ to allow for non-empty strings over A to be considered terminal
symbols. It is always possible do define new non-terminal symbols and production rules
instead of using the extended notion of terminal symbols.

The set of production rules are rules of the form

(N ∪ Σ)+ → (N ∪ Σ)∗.

Each production rule transforms a sequence of terminal and non-terminal symbols into
another sequence of terminal and non-terminal symbols. Each of the grammar definitions

3.1. REGULAR AND CONTEXT-FREE GRAMMARS 27

given by Chomsky (1956, 1959) restricts the left- (LHS) and right-hand side (RHS) of the
production rule.

Below, two of the more restrictive formal grammar types are described in more detail,
regular and context-free grammars. These types of grammars have efficient implementa-
tions and can express many of the RNA bioinformatics algorithms mentioned in Chapter 1.

General grammars allow any number of non-terminal and terminal symbols to occur on
the left- and right-hand side of the production rule, subject to the constraint that at least
one non-terminal occurs on the LHS. Both, regular and context-free grammars allow only
a single non-terminal symbol on the LHS, and, depending on the grammar type, different
symbols on the RHS.

A stochastic grammar (N,Σ, R, S, P) extends a grammar with probability annotations
pi ∈ P for each rule ri ∈ R. Each rule ri = LHS→pi RHS is extended such that 0 ≤ pi ≤ 1
and the pk for the same LHS sum to 1.

For many RNA bioinformatics applications, context-free and regular grammars have
sufficient expressive power. There are some notable cases, where a context-free grammar
is not expressive enough, including the construction of grammars for pseudoknotted RNA
structures (Rivas and Eddy, 2000). In this thesis, only context-free grammars and their
stochastic extensions are of interest.

Context-free Grammars

Context-free grammars restrict the set of rules R such that the LHS of each rule con-
tains only a single non-terminal. The set of terminals and non-terminals on the RHS is
unrestricted. Each rule ri ∈ R is of the form ri = N → (N ∪ Σ)∗.

The Sum of Digits Grammar

The sum-of-digits grammar (N,Σ, R, S) from Sec. 2 in Chapter 8 has the following formal
description (with S as start symbol):

N ={S}
Σ ={ ’0’, ..., ’9’, ’(’, ’)’ }
R ={ S → ’0’

, S → ’1’

, S → ...

, S → ’9’

, S → ’(’ S ’)’

, S → S S

}

It uses a single non-terminal symbol S which is also the start symbol. The ten digits,
together with the opening ’(’ and closing ’)’ bracket form the set of terminals. The set of

28 CHAPTER 3. FORMAL GRAMMARS AND ADP

rules R gives all possibilities on how to transform the non-terminal S into a sequence of
terminal and non-terminal symbols.

The first ten rules produce a single digit from the non-terminal S. The next-to-last
rule brackets the non-terminal S, while the last rule S → SS splits the non-terminal into
two independent parts.

Linear and Regular Grammars

A linear grammar is a context-free grammar with at most one non-terminal on the right-
hand side of each rule:

N → Σ∗N0,1Σ∗.

If the non-terminal on the RHS is the left-most symbol, the production rule is left-
linear, if it is the right-most symbol, the production rule is right-linear. If the non-terminal
is flanked by terminal symbols on the left and the right side (always speaking of the RHS),
then the production rule is just linear.

A grammar with completely left-linear or alternatively completely right-linear rules is a
(left-) or (right-) regular grammar, while those containing both left- and right-linear rules
are linear grammars. Regular grammars are even more restricted than linear grammars
but allow for more efficient parsing.

While less powerful than context-free grammars, due to the restriction to at most one
non-terminal on the RHS, they can be used to model alignments of sequences, when using
multiple tapes or input sequences. Grammars with more than one input sequence, or tape,
will be mentioned as a future extension in the conclusion (Chapter 9).

Generating Sequences Belonging to a Grammar

The generation of a sequence according to the rules of a grammar and trying to parse a
sequence with a given grammar can be seen as dual operations.

When generating a sequence, one starts with the start symbol S and chooses one of
the possible productions. Using the sum-of-digits grammar from above, generation could
start with S → ’(’S’)’. Again, the non-terminal needs to be replaced: S → ’(’S’)’→
’(’SS’)’ → "(("S")("S"))" → "((1)(3))". Or shorter: S "((1)(3))". Here,
consecutive terminal characters ’(’’3’’)’ are represented as a string "(3)".

In case of a stochastic CFG where each rule is given a probability one can stochastically
generate sequences belonging to the language defined by the grammar. These sequences
are then drawn according to their probability.

For compilers parsing the input text, or RNA secondary structure prediction algorithms
trying to determine the secondary structure, the second option, namely parsing, is of more
interest.

In the case of parsing, the principle idea is to reverse the arrows from above. Given
"((1)(3))" one wants to recover the full path leading back to S.

3.1. REGULAR AND CONTEXT-FREE GRAMMARS 29

((1) (3))

(
. . .

. . .
. . .

. . .
. . .

. . .
. . . D

(
. . .

. . . B1
. . .

. . . C
. . .

1 A1
. . .

. . .
. . .

. . .
. . .

)
. . .

. . .
. . .

. . .
. . .

(
. . .

. . . B2
. . .

3 A2
. . .

. . .

)
. . .

. . .

)
. . .

Table 3.1: Memoization of parsing the input "((1)(3))" for the sum-of-digits grammar.
Parsing starts at the main diagonal and advances to the upper right corner. The single
characters ’1’ and ’3’ in cells A1 and A2 are parsed first. All other parses on this diagonal
fail as no rule can successfully parse a single opening or closing bracket. Parses B1 and
B2 succeed next. They parse one opening and one closing bracket around the successful A
parses. The rule S → SS is parsed in step C. Finally, in step D, a final opening and closing
pair of brackets envelop the successful C parse. As the parse at D succeeds at the complete
input (1, L), with L the length of the input, the complete parse of the input succeeds.
The parse tree for the input given the sum-of-digits grammar can be recovered using back-
tracking.

3.1.3 The CYK Parser

For the applications considered here, the CYK parser (Grune and Jacobs, 2008, Sec. 4.2)
is the most important parser. It parses an input sequence “bottom-to-top”. For each
individual non-terminal, the CYK parser keeps a memoization table that contains the parse
result for the substring (i, j), also called the subword (i, j). Starting from the single-
character substrings (i, j), i == j all substrings are tried in increasing substring length2.

The final parse result is memoized in the memoization table for the start symbol S at
the index for the full string (1, L), where L is the length of the input.

In Table 3.1 the memoization table for the sum-of-digits grammar and the input
((1)(3)) is given. The memoization table is of upper-triangular form as all subwords
(i, j) have the constraint that i ≥ j. Parsing proceeds from small to large subwords via
the main diagonal and consecutive diagonals to the upper-right subword (1, L). For the
sum-of-digits grammar, it is only important whether a particular input can be parsed at
all. The succeeding subparses A1, A2, B1, B2, C, and D can, for example, be indicated
with a boolean flag.

Other grammars, like the grammars for the Nussinov78 (Nussinov et al., 1978),
RNAfold (Lorenz et al., 2011), or RNAwolf (Chapter 7) algorithms store counts, ener-

2ADP uses slightly different indexing where (i, i) denotes the empty substring

30 CHAPTER 3. FORMAL GRAMMARS AND ADP

gies, or pseudo-energies (scores in general) in the memoization tables. These grammars
will also fill the complete memoization table with scores. An RNA folding grammar will
typically succeed for any input, from the empty input to any finite string3. What changes
is the final score retrieved at the symbol S and subword (1, L).

That is, for RNA grammars, there is an exponential number of succeeding parses, each
with a different final score.

Bellman’s Principle of Optimality

With the CYK parser it is possible to calculate the optimal parse of an input given a gram-
mar and a scoring function, given that certain conditions hold. Bellman’s Principle of
Optimality (cf. Lew and Mauch (2006) for a general introduction to DP and Bellman’s
principle) is the driving principle behind dynamic programming. For dynamic program-
ming to work and Bellman’s principle to hold, an optimal structure has to have optimal
substructures from which the optimal structure is built up.

In terms of the optimality criteria to be used by dynamic programming algorithms, it
is required that an optimal solution to an input can be split into small sub-inputs and for
each sub-input the optimal solution is calculated recursively. From the optimal solutions
for sub-inputs one can then calculate the optimal solution to the whole input.

For the CYK parser this is directly required and supported as the optimal solutions to
sub-inputs (substrings) are calculated first, followed by ever larger substrings.

In general, all problems considered here conform to Bellman’s principle. The nearest-
neighbor loop model sums up scores (energies) for individual loops, with the individual
summands being independent. Each loop type corresponds to one non-terminal in the
RNA folding grammar. The same holds for the Infernal-related algorithms. RNA family
models do not behave differently in this regard to RNA folding algorithms, except that
the grammars have many more non-terminal symbols.

Backtracking in Memoization Tables

For the sum-of-digits grammar it is possible to explicitly store in the “forward” table-filling
phase which succeeding rules lead to storing a success value in the memoization table. One
can, say, store at D in Table 3.1 that the succeeding parse involved the parse at C via the
rule S → (S).

For scoring parsers (consider Nussinov78, Chapter 8, Sec. 7.1) this is not possible as
there is an exponential number of succeeding parses for the input, each with a different
score.

Given the production rules and the different scores associated with each production,
one can, nevertheless, produce the parse tree for the highest-scoring parse or any number
of parses within a certain threshold. Returning the optimal parse yields the structure
associated with the best score, as in minimum-free energy structures of RNAfold (Lorenz
et al., 2011), while returning all parses within a threshold gives complete sub-optimal
structures (Wuchty et al., 1999).

3given enough resources

3.1. REGULAR AND CONTEXT-FREE GRAMMARS 31

Backtracking in these cases works as follows. One starts with the optimal score. The
optimal score for the sum-of-digits example (Table 3.1) is given in D. One now tries, suc-
cessively, all rules for the non-terminal (S) until one matches that succeeds and produces
the result D.

In the next step, taking the right-hand side of the succeeding rule (S → SS) it is
now required to “backtrack” or step down into the succeeding parts of the rule. Terminal
symbols lead to the emission of the matching character, while for non-terminal symbols the
backtracking has to be done recursively to determine which rules succeeded in generating
the score stored for them.

Backtracking stops once all recursive steps down toward the main diagonal encounter
only terminal symbols. The terminal symbols spell out the input sequence while the tree
structure of the recursive descent produces the parse tree.

In algorithms like Nussinov78, sub-trees are associated with different semantics. The
rule S → aSb (compare to the sum-of-digits rule S → (S)!) denotes base pairing between
nucleotides a and b. Depending on the pair (a, b) a different score would have been assigned
to the production rule in the forward phase.

The resulting parse trees can be transformed into visual representations. The Vienna
dot-bracket strings for RNA secondary structure are such a representation.

If one replaces the terminal digits in the sum-of-digits grammar with a single termi-
nal ’.’ (dot), then the grammar parses RNA secondary structures in dot-bracket format
that are non-empty and contain at least one dot between the inner-most pair of brackets.

3.1.4 Syntactic, Structural, and Semantic Ambiguity

Formal grammars can be ambiguous or non-ambiguous. If a grammar is declared non-
ambiguous one needs to take into account what kind of ambiguity is considered.

The kind of ambiguity that is easiest to understand is syntactic ambiguity. A grammar
is syntactically ambiguous if there is more than one parse for a given sequence. A grammar
for a programming language should be syntactically non-ambiguous. If that is the case then
for any “correct” program that was typed in there is only one abstract syntax tree (AST).
An AST is one of the representations of a program before it is turned into assembler. If
there were more than one AST for a correct program, each with a different “meaning”
(the AST is the meaning of a program), which AST should then be chosen?

The problem is actually a bit less severe than it seems. The sum-of-digits grammar
used as a running example in this chapter (and in Chapter 8) is syntactically ambiguous.
For certain kinds of algebras (see below) – or evaluations of the AST – ambiguity doesn’t
matter. Summing up non-negative digits gives the same result in any order of summation.
For more complicated algebras, say all four basic mathematical operations, and negative
as well as positive numbers in the AST, different parses might easily lead to different
meanings.

All useful RNA secondary structure prediction grammars are syntactically ambiguous.
For each input sequence there is an exponential number of different structures S ∈ Ω, each
with a different score E(S) (E calculating an energy in case of RNAfold; see Section 2.3).

32 CHAPTER 3. FORMAL GRAMMARS AND ADP

Structural ambiguity, as explored by Dowell and Eddy (2004) for several small RNA
secondary structure grammars, is a bit more tricky. A grammar is structurally ambiguous
if there exists an input x such that there are two (or more) different parses S,R ∈ Ω
and both S and R yield the same set of loops. In other words, if S and R are different
parse trees but annotate the sequence with the same loops at the same positions, then the
grammar is structurally ambiguous.

The sum-of-digits grammar is structurally ambiguous. As an example, consider the
input (1)(2)(3). The production rule S → SS (with non-terminal S) splits the input in
two ways: (1) (2)(3) and (1)(2) (3). This leads to two different parse trees but the
same semantic meaning if digits are to be summed up.

Structural ambiguity may be more severe in other grammars. One version of the
Nussinov78 grammar, used as an example grammar in Chapter 8, has the following pro-
duction rules (with non-terminal S, start symbol S, and terminals a, b):

S → ε

S → aS

S → Sa

S → aSb

S → SS

The reader may notice the following derivation is possible:
S SS (S → ε)S S ≡ S S. This gives an infinite number of parse trees due
to the existence of the S → ε rule. These problems require special care when designing
formal grammars.

As Dowell and Eddy (2004) note, structural ambiguity is not relevant for CYK algo-
rithms calculating the minimum-free energy for an RNA secondary structure, or calculat-
ing the partition function Z for statistical models via the Inside algorithm. For complete
sub-optimal enumerations (Wuchty et al., 1999) or the partition function calculations for
energy-based models (McCaskill, 1990), structural non-ambiguity is an absolute require-
ment if the algorithms are to remain efficient.

An alternative, ambiguity compensation (Chapter 5), does exist. It is, however, in-
feasible to use for even small-sized input. As structural ambiguity means that several
parses produce the same (secondary) structure, one can, in principle, sum over all parses
producing the same structure. Unfortunately, the structure space has exponential size,
making this approach impossible.

Semantic ambiguity finally generalizes the structural ambiguity problem and considers
(non-) ambiguity under different semantics. For RNA secondary structure the kind of
semantic ambiguity discussed is structural ambiguity. RNA family models consider not
only secondary structure prediction, but align a sequence against a fixed (for each family
model) consensus secondary structure. Aligning a sequence against another sequence or
against a structure opens up questions of alignment ambiguities – different alignments with

3.2. ALGEBRAIC DYNAMIC PROGRAMMING (ADP) 33

digit : D → S

bracket : ′(′×S×′)′ → S

split : S × S → S

h : {S} → {S}

Figure 3.1: Signature for the sum-of-digits problem in Algebraic dynamic programming
methodology. Each of the rules is given an explicit name. To simplify notation, the function
digit expects a single terminal d ∈ {0, . . . , 9} = D ⊂ Σ. The symbol S not only denotes the
non-terminal symbol in the grammar but also the value domain of the symbol.
The function h is not part of the set of rules of the sum-of-digits grammar but introduces the
possibility of an objective function. The objective function accepts a set of parses (rather,
their representation in terms of the value domain S) and returns a subset of those.

the same biological meaning or semantics. In Chapter 5, the different possible semantics
of aligning a sequence against a family model and their ambiguities are given an in-depth
treatment.

3.2 Algebraic Dynamic Programming (ADP)

Algebraic dynamic programming (Giegerich and Meyer, 2002; Giegerich et al., 2002, 2004)
provides formal methodology and a framework for dynamic programming over sequence
data. This short introduction necessarily repeats and combines parts of Chapter 5 (II.B)
and Chapter 8 (3). Most of the notation and definitions originally given by the above
authors carry through to the ADPfusion implementation. As ADPfusion is a dialect of
ADP, programs have to be adapted before they can make use of the new framework. The
gains are, however, substantial as shown in the benchmarks in Chapter 8.

3.2.1 Methodology

On the formal side, Algebraic dynamic programming (ADP) considers the different aspects
of a dynamic program individually, thereby simplifying the design process. An algebraic
dynamic program consists of a signature, a grammar, an algebra, and a concept of memo-
ization. Implementations then provide the machinery to combine these parts into a single
algorithm.

The signature can be seen as an interface, a supply of function symbols, or an ordered
set of typed functions. The signature for the sum-of-digits example from above is given
in Fig. 3.1. Each of the production rules of the grammar is given a type in the signature.
The signature thereby explicitly fixes the function types to be used to evaluate parses
induced by the production rules. Note that function signatures are to be read RHS-
to-LHS compared to production rules. The production rule S → SS yields the type

34 CHAPTER 3. FORMAL GRAMMARS AND ADP

sum-of-digits (digit,bracket,split,h) = s where

s = digit <<< aDigit | | |
bracket <<< char ’(’ -∼∼ s ∼∼- char ’)’ | | |
split <<< s ∼∼∼ s ... h

Figure 3.2: The sum-of-digits grammar in ADP notation. aDigit is a parser that parses a
single digit, producing nothing otherwise. The char parser parses the single character it has
been given. The non-terminal s is recursively defined in this grammar. Combinators guide
the correct deconstruction of the input into substrings. The (-∼∼) and (∼∼-) combinators
remove the left- or right-most character using the given parser. The (∼∼∼) combinator
provides all possibilities of splitting a string into two substrings at a common split point.
Evaluation functions (digit,bracket,split) are applied to the terminal and non-terminal
symbols using the (<<<) combinator. Different production rules are combined using the
(| | |) combinator. Selection of the optimal parse is done by applying the objective function
h using the (...) combinator.

split : S × S → S. This is quite natural as in CYK parsing the parsing flow in each rule
is RHS-to-LHS.

Grammars are very similar to formal grammars in notation but are augmented with
additional symbols, or combinators, used to compose the grammar. Each grammar is com-
posed of a set of production rules, where one of the signature functions is applied to the
symbols forming the right-hand side using the (<<<) combinator function. Production
rules for the same non-terminal are combined using the (| | |) combinator which concate-
nates the parses for the two rules. A list of parses is reduced to the optimal choice using
the objective function h from the signature applied to the list of parses using the (...)

combinator. The explicit notion of an objective function that may be changed, together
with the possibility of changing the other signature functions, makes it possible to use one
grammar with many evaluation methods. This means that the grammar only describes the
search space of all possible parses, while the evaluation of individual parses is delegated
to algebras. The sum-of-digits grammar written using ADP notation is shown in Fig. 3.2.

An algebra is an actual set of functions describing an optimization procedure for a
grammar that conforms to the signature. Continuing with the sum-of-digits example,
Fig. 3.3 gives two algebras that produce both, different results and optimization according
to different criteria. There are two types of functions. The objective function h takes a list
of parses and keeps parses according to the stated criterion, e.g. just the maximal parse(s).
All other functions describe the semantics of individual production rules. That is, say, rule
S → ’0’| . . . |’9’ is the production rule4 for a single character but the algebra function
digit in the sumDigits algebra provides a way to parse a single character ’0’ . . . ’9’ to
produce the number 0 . . . 9. Depending on the algebra, the value domain changes as well.
sumDigits is an algebra with the Int value domain and sums up digits. treeDigits on the
other hand produces ParseTrees, actual parse tree representations devoid of any semantic
meaning.

Finally, memoization provides a way to reduce the running time for the parser from

4using shorthand notation for ten rules S → ’0’ to S → ’9’

3.2. ALGEBRAIC DYNAMIC PROGRAMMING (ADP) 35

sumDigits :: Signature

sumDigits = (digit,bracket,split,h) where

digit d = parseDigit d

bracket ’(’ s ’)’ = s

split l r = l+r
h xs = [maximum xs]

data ParseTree

= Digit Char

| Bracket Char ParseTree Char

| Split ParseTree ParseTree

treeDigits :: Signature

treeDigits = (digit,bracket,split,h) where

digit d = Digit d

bracket ’(’ s ’)’ = Bracket ’(’ s ’)’

split l r = Split l r

h xs = xs

Figure 3.3: Two possible algebras for the sum-of-digits grammar. An algebra specifies how
individual parses are to be evaluated (digit,bracket,split) and how to select an optimal
parse (h).
The sumDigits algebra collects individual digits, parses the digit characters into numbers,
and sums them up. The second algebra is a unique feature of ADP. In ADP it is easy to
return all parses independent of their evaluation in the form of a parse tree representation,
which is done with treeDigits.

36 CHAPTER 3. FORMAL GRAMMARS AND ADP

one that is typically exponential to one that is polynomial. For memoization to be correct
in the setting of an optimizing CYK-style parse, Bellman’s principle needs to hold. In case
that it does hold, it is necessary to memoize for each non-terminal the optimal parse(s) for
each substring (or subword (i, j)) that has already been parsed. As each subword is parsed
many times during a CYK parser run, it pays off to store just the parse result instead of
having to create the complete parse tree starting at each non-terminal and each substring
index.

Parse Trees and Bellman’s Principle

The ADP idea of explicit parse trees seems minor at first, considering that the CYK algo-
rithm recovers parse trees during backtracking quite easily. The importance of the idea
becomes clear if one considers what happens if the objective function h is replaced by the
identity function that just returns all parses. In that case, running the grammar and al-
gebra combination on an input produces all parse tree representations explicitly. A parse
tree representation is a parse tree, where the production rule evaluation functions have
been applied to all tree nodes. For the sumDigits algebra, this is the sum of all digits,
while for treeDigits it is an explicit tree representation.

If Bellman’s principle holds for a certain problem, like sum-of-digits, it does not matter
if the objective function is applied to the list of all parses, or if individual sub-parses are
pruned. At least it does not matter for calculating the optimal parse. It does matter in
terms of performance. In this way, ADP makes application of Bellman’s principle explicit.
This allows (for small inputs) checking if the principle holds for a certain grammar and
algebra combination. Comparing the result of applying the objective function interleaved
with sub-parses or to all possible parses should yield the same set of final results.

3.2.2 Implementations of the ADP Idea

The section above on methodology is silent on an actual implementation. This is because
there are currently at least three main branches of the ADP idea. The original implemen-
tation of ADP in Haskell, a new language (GAP language) and compiler (GAP compiler)
implemented in C++, and ADPfusion (Chapter 8) which is again written and embedded in
Haskell.

The initial work on ADP was done in Haskell (Giegerich and Meyer, 2002; Giegerich
et al., 2002, 2004). The choice of Haskell allowed for a terse description, elements of which
can be found in Fig. 3.2 and Fig. 3.3. Haskell is popular as a language for embedding
domain-specific languages like ADP, as it is possible to write parsers and define novel
syntax (symbol names, infix notation symbols) easily. One problem of ADP in Haskell
was the overhead in running time and memory consumption and the choice of a rather
obscure host language.

A first step toward better run times was the introduction of an ADP-to-C compiler
(Steffen, 2006). The compiler took ADP as an abstract language (as opposed to ADP
embedded in Haskell – the abstract ADP language and its embedding just happened to
have the same syntax) and turned grammars and algebras into efficient C loop constructs.

3.2. ALGEBRAIC DYNAMIC PROGRAMMING (ADP) 37

A number of problems with (Haskell-) ADP remained. Errors were hard to decipher
for non-specialists, an abundance of infix operators was required, and sub-optimal per-
formance in some cases; to name a few (Sauthoff et al., 2011). One solution to these
problems is a novel language, the GAP language and a compiler for this language, the
GAP compiler. The GAP language is a domain-specific language with Java-like syntax
and not embedded in any particular host language. It comes with its own compiler and
supporting library. It has a feature set that makes it possible to write many dynamic-
programming algorithms, especially some of those discussed in Chapter 1, without having
to use a mainstream programming language. In addition, the GAP environment produces
programs whose performance characteristics are competitive to those of writing directly
in, say C (Sauthoff, 2011; Sauthoff et al., 2011, 2013).

One problem with a language like GAP that provide their own compiler is that it is, in
general, hard to integrate new features. One either needs to extend the compiler or an
interface to a foreign language needs to be available.

ADPfusion is another approach to implement ADP. The first version, described in
Chapter 8 is very close in style to the original ADP work, but offers substantially better
performance even though both approaches are embedded in Haskell. The choice of em-
bedding ADPfusion directly in Haskell makes it possible to treat it as what it is – plain
Haskell. The main benefit is that whenever a feature is not present in the domain-specific
language one can easily escape to the host language without having to wait for the devel-
oper of the domain-specific language to implement the missing feature. Experimentation
with new features and ideas is promoted as they are simple to integrate. Performance
is also acceptable and almost on par with direct implementations in C. No comparison
with GAP programs was made at the time of writing the paper in Chapter 8. Some pre-
liminary results presented in Chapter 9 indicate that ADPfusion is indeed faster than
GAP-based implementations. The newest version also removes the need for combinators
like (-∼∼). This points out that the ADPfusion framework can serve as a backend for
different domain-specific languages to provide the performance benefits of fusion.

The work presented in Chapter 8 makes it possible to (re-) write, the new grammar
for stochastic RNA family models (Chapter 5), and the RNAwolf algorithm (Chapter 7)
in a high-level style directly as a context-free grammar using ADPfusion. The (heuristic)
tree alignment of pairs of RNA family models using CMCompare explained in Chapter 6
requires further advances of the fusion approach.

38 CHAPTER 3. FORMAL GRAMMARS AND ADP

Chapter 4

Efficient Algorithms in a
Functional Language

This Chapter is the third part of the triad of biological background (Chapter 2), gram-
matical background (Chapter 3), and efficient implementation in a functional language
(here). Its main purpose is to provide the necessary background to understand the design
of the ADPfusion library (Chapter 8).

In recent years it has become apparent that functional programming is not only an
efficient tool where efficiency is the time required to implement an algorithm, but that
functional programs can also be competitive with the runtime performance of equivalent
programs written in C, Fortran, and C++.

All algorithms described in Chapters 5–7 were implemented in the functional program-
ming language Haskell. The primary reason was to provide a working prototype in a short
amount of programmer time. The presented algorithms do have clearly valid use cases
where a “slow prototype” is not enough. The CMCompare based comparison of RNA family
models has an obvious application in comparing all pairwise combinations of Rfam models
with each other. For the newest version of the Rfam database this requires more than 2.4
million comparisons. The RNAwolf algorithm for extended secondary structures should
be usable in the same way as RNAfold is being used. This includes producing secondary
structure predictions for a large set of input sequences.

The techniques discussed in this chapter are used to help the programmer write effi-
cient code in Haskell. The key idea is that the programmer continues to write high-level
code that promotes thinking about the algorithmic problem to be solved. The compiler
will automatically and invisible to the programmer translate the (inefficient) high-level
code into efficient low-level constructs that are semantically equivalent. This guarantees
that the optimized code behaves in the same way as the programmer-written code. In this
regard the most significant point is that all of the optimizations discussed in Section 4.2
are automated and require no user intervention. The techniques presented in Section 4.2
provide such automation for list- and vector-based code and are used for RNAwolf (Chap-
ter 7), while ADPfusion (Chapter 8) extends this automation to full dynamic programming
algorithms and is based on the ideas discussed here.

39

40 CHAPTER 4. EFFICIENT ALGORITHMS IN HASKELL

One can go a step further, in that the programmer does not even have to know how
these optimization methods work. While this goal has not been reached quite yet for
a number of corner cases, the typical user can write the functional-language analogs of
loop constructs – namely list-based processing and recursive functions – and expect good
performance.

4.1 Being Lazy with Class

Why Haskell? Computational biology is dominated by imperative, low-level (C, C++) or
scripting high-level (Perl, Python, R) languages (Fourment and Gillings, 2008). Haskell
provides a curious combination of high-level programming (up to and including features
found in theorem provers) and high performance (Keller et al., 2010). The result are
programs that are more terse with less lines of code than a comparative, say C, program,
with a tendency for fewer bugs.

The main features of Haskell are it’s design to be a pure, lazy, functional programming
language. In “Being Lazy with Class” Hudak et al. (2007) describe the roots and history
of the language, but also the design decisions that were made. For the user these features
yield a style of programming rather different from what is known in the imperative world.

Purity is the absence of side-effects. A function in Haskell resembles the notion of a
mathematical (total or partial) function. The behavior of a Haskell function is completely
determined by its input variables and will always produce the same output given the same
input. Purity in itself leads to programs that are more easy to reason about as there is no
hidden state that can influence how functions behave.

The absence of effects can also be rather inconvenient. Input and output are impossible
and purely functional data structures (Okasaki, 1999) and algorithms (Bird, 2010) are
sometimes quite different from established ones (Cormen et al., 2001), or have worse
asymptotic runtime, though laziness can help (Bird et al., 1997). The idea of a monad,
further described below, will alleviate all of these problems in one way or another.

Non-strictness, call by need, or laziness is the evaluation at the last possible moment,
exactly when a value is needed. This feature tends to be controversial. It makes it hard
to reason about programs in terms of space (Hudak et al., 2007; Okasaki, 1999) as well
as running times. Combined with I/O, scarcity of computer resources (like handles) can
become a problem. Programs do become more compositional on the level of individual
functions, however, offsetting performance problems with more possibilities to combine
and compose existing code (Hughes, 1989).

A functional programming language treats functions as first class citizens and puts
“the function” in the center of attention, not “a procedure” or “an object”. Functions as
first class citizens means that (partially applied) functions can be stored in data structures
just like values, can be arguments to other functions, and, in general, there is no difference
between handling a value or a function. Except, of course, that at some point functions
are applied yielding a result. This leads to the next difference between functional and
imperative programming. Imperative programming is much like a set of orders that are
handled from top to bottom (with the occasional branch). Functional programming puts

4.1. BEING LAZY WITH CLASS 41

much less emphasis on explicitly ordering code and more on evaluating individual func-
tions. The compiler (or interpreter) has to figure out how to translate function evaluations
into ordered machine code.

4.1.1 Ad-hoc Polymorphism Using Type Classes

Type classes are the Haskell solution to overloading functions. A function doing the
same thing for different types, be it an equality test, summation, printing, or anything
else, should have the same name. In Haskell, type classes capture functions that are
polymorphic over the data types they are working on. This allows using the same function
symbol (i.e. (==) for equality, (+) for addition) for Ints and Doubles which are different
types. Type class instances can be written for user-defined data types as well, sometimes
even automatically derived for a core set of type classes.

The type class Num, for example, defines the (+) function to be of the type
(+)::a→a→a, where mathematical notation would be (+) :: A × A → A. The Haskell
notation exposes two peculiarities: (i) addition is possible only for two values of the same
type, as there is no implicit casting between types; (ii) Haskell functions can be partially
applied: (+1) :: Int→Int with the (+) operator applied to one argument giving the
“increment by one” function.

Generic programming (Lämmel and Peyton Jones, 2003, 2005; Chakravarty et al.,
2009; Hinze et al., 2007) extends this concept further. A special type class is instanciated
(automatically by the compiler!) for user-defined data types and functions can be written
generically on top of the generic representation.

Modern Haskell allows associated data types for type classes. Consider the type class
function for addition (+)::a→a→a. The type of the function restricts the input types to
be of the same type as the resulting one. With an associated type, one could reasonably
write (+)::a→b→AddType a b with the type AddType itself being a function of the input
types a and b. One such instance could be (+)::Int→Double→AddType Int Double with
AddType Int Double =Double. The actual (+) function than reads:

type instance AddType Int Double = Double

(+) :: Int → Double → AddType Int Double

(+) a b = plusDouble (fromIntegral a) b

The notation type instance AddType a b = ... declares what the resulting type of
applying AddType to two types is. The implementation uses the machine instruction
plusDouble to add two doubles. The a::Int is converted to a double using fromIntegral.
Note that the user now only needs to write 1 +1.34. The implementation of (+), the
conversion, and the use of the machine instruction are hidden.

This arithmetic example, as well as several others, are discussed by Kiselyov et al.
(2010) in an introduction to type families, basically functions on the type level.

Type classes with associated data types are used in a number of high-performance
libraries (Leshchinskiy, 2009; Keller et al., 2010) including the ADPfusion library (Höner zu
Siederdissen, 2012) for high-performance dynamic programming, mainly in computational
biology, which forms part of this thesis (Chapter 8).

42 CHAPTER 4. EFFICIENT ALGORITHMS IN HASKELL

As an example for how type classes and type families simplify design of a high perfor-
mance library consider a linear algebra package. In such a package, the efficient compu-
tation of matrix products is a standard feature. For best performance, the two operands
need to have a different memory layout.

The actual matrix operations, like additions and products, are defined in a type class,
just like addition for scalars was defined above. This gives the user a single interface
independent of the internal implementation.

The choice of internal implementation can be guided by the types of the operations.
Using type families it is possible for the compiler to calculate the best representation and
encode this statically in the operand types. The product operations for matrices can then
be designed so that one matrix is in column- the other in row- major layout, improving
performance.

While this example simplifies reality somewhat, type-guided auto-adaptive represen-
tations are a powerful feature in the design of algorithms that relieve the user of such a
library from the burden of having to understand the intricacies of the underlying numerics
and hardware.

4.1.2 Monads

When filling memoization tables for dynamic programming, the order in which individual
cells are to be filled must be given. There are two solutions, one may use laziness and let
the program figure out the order by itself or give an explicit order in a monad. The former
approach is more elegant, the latter a lot faster.

Monads (Moggi, 1989) in functional programming languages are a very general con-
cept, and thus here only one specific aspect of their use is being considered. As stated
above, lazy evaluation and high performance are generally at odds with each other. The
known approaches to an implementation of lazy behaviour are particularly problematic
for numeric code as used for linear algebra or dynamic programming where memoization
tables have to be filled.

Here, two examples are given where an explicit ordering is important. The first is I/O.
An interactive program will typically interleave user input with output. In this case it is
important that each output is provided only after the corresponding input has been given
by the user. Prior to the use of monads, I/O in Haskell was rather unsatisfying (Hudak
et al., 2007, Sec. 7).

More important toward a correct implementation of dynamic programming calculations
is the ability to order the way in which memoization tables are to be filled. Consider
the memoization table example in Table 3.1. Upon requesting the result D stored at
cell (1, L), a lazy evaluation scheme has to recursively calculate all table cells. The GHC

compiler knows how to do this automatically but this comes with a large runtime cost.
This cost can be anything from ×1.25 up to ×60 or more (for ADP programs).

Instead of letting the compiler figure out how to lazily calculate the values for mem-
oization tables, monads allow the user to specify the exact order in which tables are to
be filled. The burden of filling the table is now on the user; he has to make sure that

4.1. BEING LAZY WITH CLASS 43

A1 and A2 are actually calculated before B1 and B2 in Table 3.1. In return however, the
performance can be close to what is possible in C.

The reader can rightfully ask why to use Haskell at all if the convenience of using high-
level programming comes with the cost of performance or vice versa. This is where the
monad concept comes in handy. As an abstraction mechanism, it allows the programmer
to specify how tables should be filled. In the case of RNA secondary structure dynamic
programming tables, this order is from the main diagonal towards the upper-right corner
of the dynamic programming matrices.

Once specified, the correct order of filling is guaranteed by the abstraction mechanism
(the monad) and this specification, made concrete in form of a function, can be re-used.
The work of figuring out how to fill memoization tables thus needs only to be spent once
for a whole class of algorithms that require a certain way in which to calculate results.

4.1.3 Algebraic Data Types

Algebraic data types compose (simpler) data types. They can both collect different data
types thereby providing product types (a struct in the language of C), and offer choice
within a finite set as a sum type (a union in C).

A very simple example of a sum type is the Bool data type with data constructors True

and False: data Bool =True | False. Here, data Bool defines the boolean data type, and
True or False are the two possible variants.

A more complex data type, Step (Listing 4.1), provides three data constructors similar
to what would be offered by a C union construct. A Step is either Done, Yield’s something,
or Skips a step. The Step data type is parametrized over a and s. The parameters have
no inherent meaning – the programmer chooses which type to give the parameters.

In the explanation of stream fusion below, Step encodes a single step in a loop. In
this encoding, s encodes the current index, while a encodes the state of some computation
given the current index. This can, for example, be the result of accessing an array given
the current index.

Listing 4.1: The Step data type (Coutts et al., 2007)

data Step a s = Done | Yield a s | Skip s

Data constructors like Done, Yield, and Skip can be pattern-matched on to determine
which of a set of constructors from a single data type is the argument. The variable
step below is of type Step. A piece of code like the one below is the Haskell version of
branching. Depending on the variant of step, the code will branch into one of the three
cases function_1 to function_3. As both Skip and Yield carry data around (Skip the
next index, Yield the next index and some current value), these values are handed over
to function_2 and function_3.

case step of

Done → function_1

Yield a s → function_2 a s

Skip s → function_3 s

44 CHAPTER 4. EFFICIENT ALGORITHMS IN HASKELL

4.1.4 Existential Quantification

In Haskell all functions and type constructors are typed, either implicitly letting the com-
piler figure out the types (for functions), or explicitly by the user. A number of extensions
to the Haskell type system exist that allow expressing more complex types.

One of these abstractions is existential quantification which allows the programmer
to implement the concept of an abstract data type. Abstract data types encapsulate a
specific implementation and only expose an interface. One example of this is the Stream

data type defined and used below that has a curious type:
data Stream a = ∃ s . Stream (s →Step a s) s.

Below, Streams are used to encode a concept of “functional loops”, a Stream provides
zero to many values of type a. If one wants to encode (1 + · · · + 10) in Haskell, one
possibility is to create a stream that produces the numbers 1 to 10 (with a being Int in
this case) and providing a function that can sum up all values in such a stream. This will,
in fact, be shown below.

The implementation of a Stream that produces the values 1 . . . 10 involves the actual
values which need to be accessible and are exposed as the type a. It also involves a
“step” or “loop” construct which requires an index or seed s. Every time a new step is
taken (s → Step a s) one may create a new value and also advance the index. The actual
implementation of the index should be abstracted away as there is no need to expose it.
By declaring ∃ s, the only thing stream functions, or the programmer, can do is use the
current index s to calculate the next index s, nothing more.

Given that each stream-transforming function defined below may only manipulate the
stream state using exactly this interface, it becomes impossible1 for the programmer to
accidentally manipulate the stream state in a way that creates bugs.

4.2 Deforestation and Fusion

In Sec. 4.1 some basics of the Haskell language were introduced. This section is devoted
to automatic optimization techniques, with the emphasis being on automatic. These
techniques form the core functionality that enables the ADPfusion library to generate
optimized code from high-level code provided by the user. Both, RNAwolf and MC-Fold-DP

use such optimization techniques in a more low-level form, and a desire to combine high-
performance code with high-level programming led to ADPfusion.

In general, these techiques are deforestation (Wadler, 1990; Gill et al., 1993), stream
fusion (Coutts et al., 2007), and acid rain (Hinze et al., 2011). As deforestation and acid
rain allude to, the goal is to remove intermediate tree structures that are being created
whenever functions are composed in Haskell.

More explicit, whenever functions operating on data structures are composed, each
function creates a new modified copy of the structure being manipulated. Each of these
modified copies requires time and memory space to be created, and normally, only the last
copy is retained as the result.

1not quite, but it becomes very hard to shoot yourself in the foot

4.2. DEFORESTATION AND FUSION 45

If the intermediate copies are not required, they shouldn’t be created in the first place.
And thanks to purity it can be guaranteed that no side effects can be unintentionally lost
by removing intermediate structures (but cf. Bird (2010), Cha. 21 on Hylomorphisms and
nexuses for variants where retaining intermediates is useful).

As said, the key approach to faster algorithms is the removal of intermediate, tem-
porary data structures. Taking the introductory example by Wadler (1990), we want to
create the list of numbers 1 . . . n, square each number, and sum them up. In Haskell
notation:

Listing 4.2: Wadler’1990 list-based

sum (map square [1..n])

The notation [1..n] is syntactic sugar, producing a Haskell linked list of type [Int]

with all integers ranging from 1 to n. The empty list would be written as []. map square

considers each element of the list and applies the function square. Finally, sum deconstructs
the list and sums up all elements.

The problem, as pointed out by Wadler, is that in a strict language both [1..n] and
map square create temporary lists each of size O(n). In case of lazy evaluation, the space
complexity will be O(1), but the individual list cells themselves still need to be created
and destroyed.

The key idea is that the program 4.2 can be transformed automatically and transpar-
ently (invisible) to the user into a version allocating no list cells at all. This automatically
transformed version is shown in Listing 4.3 and requires just three registers instead of
having to create O(n) list cells.

The compiler-created version sumMapSquare makes use of a locally defined function go2

which is defined using the where keyword. go acc cur uses an accumular to to store the
sum of squared values up to the current value. If the current value exceeds the integer up
to which to sum (n), the current accumulator value is returned. Otherwise, go is called
recursively. The accumulator is increased by the square of the current value and the
current value is increased by one.

Listing 4.3: Wadler’1990 transformed

sumMapSquare n = go 0 1 where

go acc cur = if cur > n

then acc

else go (acc + square cur) (cur + 1)

Stream fusion on lists (Coutts et al., 2007) and arrays (Leshchinskiy, 2009) allows the
programmer to express more programs using the high-level style of listing 4.2 that the
compiler can automatically transform into tail-recursive calls of the type shown in listing
4.3 without user intervention apart from having to include the stream fusion library.

The algorithms presented in Chapter 7 make use of stream fusion on the level of lists
and vectors. ADPfusion (Chapter 8) extends the fusion paradigm to automatic optimiza-
tion of complete dynamic programming algorithms. Updates for the algorithm presented

2the use of go is Haskell culture

46 CHAPTER 4. EFFICIENT ALGORITHMS IN HASKELL

in Chapter 6 are planned.

We follow with two additional techniques that are made use of in ADPfusion: call-
pattern specialization and stream fusion itself. Stream fusion is the technique explicitly
used, but it in turn relies on call-pattern specialization.

Hence an introduction to the most important ideas in this topic is in order.

4.2.1 Call-pattern Specialization

Call-pattern specialization (Peyton Jones, 2007) or constructor specialization is an opti-
mization that replaces function calls with constructor patterns with specialized functions.
For each constructor (not their arguments) a specialized function is created. This opti-
mization can reduce the need for temporarily created constructors, thereby improving the
runtime performance of programs.

Consider the type constructor Maybe a which contains either Just a or Nothing. This
data type captures the concept of a value of type a being either available or not. Similar
to how in C a pointer can be a null pointer, pointing to nothing, or pointing to a value of
a certain type.

Listing 4.4: Call-pattern specialization

data Maybe a = Just a | Nothing

f :: Maybe Int → Int

f (Just x) = 10 + x

f Nothing = 0

g = f (Just 10)

h = f Nothing

The calculations in g and h first create a Maybe value and then pass this value to the
function f. f then inspects both the data constructors Just or Nothing and then performs
a calculation.

The pattern matches performed by f are known during compile time, making it possible
to create two versions of f without the programmer having to know this (he is writing the
code above).

Listing 4.5: Call-pattern specialization

f_Just :: Int → Int, f_Nothing :: Int

f_Just x = 10 + x

f_Nothing = 0

g = f_Just 10

h = f_Nothing

Further optimization of f_Just, f_Nothing will inline both calls, making both g and h

constant in this case. The real use of call-pattern specialization is in the optimization of
stream fusion as well as the optimization of more generic functions in Haskell. Peyton Jones
(2007) gives a number of examples, including some in the stream fusion library (Coutts
et al., 2007).

4.2. DEFORESTATION AND FUSION 47

For us, the importance of call-pattern specialization is that conditional branches can
be encoded using different data constructors, which are individually transformed into
recursive calls that are able to call each other. This pattern of conditional branches is
captured by the Step data type defined in Listing 4.6

4.2.2 Stream Fusion

Stream fusion (Coutts et al., 2007) is a short-cut fusion system for lists aimed at eliminating
intermediate data structures without user-intervention. While the ideas of stream fusion
have been extended to arrays (with the vector3 library) (Leshchinskiy, 2009), only fusion
of lists will be discussed using the implementation by Coutts et al. (2007). For a general
introduction, the original implementation is simpler, as it explicitly transforms list-based
operations, while the vector package transforms operations on arrays, requiring additional
thoughts on array size management and an underlying monadic interface.

Steps and Streams

The basic building blocks of stream fusion are the Step, and the Stream data types. The
Step data type has already been used as an example in Sec. 4.1.3, while the Stream data
type has been seen in Sec. 4.1.4. Both data types where introduced in the original stream
fusion paper by Coutts et al. (2007).

To recapitulate, a Stream encodes a “functional loop” that will, in each step, produce
a value of type a. This stream of values is what the user wants to “loop” or iterate over.
In dynamic programming it will be data extracted from individual cells in a dynamic
programming matrix.

In each step of the “functional loop”, a Step data type is created. The three variants,
Done, Yield, and Skip provide the different branching possibilities. With Done a loop is
terminated, similar to a return statement4 in C. When the current stream step produces
a Yield, an element of type a is provided. Coming back to Wadler’s summation example
(Listing 4.2), a Yield produces the integers 1 to n. Skip provides the ability to filter out
stream elements that are undesired. Both Yield and Skip carry along the next seed (or
index) s, but where Yield provides an element a, Skip just continues to the next loop step.
In terms of C, this is equivalent to C’s continue.

Listing 4.6: The Step and Stream data types (Coutts et al., 2007)

data Step a s = Done | Yield a s | Skip s

data Stream a = ∃ s. Stream (s → Step a s) s

Another way to look at Step and Stream is to consider the combination of folds and
unfolds. A fold, like sum (

∑
), takes a list of elements and produces from this list a single

result element. A Stream unfolds a single initial seed index s into a list – or stream –
which can then be folded over.

3http://hackage.haskell.org/package/vector
4it is unfortunate that Haskell uses return as well, but in Haskell return has a completely different

meaning

48 CHAPTER 4. EFFICIENT ALGORITHMS IN HASKELL

Conversion to and from Lists

Two simple stream functions capture this concept of unfold and fold. The stream
function stream take a list zs :: [a] (zs of type list of as) and provides a Stream that
produces exactly the elements in the list. The unfolding function next takes the seed – in
this case the list provided by the user – and examines it. If the list is empty (next []),
the stream produces a Done step. If the list is non-empty (next (x:xs)), it is cut into a
head x and a tail xs. The head is provided as the stream element to yield, while the tail
becomes the next seed.

Note that neither stream nor next are actually recursive. The definition says how to
produce one step given a seed. The only recursive functions are folding functions like
unstream.

The unstream function folds a stream to produce a single result. This single result
is the list of elements created using the different combined stream functions. unstream

takes the Stream apart to extract the next function which can produce a single step in the
functional loop using the Step data type. It also requires the initial seed z. Via the locally
defined go, each current seed or index is pattern-matched on. In case the current seed
produces Done the loop terminates with an empty list [] as the last element. Skipping
directly calls go recursively with the next seed t, while Yield x t produces an x in the
head position and appends (using (:)) the tail of the list recursively via go.

It follows that given a finite list xs the equality xs ≡ unstream (stream xs) holds. From
this equality one can conclude that functions operating on finite lists can be replaced by
stream fusion functions that are more efficient than their list counterparts. As already
stated, this can be done by the user switching from the standard list library to the stream
fusion drop-in replacement.

Listing 4.7: stream and unstream (Coutts et al., 2007)

stream :: [a] → Stream a

stream zs = Stream next zs where

next [] = Done

next (x:xs) = Yield x xs

unstream :: Stream a → [a]

unstream (Stream next z) = go z where

go s = case s of

Done → []

Skip t → go t

Yield x t → x : go t

In order to replicate Wadler’s example (Listing 4.2), three stream fusion functions are
required. A sum over integers, a function to map the square function, and a way to create
consecutive integers from m to n. Providing all three functions makes it possible to not
use stream/unstream at all. For Wadler’s example this is not required as the compiler can
already produce the efficient version of Listing 4.3. The ADPfusion library requires a more
complex fusion system not possible with plain linked lists.

4.2. DEFORESTATION AND FUSION 49

Mapping a Function over a Stream

The first stream fusion function, map takes a function (f::a→b) from type a to type b and
a Stream of as and produces a Stream of bs. The original map function was only defined
for lists. The version presented here is the stream equivalent. By keeping the names the
same, existing code needs only import the stream fusion library, instead of the library for
plain linked lists, to enable fusion.

Note that map is not recursive. It inspects only one Step using the locally created next

function. If a Yield is produced, it changes x::a to (f x)::b, but otherwise does not
change the stream. Steps can be created from the seeds s only using sfun s. This is the
only way in which the seed can be inspected.

Listing 4.8: map (Coutts et al., 2007)

map :: (a→b) → Stream a → Stream b

map f (Stream sfun z) = Stream next z where

next s = case sfun s of

Done → Done

Skip t → Skip t

Yield x t → Yield (f x) t

Folding a Stream into a Single Value: Summation

What remains is to sum up all the arguments. sum, like unstream, is recursive and consumes
the whole stream. Note that using example Listing 4.2, the next function in sum is actually
combined of a number of functions applied one after another, as exercised below in the
worked stream fusion example in Sec. 4.2.4.

The inner workings of sum are almost the same as those of unstream. In this case, a
stream of things that can be summed up is reduced to a single number. The recursive
go function carries an accumulator that is initialized with 0, and the initial stream seed
z. Depending on the step produced by the current seed in go, one of three branches is
taken. In case of Done the final accumulator value is returned. If the current step is to
be Skipped, go is called recursively with the current accumulator and the next seed t.
Only in case of a Yield is the yield value x added to the accumulator. go is then called
recursively with the new accumulator value and the next seed.

Listing 4.9: sum

sum :: Stream a → a

sum (Stream next z) = go 0 z where

go acc s = case next s of

Done → acc

Skip t → go acc t

Yield x t → go (acc+x) t

50 CHAPTER 4. EFFICIENT ALGORITHMS IN HASKELL

Creating a Stream of Integers

Finally, in order to avoid list comprehensions (terms of the form [1..n]), a generator
function is required. This function creates a stream equivalent to stream [1..n]. As
ADPfusion (Chapter 8, Höner zu Siederdissen (2012)) does not use stream/unstream but
creates streams directly, a discussion of the syntactic sugar provided by list comprehensions
can be avoided.

The enumFromTo generator of Listing 4.10 creates a stream that yields each Int from
from to to and then terminates the stream. The initial seed is the lower bound from of the
increasing list of integers. The local function next takes the current seed and compares it
to the upper bound. While the current value is still within the bounds (from ≤ cur ≤ to)
the current value is wrapped in a Yield and the seed is set to cur + 1. If the condition
does not hold, a Done step is generated.

Listing 4.10: enumFromTo generator function

enumFromTo :: Int → Int → Stream Int

enumFromTo from to = Stream next from where

next cur = case (cur ≤ to) of

True → Yield cur (cur+1)
False → Done

4.2.3 The case-of-case Transformation

The optimizations below makes extensive use of the case-of-case transform (Peyton Jones
and Santos, 1998). This transform simplifies nested branches. Branches of this type occur
very often during the simplifications performed in stream fusion.

Consider the nested case statement below, where the outer branch variable is calculated
via the inner case.

case

case x of

A → X

B → Y

of

X → x

Y → y

This code can be transformed into the equivalent but simpler

case x of

A → x

B → y

4.2.4 A Worked Stream Fusion Example

In this worked example, the steps taken by the compiler to transform high-level code into
efficient code are shown. Starting from map square (enumFromTo m n) written by the user,
the compiler is able to calculate the same efficient code as shown in Listing 4.3.

4.2. DEFORESTATION AND FUSION 51

In Listing 4.11, the first compilation step in transforming
sum (map square (enumFromTo m n)) is shown (where m == 1 would give the origi-
nal sum over [1..n], each squared) The compiler inlines (copies) all function bodies from
enumFromTo, map, and sum. The composed functions are combined into one larger block.
The Haskell-style comment “-- comment” denotes the origin of each local function.

Some simplification is achieved by ignoring the Skip constructor. As the example
does not make use of Skip, nothing is lost and the example code is a bit more clear.
Furthermore, the same optimizations as for Done and Yield would be performed.

Listing 4.11: optimization of sum (map square (enumFromTo m n))

sumMapSqure m n = go 0 m where

next_enum from = case (from ≤ n) of -- enumFromTo "next"

True → Yield from (from+1)
False → Done

next_map s = case next_enum s of -- map "next"

Done → Done

Yield x s’ → Yield (square x) s’

go acc s = case next_map s of -- sum "go"

Done → acc

Yield x s’ → go (acc+x) s’

In the first transformation step, the compiler inlines next_enum into next_map. The fol-
lowing case-of-case construct can then be further optimized. Notice that all constructors
(True, False, Done, and Yield) are statically known.

sumMapSqure m n = go 0 m where

next_map s =
case

case (s ≤ n) of

True → Yield s (s+1)
False → Done

of

Done → Done

Yield x s’ → Yield (square x) s’

go acc s = case next_map s of

Done → acc

Yield x s’ → go (acc+x) s’

A case-of-case optimization is performed.

sumMapSqure m n = go 0 m where

next_map s = case (s ≤ n) of

True → Yield (square s) (s+1)
False → Done

go acc s = case next_map s of

Done → acc

Yield x s’ → go (acc+x) s’

The resulting code for next_map is inlined, and again a case-of-case transformation is
performed.

52 CHAPTER 4. EFFICIENT ALGORITHMS IN HASKELL

sumMapSqure m n = go 0 m where

go acc s =
case

case (s ≤ n) of

True → Yield (square s) (s+1)
False → Done

of

Done → acc

Yield x s’ → go (acc+x) s’

The final code is optimal. go is recursive, accumulating in acc the sum of values from
m to n. The final case expression will be transformed into efficient assembler or LLVM
(low-level virtual machine (Terei and Chakravarty, 2010; Lattner and Adve, 2004)) code.

sumMapSqure m n = go 0 m where

go acc s = case (s ≤ n) of

True → go (acc + square s) (s+1)
False → acc

At this point, it should be clear that even very complex list-like code can be transformed
into efficient final code by the compiler applying a set of transformations often enough. For
more complex user code, like ADPfusion dynamic programs, it would become infeasible for
the programmer to apply these transformations manually. The compiler, however, only
needs to iterate the set of rules given here to finally produce efficient code.

The combinators developed in the ADPfusion library are all written in the style used in
map (Listing 4.8). RNAwolf as of this work is based on the vector library. This allows for
partial fusion. The success with Nussinov78 and RNAfold using ADPfusion means that
complex algorithms can be written using ADPfusion. Ongoing work using these ideas is
presented in the concluding Chapter 9.

Chapter 5

Semantics and Ambiguity of
Stochastic RNA Family Models

Robert Giegerich and Christian Höner zu Siederdissen.
Semantics and Ambiguity of Stochastic RNA Family Models.
IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2011. 8 (2).
499–516.

RG designed the study. CHzS wrote the CMC covariance model compiler. Both authors
participated in writing the paper.

© 2011 IEEE. Reprinted, with permission, from Giegerich and Höner zu Siederdissen,
Semantics and Ambiguity of Stochastic RNA Family Models, 2011 (published online 3.
Feb. 2010)

53

TCBB SUBMISSION 1

Semantics and Ambiguity of Stochastic RNA
Family Models

Robert Giegerich and Christian Höner zu Siederdissen

Abstract

Stochastic models such as hidden Markov models or stochastic context free grammars can fail to return the
correct, maximum likelihood solution in the case of semantic ambiguity. This problem arises when the algorithm
implementing the model inspects the same solution in different guises. It is a difficult problem in the sense that
proving semantic non-ambiguity has been shown to be algorithmically undecidable, while compensating for it (by
coalescing scores of equivalent solutions) has been shown to be NP-hard. For stochastic context free grammars
modeling RNA secondary structure, it has been shown that the distortion of results can be quite severe. Much less
is known about the case when stochastic context free grammars model the matching of a query sequence to an
implicit consensus structure for an RNA family.

We find that three different, meaningful semantics can be associated with the matching of a query against
the model – a structural, an alignment, and a trace semantics. Rfam models correctly implement the alignment
semantics, and are ambiguous with respect to the other two semantics, which are more abstract. We show how
provably correct models can be generated for the trace semantics. For approaches where such a proof is not possible,
we present an automated pipeline to check post factum for ambiguity of the generated models.

We propose that both the structure and the trace semantics are worth-while concepts for further study, possibly
better suited to capture remotely related family members.

Index Terms

RNA secondary structure, RNA family models, covariance models, semantic ambiguity.

I. INTRODUCTION

A. Background: Semantics and ambiguity in stochastic modeling

Stochastic models: Stochastic models are powerful and widely used techniques in computational
biology. In this article, we study covariance models implemented by stochastic context free grammars
(SCFGs), which include hidden Markov models (HMMs) as a subclass. Let us start our discussion with
this simpler model.

An important application of HMMs in biosequence analysis is the modeling of protein families. There,
aligned protein sequences are processed into family models implemented as HMMs using the HMMer
package [7] and stored in the Pfam data base [2]. Running a query sequence against a model returns a
score that indicates the likelihood that the query belongs to the sequence family. Scanning a long sequence
with the model reveals those regions that most likely share an evolutionary relationship with the model
family.

An application of similar importance is the modeling of structural RNA families. Models are generated
with the tool Infernal [8], [15] and accessed via the Rfam data base [9]. Here, an SCFG implements a
covariance model of RNA sequences that share a consensus secondary structure. A “parse” of a query
sequence with the model grammar shows how well it matches the family sequences, accounting for
sequence as well as structure conservation.

HMMs and SCFGs use quite a different nomenclature. Nevertheless, mathematically, HMMs are a
subclass of SCFGs – those cases where the context-free grammar underlying the SCFG belongs to the

Robert Giegerich is with the Center of Biotechnology and the Faculty of Technology at Bielefeld University, D-33615 Bielefeld, Germany;
robert@techfak.uni-bielefeld.de

Christian Höner zu Siederdissen is with the Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna,
Austria; choener@tbi.univie.ac.at 0000

Digital Object Indentifier 10.1109/TCBB.2010.12 1545-5963/10/$26.00 © 2010 IEEE

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

54 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

TCBB SUBMISSION 2

subclass of regular grammars. Where the SCFG literature [8], [18] uses the terminology of formal language
theory, such as grammars and parses, the HMM literature prefers a terminology of transition rules and
paths. The CYK algorithm, which returns the highest scoring parse according to a SCFG, is a generalization
of the Viterbi algorithm, which returns the highest scoring transition path for an HMM. In this article,
we will build on the established SCFG terminology, because it makes the theory more general and also
because our immediate practical interest lies with covariance models as used in Rfam.

Modeling semantic ambiguity: The problem of semantic ambiguity has been recently addressed in a
series of papers. Giegerich [10] pointed out the problem and suggested a suitable formalization: the parse
trees constructed by a SCFG parser represent some real-world objects of interest, for example alternative
secondary structures for an RNA sequence. If some of these parses actually represent the same object, we
have a case of semantic ambiguity. By specifying an explicit mapping of parses to a canonical (unique)
representation of our objects of interest, it may be possible to prove presence or absence of ambiguity.
The use of a canonical representation appears to be a necessary extension to the standard framework of
stochastic modeling, in order to deal with ambiguity in a systematic manner. It plays the role of associating
a precise semantics to the parse trees (namely, the structures they represent), and coding this meaning
within the model is the key to tackling it computationally. The term “semantic” ambiguity that we use in
this article catches this fact, and discerns it from syntactic ambiguity as studied in formal language theory.
In our case, syntactic ambiguity only means that a grammar can specify several different structures for a
given sequence, which is a good thing rather than a problem in combinatorial optimization. Note that in
textbooks covering SCFGs [1], [6], the pitfall of semantic ambiguity has not yet been paid attention to,
and the most likely parse is taken for granted to indicate the most likely structure.

Ambiguity – does it really matter: Dowell and Eddy [5] approached the ambiguity issue from
the pragmatic side and investigated whether it really matters in practice. They compiled a number of
plausibility arguments, why one might hope that the most likely parse somehow points to the most likely
structure, even in the presence of ambiguity. But then, they refuted such hopes: For two ambiguous
grammars, they tested how often the most likely parse returned by the SCFG was different from the most
likely structure. For one grammar (G1), the result was wrong for 20% of all tested sequences. For the
other grammar (G2), which was a refinement of G1 for the sake of better parameter training, the result
was wrong even for 98%. Dowell and Eddy provided a first empirical test for the presence of ambiguity,
and continued studying parameter estimation for several alternative, non-ambiguous grammars.

Algorithmic undecidability of semantic ambiguity: The idea of ambiguity checking was further
worked out by Reeder et al. [16]. They gave a proof that, in general, presence or absence of semantic
ambiguity is formally undecidable. However, they contributed a series of further techniques for ambiguity
checking, where the most powerful one involves translation of the SCFG into a context-free grammar
generating the canonical representation introduced in [10]. Then, a semi-decision procedure such as a
parser generator may be able to demonstrate presence or prove absence of ambiguity in many relevant
cases. The simple unambiguous grammars studied in [5] were proved unambiguous in this mechanized
fashion. Moreover, the rather sophisticated grammar designed by Voss et al. for probabilistic shape analysis
[21] could also be proved non-ambiguous in a similar way. The study by Reeder et al. [16] also indicated
some techniques of avoiding ambiguity. However, there are cases where the expressiveness of the model
– the capability of adapting the parameters of the model to a training set – may suggest to prefer a
semantically ambiguous grammar.

Algorithmic infeasibility of ambiguity compensation: Can we still obtain the desired result when
the grammar is ambiguous? Such a case was studied in the HMM literature by Brejova et al. [4] under
the name “path labeling problem”. In HMM modeling, the model itself often is more refined than the
final result. For example, the gene structure of a sequence can be indicated by a labeling of residues
by E (exon) or I (intron) states. Yeast, for example, has two classes of introns, “short” and “long”. The
stochastic model, in order to capture the length distribution of introns, requires several states to model
intronic residues. Therefore, several transition paths through the model may differ in their points of
transition between intronic states, while they lead to the same path labeling and hence, indicate the same

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS 55

TCBB SUBMISSION 3

gene structure. Here, the path labeling constitutes the canonical mapping: Paths are equivalent when they
have the same labeling, and the HMM is semantically ambiguous when this happens. Brejova et al. then
studied what we call ambiguity compensation: can the algorithm be modified such that all scores of paths
with the same labeling accumulate? Their main result was that, in general, this problem is NP-hard, and
hence, computationally infeasible. This does not rule out that ambiguity compensation may be practical
in restricted cases, but in general, we are better advised to avoid semantic ambiguity altogether.

Unresolved questions: There are three questions that were not addressed: (1) Dowell and Eddy studied
semantic ambiguity in principle, but worked with rather small example grammars. Grammars such as those
underlying Rfam are much larger, and they do not simply assign a structure to an RNA sequence, but
they also relate it to the family model. It is unclear how the semantics of a model should be defined. (2)
While methods for ambiguity checking in formal language theory have been advanced recently [3], the
step from a large, tool-generated SCFG to the context-free grammar suitable for ambiguity checking is
still left open. (3) Are the models used in practice actually semantically unambiguous, and if so, based
on which semantics? These are the questions we will address.

B. Contributions of this article

This article provides a theoretical and a software-technical contribution, and their application to Rfam
models.

On the theory side, we formally define three alternative semantics for covariance models for RNA
families – a structure, a trace, and an alignment semantics. All three of them have a well-defined biological
meaning, which is interesting to implement. Whether or not a particular grammar is in fact semantically
ambiguous depends, of course, on the chosen semantics. We show how provably non-ambiguous models
with respect to the trace semantics can be constructed.

On the technical side, we provide an automated pipeline that accepts a grammar G, a canonical
representation mapping (written in a particular style), and produces a grammar Ĝ which is syntactically
ambiguous if and only if G is semantically ambiguous. Connecting this pipeline to a (syntactic) ambiguity
checker for context-free grammars, this automates semantic ambiguity checking as far as its intrinsic
undecidability allows for it.

In the application, we apply our formalism to Rfam models. We find that Rfam models faithfully
implement the alignment semantics, although their description in the literature at one point suggests a
structure semantics. With respect to the structure and the trace semantics, they are ambiguous. In the
conclusion, we argue that both the structure and the trace semantics are worth further study, because they
are more abstract and may be better suited to capture remotely related family members.

The article is organized as follows: In Section II we review what is known about semantics and ambiguity
of simple SCFGs as used for structure prediction, about ambiguity checking, and ambiguity compensation.
In Section III we turn to family model grammars and find that there are three alternative ways to define
their semantics. In Section IV we describe precisely a new algorithm of model generation for the trace
semantics and prove its correctness (i.e. non-ambiguity of the generated models). In Section V we describe
a software for upward compilation and ambiguity checking of Rfam models. This pipeline is applied in
Section VI. We conclude with a discussion of open research questions which arise from our findings.

II. A SUMMARY OF SEMANTIC AMBIGUITY THEORY

In this section, we review known results on the problem of semantic ambiguity. The only new contribu-
tion in this section is that the method for ambiguity checking suggested in [16] has now been automated.
Along with this review, we introduce the concepts and the formalism to be further developed subsequently.

A. SCFGs and their semantic ambiguity

Context-free grammars: Given an alphabet A of symbols, A∗ denotes the set of all strings of symbols
from A, including the empty string ε. A context-free grammar G is a formal system that generates a

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

56 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

TCBB SUBMISSION 4

G1: S → ε | aS |Sa | aSb |SS G5: S → ε | aS | aSbS

Fig. 1. Grammars G1 and G5 taken from [5]. S is the axiom and only nonterminal symbol in either grammar. a and b denote arbitrary
bases out of {a, c, g, u}, as SCFGs allow non-standard base pairs (albeit with low probability). Hence, a rule like S → aSb is a shorthand
for 16 different rules.

S S

gS

u

a

a
S

c

S

S

S

gS

u
S

a

c

t1: t2:

a

S
t5:

S

S

S S

a

a

c

u

gS S

εεε

εε

ε

Fig. 2. Three derivation trees for the sequence aacug. t1 and t2 are derived with G1, t5 is derived with G5.

language of strings over A. It uses a set V of nonterminal symbols, one of which is designated as the
axiom. Its derivation rules (productions) have the form X → α, where X ∈ V and α ∈ (V ∪ A)∗. A
derivation of a terminal string w ∈ A∗ starts from the axiom symbol, and in each step, replaces one of
the nonterminal symbols in the emerging string according to one of the productions: xXy → xαy may
be a chosen transition when X → α is a production of G. Such a derivation can be represented uniquely
in the form of a tree, and by reversing the angle of view (from generating a string from the axiom to
reducing a given string towards the axiom), this tree is also called a parse tree. Two grammars are shown
in Fig. 1 , and three such parse trees are shown in Fig. 2. A grammar is (syntactically) ambiguous if
there is a string that has at least two different parse trees. It is a classical result of formal language theory
[12] that syntactic ambiguity of context-free grammars is formally undecidable. This means, there is no
algorithm that can decide presence or absence of ambiguity for all context-free grammars. However, there
are semi-decision procedures that return either YES, NO or MAYBE, which have proved quite powerful
in practice [3].

Stochastic CFGs: A stochastic context-free grammar augments each production rule with a transition
probability, such that the probabilities assigned with alternative rules for the same nonterminal symbol sum
up to 1. For rules which simply generate a terminal symbol, the associated probability is called emission
probability. We do not distinguish these two types of probabilities here. In a derivation, the probabilities
of all applied rules multiply. In such a way, a parse tree t of string x assigns a probability P (t, x) with
x. The CYK algorithm, given x, computes the parse topt(x) = argmaxt{P (t, x) | t parse for x}.

SCFG semantics: When modeling RNA structure, the semantics SSCFG of an SCFG G is defined as
follows: Each parse tree t according to G associates an RNA secondary structure SSCFG(t) with sequence
x: terminal symbols (denoting RNA bases) produced in the same step with productions like S → aSb are
considered base paired, while all other ones are considered unpaired. Denoting structures in the familiar
dot-bracket notation, where a dot denotes an unpaired base, and matching brackets denote paired bases,
we observe SSCFG(t1) = SSCFG(t2) = SSCFG(t5) = ".(.).".

When there exist t �= t′ but SSCFG(t) = SSCFG(t′) for grammar G, we say that G is semantically
ambiguous. This occurs with the trees t1 and t2 for grammar G1 in Fig.2. There are no such trees with
G5. Hence, G1 is semantically ambiguous, while G5 is an example of a non-ambiguous grammar.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS 57

TCBB SUBMISSION 5

With a semantically unambiguous grammar, the most likely parse also means the most likely structure
for x – this is exactly what we hope to find. If the grammar is semantically ambiguous, the most likely
structure sopt may have several parses such that sopt = SSCFG(t1) = SSCFG(t2) = . . ., with probabilities
p(t1, x), p(t2, x), . . ., and P (sopt) =

∑
i p(ti, x). In this situation, it is not guaranteed that one of the parses

ti has maximal probability, and some unrelated parse (indicating a different structure), will be returned
by the CYK algorithm. For the grammars G1 and G2 studied in [5]1 , this happens in 20% resp. 98% of
all test cases.

Many simple grammars can be specified for RNA structure that are not semantically ambiguous.
Different (non-ambiguous) grammars for the same problem have different characteristics with respect
to the probability distributions they define. For example, grammar G5, attributed to Ivo Hofacker in [5], is
arguably the smallest grammar for the purpose. It has only 21 parameters and showed “abysmal” modeling
performance in [5].

B. Embedding SCFGs in a more general framework

In order to deal with ambiguity checking and compensation, both in theory and practice, we embed
SCFGs in the more general framework of algebraic dynamic programming (ADP) [11]. This will allow us
to replace the probabilistic scoring scheme “hardwired” in the SCFG concept by other evaluation schemes,
or use several such schemes in combination. In our application, we will in fact generate equivalent ADP
code from Rfam models, to be used for a variety of different purposes aside from stochastic scoring.

Algebraic dynamic programming: ADP is a declarative method to design and implement dynamic
programming algorithms over sequence data. ADP and stochastic modeling tools serve complementary
purposes (while both rely on the same type of dynamic programming algorithms for their implementation).
ADP is designed to give the author of a DP algorithm maximal convenience – high level of abstraction,
re-usable components, and compilation into efficient target code. Any type of combinatorial optimization
over sequences is possible, provided that Bellman’s Principle of Optimality holds. Grammars in ADP are
produced by a human designer and are typically small – at least compared to grammars derived from
data by stochastic modeling tools. These, in turn, come with a hard-wired scoring scheme for maximizing
probability or log-odds scores, and the capability to train the parameters via expectation maximization.
Many of the grammars constructed by automatic modeling tools such as Infernal have probably never
been inspected by a human eye.

The ADP formalism starts from a signature, which is a supply of function symbols2. One of these,
named h by convention, designates the objective function, to be used in subsequent analyses. The other
ones are placeholders for scoring functions.

For example, these are the signatures we will use with G1 and G5:
G1 G5
openl : A× V → V openr : V ×A → V open : A× V → V
pair : A× V ×A → V split : V × V → V pair : A× V ×A× V → V
nil : V h : [V] → [V] nil : V h : [V] → [V]

Here, A denotes the underlying sequence alphabet, V an arbitrary value domain, and [V] a list of
values.

Grammars in ADP are tree grammars. A tree grammar is analogous to a context free grammar, except
that the righthand side in X → α now is a tree, built from the function symbols of the signature (other
than h) at inner nodes, and nonterminal symbols as well as terminal symbols residing at the leaves of the

1Dowell and Eddy use the term “structural ambiguity” rather than “semantic ambiguity”. This is consistent with our terminology, because
for simple SCFGs, a structural semantics is the only one that has been considered so far. When we will turn to family models, there will
be different semantics which can be employed. Again, there will be a structural semantics, but it is not the one implemented in today’s
modeling approaches.

2Java programmers may think of it as an interface

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

58 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

TCBB SUBMISSION 6

openr pair
S

openl

Sa S a

split

S S

nil

ba S S

S
opennil

S

pair

a aS b

Fig. 3. Tree grammar versions of string grammars G1 (left) and G5 (right).

tree. Occasionally, we have a nullary function symbol, which also marks a leaf. Figure 3 shows the tree
grammar versions of G1 and G5.

The derivation with a tree grammar works as with CFGs, except that now it produces a tree. It may
derive the same tree in different ways (syntactic ambiguity of tree grammars), but this is easily avoided,
and besides, syntactic ambiguity is decidable for this class of tree grammars. Therefore, we can assume
that each tree has a unique derivation (or tree-parsetree). Each derived tree contains, as the string of its
leaf symbols, some sequence w ∈ A∗. These trees represent the candidates in the combinatorial search
space associated with sequence w, and in order to avoid the use of “tree” in too many connotations, we
will henceforth refer to them as candidates.

The introduction of a tree grammar, based on a signature of functions, seems like a minor, artificial
change of formalism, but has a profound impact: it decouples the candidates which we analyze from the
grammar which generates them. There can be more functions in the signature than there are productions
in the grammar, but normally, there are less. Different grammars over the same signature can be used to
derive the same set of candidates. Candidates only reflect their signature – they bear no resemblance of
the derivation and the grammar which generated them. Our candidates t1, t2 and t5 as derived by the tree
grammars are shown in Figure 4.

The function symbols that constitute the inner nodes of the candidate can be used to associate a variety
of meanings with each candidate. This is done by specifying an evaluation algebra – i.e. a data domain
and a set of functions (which compute on this domain), one for each function symbol in the signature3,
including h. Whatever evaluation we define will be computed by a generic CYK-like algorithm. We do
not worry about implementation issues here, and denote the analysis of input sequence x with grammar
G and evaluation algebra B as a function call G(B, x).

SCFGs encoded in ADP: To run an ADP grammar as a SCFG, one simply provides an evaluation
algebra which implements the function symbols in the signature by functions that compute probabilities.

Evaluation algebra PROB for G1:
h = maximum
pair(a, x, b) = pab ∗ x split(x, y) = psplit ∗ x ∗ y
openl(a, x) = pa ∗ x nil() = pnil
openr(x, a) = pa ∗ x

The probability scores pa, pab, psplit, pnil are to be estimated from the data.
Evaluation algebra PROB for G5:

h = maximum
pair(a, x, b, y) = pab ∗ x ∗ y
open(a, x) = pa ∗ x
nil() = pnil

3Java programmers may think of implementing the “interface”, but – please – with pure mathematical functions without side effects.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS 59

TCBB SUBMISSION 7

gnil

u

a

a

c
nil

nila

t1: t2:

a

split

openl openr

pair

openl

openr

pair

openr

open

a

a
open

u
open

pair

c g nilnil

t5:

openl

c

u

g

nil

split

Fig. 4. Candidates t1, t2 and t5, as derived by their tree grammars G1 and G5.

Evaluating a candidate in this interpretation yields its probability score, akin to what is achieved by a
SCFG, if the candidate was a parse tree. This is how we express the mathematical equivalent of an SCFG
in ADP. The advantage is: once we have the grammar in ADP form, we can use it for other purposes
besides stochastic scoring.

Encoding the canonical mapping: We use a second evaluation algebra to encode the canonical
mapping of candidates to their “meanings”. Let us call it CAN.

Evaluation algebra CAN for G1:

h = id
pair(a, x, b) = "("+ x+ ")" split(x, y) = x+ y
openl(a, x) = " · "+ x nil() = ""
openr(x, a) = x+ " · "

In algebra CAN, we define the functions such that they compute, from the candidate, the dot-bracket
representation of its associated structure. In other words, CAN implements the semantics SSCFG for G1.
Operator + here denotes string concatenation, and id denotes the identity function.

Evaluating the G1-candidates t1 and t2 in the algebras PROB and CAN, we obtain
PROB(t1) = split(openl(a, pair(a, openl(c, nil), u), openr(nil, g)) = psplit · pnil · pau · pa · pc · pg
PROB(t2) = split(openl(a, nil), openr(pair(a, openr(nil, c), u), g)) = psplit · pnil · pau · pa · pc · pg
CAN(t1) = split(openl(a, pair(a, openl(c, nil), u), openr(nil, g)) = ".(.)."
CAN(t2) = split(openl(a, nil), openr(pair(a, openr(nil, c), u), g)) = ".(.)."

In this way, the structure – the meaning of our candidates, which decides about ambiguity – now
becomes part of our operational machinery. We can call G1(CAN,"aacug"), and multiple occurences
of ".(.)." in the output witness the semantic ambiguity of G1. We leave it to the reader to define
analogous algebras PROB and CAN for the signature of G5. A powerful feature of the ADP approach is
the use of algebra products (see [20] for the precise definition). For example, calling G5(PROB∗CAN, x)
will give us all the structures for x that achieve the maximum probability score. Since the grammar G5
is semantically non-ambiguous, there may still be several candidates achieving maximal probability, but
they must all produce different structures as indicated by CAN. When the grammar is ambiguous (like
G1), neither of the optimal candidates may indicate the most likely structure, as explained in Section II-A.
G1(PROB ∗ CAN, x) returns the optimal candidates together with their associated structures, possibly
delivering duplicates, but we cannot be sure if any of them denotes the most likely structure.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

60 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

TCBB SUBMISSION 8

Ĝ1: S → (S) | .S |S. |SS | ε

Fig. 5. Grammar Ĝ1 derived from G1

C. Automated checking of semantic ambiguity

We now introduce a systematic and automated approach to ambiguity checking. Consider a tree grammar
and a canonical mapping algebra which maps candidates to strings over some alphabet Â. In this setting,
one can substitute the string composing functions of the algebra into the righthand sides of the tree
productions. By partial evaluation, we eliminate the trees, and righthand sides become strings over V ∪ Â.
Starting from the tree grammar G1, we rewrite its rules into those of grammar Ĝ1, shown in Fig. 5.

Note that the first rule in Ĝ1 is derived from 16 productions in G1, but since these are mutually
exclusive due to their terminal symbols, only one corresponding rule is retained in Ĝ1.

In this way, from our tree grammar G we obtain a context-free (string) grammar Ĝ with the following
property:

Theorem 1 The tree grammar G is semantically ambiguous if and only if the string grammar Ĝ is
syntactically ambiguous.

The proof of this theorem was given in [16]. At that time, the grammar Ĝ was handwritten – the
new aspect here is that it is now produced automatically from G and the canonical mapping algebra.
This is further described in Section V, where we present the pipeline cm2adp for upward compilation of
Infernal-generated models into the ADP framework. Taking these constituents together –

1) the automated re-coding of an SCFG in ADP as a tree grammar G,
2) the specification of a unique string representation as canonical mapping algebra CAN ,
3) the automated derivation of a string grammar Ĝ from G and CAN ,

we are now in a state where we can take a SCFG and submit it to an automatic ambiguity checker.
The only step which is not automated is, of course, the specification of the canonical mapping CAN .

Naturally, we must say at one point what the meaning of our candidates really is. However, for grammars
coming from the same modeling domain, this must be done only once, as the canonical mapping is the
same for all grammars. In this sense, the ambiguity checking pipeline is completely automated now.

D. Ambiguity compensation

The canonical mapping defines (as its reverse image) a semantic equivalence relation on the evaluated
candidates. Ambiguity compensation means that all scores within the same equivalence class should be
accumulated, rather than maximized over. Let us assume for the moment that we know how to accumulate
these scores4. We obtain an accumulating algebra PROBacc from PROB by replacing the (maximizing)
objective function h by the suitable accumulating function hacc. By calling G1(CAN ∗ PROBacc, x),
we correctly compute the probabilities, accumulated over the equivalence classes modulo CAN . So,
mathematically, ambiguity compensation is not a problem, and no additional programming effort is
required except for the coding of hacc.

However, we will experience an exponential slowdown of our program, consistent with the intractability
result of [4]. The asymptotic efficiency of the algorithm is affected by the number of equivalence classes
modulo CAN , which must be computed in total – and their number is, in general, exponential in the
length of the input sequence. Such an approach is feasible for moderate length RNAs when equivalence
classes are defined via shape abstractions [21], but when CAN simply denotes feasible structures of the
input sequence, one cannot get very far by this (otherwise quite elegant) method.

4For example, log-probabilities must be re-converted into probabilities in order to be added, which may cause numerical problems.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS 61

TCBB SUBMISSION 9

E. Ambiguity in sequence comparison: alignments versus traces

The phenomenon of semantic ambiguity is not peculiar to SCFGs. It arises with HMMs, and in fact,
already with simple, pairwise sequence alignments. As with SCFGs, it depends on the meaning we
associate with alignments. Seen as a syntactic object, each alignment of two sequences x and y stands for
itself and is distinct from all others. But sequence alignments are often interpreted as a reconstruction of
evolutionary history, where both sequences have developed from a common ancestor. Matched residues in
the alignment (bases for DNA, amino acids for protein sequences) are considered preserved by evolution.
Mismatches mean accepted point mutations. Gaps mean new residues that have been inserted in either x
or y. (If we see the same process as evolving from x to y, “insertions” in x appear as deletions, which
has no effect on the subsequent discussion.) If new sequence has been inserted in both x and y between
two preserved residues, there is no particular ordering of these events. The alignment, however, offers
two representations for the same fact: we may write both

x: ACAGGGG---CAC x: ACA---GGGGCAC
y: ACA----TTTCAC y: ACATTT----CAC,

denoting the same evolutionary history. Classical bioinformatics textbooks do not fail to point to this
fact [19], [22]. Naturally, if this situation arises at k locations during the evolution of the sequences, this
process has 2k aligments representing it – significantly disturbing any stochastic model.

“Alignments” where only matches and mismatches are specified, and hence, adjacent deletions/insertions
remain implicit, avoid this problem. They are called traces in [19], and we will adopt this naming later.
An unambiguous notation for traces could be e.g.

x: ACA[GGGG]CAC
y: ACA[TTT] CAC

where the square brackets designate inserted sequences unordered with respect to each other. Another
way to avoid ambiguity in alignments is presented later, when we return to this aspect in Section III-C.

III. SEMANTICS OF SCFG-BASED FAMILY MODELS

In this section we turn our attention to SCFGs which describe RNA family models, called family
model grammars for short. The previously developed SCFG terminology is not sufficient to understand
their properties. We will extend it appropriately. In particular, we will find that there are three reasonable,
alternative semantics for family model grammars.

A. From RNA folding SCFGs to family model grammars

There are three important differences between the SCFGs as we (and others) have used them as models
for structures of individual RNA molecules, and their use in family modeling.

Family model grammars encode a consensus structure: Grammars like G1 or G5 are unrestricted
RNA folding grammars. They will fold a sequence into all feasible secondary structures according to the
rules of base pairing. This makes the grammars relatively small, having one rule for every structural feature
considered by the scoring scheme, say a base pair or an unpaired base. The scoring scheme evaluates
alternative parses and selects the result from the complete folding space of the query sequence.

This is different with grammars that model an RNA family with a particular consensus structure C. The
consensus structure C is “hard-coded” in the grammar. To show a concrete consensus, we shall use star and
angle brackets in place of dots and parenthesis, e.g. "*<<*<*>>><*>*". This is only for clarity – there
is no difference, in principle, between the consensus and ordinary structures. For every position where
(say) a base pair is generated, the family model grammar has a special copy of the base pair generating
production, with nonterminal symbols renamed. The general rule S → aSu becomes Si → aSi+1u for
each position i where an a−u base pair is in C. The transition parameter associated with this rule can be

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

62 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

TCBB SUBMISSION 10

trained to reflect the probability of an a−u pair in this particular position. The type of grammar we have
seen before, therefore, only serves as a prototype from which such position-specific rules are generated.

A family consensus structure of n residues will lead to a model grammar GC with kn productions,
where k is a small constant. Hence, while folding a query with approximate length n and grammar G1
would require O(n3) computing steps, matching the sequence to the family grammar GC runs in O(n4)
time, simply because the size of GC is in O(n).

Family model grammars restrict the folding space of the query: A parse of a sequence x in GC

indicates a structure for x, but this structure is no longer a free folding: it is always a homomorphic
image of C, with some base pairings of C possibly missing, and some residues of C possibly deleted.
Still, the paired residues may be assigned to the bases of x in different ways; therefore, the structures
assigned to x by different parses may vary slightly. This restriction of the folding space to “lookalikes”
of C is the second difference between single sequence folding and family modeling.

Family model grammars encode the alignment of a query to the consensus: The third, important
difference is that GC implicitly aligns x to C. For example, a base assigned an unpaired status in x may
represent one of three situations: it may (i) be matched to an unpaired residue in C, (ii) be an inserted
base relative to C, or (iii) be matched to a paired residue in C, but without having a pairing partner in x.

These three situations are explicitly distinguished in GC , they are scored separately, and the CYK
algorithm returns the parse with maximal score based on these considerations. To achieve this, the prototype
grammar needs rules which take care of deletions, insertions, and different types of matches.

Together, these three differences are central to our issue of ambiguity, and we summarize them in the
following
Fact Let M be a covariance model implemented by an SCFG GC , which implicitly encodes the consensus
structure C. Then, parsing x with GC finds an optimal alignment of x with C which implicitly designates
a structure sx for x. This structure sx is restricted to one of many possible homomorphic images of C
obtained by deleting residues and dropping base pairings from C. There are numerous other alignments
which assign the same structure sx to x, whose (smaller) likelihood contributions are not reflected by the
optimal alignment.

B. Prototype grammar and family model example

At this point the reader rightfully expects an example of a prototype grammar and a family model
grammar generated from it. We show a prototype grammar derived from G5 and a toy family model
grammar generated from it.

The prototype grammar G5M: We extend G5 to obtain a prototype grammar G5M capable of
describing query alignments to a model. G5M extends G5 by rules modeling insertions, deletions and
matches. Again, a and b stand for arbitrary bases.
Grammar G5M , the axiom is A.

A → a A | M
M → ε | a A | M |

a A b A | a A M | M b A | M M

From a purely syntactic point of view, this grammar appears weird, because the chain rule M → M
and M → M M together with M → ε allow for unbounded derivations that produce ε. There is
no string in the language of this grammar which has a unique derivation! Ignoring all rules except
{M → ε, M → a A, M → a A b A} and mapping nonterminal symbols A and M to S, we are back at
G5. The other rules provide for insertions and deletions between the query and the model. Specialization
of G5M to the consensus "*<*>*" will yield the family model grammar GToy5. Its context-free core is
shown in Fig. 6 for shortness, but GToy5 actually is a tree grammar using the same signature as G5M .
Details of the generation algorithm are in Section IV.

To make our intentions explicit, we semantically enhance the grammars by adding an evaluation function
interface.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS 63

TCBB SUBMISSION 11

A1 → a A1 |M1

M1 → a A2 |M2

A2 → a A2 |M2

M2 → a A3 b A5 | a A3 M5 | M3 b A5 | M3 M5

A3 → a A3 |M3

M3 → a A4 |M4

A4 → a A4 |M4

M4 → ε
A5 → a A5 |M5

M5 → a A6 |M6

A6 → a A6 |M6

M6 → ε

Fig. 6. Family model grammar GToy5 generated from G5M for consensus C = "*<*>*"

a

f_nil f_mat

f_Lrf_PK f_bg

A

A

f_ins

f_lR

f_del

A M

A

M

a b a A M AbM M M

a A M

Fig. 7. Prototype grammar G5M as a tree grammar. Functions fmat, fins and fdel mark matches, insertions and deletions of unpaired
residues. Functions fPK , fLr, flR, and fbg mark matches, partial, or total deletions of paired residues in the model.

Here is the signature:
fmat : A× V → V fPK : A× V ×A× V → V
fins : A× V → V fLr : A× V × V → V
fdel : V → V flR : V ×A× V → V
fnil : V fbg : V × V → V
h : [V] → [V]

Remember that A denotes the underlying alphabet. The tree grammar version of G5M is shown in Fig.
7.

C. Three semantics for family model grammars

Matching a query x against a family model should return the maximum likelihood score of – what?
There are three possibilities, which we will explicate in this section.

For the family models, derived from G5M , we can use the same signature as with G5M , except that
the functions get, as an extra first argument, the position in the consensus with which they are associated.
Hence, when specifying a semantics via an evaluation algebra for G5M , this implies the analog semantics
for all generated models, as they solely consist of position-specialized rules from G5M .

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

64 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

TCBB SUBMISSION 12

The structure semantics: The obvious idea is to ask for the highest scoring structure assigned to x.
This is in line with the semantics SSCFG introduced for SCFGs previously. Here is the canonical mapping
algebra CANstruct:

fmat(a, s) = ”.” + s fPK(a, s, b, t) = ”(” + s+ ”)” + t
fins(a, s) = ”.” + s fLr(a, s, t) = ”.” + s+ t
fdel(s) = s flR(s, b, t) = s+ ”.” + t
fnil = ”” fbg(s, t) = s+ t
h = id

Here again, s and t denote strings derived from substructures, and + denotes string concatenation. a
and b are the concrete residues read in the query. CANstruct maps residues of the query x to their assigned
paired or unpaired status, while residues from the consensus which are deleted (e.g. where fbg applies)
produce no contribution to the output. Hence, the meaning of any candidate evaluated with CANstruct is
simply a structure for x in dot-bracket notation.

The alignment semantics: With the alignment semantics, we want to obtain the maximum likelihood
score of an alignment of the query to the consensus. This model is more refined than the structure
semantics, as a given query structure can be aligned to the consensus in many different ways, and we
seek the most likely of those. Let us now formalize this idea.

For capturing the alignment semantics, we must use a canonical representation that expresses not only
the structure assigned to x, but also how it is aligned to the consensus structure C. Hence, it is an
alignment of two strings, the consensus structure and the structure assigned to the query. Both, naturally,
can be padded with gaps. The following are three different alignments of a query sequence to the same
consensus:

(1) **<<**--*>*>- (2) **<-<*---**>*> (3) **<<**-*>*>--
._(......__). ___.(......)_. __((....)_)..

Note that the upper line is always "**<<***>*>" when ignoring the gaps. This is because the
consensus is hard-coded in the model grammar. In contrast, the query structure is ".(......)." in
alignments (1) and (2), and "((....)).." in alignment (3).

In defining the canonical mapping algebra CANalign for the alignment semantics, we use functions that
generate the alignment column-wise.5

Here is the canonical mapping CANalign:

fmat(a, s) = ”
∗
. ” + s fPK(a, s, b, t) = ”

<
(” + s+ ”

>
) ” + t

fins(a, s) = ”
−
. ” + s fLr(a, s, t) = ”

<
. ” + s+ ”

>

” + t

fdel(s) = ”
∗
” + s flR(s, b, t) = ”

<

” + s+ ”
>
. ” + t

fnil = ”” fbg(s, t) ”
<

” + s+ ”
>

” + t
h = id

The trace semantics: Our third semantic idea results from the fact the good old sequence alignments
have an ambiguity problem of their own. After all, we are aligning a query sequence to the model. Recall
our example from Section II-E of traces of evolutionary processes that are represented ambiguously by
sequence alignments:

x: ACAGGGG---CAC x: ACA---GGGGCAC
y: ACA----TTTCAC y: ACATTT----CAC

This directly pertains to our problem at hand if you consider x as the consensus of (say) a loop region
in the model (be it a profile HMM or an SCFG), and y as the loop of a corresponding hairpin in the

5In the implementation, unfortunately, we have to replace the nice two-letter columns by ASCII encodings.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS 65

TCBB SUBMISSION 13

query. If a stochastic model assigns a probability of 0.1 to each of the two alignments, the corresponding
trace

x: ACA[GGGG]CAC
y: ACA[TTT] CAC

has probability 0.2 (at least). We have a case of semantic ambiguity, which must be taken care of
even in stochastic sequence alignment. The Plan7 architecture of HMMer, for example, does this in a
drastic way by requiring at least one intervening match when switching between deletions and insertions
[17]. This simply disallows adjacent deletions and insertions altogether (but also rules out some plausible
traces).

We will adopt a different route. It is easy to modify the alignment recurrences defining sequence
alignment (the grammar in our terminology) such that only one of the possible arrangements of adjacent
insertions and deletions is considered as a legal alignment [10]. With such canonization, each trace is
uniquely represented by an alignment. The reduction is significant: For the two short sequences shown
above, and under the affine gap model, there are 396,869,386 alignments, representing only 92,378 different
traces6. Traces are considerably more abstract than alignments.

Let us return to our covariance models. Our family model grammars perform both folding and alignment,
and hence, they are also affected by this source of ambiguity – at least if we intend that final score
designates the most likely evolutionary process that relates the query to the model. The case even becomes
more subtle. The following alignment (4) denotes the same trace as alignment (2):

(2) C: **<-<*---**>*> (4) C: **-<<*---**>*>
x: ___.(......)_. x: __._(......)_.

What both alignments say is that a paired residue (at position 3) in the consensus C is deleted in x,
while another base is inserted in x. As with plain sequence alignments, adjacent deletions and insertions
are unrelated; their order is insignificant.

Hence, it makes sense to introduce a trace semantics for our family model grammars: we want to
obtain the maximum likelihood score of a trace, which uniquely describes an evolutionary process of
transforming the consensus into the query.

To capture this idea, we need to design another canonical algebra CANtrace, which maps these two
situations (2) and (4) above to the same, unique representation. Let us adopt the canonization rule that
insertions must always precede adjacent deletions. By this rule, both alignments (2) and (4) are represented
in the form of (4). The canonical mapping algebra CANtrace is almost the same as CANalign, except that
deletions that appear to the left of an insertion are pushed to the right.

Algebra CANtrace

fmat(a, s) = ”
∗
. ” + s fPK(a, s, b, t) = ”

<
(” + s+ ”

>
) ” + t

fins(a, s) = ”
−
. ” + s fLr(a, s, t) = ”

<
. ” + s+ ”

>

” � t

fdel(s) = ”
∗
” � s flR(s, b, t) = ”

<

” � s+ ”
>
. ” + t

fnil = ”” fbg(s, t) = ”
<

” � s+ ”
>

” � t
h = id

d � (a+ s) = if a = ”
−
. ” then a+ (d � s) else d+ a + s

d � ε = d

Wherever a deletion is issued, we have replaced simple string concatenation (+) by the operation �
which moves the deletion to the right over any leading insertions.

6Computed with the ADP versions of classical dynamic programming algorithms at http://bibiserv.techfak.uni-bielefeld.de/adp/adpapp.html

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

66 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

TCBB SUBMISSION 14

S

S
opennil

S

pair

< >* SS

S
opennil

S

pair

a aS b

Fig. 8. Grammar G5 as a tree grammar for parsing sequences (left) and consensus structures (right).

The semantic hierarchy: Our three semantics form a proper hierarchy – many alignments correspond
to the same trace, and many traces assign the same structure to the query. This also implies that a family
model which faithfully (unambiguously) implements the alignment semantics is ambiguous with respect
to the trace semantics, and one which faithfully implements the trace semantics is ambiguous with respect
to the structure semantics, which is the most abstract of the three.

Which semantics to choose? When we are mainly interested in a structure prediction for the query,
indicating why x may perform the same catalytic or regulatory function as the family members, then
the structure semantics may be most appropriate. When we are interested in estimating the evolutionary
closeness of the query to the family members, the trace semantics seems adequate. For the alignment
semantics, at the moment we see no case where it should be preferred.

But – can we generate unambiguous family model grammars and efficiently compute either of the three
semantics?

IV. GENERATING NON-AMBIGUOUS FAMILY MODELS FOR THE TRACE SEMANTICS

In this section we show how family model grammars can be generated which are non-ambiguous with
respect to the trace semantics. This will also provide a deeper insight on the meaning of the prototype
grammar 7. We proceed in the following steps: (1) We start from a non-ambiguous prototype grammar.
(2) We show how, given a consensus structure C, a model grammar GC is constructed which generates
alignments in the canonical form (insert-before-delete), as required for the trace semantics. (3) We give
a proof that for any C, GC is non-ambiguous under the trace semantics.

Here, we use grammar G5, because it is the smallest non-ambiguous grammar. However, the generating
technique and proof carries over to any non-ambiguous prototype grammar, which might be more attractive
than G5 from the parameter training point of view.

The meaning of prototype grammars: Starting from G5, our prototype grammar is G5M . We still
owe the reader the explanation why this grammar looks the way it does. The key point of G5M is that it
enforces the insert-before-delete convention. Only nonterminal symbol A allows for insertions. Whenever
a nonterminal symbol stands in the left context of a deletion, an M rather than an A is used.

The real understanding of the prototype grammar comes from the observation that the prototype grammar
G5M is a grammar that allows to align a query to all possible models:

There is no specific model encoded in G5M . This is why the grammar can be so small. But each
derivation with G5M not only assigns a structure to the query, but also implicitly encodes a model,
chosen by that derivation. This meaning of the prototype grammar can be made apparent by plugging
the definitions of CANtrace into the tree grammar G5M and symbolically evaluating a bit. Doing so, the
tree operators like fmat or fPK are replaced by string concatenations, and we obtain the string grammar
Ĝ5M :

Grammar Ĝ5M ; the axiom is A.
7The reader may find it helpful to inspect the actual implementation of the generator and run simple experiments. We therefore have

provided the generator among our educational ADP pages at http://bibiserv.techfak.uni-bielefeld.de/adp/nilpairopen.html

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS 67

TCBB SUBMISSION 15

A → −. A | M

M → ε | ∗. A | ∗
M |

<
(A

>
) A | <. A

>

M | <

M
>. A | <

M
>

M

This grammar transformation is not totally trivial because of the use of � in the definitions of CANtrace.
But from the grammar, we observe that canonical strings derived from M cannot start with insertions (

−.),
while deletions (

∗
,
<

,
>

) are only applied before M . Hence, this grammar guarantees that the if-clause
in the definition of � is never positive, and the recursive call to � disappears. (Since the use of � is the
only difference between CANtrace and CANalign, transforming G5M with CANalign leads to the same
string grammar Ĝ5M).

What does Ĝ5M explain about G5M? Replaying any derivation of G5M with the analog productions
of Ĝ5M produces the representation of a model-structure alignment. The top line displays the model
“chosen” in this derivation, the bottom line displays the structure assigned to the query. Considering only
the model string on the top line, we find that it is produced by productions analog to G5, and hence, any
consensus structure is possible.

For example, running Ĝ5M on input "au" produces an infinite number of model/query alignments.
This is correct, since models of any length can be aligned to any sequence with a suitable number of
deletions. Disabling for a moment the rules which delete unpaired model residues or both residues in a
pair (i.e. the uses of fdel and fbg), which are the sources of such infinity, the prototype grammar Ĝ5M
generates the following 23 alignments via the call G5M(CANtrace,"au"):

"--" "**" "<>*" "<<>>" "<><>" "-*" "*<>" "<><>" "<<>>" "<*>"
".." ".." "._." "..__" "_._." ".." ".._" "._._" "._._" "_.."
"-<>" "*<>" "<><>" "<>-" "<<>>" "-<>" X "<>" "<->" X "<>*" "<<>>"
".._" "._." ".__." "_.." "_._." "._." "()" ".._" "_.." "__.."
"*-" "<*>" "<><>"
".." ".._" "_.._"

Note that we see two alignments (labeled X) that satisfy the insert-before-delete convention, but not
their counterparts with delete-before-insert, which is forbidden with the trace semantics. Let us summarize
our observations about the role of the prototype grammar.

Fact The prototype grammar describes, by virtue of its derivations, the alignment of a query to all
possible consensi. Generating a specific family model grammar amounts to restricting the prototype
grammar, such that all its derivations align the query to the same model consensus.

In other words, in a family model grammar for consensus structure C, the “upper line” in a derivation
always spells out C.

Generating model grammars from consensus structures: We now construct a generator which reads
a consensus structure C such as “***<<<*****>>*>**” and generates a grammar G5MC which
implicitly encodes alignments of a query sequence x to C. With the ADP method at our disposal, we
can use a variant of tree grammar G5 to parse C, obtained by substituting * for unpaired residues and <
and > for paired ones (cf. Fig. 8 (right)). Since G5 is non-ambiguous, there will be only one tree tC for
C. We design an evaluation algebra genCM which generates G5MC by evaluating tC . For the sake of
explanation, we will proceed in two steps: first we design an algebra genCFG which generates G5MC

as a context free grammar, to explain the logic of the algorithm. Then, we modify genCFG to genCM
which generates a tree grammar, i.e. executable ADP code for the model.

genCFG has to take care of two issues. (1) It must generate copies of the rules of G5M , specialized
to the specific positions in C. Applying (say) rule M → aAbA when a and b are at paired positions i and
j in C, respectively, will produce the specialized production Mi → aAi+1bAj+1. (2) genCFG must allow
for insertions and deletions without introducing ambiguity. But this has already been taken care of in the
design of G5M . As long as genCFG only uses position-specialized copies of the rules from G5M , this
property is inherited.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

68 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

TCBB SUBMISSION 16

Evaluation algebra genCFG; the value domain is sets of context-free productions:

nil(εi) = {Ai → a Ai | Mi} ∪ {Mi → ε} (1)
open(ai, x) = x ∪ {Ai → a Ai | Mi} (2)

∪ {Mi → a Ai+1 | Mi+1} (3)
pair(ai, x, bj , y) = x ∪ y ∪ {Ai → a Ai | Mi} (4)

∪ Mi → a Ai+1 b Aj+1} (5)
∪ Mi → a Ai+1 Mj+1} (6)
∪ Mi → Mi+1 b Aj+1} (7)
∪ Mi → Mi+1 Mj+1} (8)

Here, subscripts denote the position where a particular production is applied in the parse of C. In the
output, these numbers create nonterminal symbols distinguished by subscripts. By default, the axiom of
the generated grammars is A1. Our reader may verify: computing G5(genCFG,"*<*>*") yields the
grammar Toy5 shown in Fig. 6.

Finally, to produce executable code, genCM must generate a tree grammar rather than a string grammar,
in order to integrate the scoring functions. The rules of the context-free grammar derived with genCFG
are now associated with scoring functions from the signature. As we cannot produce graphical output, a
tree build from function symbol f and subtrees a, A, b, A is coded in the form f <<< a˜˜˜A˜˜˜b˜˜˜A.

Evaluation algebra genCM ; the value domain is sets of tree grammar productions written in ASCII:

nil(εi) = {A_i = f_ins <<< a ˜˜˜ A_i ||| M_i} (9)
∪ {M_i = f_nil<<<empty} (10)

open(ai, x) = x ∪ {A_i = f_ins <<< a ˜˜˜ A_i ||| M_i} (11)
∪ {M_i = f_mat <<< a ˜˜˜ A_i+1 ||| f_del <<< M_i+1} (12)

pair(ai, x, bj , y) = x ∪ y ∪ {A_i = f_ins <<< a ˜˜˜ A_i ||| M_i} (13)
∪ {M_i = f_PK <<< a ˜˜˜ A_i+1 ˜˜˜ b ˜˜˜ M_j+1} (14)
∪ {M_i = f_Lr <<< a ˜˜˜ A_i+1 ˜˜˜ M_j+1} (15)
∪ {M_i = f_lR <<< M_i+1 ˜˜˜ b ˜˜˜ A_j+1} (16)
∪ {M_i = f_bg <<< M_i+1 ˜˜˜ M_j+1} (17)

Compared to our use of the same signature with (the non-specialized) G5, all scoring functions take i
as an implicit parameter, so calls to (say) fdel from different positions may be trained to assign different
probabilities.

Non-ambiguity of generated models: We want to prove next that our model generator G5(genCM,C)
generates, for every consensus structure C, a family model grammar which is unambiguous with respect
to the trace semantics. The proof consists of two theorems:

Theorem 2 Grammar G5M is unambiguous with respect to the trace semantics.
We might strive for an inductive proof of this theorem, but since we already have all the necessary

machinery in place, we use an automated proof technique.
From G5M we construct Ĝ5M as explained in Section II-C. We have already observed that its derived

alignments comply with the insert-before-delete-convention. Therefore, the generated alignments in fact
denote traces. Remember that G5M generates the same model-query alignment several times if and only
if Ĝ5M is syntactically ambiguous. We replace the fancy, two-character columns by single character
encodings according to the following table:

∗. −. ∗ <
(

>
)

<. > < >. < >

M I D P K L r l R b g

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS 69

TCBB SUBMISSION 17

This turns Ĝ5M into the grammar

A → ”I” A | M (18)
M → ε (19)
M → ”M” A | ”D” M (20)
M → ”P” A ”K” A (21)
M → ”L” A ”r” M (22)
M → ”l” M ”R” A (23)
M → ”b” M ”g” M (24)

which is proved unambiguous by the acla ambiguity checker [3].
Q.E.D.

We can now show that by the generation algorithm, semantic non-ambiguity is inherited from G5 to
the family model grammars.

Theorem 3 Covariance models generated from a consensus structure C by G5(genCM,C) are se-
mantically non-ambiguous under the trace semantics.

We note the following facts:
1) Ĝ5M is syntactically non-ambiguous (Theorem 2).
2) Each derivation in G5M describes an alignment of a query against some model.
3) By construction, all these alignments observe the insert-before-delete convention.
4) Any derivation in a generated model grammar G5MC can be mapped to a derivation in G5M . This

is achieved by applying, for each production from G5MC , the corresponding production without the
subscripts form G5M . This means that all derivations G5MC also observe the insert-before-delete
convention.

5) This mapping is injective. This holds because we can uniquely reconstruct the positional indices to
turn a Ĝ5M derivation back into a ̂G5MC derivation, by keeping track of the number of symbols
from {M,D, P,K, L, l, R, r, b, g} generated so far (but not counting I).

6) Hence, if G5MC was ambiguous, G5M would also be ambiguous, in contradiction to point (1).
Altogether, if there was a trace that had two different derivations in G5MC , it would also have two

different derivations in G5M . This is impossible according to point (1). Hence, a model grammar G5MC

generated by genCM is always non-ambiguous with respect to the trace semantics.
Q.E.D.

The correctness proof for the model generator here crucially depends on the non-ambiguity of the
prototype grammar. When a prototype grammar GM is ambiguous, a sophisticated generator can still
avoid ambiguity in the generated models! However, in this case a proof might be difficult to achieve.
If it fails, we can still convert each generated model GMC into the corresponding ĜMC , which can be
submitted to ambiguity checking. This is the situation we will encounter when turning towards the “real-
world” models in Rfam. There, we have an ambiguous prototype grammar and a sophisticated generation
process, which makes it hard to prove properties about. Therefore, we next equip ourselves with an
automated pipeline for ambiguity checking of Rfam models.

V. THE AMBIGUITY CHECKING PIPELINE

Our ambiguity checking pipeline consists of three successive stages, named cm2adp, adp2cfg, and acla.
cm2adp: Upward compilation of Infernal generated covariance models: The upward compiler cm2adp

accepts as input the table encoding a covariance model generated by Infernal. It translates it into the
constituents of a mathematically equivalent ADP algorithm – a tree grammar, a signature, and an imple-
mentation of the stochastic scoring algebra using the parameters generated by Infernal. Once available in
this form, additional evaluation algebras can be used in place of or jointly in products with the stochastic
scoring algebra. Such semantic enrichment was the main purpose of developing cm2adp, and its scope

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

70 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

TCBB SUBMISSION 18

will be described in a forthcoming paper. One of these applications is the evaluation of the search space
under a canonical mapping algebra, as we do here.

adp2cfg: Partial evaluation of grammar and canonical mapping algebra: The adp2cfg program
is a simple utility implemented by Peter Steffen subsequent to [16]. It accepts a tree grammar G and
a canonical mapping algebra A, such that a call to G(A, x) for some query x, would enumerate all
the members of the search space (i.e. all parses) under the canonical string mapping. Provided that the
algebra A is very simple and uses only string constants and concatenation, adp2cfg succeeds with partial
evaluation to produce the context free (string) grammar Ĝ suitable for ambiguity checking according to
Theorem 1.

acla: Ambiguity checking by language approximations: The acla phase simply calls the ACLA
ambiguity checker for context free grammars, which is based on the recent idea of ambiguity checking
via language approximations [3]. It has been used before, for example, on the grammar designed by Voss
for probabilistic shape analysis of RNA [21]. Accumulating probabilities from the Boltzmann distribution
of structures depends, just like stochastic scoring, critically on semantic non-ambiguity.

Due to the undecidability of the ambiguity problem, there is no guarantee that the acla phase will always
return a definite answer. It may be unable to decide ambiguity for some covariance models. However,
since the covariance models are larger, but less sophisticated than the grammar by Voss, we are confident
that the formal undecidability of ambiguity will not be a practical obstacle in our context.

The overall pipeline: As all family model grammars derived from the same prototype grammar use
the same signature, the evaluation algebra implementing the canonical mappings for the structural and
the alignment semantics, CANstruct and CANalign, is the same for all, as described above. Let M denote
a covariance model generated by Infernal from consensus structure C, given in Infernal’s tabular output
format.

Let (GC , PROB) = cm2adp(M) be the ADP program equivalent to M , generated by upward compi-
lation.

Let ĜC,S = adp2cfg(GC , CANS) be the context free grammar generated by partial evaluation, where
CANS is either CANstruct or CANalign.

Then, acla(ĜC,S) ∈ {Y ES,NO,MAY BE} demonstrates semantic ambiguity or non-ambiguity of M
with respect to the semantics S.

The trace semantics cannot be handled by adp2cfg because the recursive auxiliary function � in CANtrace

can only be eliminated with an inductive argument. To demonstrate (non-)ambiguity with respect to the
trace semantics, one shows (non-)ambiguity with respect to the alignment semantics plus (non-)observance
of a uniqueness constraint such as the insert-before-delete convention. We now proceed to apply this
pipeline.

VI. SEMANTICS OF RFAM FAMILY MODELS

A. Model construction with Infernal

In this section, we look at covariance models as generated by Infernal. The difficulty here is that
the prototype grammar is ambiguous and we do not have a fully formal specification of the generation
algorithm. In order to create some suspense, we start with two quotations. The original publication [8] of
1994 states:

“. . . we make the Viterbi assumption that the probability of the model emitting the sequence is approximately
equal to the probability of the single best alignment of model to sequence, rather than the sum of all probabilities
of all possible alignments. The Viterbi assumption conveniently produces a single optimal solution rather than a
probability distribution over all possible alignments.”

This points at an alignment or a trace semantics. In a more recent update, the Infernal Manual [14] touches
on the issue of semantic ambiguity in the description of the model generation process, stating:

“This arrangement of transitions guarantees that (given the guide tree) there is unambiguously one and only
one parse tree for any given individual structure. This is important. The algorithm will find a maximum likelihood

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS 71

TCBB SUBMISSION 19

parse tree for a given sequence, and we wish to interpret this result as a maximum likelihood structure, so there
must be a one-to-one relationship between parse trees and structures.”

This seems to aim at a structure semantics, but since the same structure can always be aligned to the
consensus (alias the “guide tree”) in many ways, there must always be several parses for it, the scores of
which should accumulate to obtain the likelihood of the structure.

Infernal starts from an initial multiple sequence alignment and generates models in an iteration of
consensus estimation, model generation, and parameter training. Here we are concerned with the middle
step, model generation from a given (current) consensus. The family consensus structure C is determined
with an ambiguous grammar, parsing the multiple alignment and maximizing a mutual information score,
and then one optimal parse (out of many) is fixed as the “guide tree”. (In our construction, when C is
given, this is simply the unique parse of C with tree grammar G5.) This guide tree is then used to generate
productions by specializing the following prototype grammar:

Grammar Ginfernal taken from the Infernal manual [14]:

State type Description Production Emission Transition
P (pair emitting) P → aY b ev(a, b) tv(Y)
L (left emitting) L → aY ev(a) tv(Y)
R (right emitting) R → Y a ev(a) tv(Y)
B (bifurcation) B → SS 1 1
D (delete) D → Y 1 tv(Y)
S (start) S → Y 1 tv(Y)
E (end) E → e 1 1

Here, Y is any state8 chosen from the nonterminal symbols (state types) in the leftmost column. One
recognizes the rules of the ambiguous G1 in the guise of {P → aY b, L → aY,R → Y a,B → SS,E →
ε}. The ambiguity inherent in a rule like S → SS, parsing SSS both as (SS)S and S(SS) is not a
problem in model generation, because the specialized rules Si → SjSk are always unambiguous. However,
insertions can be generated both from L and R, possibly competing for the generation of the same unpaired
residues in the query.

Ginfernal is not really the complete prototype grammar in our sense, as rules for partial matches of
base pairs in the consensus need to be added in the generation process. Overall, the generation method
appears too complicated to strive for a formal proof of non-ambiguity of the generated models.

B. Checking Rfam models

We have checked 30 models from Rfam, the 15 smallest models with and without a bifurcation in their
consensus structure, respectively. Model names and their consensus structures are listed in the appendix.
Here, we give a resume of our findings:

Theorem 4 In general, Rfam models are ambiguous with respect to the structure semantics. They do
not assign a most likely structure to the query.

This can be seen from testing with our pipeline, but is also easily seen by inspecting the generated
models. Actually, alignments (1) and (2) in Section III-C are already an example of ambiguity with respect
to the structure semantics, though only in principle, as they are not Rfam models. The explanation is that
although Infernal takes care that the structural ambiguity of the prototype grammar does not enter the
model grammar, it does not compensate for the fact that the same structure (assigned to the query) is
aligned to the model in many ways. Hence, the score accounts for the structure associated with the optimal
alignment, which need not be the highest scoring structure.
Q.E.D.

8The description in [14] uses a mixture of SCFG and HMM terminology.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

72 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

TCBB SUBMISSION 20

Theorem 5 All tested Rfam models are non-ambiguous with respect to the alignment semantics. There
is no evidence that this result should not carry over to Rfam models in general.

This observation was proved for some of the smallest models via producing their grammar Ĝ and
submitting it to the ambiguity checker. For larger models, the ACLA checker ran out of resources. We
applied some surgery by reducing successive stretches of either unpaired or paired residues (in the model)
to stretches of at most three such residues. This is correct as it has already been tested that the rules
within such stretches do not lead to ambiguity. After such surgery, the ACLA checker succeeded for all
models except Rf00161 and Rf00384.

For these two models, we resorted to a checking technique (rather than a proof) by use of a non-
ambiguous reference grammar, as suggested in [16]: if we have a reference grammar R which generates
non-ambiguously the alignments of a query to the given model, then we can compare the number of
alignments produced by both grammars for a given input length9. The enormous size of the search
space provides strong evidence that, if the number of alignments considered by either grammar co-
incides, the tested model grammar is also unambiguous. To apply this technique, we implemented a
second G5-based model generator to generate family model grammars that are unambiguous for the
alignment semantics. Let us call them G5.Rf00161 and G5.Rf00384. We then checked, using an eval-
uation algebra COUNT which simply counts the number of solutions generated, for sequences x of
various lengths that Rf00161(COUNT, x) = G5.Rf00161(COUNT, x) and Rf00384(COUNT, x) =
G5.Rf00384(COUNT, x). For example, the value for |x| = 10 is 357,718,985,217,153 (Rf00161) and
261,351,290,279,573 (Rf00384). For |x| = 20, it is 774,380,024,914,343,603,750,401 (Rf00161) and
416,290,325,523,207,008,752,681 (Rf00384), computed independently by both models.
Q.E.D.10

The positive result that Rfam models correctly implement the alignment semantics is quite remarkable,
given the notorious ambiguity introduced by the rules of G1, such as S → SS or S → aS|Sa. This is
achieved by details of the Infernal implementation. Applications of S → SS are made unambiguous by
the use of the “guide tree”, effectively choosing one of the many possible derivations of the consensus
structure. Ambiguity effects of S → aS|Sa are avoided by disabling one of the alternatives in certain
situations. Last not least, for searching with a model, Infernal has recently switched to using the Inside
rather than the CYK algorithm [15], which changes the scoring but bypasses eventual ambiguity problems.
However, for optimally aligning a sequence to the model, and hence also for model building, the CYK
algorithm is still required. We will return to the use of the Inside algorithm in the conclusion.

Theorem 6 In general, Rfam models are ambiguous with respect to the trace semantics.
This is implied by our previous observations, as a trace corresponds to many alignments.

Q.E.D.
We also wondered whether the Rfam models could be tweaked to compute the trace semantics rather

than the alignment semantics, simply by disabling some of the generated transitions (and re-training the
parameters). Our upward compilation allows us to eliminate certain transitions. We have been able to
reduce the number of alignments considerably, but we have not found a way to reduce it to the number
of traces.

C. A synopsis on RF00163 and RF01380

To give an impression of the degree of ambiguity observed with respect to structure and trace semantics,
we compute some data for RF00163 and for RF01380, which are currently the smallest Rfam models

9Note that the number of alignments only depends on the length of model and query, but not on the concrete query sequence, and not on
the grammar which implements the model.

10Strictly, this is not proved but only tested for Rf00161 and Rf00384 , but note that by throwing more computational ressources at the
problem, we can prove the remaining candidates nonambiguous. For practical concerns, and with an eye on the other models not explicitly
studied here, a quick check by the counting method is more appropriate.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS 73

TCBB SUBMISSION 21

with and without a bifurcation11. When counting structures for n = 31, computational resources were
exhausted, as in contrast to traces and alignments, we have no polynomial time algorithm for counting
structures – for the same reasons as discussed with ambiguity compensation.

Model RF00163 RF01380
consensus <<<<<<*******<<<<******>>>>***<<<<>>>>*>>>>>> <<<<<<<****>>>*>>>>

length (size) 45 (31) 19 (12)
|x| = 12

structures 8,958 2,048
traces 35,330,137,025 141,120,525

alignments 715,114,268,248,121 35,330,137,025
|x| = 31

structures n.a. n.a.
traces 1,916,865,700,889,408,588,480 30,405,943,383,200

alignments 1,862,835,338,733,448,037,194,650,687 208,217,738,981,165,823

The numbers of structures, traces and alignments are properties of the search space of a model/query
alignment, independent of which algorithm traverses this search space. They have been computed twice,
and they perfectly agree between the upward compiled Infernal models resulting from cm2adp and the
models generated by our method from G5M . This can be taken as a strong indication that the two
approaches are equivalent in terms of the search spaces they create. However, different grammars lead to
different numbers of parameters and will, in general, not be equivalent as stochastic models.

D. Ambiguity compensation, revisited

Can we, given the trained and upward-compiled Rfam models, which compute the log-likelihood score
according to the alignment semantics, use the same models with an accumulating scoring function to obtain
the trace or the structure semantics? Mathematically, yes. What was explained in Section II-D for the
simple stochastic context free grammars generally holds for all dynamic programming algorithms which
can be expressed in the ADP framework, and hence also for our model grammars: Given grammar G, a
scoring algebra S and an algebra CAN (i.e. CANstruct or CANtrace), just replace the maximizing objective
function of S by an accumulating function, yielding scoring algebra Sacc. Then call G(CAN ∗ Sacc, x).
The product algebra CAN ∗ Sacc maps all candidates to their equivalence classes under the canonical
mapping, and performs accumulating scoring per class. Given the ADP machinery, which provides a
generic implementation of the algebra product, ambiguity compensation comes without reprogramming
efforts – but only in principle.

There are two obstacles to this elegant solution:
• In case of stochastic modeling, rather than multiplying probabilities which tend towards zero as the

structure gets larger, one prefers to add their logarithms. Due to the monotonicity of the log function,
the maximal log score still indicates the answer with maximum probability. However, substituting
maximization by accumulation, one needs to compute and add the probabilities, potentially creating
numerical problems.

• Efficiency of computing with G(CAN ∗ Sacc, x) depends on the number of canonical objects con-
structed, and as this number (in the case of covariance models) is exponential in the length of the
query, this is practical only for very short sequences and small models. The implementation by a
product algebra will have efficiency of O(αnn4), where α may be close to 1, but probably not close
enough. Our counting results on the small models RF00163 and RF01380 indicate this.

11The number of structures without a bifurcation for |x| = n is bounded from above by 2n−1. The bound is sharp when n < 2(p+ 1),
where p is the number of base pairs in the model. For larger n, the restriction that the query cannot be assigned more base pairs than the
consensus becomes effective. This is why we see a 211 for n = 12 and still cannot compute the exact number for n = 31.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

74 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

TCBB SUBMISSION 22

Semantics Direct computation in Computation by ambiguity
O(n4) with compensation in O(αn · n4)

with
alignment Gali(PROB, q) —
trace Gtrace(PROB, q) Gali(CANtrace ∗ PROBacc, q)
structure — Gali(CANstruct ∗ PROBacc, q)

Gtrace(CANstruct ∗ PROBacc, q)
sequence Gali(PROBacc, q) Gali(CANseq ∗ PROBacc, q)

Gtrace(PROBacc, q) Gtrace(CANseq ∗ PROBacc, q)

TABLE I
THE SEMANTIC HIERARCHY. WE INDICATE GRAMMARS AND EVALUATION ALGEBRAS USED FOR EACH TASK. n IS THE LENGTH OF THE
QUERY q. α DENOTES THE BASE OF THE EXPONENTIAL FACTOR, WHICH IS INCURRED WITH AMBIGUITY COMPENSATION. α DECREASES

FROM TOP TO BOTTOM; FOR THE SEQUENCE SEMANTICS, α = 1, AND BOTH COLUMNS DESCRIBE THE COMPUTATION VIA THE INSIDE
ALGORITHM, USED WITH EITHER GRAMMAR.

VII. CONCLUSION

A. Summary of results

We have studied the problem of generating non-ambiguous family models from consensus structures.
We clarified the notion of a semantics for family model grammars, and found that there are three well
motivated, alternative definitions: the structure, the trace and the alignment semantics.

We developed the generation algorithm for the trace semantics, which, to our knowledge, has not been
studied before. Along the way, we found a nice explanation of the prototype grammar as a grammar that
allows for an infinite set of derivations, describing the alignment of the query to all possible models. The
generation process can then be described lucidly by an evaluation algebra (genCM), which allows, for
example, for a proof of non-ambiguity of the generated models.

For a summary of the semantic hierarchy, let us introduce yet another semantics. The sequence semantics
assigns to each model/query alignment the same object of interest – the aligned query sequence itself. The
canonical mapping algebra CANseq is trivial and left to the reader. Ambiguity compensation with respect
to this mapping means summing up probabilities of all model/query alignments – this is commonly known
as the Inside algorithm! According to this view, our intermediate semantic levels of trace and structure
semantics can, alternatively, be viewed as as intermediates between CYK and Inside scoring, governed
the equivalence relation induced by the canonical mapping. This view is summarized in Table 1. Note
the lack of a grammar Gstruct, which would allow for the polynomial-time computation of the structure
semantics.

On the practical side, we have implemented the upward compilation of Infernal generated models to
ADP. Here this compilation was used for connecting the Rfam models to our ambiguity checking pipeline.
The upward compiled models, however, have other applications of interest, which will be described in a
forthcoming study. But still, upward compilation from automatically generated tables is an ad-hoc measure,
and in the long run, one might consider producing ADP code for the models directly when generated.

Also on the practical side, we have observed that the models generated from G5M are relatively small.
To extend the comparison, we have also implemented a G5-based generator for (provably) unambiguous
family model grammars and the alignment semantics. Applying both our generators to Rf00163 and
Rf01380, we can give concrete examples of the blow-up factor k (cf. Section III-A). We evaluate the size
of the generated grammars.

Model Model Rfam G5 (alignment) G5 (trace)
length/size rules/nonterminals rules/nonterminals rules/nonterminals

Rf00163 45 / 31 617 / 139 151 / 46 182 / 77
Rf01380 19 / 12 282 / 59 66 / 20 78 / 32

The factor (number of rules/model length) affects the runtime as a constant factor. It is about 14 for the
Rfam models, 3.4 for the models derived from G5 with alignment semantics, and 4.1 for G5M-derived

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS 75

TCBB SUBMISSION 23

models with the trace semantics. These factors cannot be directly compared, as Infernal implements
affine gap scoring and some other features not included in the G5-based models. The factor (number
of nonterminals/model size) measures the space requirements, as each nonterminal leads to a dynamic
programming table. Here, the respective factors are 4.6, 1.5, and 2.5, approximately.

B. Directions of future research

We shortly sketch some research questions which are raised by our findings.
Investigation of the trace semantics: The trace semantics is new; it can be efficiently computed,

and possibly, the performance of covariance models can be improved. Such an improvement is likely
especially with respect to remote family members. This is because, when model and query have about
the same length, one is likely to find a high-scoring alignment without adjacent deletions and insertions,
whose score is not falsely reduced by ambiguity. Remote family members may require more insertions
and deletions, some of them adjacent, and ambiguity strikes on a scale which is exponential in the number
of such situations. With an eye on the use of the alignment semantics with Rfam, this implies that good
scores can be taken as a strong indication of family membership, while low scores must be interpreted
with care, especially when model and query significantly differ in length.

Investigation of the structure semantics: The structure semantics has been used so far with simple
SCFGs, but not with family model grammars. The structure semantics seems appropriate when the goal
is to use the information in the family model to assign a concrete, most likely structure to the query. This
structure would have to be experimentally probed in order to verify that the query performs the same
function as other family members.

However, in contrast to simple SCFGs, we do not know an efficient method to compute this semantics for
family model grammars. Ambiguity compensation, as shown above, suffers from a runtime complexity
dependent on the number of structures, which in turn grows exponentially with the sequence length.
Efficient computation of the structure semantics is an interesting open challenge, where one must be
aware that a polynomial time, exact algorithm may not exist. An ideal modeling tool would allow the
user to specify the intended semantics, either at model generation time or when starting a search.

Smaller and faster models: The smaller size and better speed of models derived from a small grammar
such as G5 deserves further study. Its use may have been discouraged by the diagnosis of the “abysmal”
performance of G5 reported in [5]. Dowell and Eddy explain this performance by the overloading of rules:

“The compact grammar G5, for instance, must invoke the same bifurcation rule S → aSâS for every base
pair and for every structural bifurcation, which are quite different structural features that occur with very different
frequencies. The productions of G5 are thus “semantically overloaded”: they collapse too many different types of
information into the same parameters.”

This explanation, appropriate as it is for simple SCFGs, also points to a remedy for the case of family model
grammars. These grammars have position-specialized productions, and unless we tie parameters together
irrespective of their structural position in the model, we can still train different and adequate parameters
for different features. This requires careful engineering and empirical testing, but small grammars are
still in the race. Note also that filtering techniques, which have been developed to speed up the present
Infernal-generated models, can also be adapted to models generated from a different prototype grammar.

Comparing the performance of different prototype grammars: Dowell and Eddy diagnosed superior
performance of another unambiguous SCFG (G6 which stems from Pfold [13]). However, this grammar
was not tested as the prototype for model grammar generation. Given our compact algorithm of model
generation – the generator from G5 is but 164 lines of ADP code – it maybe a justifiable effort to extend the
Dowell and Eddy study to different model generators, training family models rather than simple SCFGs.
We conjecture that our proof of a correct implementation of the trace (or the alignment) semantics could
be adapted for a new family model generator, as long as an unambiguous prototype grammar is used. If
not, there is still our ambiguity checking pipeline, which can be used to show correctness of the individual
models after their generation.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

76 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

TCBB SUBMISSION 24

ACKNOWLEDGMENTS

We acknowledge inspring discussions we had with many participants of the 2009 Benasque Workshop
on Computational Methods for RNA Analysis, organized by E. Rivas and E. Westhof, where these ideas
were first presented in public. In particular, Sean Eddy and Eric Nawrocki provided insight into model
construction in Infernal and the underlying rationale. The authors thank Peter Steffen for implementing
adp2cfg and Stefan Janssen for a careful reading and valuable comments. We also thank Ivo Hofacker
for comments, help and support. This work has been funded, in part, by the Austrian GEN-AU project
bioinformatics integration network III.

APPENDIX

Rfam models tested for non-ambiguity
15 smallest models from Rfam without a bifurcation:

RF00032.cm *****<<<<<<****>>>>>>*****
RF00037.cm <<<<<***<<<<<******>>>>>*>>>>>
RF00180.cm <<*<<<<******>>>>>>******************
RF00390.cm ********<<<<*******>>>>
RF00453.cm <<<<<<<***<<<**********>>>>>>>>>>
RF00502.cm ****<<<<<<<<********>>*>>>>>>*****
RF01072.cm <<<<**********>>>>*************
RF01080.cm *******<<<<<<<***********>>>>>>>
RF01081.cm <<<<<********>>>>>*********
RF01082.cm *****<<<<<<<*******>>>>>>>
RF01112.cm *****<<<<<******>>>>>
RF01115.cm <<<*******>>>*********
RF01380.cm <<<<<<<****>>>*>>>>
RF01381.cm ***<<<<<****>>>>>******
RF01382.cm **<<<<<****>>>>>****

15 smallest models from Rfam with a bifurcation:

RF00008.cm *<<<<<<*<<<<<***>>>>>*******<<<<********>>>>***>>>>>>*
RF00057.cm ******<<<<****<<*******>>*>>**>>********<<<<<<<******>>>>>>>*******
RF00161.cm <<<<**<<<<<<<*****>>>>>>>***<<<<*<<<<<<********>>>>>>*>>>>**>>>>
RF00163.cm <<<<<<*******<<<<******>>>>***<<<<>>>>*>>>>>>
RF00184.cm *********<<<<*********>>>>******<<<<**************>>>>
RF00192.cm <<<<<<*********>>>>>>*********<<<<<<*************>>>>>>
RF00384.cm *<<<<<<<*****>>>>>>>***<<<<<*<<*<<<*****>>>***>>>>>>>*********
RF00454.cm ********<<<<*<<****>>**>>>>**<<<<<*<<<***>>>*>*>>>>********
RF00517.cm **********<<<<<<******>>>>>>***<<<<<<****>>>>>>*****
RF00630.cm *************<<<<<***<<*****>>***>>>>>**<<<<<<<<<<******>>>>>>>>>>*
RF00681.cm <<<<<**<<<<<<<<<<<<*<<<****>>>*<<****>>*>>>>>>>>>>**>>***>>>>>
RF01068.cm <<<<<<<<****>>>>>>>>**************<<<<<****>>>>>
RF01116.cm <<<<<<<<****>>>>>>>>******************<<<<<<<*****>>>>>>>**
RF01388.cm *<<*****<<<<****>>>>****>><<<<<<<*****>>>>>>>******
RF01403.cm <<<**<<<<<<<*********>>>>>>>****>>>****<<<<<<<<*****>>>>>>>>*****

REFERENCES

[1] P Baldi and S Brunak. Bioinformatics – the machine learning approach. MIT Press, 1998.
[2] A Bateman, E Birney, L Cerruti, R Durbin, L Etwiller, S R Eddy, S Griffiths-Jones, K L Howe, M Marshall, and E L Sonnhammer.

The Pfam protein families database. Nucleic Acids Res, 30(1):276–280, Jan 2002.
[3] Claus Brabrand, Robert Giegerich, and Anders Møller. Analyzing Ambiguity of Context-Free Grammars. In Proc. 12th International

Conference on Implementation and Application of Automata, CIAA ’07, volume 4783 of LNCS. Springer-Verlag, July 2007. Extended
version submitted for journal publication.

[4] Broňa Brejová, Daniel G. Brown, and Tomáš Vinař. The most probable annotation problem in HMMs and its application to
bioinformatics. Journal of Computer and System Sciences, 73(7):1060–1077, March 2007.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS 77

TCBB SUBMISSION 25

[5] R D Dowell and S R Eddy. Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction.
BMC Bioinformatics, 5:71–71, Jun 2004.

[6] R Durbin, S Eddy, A Krogh, and G Mitchison. Biological Sequence Analysis. Cambridge University Press, 2006 edition, 1998.
[7] S R Eddy. Profile hidden markov models. Bioinformatics, 14(9):755–763, 1998.
[8] Sean R. Eddy and Richard Durbin. RNA sequence analysis using covariance models. Nucleic Acids Res, 22(11):2079–2088, June

1994.
[9] P P Gardner, J Daub, J G Tate, E P Nawrocki, D L Kolbe, S Lindgreen, A C Wilkinson, R D Finn, S Griffiths-Jones, S R Eddy, and

A Bateman. Rfam: updates to the RNA families database. Nucleic Acids Res, 37(Database issue):136–140, Jan 2009.
[10] R. Giegerich. Explaining and Controlling Ambiguity in Dynamic Programming. In Proc. Combinatorial Pattern Matching, volume

1848 of Springer Lecture Notes in Computer Science, pages 46–59. Springer, 2000.
[11] R. Giegerich, C. Meyer, and P. Steffen. A Discipline of Dynamic Programming over Sequence Data. Science of Computer Programming,

51(3):215–263, 2004.
[12] J E Hopcroft and J D Ullman. Formal languages and their relation to automata. Addison-Wesely, 1969.
[13] B Knudsen and J Hein. Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res,

31(13):3423–3428, Jul 2003.
[14] Sean Eddy Lab. INFERNAL User’s Guide. Sequence analysis using profiles of RNA secondary structure, version 1.0 edition, January

2009. http.//infernal.janelia.org.
[15] E P Nawrocki, D L Kolbe, and S R Eddy. Infernal 1.0: inference of RNA alignments. Bioinformatics, 25(10):1335–1337, Mar 2009.
[16] Janina Reeder, Peter Steffen, and Robert Giegerich. Effective ambiguity checking in biosequence analysis. BMC Bioinformatics, 6:153,

2005.
[17] Eddy S. Hmmer user’s guide. Technical report, Howard Hughes Medical Institute, 2003.
[18] Y Sakakibara, M Brown, R Hughey, I S Mian, K Sjölander, R C Underwood, and D Haussler. Stochastic context-free grammars for

tRNA modeling. Nucleic Acids Res, 22(23):5112–5120, Nov 1994.
[19] D Sankoff and Kruskal J. Time warps, string edits, and macromolecules. Addison-Wesley, 1983.
[20] Peter Steffen and Robert Giegerich. Versatile and declarative dynamic programming using pair algebras. BMC Bioinformatics, 6(1):224,

September 2005.
[21] B Voss, R Giegerich, and M Rehmsmeier. Complete probabilistic analysis of RNA shapes. BMC Biol, 4:5–5, 2006.
[22] M Waterman. Introduction to computational biology. Chapman & Hall, 1994.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

78 CHAPTER 5. SEMANTICS AND AMBIGUITY OF RNA FAMILY MODELS

Chapter 6

Discriminatory Power of RNA
Family Models

Christian Höner zu Siederdissen and Ivo L. Hofacker.
Discriminatory Power of RNA family models.
Bioinformatics. 2010. 26 (18). i453–i459.

CHzS designed the study and implemented the algorithm available as CMCompare. Both
authors participated in writing the paper.

This is an Open Access article distributed under the terms of the Creative Commons
Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5),
which permits unrestricted non-commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

79

[10:40 28/8/2010 Bioinformatics-btq370.tex] Page: i453 i453–i459

BIOINFORMATICS Vol. 26 ECCB 2010, pages i453–i459
doi:10.1093/bioinformatics/btq370

Discriminatory power of RNA family models
Christian Höner zu Siederdissen∗ and Ivo L. Hofacker
Institute for Theoretical Chemistry, University of Vienna, Währinger Strasse 17, A-1090 Wien, Austria

ABSTRACT

Motivation: RNA family models group nucleotide sequences that
share a common biological function. These models can be used to
find new sequences belonging to the same family. To succeed in
this task, a model needs to exhibit high sensitivity as well as high
specificity. As model construction is guided by a manual process,
a number of problems can occur, such as the introduction of more
than one model for the same family or poorly constructed models.
We explore the Rfam database to discover such problems.
Results: Our main contribution is in the definition of the
discriminatory power of RNA family models, together with a first
algorithm for its computation. In addition, we present calculations
across the whole Rfam database that show several families lacking
high specificity when compared to other families. We give a list of
these clusters of families and provide a tentative explanation. Our
program can be used to: (i) make sure that new models are not
equivalent to any model already present in the database; and (ii) new
models are not simply submodels of existing families.
Availability: www.tbi.univie.ac.at/software/cmcompare/. The code
is licensed under the GPLv3. Results for the whole Rfam database
and supporting scripts are available together with the software.
Contact: choener@tbi.univie.ac.at

1 INTRODUCTION
Structured non-coding RNAs are nucleotide sequences that are not
translated into protein but have, in the folded state, their own specific
functions (Mattick and Makunin, 2006). This function is very much
dependent on the secondary and tertiary structure (the folded state),
while on the other hand, the primary structure or sequence sees more
change (Mattick and Makunin, 2006) in the form of mutation.

One can define relationships between non-coding RNAs in
different species. A set of related sequences is called an RNA family.
Each set is defined by its members performing the same function in
different species. When genomes are sequenced, one is interested
in finding members of known families in the new data, as well as
finding new families if previously unknown non-coding RNAs are
discovered.

The problem—finding homologues—exists for proteins, too.
Software to perform the same kind of searches exists in the form
of HMMer (Eddy, 1998) and the Pfam (Bateman et al., 2002)
database. Using profile hidden Markov models (profile HMMs), a
mathematically convenient solution was found, around which the
algorithms could be built. Unfortunately, the same solution proved
inadequate (Durbin et al., 1998, Chapter 10.3) for non-coding RNAs.

The task of building a model that describes a new family is still a
mostly manual process. Finding new members of existing families,
on the other hand, can be performed using software. The problem we
are discussing in this article applies equally well to other algorithms

∗To whom correspondence should be addressed.

human acgucg aacuaga
cow accugg aacuaga
dog acuugg aag uca
cat acgucgaaacuaga
structure *<<*>>.**<**>*

Fig. 1. Multiple alignment of sequences from several species and the
consensus structure. Brackets denote nucleotide pairings, a star denotes a
consensus unpaired nucleotide and a dot a nucleotide not in the consensus.

to search for homologue sequences, but as our algorithm is specific
toward an existing software package, namely Infernal (Nawrocki
et al., 2009a), we will perform our analysis with respect to this
software and the corresponding Rfam (Griffiths-Jones et al., 2003)
database.

In order to model families of non-coding RNAs in a way that
provides both sensitivity and specificity, the consensus secondary
structure of the set of sequences has to be included in the
mathematical model from which the algorithm is created. Stochastic
context-free grammars provide access to such models, just as
stochastic regular grammars (in the form of profile HMMs) can be
used to model protein families.

We begin with a succinct introduction to the process of first
designing an Infernal RNA family model and then searching for
new family members. Building on those algorithms, we can define
the specificity of a given model compared to other known models
in a natural way using the already established Infernal language of
bit scores.

1.1 Infernal model design
Infernal is based on covariance models (Eddy and Durbin, 1994). We
assume that a structure-annotated multiple alignment of the family
sequences like the one in Figure 1 is at hand. Intuitively, new family
members should (i) align well and (ii) show the same secondary
structure. The more a sequence deviates from these two requirements
the worse it should score.

During the covariance model construction process, a so-called
guide tree is derived from the structure annotation. The nodes of
the tree fall into six classes: (1) a pair-matching (P) node for a
base pair; (2–3) two kinds of single nucleotide nodes, one left- (L)
and one right-matching (R); (4) a bifurcation (B) node to allow for
multiple external and internal loops; and two house-keeping nodes:
(5) a start-node (S) and (6) an end-node (E). Whenever possible,
left-matching nodes are used, e.g. in hairpin loops, delegating right-
matching nodes to be used only where necessary, such as the right
side of the last external loop. This removes ambiguity from the
construction process. The alignment from Figure 1 leads to the model
depicted in Figure 2.

Mutations in base pairs or single conserved nucleotides are
handled in the conventional stochastic RNA modeling approach by

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 by guest on O
ctober 16, 2010

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

80 CHAPTER 6. DISCRIMINATORY POWER OF RNA FAMILY MODELS

[10:40 28/8/2010 Bioinformatics-btq370.tex] Page: i454 i453–i459

C.Höner zu Siederdissen and I.L.Hofacker

Fig. 2. A covariance model, displaying the six types of nodes needed for
construction. The nucleotide annotation follows the human sequence of the
multiple alignment of Figure 1.

keeping emission probabilities (or log-odd scores) for each possible
base or pair for the emitting nodes (P, L, R).

The way Infernal works, insertion of additional nucleotides or
deletion of parts of the consensus sequence cannot be handled by the
matching nodes alone. For the final model, each node is replaced by a
number of states. One state acts as the main state, that is, for example,
each pair (P) node has a pair state matching both a left and a right
nucleotide. The deletion of one of the two nucleotides is handled by
adding two states, one only left- (L), one only right-matching (R).
A fourth state (D) handles the deletion of both nucleotides while
two inserting states (IL, IR) are used for insertions relative to the
consensus. Transitions from one state to the next happen with some
probability which is close to 1.0 for the consensus state and far less
likely for the other possible states. The exact numbers are calculated
by fitting probability distributions using the multiple alignment data.

Nodes matching only a single nucleotide are extended with a
deletion state and either a left- or a right-inserting state, depending
on the main state. A bifurcation (B) leads directly to two new start
(S) nodes, effectively to two complete submodels. By arbitrary
selection, the right start node is extended with a left-inserting state
to allow for insertions between a bifurcation.

Mostly, however, it is enough to keep the picture of the model
(Fig. 2), using only matching nodes, in mind.

With the additional states the model is completed. The fitting of
the probability distributions given the nucleotide consensus data is
outside of the scope of this text and we refer the reader to the book
on the subject matter by Durbin et al. (1998).

1.2 Searching with covariance models
The complete model is a graphical representation of the stochastic
context-free grammar that does the real work. A pair state (P), for
example leads to a total of 16 productions of the form Pk →aQb,
where Pk is the k’th node to be processed, Q abstracts over the
possible targets states, which depend on the node k+1 and (a,b) are
the 16 possible nucleotide pairs. The whole process leads to CFGs
with a huge number of productions (in the order of the number of
nodes times a small constant), especially when compared with single
RNA folding grammars (Dowell and Eddy, 2004), that have in the
order of 10–100 productions.

The actual search process uses the CYK algorithm (newer
versions of Infernal use the Inside algorithm to calculate the final
score) to find the best parse of an input string given the model. Input
strings are all substrings of a genome up to a given length. Using
dynamic programming, this approach is fast enough that whole
genomes can be processed in a matter of hours or days.

Our interest in this article is not the search process of Infernal,
but how a parse is scored and the best alignment of string against
model is selected.

Notation. Given an alphabet A, A∗ denotes the set of all strings
over A. Let s∈A∗ be a, possibly empty, input string.

Notation. Let m, m1, m2 be covariance models in the form
of stochastic context-free grammars conforming to the Infernal
definition.

Given a model m and an input string s, the CYK score can be
calculated over all parses P of the string s by the model m:

CYK(m,s)=
max{Score(P(m,s))|P(m,s) is successful}. (1)

A successful parse is a parse that consumes the complete input s
and finishes in terminal end states. During such a parse a score is
built up from the transition and emission scores that were calculated
for each model during its construction.

Several methods exist to perform the calculations. Arguably,
closer to Equation (1) is the use of tree grammars and algebras
in Giegerich and Höner zu Siederdissen (2010), but Infernal uses
traditional dynamic programming to implement the CYK algorithm.
Whichever method is used, they are more efficient than the
enumeration of all possible parses. Finally, the alignment of the
input against the model can be retrieved using backtracking or other
methods.

2 METHOD
A covariance model with high specificity assigns low bit scores to all
sequences that do not belong to the model family. Finding sequences
that lead to false positives, that is having a high score while not
belonging to the family, is a problem. We take a view that does not
look at a single model, but rather at two models at the same time.
Then, we can say that:

A covariance model has low specificity with respect to another
model if there exists a sequence s∈A∗ that achieves a high CYK
score in both models.

We acknowledge that ‘high score’ is not well-defined, but consider
what constitutes a high score in Infernal. Hits in Infernal come as
a tuple, the score itself and an e-value. One is typically interested
in scores of 20 bit or higher and e-values of 1.0 or less, depending
on the model. The e-value is dependent on the genome size, but
given such guidelines one finds good candidates. In light of this, the
meaning of ‘high score’ becomes more clear. As we use the same
measure as Infernal, a string that achieves, say, 40 bit in two different
models points to low specificity, as the string would be considered a
good hit when searching for new family members with both models
separately.

Using the previous definition, we find an analog to Equation (1)
to calculate (i) the highest score achievable by (ii) a single input
string:

Link(m1,m2)=MaxiMin(m1,m2)=
argmaxs{min{CYK(m1,s), CYK(m2,s)}|s∈A∗}. (2)

Here, m1 and m2 are two different covariance models. MaxiMin
returns the highest scoring string. The highest score is defined as the

i454

 by guest on O
ctober 16, 2010

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

CHAPTER 6. DISCRIMINATORY POWER OF RNA FAMILY MODELS 81

[10:40 28/8/2010 Bioinformatics-btq370.tex] Page: i455 i453–i459

Discriminatory power of RNA family models

Table 1. Recursive calculation of the maximal score achieved by an input string common to both model m1 and m2

minP (a,b)=
{

a a<b

b otherwise
(3)

maxmin x=argmax
{

minP(s1,s2)|(s1,s2)∈x
}

(4)

MaxiMin (k1,k2)=

⎧⎪⎪⎨
⎪⎪⎩

(0,0) k1 =E∧k2 =E

maxmin{MaxiMin(k′
1,k′

2)+(ek1,a,b,ek2,a,b)+(tk1→k′
1
,tk2→k′

2
)

| k′
1 ∈ck1

,k′
2 ∈ck2

,a∈A,b∈A} k1 =P∧k2 =P

maxmin{MaxiMin(k′
1,k′

2)+(ek1,a,ek2,a)+(tk1→k′
1
,tk2→k′

2
)

| k′
1 ∈ck1

,k′
2 ∈ck2

,a∈A} k1 ∈{L,IL}∧k2 ∈{L,IL}
maxmin{MaxiMin(k′

1,k′
2)+(ek1,b,ek2,b)+(tk1→k′

1
,tk2→k′

2
)

| k′
1 ∈ck1

,k′
2 ∈ck2

,b∈A} k1 ∈{R,IR}∧k2 ∈{R,IR}
maxmin{MaxiMin(k1,k′

2)+(0,tk2→k′
2
)

| k′
2 ∈ck2

} k1 =E∧k2 ∈{D,S}
maxmin{MaxiMin(k′

1,k2)+(tk1→k′
1
,0)

| k′
1 ∈ck1

} k1 ∈{D,S}∧k2 =E

maxmin{{MaxiMin(k′
1,1,k′

2,1)+MaxiMin(k′
1,2,k′

2,2)

| {k′
1,1,k′

1,2}=ck1
,{k′

2,1,k′
2,2}=ck2

} ∪
{MaxiMin(k′

1,2,k′
2,1)+MaxiMin(k′

1,1,E)+MaxiMin(E,k′
2,2)

| {k′
1,1,k′

1,2}=ck1
,{k′

2,1,k′
2,2}=ck2

} ∪
{MaxiMin(k′

1,1,k′
2,2)+MaxiMin(k′

1,2,E)+MaxiMin(E,k′
2,1)

| {k′
1,1,k′

1,2}=ck1
,{k′

2,1,k′
2,2}=ck2

}} k1 =B∧k2 =B

maxmin{MaxiMin(k′
1,1,k2)+MaxiMin(k′

1,2,E)

| {k′
1,1,k′

1,2}=ck1
} k1 =B∧k2 �=B

maxmin{MaxiMin(k′
1,k′

2)+(tk1→k′
1
,tk2→k′

2
)

| k′
1 ∈ck1

,k′
2 ∈ck2

} (k1,k2)∈{(S,S),(D,D)}
(−∞,−∞) otherwise

(5)

We abuse notation quite a bit to reduce notational clutter. The state type of model 1 at index k would be type1
k1

but we write k1 = E to determine if the state
is an end state. Additional data structures are simplified as well. The states into which a transition is possible (the children of state k) are written ck1 instead
of c1

k1
. Emission scores for each model are in the matrix e which is indexed by the state k and the nucleotide(s) of the emitting state. Transition scores for

transition from state k to k′ are found in the matrix t. The case where k1 = E ∧k2 = E terminates the recursion, as each correctly built covariance model
terminates (each submodel) with an end-state (E) (cf. Fig. 2). Addition of pairs happens element-wise: (a,b)+(c,d)= (a+b,c+d).

minimum of the two CYK scores. This guarantees that both models
score high. Variants of the algorithm are possible, for example
MaxPlus which sums both scores before maximizing. However,
MaxiMin provides better results in case one of the two models
contains many more nodes than the other. More importantly, it
provides a score which would actually be achieved during a search
using one of the two models, while the other would score even
higher. As the sequence s ‘links’both models via their discriminative
power, we shall use the term Link from now on.

The trivial implementation suggested by Equation (2) is not well-
suited for implementation as it requires exponential runtime due to
the enumeration of all possible strings in A∗.

In order to find the highest scoring string, we perform a kind of tree
alignment with additional sequence information. The tree alignment
part optimizes the structure of each model, while sequence alignment
is performed for nucleotide emitting states as well. Both alignments
are tightly coupled as is the case for covariance models themselves.

A pair state (P), for example, leads to another structure than a left-
emitting (L) state. This also explains why we have to deal with a
small restriction in our algorithm. The tree alignment requires us
to align each state with at most one other state, but not two or
more. After an explanation of the implementation, we discuss this
further.

Implementation: We present a simplified version of our recursive
algorithm in Table 1. To set the field, we need two additional
functions. Equation (3) defines the minimum of a pair of values
in a natural way. The function maxmin [Equation (4)] is a small
helper function selecting the maximal pair, where the maximum of
two pairs is defined by the maximum of individual minima, hence
the name max-min.

The recursion has to be performed simultaneously over both
models. For model m1 we have index k1 and for model m2, k2 will
be used. Note though, that by following just one of the elements of

i455

 by guest on O
ctober 16, 2010

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

82 CHAPTER 6. DISCRIMINATORY POWER OF RNA FAMILY MODELS

[10:40 28/8/2010 Bioinformatics-btq370.tex] Page: i456 i453–i459

C.Höner zu Siederdissen and I.L.Hofacker

the tuples, the CYK algorithm can be recovered. We are, in essence,
performing two coupled CYK calculations at the same time.

Internally, all states are kept in an array. The first index is
guaranteed to be a start state (S) and the last index to be an end
state (E). The first state is the root state of the whole model, too.
Three additional arrays are required.

The states that can be reached from a state are stored in an array
named c for children. Because indices from one model are never
used in the other model, we can always write ck1

instead of c1
k1

.
We use the same simplification for emission scores. The array e

holds such scores. It is indexed with the nucleotides that are to be
emitted. This is to be written as ek1,a,b for pairs and either a or b
are missing for single nucleotide emitting states.

The third required array, t, stores transition scores. Whenever the
recursion descends from a state k1 into a possible child state k′

1, a
lookup tk1→k′

1
is performed. Not all transitions incur a cost. A branch

into the two child states always happens with probability 1.0.
We have abused notation to simplify the recursion a bit. The

determination of the type of the current state requires an additional
data structure to perform the lookup for the indices k. Instead of
writing Xk1

, where X is such a data structure, we just write k1 = E
to assess if state k1 happens to be an end (E) state.

Some of the cases found in the source code have been removed for
clarity. Most cases deal with symmetric states. The last state to visit
is, for example (E, E). This initializes the CYK score to (0.0,0.0).
The case (MP, MP) handles the emission of a pair of nucleotides.
There are some cases like (S, x), where x is any state except (S), that
require special handling. These special cases ((E, D) and (E, S) are
given as an example) do not contribute any information on how one
goes about calculating the common score, but simply make a large
recursion more unwieldy.

The algorithm is asymptotically fast. Given the number of states
n1 and n2 of the two models, each pair of states will be visited once
at most. In addition, the number of children ck1

and ck2
per state is

fixed by a constant. If h denotes the maximal number of children
per state, the total runtime is bounded by O(n1n2h2).

A restriction in the implementation: Consider the structure
annotation of two different covariance models: ma: < < > > and mb:
< >. Model ma has two nodes Pa

1 – Pa
2 and model mb three nodes:

Lb
1 – Rb

2 – Pb
3. An input string like ccgg is likely to result in a

good score for both models, especially if we assume that the family
sequences are similar to ccgg. Equation (2) would return that result
after some time. For a fast implementation, those two models are
rather inconvenient as Pa

2 has to be matched against both Lb
1 and Rb

2
at the same time. By allowing to match only one state against one
other state, our algorithm produces suboptimal scores in such cases.
Fortunately, this is a minor problem for real models. This can be
explained by the relative scarcity of such cases and the regularity of
the covariance model building process. If left-matching and right-
matching nodes could be used at will, e.g. in hairpin loops, our
simplification would have more than minor consequences.

Local and global scoring: Infernal does not require that a sequence
matches the whole model. Instead, a local search is performed. Each
string is aligned against the part of the model where it scores best.
Should this require the deletion of parts of the model, this does not
invoke many delete (D) states. One can simply do a transition into
a local start or end state. These transitions are possible only with

small probability (typically around 0.05 divided by the number of
nodes in the model) but this still gives higher scores than potentially
having to descend into dozens of delete states.

Since Infernal scores locally with respect to the model, we do
the same by default. Details of the implementation are omitted.
Using the –global switch, this behaviour can be changed. In that
case, both models have to be aligned and the resulting string will be
optimal with respect to the whole model, not just some submodel.
Several other switches known from Infernal are available, too.

Just one string?: Of course if only a single string has a good score
in both models, the problem would be moot as the probability to
encounter that exact string is close to zero. But consider that from the
pairwise score and the corresponding string, suboptimal strings can
be generated easily. Given the length k of the string s, then k points
for substitutions give 3k strings that score almost as high. A further
3
(k
2
)

strings score less, and so forth with 3 and more substitutions.
Furthermore, insertions and deletions are possible.

This means that whenever there is one high-scoring string, there
will be many more, we just present the worst case.

3 RESULTS
The Rfam 9.1 database contains 1372 different models. All pairwise
calculations lead to a total of 940 506 results. The time to calculate
the score and string for each pair is typically less than one second,
but of course depending on the size of the models in question. Of
all pairs, about 70 000 are noteworthy with scores of 20 bit or more.
Figure 3 shows the distribution of scores among all pairs of family
models. Negative scores have been truncated towards zero as any
score lower than this certainly means that the two models in question
are separated very well.

Among the high-scoring pairs are several interesting examples,
some of which we will take a closer look at. Similar results for
other models can be extracted from the data available for download.
It is possible to generate, among others, model-centric views that
show the high-scoring neighborhood of a particular model and global
views that show high-scoring pairs. As Figure 4 aptly demonstrates,
clusters of families form early (in this case, only the 20 highest
scoring edges are drawn).

0 20 40 60 80 100 120 140
common bit score (negative scores truncated torward zero)

1

10

100

1000

10000

100000

nu
m

be
r

of
 C

M
 p

ai
rs

Fig. 3. Distribution of bit scores for all 940 506 pairs of covariance models.
About 70 000 pairs have scores of 20 bit or more, pointing towards weak
separation between the two models.

i456

 by guest on O
ctober 16, 2010

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

CHAPTER 6. DISCRIMINATORY POWER OF RNA FAMILY MODELS 83

[10:40 28/8/2010 Bioinformatics-btq370.tex] Page: i457 i453–i459

Discriminatory power of RNA family models

0 0 0 1 1
RNaseP_bact_b

00010
RNaseP_bact_a

1 0 1

00373
RNaseP_arch

100

00488
U 1 _ y e a s t

00943
MIR824

92

00882
MIR811

00885
MIR821

9 7
0 1 0 5 8

MIR806

133

100

00926
MIR1151

89

0 1 0 4 3
MIR1023

96

0 1 0 6 2
MIR812

1 3 5

01086
LR-PK1

1 2 3

0 1 2 3 8
snR70

0 1 2 5 9
snR63

90

1 3 5

1 1 1

0 1 2 9 5
snoU90

90

0 1 2 4 4
snR4

94

90

0 1 2 4 9
snR190

90

8 7

0 1 2 6 6
snR45

89

95

Fig. 4. The 20 highest scoring edges between RNA families. Each edge represents a string that, between the connected nodes, results in a bit score at least
as high as the given value. The two connected family models have low discrimination in such a case. For each family model the Rfam index and name are
shown.

Table 2. Occurrence of shapes in results with at least 20 bit each

m1 _ [] [][] [][][] [[][]] Complex
m2 _ [] [][] [][][] [[][]] Complex
Found 19 644 49 289 1576 40 12 28

Unstructured regions (dashes) and hairpins (square brackets) as the common region
occur most often. The other shapes show that complex substructures can form. The
high number of lone hairpin structures is a direct consequence of the huge meta-family
of snoRNAs which have a simple secondary structure. Under ‘complex’, all structures
that did not fit into the given shapes were collected.

In Table 2, we have gathered some results. The 70 000 pair scores
over 20 bit have been split according to the abstract shape of the
secondary structures of the hit. A shape (Reeder and Giegerich,
2005) is a representation of the secondary structure that abstracts
over stem and interior loop sizes. In this case, each pair of brackets
defines one stem. Intervening unpaired nucleotides do not lead to
the creation of a new stem. Hits such as _/_ are unstructured,
but similar, sequences. The shape []/[] is just one hairpin, while
the two shapes [[][]]/[[][]] on the same string point to an
interesting pair score as the string apparently folds into complex
high-scoring structures that align well, too.

In principle, it is possible that the common sequence folds into
two different secondary structures. At abstract shape level 5 (the
most abstract) this did not happen for the current Rfam database.
Our algorithm, however, is capable to deal with such cases.

Let us now take a closer look at two examples that are particularly
interesting. The first was selected because RNaseP is a ubiquitous
endoribonuclease and the second to highlight how problematic
models can be discovered.

1st example: The RNaseP families for bacteria (type a and b) and
archaea show weak separation as can be seen in Figure 5. The three
involved models (Rfam id 10, 11 and 373) have different noise cutoff
scores. The noise cutoff is the highest score for a false hit in the Rfam
NR database, scores above this threshold are likely homologues (cf.
Nawrocki et al., 2009b). For the three different RNaseP families,
these scores are 43, 93 and 59 bit, respectively. A look at Figure 5
shows, that no random sequence could score high in both model 373
and 11, one can, at most, find a hit that is remote at best. The picture
is entirely different for the high-scoring sequence between RNaseP,

0 0 0 1 1
RNaseP_bact_b

NC:93

00010
RNaseP_bact_a

NC:43

1 0 1
(8)

00373
RNaseP_arch

NC:59

4 7
(-46)

100
(41)

Fig. 5. Link scores for different RNaseP models (with noise cutoff (NC))
with weak separation. Values in brackets are the difference to the noise cutoff
thresholds. The difference is as at least as high as given. A negative value
means that in one or two of the models, the score was lower than the noise
cutoff. For example, the Link score of 101 bit between bact_a and bact_b
is 8 bit higher than the NC of bact_b.

type a and RNaseP in archaea. Here, we find a sequence that is at
least 41 bit higher than the noise cutoff. A similar picture presents
itself for the sequence found for the two bacterial RNaseP models,
though the score difference between the noise cutoff and the highest
score is only 8 bit.

The sequences and their scores show something else, too.
In Section 2, we described how to generate many similar strings
from the one returned string. In this case, where the gap between
cutoff and score is as wide as 41 bit, we could indeed create a very
large number of strings. Each of which with a score that makes it a
likely hit.

Additionally, the high scores between the three RNaseP models
are somehow expected, given that all three models describe variants
of RNaseP. Nuclear RNaseP (not shown), on the other hand, is well
separated from these three models with a maximal score of 24 bit.

2nd example: For our second example (Fig. 6), we have chosen a
set of four family models. Each presents with not only a high Link
score with regard to the others but also the scores are over the noise
cutoff threshold by a large margin, too.

i457

 by guest on O
ctober 16, 2010

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

84 CHAPTER 6. DISCRIMINATORY POWER OF RNA FAMILY MODELS

[10:40 28/8/2010 Bioinformatics-btq370.tex] Page: i458 i453–i459

C.Höner zu Siederdissen and I.L.Hofacker

01086
LR-PK1
NC :150

00943
MIR824
NC:52

1 2 3
(-27)

0 1 2 5 9
snR63
NC:59

1 1 1
(-39)

1 3 5
(76)

0 1 2 6 6
snR45
NC :41

7 4
(-76)

89
(37)

95
(36)

Fig. 6. A high-scoring set of families, explicitly selected for the large
difference to the noise cutoff value. Models 1259 and 943 score 135 bit
on some input, which is at least 76 bit higher than the respective noise cutoff
value. Notice, too, that not all pairs show such a behavior. Models 1086 and
943 have a high Link score with 123 bit, but at least the noise cutoff value
is higher than this value (by 26 bit), making a hit less likely in one model.
Some of the models were built using very few seed sequences and this seems
to increase the chance of finding weak models.

These models show that high noise cutoff values are not
necessarily enough. On the one hand there are indeed some 28 500
edges between families where the Link score is higher than both
threshold values. In these cases one would reasonably argue to have
found a homologue, even though the chance for a false positive does
exist. One cannot, on the other hand, simply set the noise threshold
to safe levels. This is because interesting sequences in the form of
distant family members are likely to be found above the current
noise threshold values.

The examples chosen for Figure 6 point out another problem with
some of the models in the Rfam database. Models like RF00943
were created using only two seed sequences and five sequences
in total. This is, of course, not a problem of Infernal but one of
biological origin. As long as more members of the class have not
been identified, the resulting models are a bit sketchy.

4 DISCUSSION
We have presented a polynomial-time algorithm that, for any two
covariance models, returns a string that scores high in both models.
Using this algorithm, several questions regarding RNA family
models can be answered.

First, it is possible to determine if a model has high discriminative
power against other models. This is important to avoid false
positive results when searching for previously unknown new family
members. The discriminative power can be quantified using the
same measure as used in Infernal itself, thereby giving answers in a
language, namely bit scores, that makes comparisons possible and
easy.

Second, if a model shows overlap with another, it can be
determined which regions of the model do actually show this
behaviour. This is possible, as we not only return a score value,
but other information, too. This includes the offending string, the
respective secondary structures and a detailed score account.

Third, the algorithm is extendable. Borrowing ideas from
Algebraic Dynamic Programming (Giegerich and Meyer, 2002),

an optimization algebra can be anything that follows the dynamic
programming constraints. Included are the CYK scoring algebra
and the different information functions as well as an algebra product
operation. Additional algebras require roughly a dozen lines of code.

Fourth, the MaxiMin, or Link score lends itself as a natural
similarity score for RNA families. Closely related families, in terms
of primary and secondary structure—not necessarily biological
closeness, show a higher Link score than others. This requires further
investigation to determine how much biological information can be
extracted. Pure mathematics cannot answer which biological relation
does actually exist.

In the case of prospective meta-families, we have two open
research problems. One is to take a closer look at high-scoring
families to determine their biological relationship. Are high scores
an artifact of poorly designed families, or a case of an actual meta-
family? The other problem became evident in the 1st example, where
not all members of the RNaseP family scored high against each
other. This suggests that meta-families cannot be modeled in Infernal
directly, but how to adapt RNA family models in such a case remains
open.

Researchers designing new families will also find value in the
tool, as one can scan a new family model against existing ones to
be more confident that one has indeed identified a new family and
not an already existing one in disguise.

The Infernal Users Guide (Nawrocki et al., 2009b) mentions
homology between family models as a reason for the existence of the
different cutoff scores for noise, gathering and trusted. We think it is
important to be able to determine, computationally, the importance
of the cutoff scores when assigning new hits to families.

Another fact is that cutoff scores, like the models themselves, are
set by the curators of the family. Our scoring scheme relies on the
Infernal scoring algorithm itself. As numbers of models were created
from very few seed sequences it is possible that the relevant cutoff
scores are set too high to capture remote members. A cutoff score
above the highest pair scores involving such a model could be of
help while scanning new genomes for remote family members.

Finally, we have to acknowledge that Infernal uses the Inside-,
not the CYK-algorithm to determine final scores. This can pose
a problem in certain exceptional circumstances but these should
be rare. Mathematically (cf. Nawrocki et al., 2009b), CYK =
Prob(s,π|m), while Inside=Prob(s|m). The CYK algorithm gives
the score for the single best alignment π of sequence s and model m
while the Inside algorithm sums up over all possible alignments. This
just means that we underestimate the final score, or said otherwise,
the Inside scores for the Link sequence given the corresponding
models will be even higher than the CYK scores.

Curated thresholds and Infernal 1.0: The version change to
Infernal 1.0 requires re-examination of all threshold values (cf.
infernal.janelia.org). The next release of the Rfam
database is expected to have done this, meaning that a comparison
between (new) cutoff values and the scores calculated here is of
current interest.

ACKNOWLEDGEMENTS
The authors thank Ronny Lorenz for proofreading the article.

i458

 by guest on O
ctober 16, 2010

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

CHAPTER 6. DISCRIMINATORY POWER OF RNA FAMILY MODELS 85

[10:40 28/8/2010 Bioinformatics-btq370.tex] Page: i459 i453–i459

Discriminatory power of RNA family models

Funding: The Austrian GEN-AU project bioinformatics integration
network III.

Conflict of Interest: none declared.

REFERENCES
Bateman,A. et al. (2002) The Pfam protein families database. Nucleic Acids Res., 30,

276–280.
Dowell,R. and Eddy,S. (2004) Evaluation of several lightweight stochastic context-free

grammars for RNA secondary structure prediction. BMC Bioinformatics, 5, 71.
Durbin,R. et al. (1998) Biological Sequence Analysis. Cambridge University Press,

Cambridge, New York.
Eddy,S. (1998) HMMER: profile HMMs for protein sequence analysis. Bioinformatics,

14, 755–763.

Eddy,S. and Durbin,R. (1994) RNA sequence analysis using covariance models. Nucleic
Acids Res., 22, 2079–2088.

Giegerich,R. and Höner zu Siederdissen,C. (2010) Semantics and ambiguity of
stochastic RNAfamily models. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 99.
Available at http://www.computer.org/portal/web/csdl/doi/10.1109/TCBB.2010.12.

Giegerich,R. and Meyer,C. (2002) Algebraic Dynamic Programming. In Algebraic
Methodology And Software Technology, Vol. 2422, Springer, Berlin/Heidelberg,
pp. 243–257.

Griffiths-Jones,S. et al. (2003) Rfam: An RNA family database. Nucleic Acids Res., 31,
439–441.

Mattick,J. and Makunin,I. (2006) Non-coding RNA. Hum. Mol. Genet., 15, R17–R29.
Nawrocki,E. et al. (2009a) Infernal 1.0: inference of RNA alignments. Bioinformatics,

25, 1335–1337.
Nawrocki,E. et al. (2009b) INFERNAL User Guide.
Reeder,J. and Giegerich,R. (2005) Consensus shapes: an alternative to the Sankoff

algorithm for RNA consensus structure prediction. Bioinformatics, 21, 3516–3523.

i459

 by guest on O
ctober 16, 2010

bioinform
atics.oxfordjournals.org

D
ow

nloaded from

86 CHAPTER 6. DISCRIMINATORY POWER OF RNA FAMILY MODELS

Chapter 7

A Folding Algorithm for Extended
RNA Secondary Structures

Christian Höner zu Siederdissen, Stephan H. Bernhart, Peter F. Stadler,
and Ivo L. Hofacker.
A folding algorithm for extended RNA secondary structures.
Bioinformatics. 2011. 27 (13). i129–i136.

CHzS and ILH reduced the exponential runtime of MC-Fold to the polynomial runtime
O(n3) of MC-Fold-DP. All authors participated in the design of the new extended sec-
ondary structure folding algorithm, RNAwolf, based on 2-diagrams. CHzS implemented
all algorithms in Haskell. The authors have shared writing the paper.

This is an Open Access article distributed under the terms of the Creative Commons
Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5),
which permits unrestricted non-commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

87

[17:54 7/6/2011 Bioinformatics-btr220.tex] Page: i129 i129–i136

BIOINFORMATICS Vol. 27 ISMB 2011, pages i129–i136
doi:10.1093/bioinformatics/btr220

A folding algorithm for extended RNA secondary structures
Christian Höner zu Siederdissen1,∗, Stephan H. Bernhart1, Peter F. Stadler1,2,3,4,5,6

and Ivo L. Hofacker1,5
1Institute for Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria, 2Bioinformatics Group, Department
of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, D-04107 Leipzig,
3Max Planck Institute for Mathematics in the Sciences, 4RNomics Group, Fraunhofer IZI, D-04103 Leipzig, Germany,
5Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, DK-1870
Frederiksberg, Denmark and 6The Santa Fe Institute, Santa Fe, 87501 NM, USA

ABSTRACT

Motivation: RNA secondary structure contains many non-canonical
base pairs of different pair families. Successful prediction of these
structural features leads to improved secondary structures with
applications in tertiary structure prediction and simultaneous folding
and alignment.
Results: We present a theoretical model capturing both RNA
pair families and extended secondary structure motifs with shared
nucleotides using 2-diagrams. We accompany this model with
a number of programs for parameter optimization and structure
prediction.
Availability: All sources (optimization routines, RNA folding, RNA
evaluation, extended secondary structure visualization) are published
under the GPLv3 and available at www.tbi.univie.ac.at/software/
rnawolf/.
Contact: choener@tbi.univie.ac.at

1 INTRODUCTION
The classical RNA secondary structure model considers only the
Watson–Crick AU and GC base pairs as well as the GU wobble pair.
Adetailed analysis of RNA3D structures, however, reveals that there
are 12 basic families of interactions between the bases, all of which
appear in nature (Leontis and Westhof, 2001; Leontis et al., 2002).
Moreover, virtually all known RNAtertiary structures contain the so-
called non-Watson–Crick base pairs. This has led to the development
of an extended presentation of RNA contact structures with edges
labeled by their pairing type (an example can be seen in Fig. 1). This
extended description of base pairing is commonly termed after its
inventors the Leontis–Westhof (LW) representation.

The LW representation has proved to be a particularly useful
means of analyzing 3D structures of RNA as determined by X-
ray crystallography and NMR spectroscopy (Leontis and Lescoute,
2006). In particular, it has led to the discovery of recurrent structural
motifs, such as kink-turns and C-loops, that act as distinctive
building blocks of 3D structures. The sequence variation in these
structural motifs follows combinatorial rules that can be understood
by the necessity to maintain the overall geometry when base pairs
are exchanged. These isostericity rules are discussed in detail by
Lescoute et al. (2005); Stombaugh et al. (2009). As a new level
of RNA structure description, the ability to predict non-standard
base pairs can be expected to improve the performance of RNA
structure prediction. Furthermore, information about evolutionary

∗To whom correspondence should be addressed.

Fig. 1. Example of a structure containing base triplets. The inner part
(bases 14–37) of the PDB structure 1dul is shown in a 3D representation
and as a 2D structure plot displaying the non-standard base pairs in LW
representation. The four bases highlighted in the 3D structure form the two
base triplets that can be seen in the upper part of the interior loop in the 2D
structure.

conservation of the isostericity classes of these non-standard base
pairs will improve consensus structure-prediction and structure-
dependent RNA gene finding.

Since many additional interactions beyond the standard base pairs
are represented in the LW formalism, what was considered to be a
loop in classical secondary structures can now appear as complex
structures of non-standard base pairs. These non-standard base pairs
effectively divide the long ‘classical’ loops into much shorter ones.
Parisien and Major (2008) proposed a model that contains loops
with no more than four unpaired bases. For unbranched structures,
the model is scored using a statistical potential estimated from
the available 3D structures by counting the relative frequencies
of base pairs, short unbranched loops of particular shapes in
dependence of their sequences and combinations of loops with a
common base pair. An accompanying folding procedure, MC-Fold
(Parisien and Major, 2008), which exhaustively enumerates stem-
loop components, is available and has been used very successfully
as a first step toward the de novo prediction of RNA 3D structures

© The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 at O
esterreichische Z

entralbibliothek fuer Physik on N
ovem

ber 2, 2011
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

88 CHAPTER 7. EXTENDED RNA SECONDARY STRUCTURES

[17:54 7/6/2011 Bioinformatics-btr220.tex] Page: i130 i129–i136

C.Höner zu Siederdissen et al.

Fig. 2. MC-Fold and MC-Fold-DP both consider small loops, like the
hairpin AAGUG (C) and the 2×2 stack AAGU (D) (read clockwise, starting
bottom left). Each loop is scored by a function Ec(C |AAGUG). The stack (D)
follows analoguously. The interaction term between two loops is calculated as
indicated by the arrow (α), where the two loops are overlayed at the common
AG pair. The contribution of the interaction is Ejunction+hinge(C ,D;θ;A,G)
with θ the unknown pair family.

using MC-Sym (Parisien and Major, 2008), which takes as input the
proposed secondary structure from MC-Fold.

2 MC-FOLD REVISITED

2.1 Algorithm
Like ordinary secondary structure prediction tools, MC-Fold
(Parisien and Major, 2008) is based on a decomposition of the
RNA structure into ‘loops’. In contrast to the standard energy model,
however, it considers the full set of base pair types available in the
LW representation. Each base pair, therefore, corresponds to a triple
(i,j;θ) where θ is one of the 12 types of pairs. In this model, ordinary
secondary structures are the subset of pairs with Watson-Crick—
Watson-Crick type (θ= ‘WW’) and the two nucleotides form one of
the six canonical combinations {AU,UA,CG,GC,GU,UG}. This
extension of the structure model also calls for a more sophisticated
energy model. While the standard model assumes the contributions
of the loops to be strictly additive, MC-Fold also considers
interactions between adjacent unbranched loops (hairpins, stacked
pairs, bulges and general interior loops). This means that the total
energy of a structure is not only dependent on the loop types present,
but also on the arrangement of these loops. Dispensing with details
of the parametrization, the scoring function of MC-Fold for a
structure S on sequence x can be written as follows (see Fig. 2):

E(S|x)=
∑
C

Ec(C |x[C])

+
∑

C ′ ,C ′′
(k,l)=C ′∩C ′′

Ej+h(C ′,C ′′;θ;x[k],x[l]) (2.1)

where C ,C ′,C ′′ are different loops of S. The additive term Ec
tabulates the (sequence-dependent) contributions of the loops. The
interaction term Ej+h accounts for the ‘junction’ and ‘hinge’ terms
in stem–loop regions. These interaction terms depend on the type of
the adjacent loops as well as on the type θ and sequence (x[k],x[l])
of the base pair that connects them. For multiloops, only the additive
term is considered.

Let us ignore multiloops for the moment. A basepair (i,j;θ) then
encloses a loop of type L which is either a hairpin or encloses a loop
K . It is connected to K by a base pair (k,l;ψ) with i<k< l< j. Let

Bij(θ;L) be the minimal energy of a structure on x[i..j] enclosed
by a base pair (i,j;θ) with an outermost loop of type L . Note that,
in our notation, the loop type L also specifies its length and hence
implicitly determines the coordinates of the inner base pair of an
interior loop: (k,l)= (i+�1(L),j−�2(L)). For simplicity, we write
(k(L),l(L)). If L is a hairpin, then Bij(θ;L)=H [i,j;θ;hairpin],
a tabulated energy parameter. Otherwise, we have the recursion

Bij(θ;L)= min
ψ,K

(
I[i,j;θ;L ;ψ,K]+Bk(L),l(L)(ψ;K)

)
(2.2)

This can be expanded to a full ‘next-nearest-neighbor’ model by
enforcing an explicit dependence on the type of the inner base pair:

Bij(θ;L ;ψ)= min
ψ,K ,φ

(
I[i,j;θ;L ;ψ;K ;φ]

+Bk(L),l(L)(ψ;K ;φ)

) (2.3)

The effort to evaluate this recursion equation for a fixed base pair
(i,j) is L3T3, where L is the number of loop types and T is the
number of base pair types. While this prefactor is inconveniently
large, we nevertheless obtain anO(n2) [orO(n3) with multibranched
loops] folding algorithm instead of the exponential runtime of
MC-Fold.

The problem with this general form of energy parametrization is
the unmanageable number of parameters that need to be measured,
estimated or learned from a rather limited set of experiments and
known RNA structures.

2.2 Parametrization and implementation
Since the folding problem for the MC-Fold model can be solved
in polynomial time, the associated parameter estimation problem
becomes amenable to advanced parameter optimization techniques
(Andronescu et al., 2007; Do et al., 2008). At present, however,
we have opted to extend the original MC-Fold parameters only
by simple sparse data corrections that can be applied on top of the
original MC-Fold database. This has the advantage of allowing
a direct comparison between the original version of MC-Fold
and our dynamic programming version MC-Fold-DP. In contrast
to the original version, MC-Fold-DP can cope with large data
sets and long sequences (3 s for 250 nt, about 24 s for 500 nt with
MC-Fold-DP, compared to 660 s for 100 nt with MC-Fold).1

In terms of algorithmic design, we have made several changes.
The grammar underlying MC-Fold-DP follows the ideas of
Wuchty et al. (1999). This makes the generation of all suboptimal
structures in an energy band above the ground state possible.
The decomposition of interior loops into small loops implies that
MC-Fold-DP runs in O(n3) time without the need for the usual
explicit truncation of long interior loops. The recursion that fills
stem loops [Nucleotide Cyclic Motifs (NCMs) in the nomenclature
of Parisien and Major (2008)] is now reduced to a function
NCM(i,j,typei,j,k,l,typek,l). For the matrix, entry (i,j,typei,j) is
minimized over all (k,l,typek,l) with (k,l) determined by the
newly inserted motif typei,j . Hairpins are even simpler: they follow
NCM(i,j,typei,j,...) but there is no inner part (k,l,typek,l).

1Note that the implementation of MC-Fold-DP has not been aggressively
optimized apart from using the polynomial-time algorithm.

i130

 at O
esterreichische Z

entralbibliothek fuer Physik on N
ovem

ber 2, 2011
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

CHAPTER 7. EXTENDED RNA SECONDARY STRUCTURES 89

[17:54 7/6/2011 Bioinformatics-btr220.tex] Page: i131 i129–i136

Extended RNA secondary structures

The total number of motif types is small (15 in the original
set, of which not all are actually used). Both the time and space
complexities are, therefore, small enough to handle RNAs with
a length of several hundred nucleotides, i.e. in the range that is
typically of interest. In fact, the time complexity is similar to
ordinary secondary structure prediction where interior loop size is
bounded by a constant. Since the grammar is unambiguous, it is
also straightforward to compute partition functions and base pairing
probabilities, although this feature is not available in the current
implementation.

3 BEYOND 1-DIAGRAMS

3.1 Base triplets
An important restriction of secondary structures is that each
nucleotide interacts with at most one partner. In combinatorial
terms, secondary structures are 1-diagrams. A closer analysis of the
available 3D structures, however, reveals that many nucleotides form
specific base pairs with two other nucleotides, forming ‘base triplets’
or, more generally, ‘multi-pairings’. Cross-free b-diagrams with
maximal number b of interaction partners for each nucleotide can
be treated combinatorically in complete analogy with (pseudoknot-
free) secondary structures by conceptually splitting each node into
as many vertices as there are incident base pairs (arcs). As in
the case of secondary structures, we say that (i,j) and (k,l) cross
if i<k< j< l or k< i< l< j. A b-diagram is non-crossing if no
two arcs cross. Base pairs can then be well-ordered also in this
extended setting: two distinct arcs (i,j) �= (k,l) are either nested
(i≤k< l≤ j) or juxtaposed (i< j≤k< l). This observation is used
in RNAMotifScan (Zhong et al., 2010) to devise a dynamic
programming algorithm for sequence structure alignments along the
lines of RNAscf (Bafna et al., 2006) or locarna (Will et al.,
2007), which in turn are restricted variants of the Sankoff algorithm
(Sankoff, 1985).

Here, we consider only structures with at most two base pairs
involving the same nucleotide, i.e. 2-diagrams. In this case, there
is a convenient string representation generalizing the Vienna (dot-
parentheses) notation for secondary structures by introducing three
additional symbols <, >, X for positions in which two arcs meet:
((= <,)) = > and)(= X. For general b, the number of necessary
symbols grows quadratically, sb = (b+1)(b+2)/2, since each must
encode b1 opening and b2 closing pairs with b1,b2 ≥0 and b1 +b2 ≤
b. These symbols provide a direct representation of the arc nodes
‘�,�,×’of Figure 3 and are an optional output of the folding program
described below to visualize 2-diagrams in the secondary structure.

3.2 A grammar with base triplets
In order to design a dynamic programming folding algorithm for
cross-free 2-structures we need a decomposition, i.e. a grammar for
2-structures. For practical applications, it is desirable to have not
only a minimization algorithm, but also a partition function version.
To this end, an unambiguous grammar is required (Dowell and Eddy,
2004; Reeder et al., 2005). A simple version, treating base pairs as
the elementary entities is shown in Figure 3. It translates into an
extension of either a Nussinov-style algorithm for maximizing the
number of base pairs or a recursion for counting the number of
non-crossing 2-diagrams. Let Fij denote the minimum energy of a

structure on the sequence interval x[i..j]. We have

Fij =min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fi+1,j

Cij

εai,j +Ui,j−1

εbi,j +Vi+1,j

εci,j +Wi,j

min
i<k<j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci,k +Fk+1,j

εai,k +Ui,k−1 +Fk+1,j

εbi,k +Vi+1,k +Fk+1,j

εci,k +Wi,k +Fk+1,j

εai,k +Fi+1,k−1 +Uk,j

εci,k +Ui,k−1 +Uk,j

(3.1)

and analogous recursion for Uij ,Vij and Wij , denoting the minimum
energies over all structures whose left, right or both ends, are
involved in a triplet. The symbol Cij refers to structures enclosed
by a non-triplet base pair. In the simplest case, Cij =εij +Fi+1,j−1
(lower right corner of Fig. 3). The terminal symbols are the unpaired
base •, the ordinary base pairs and the three types of base pairs
involved in triplets, contributing εi =0 sequence-dependent energy
increment εij and sequence-dependent energy increments εaij , ε

b
ij and

εcij , respectively. The recursion is initialized with Fii =0.
Only certain combinations of types of base pairs can occur in

triplets. Thus, in a refined model we need to replace Uij , Vij and
Wij by Uij[ν], Uij[µ] and Wij[ξ] explicitly referring to the base
pair type(s) of the triplet. Furthermore, the energy parameters also
become type dependent εaij →εaij[ρ] or even εaij[ρ,ν] where ρ is the
type of the pair itself and ν is type of the second pair of the triplet.
The first variant is chosen for Nussinov-like algorithms, where each
individual base pair is evaluated, splitting triplets, and the second
variant is more fitting for Turner-like nearest neighbor models. In
that case, recursion on W changes to Wij[ν,µ] to reflect the pairing
choice being made.

3.3 Full loop-based model
The grammar of Figure 3 can be extended to incorporate the
standard loop-based Turner energy model (Turner and Mathews,
2010) (which distinguishes hairpin loops, stacks of two base pairs,
bulges, interior loops and multibranched loops). The modification of
the grammar is tedious but rather straightforward, as seen in Figure 4.
Instead of treating the base pairs themselves as terminal symbols (as
in Fig. 3), this role is taken over by entire loops. Note that as in the
case of ordinary secondary structures, each loop in a given structure
is uniquely determined by its closing pair. The energy contributions
now depend, in a more complex way, on the characteristics of
the loop, hence we also need additional non-terminals to describe
e.g. the components of multiloops.

We use a decomposition that is similar to that of MC-Fold and
in addition encompasses 2-diagrams. A p×q-loop, p≤q, consists
of p nucleotides on one strand and q nucleotides on the other
one. In particular, 2×2-loops correspond to stacked base pairs,
1×q-loops, q>1 are triplets and 2×3-loops are stacks with a
bulged-out nucleotide. In addition to hairpin loops and these p×q-
loops, we consider generic bulges with and without a shared
nucleotide, interior loops of larger sizes and multibranched loops,

i131

 at O
esterreichische Z

entralbibliothek fuer Physik on N
ovem

ber 2, 2011
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

90 CHAPTER 7. EXTENDED RNA SECONDARY STRUCTURES

[17:54 7/6/2011 Bioinformatics-btr220.tex] Page: i132 i129–i136

C.Höner zu Siederdissen et al.

Fig. 3. A simple unambiguous grammar for non-crossing 2-diagrams (The symbols used here denote (non-)terminals in a context-free grammar and are
not to be confused with the LW notation used in other figures). Connected parts of diagrams correspond to terminal [individual bullet with no arc (closed
circle) = unpaired nucleotide; arc with circular end points (closed circle, open circle) = base pair; arc with triangular endpoints (left-faced triangle, right faced
triangle, cross) = part of base triple] or non-terminal (horizontal lines and semicircle) symbols of the grammar. It is important to realize that left-faced and
right-faced triangles refer to the same nucleotide when they are adjacent. In terms of a recursion, the index for both left-faced and right-faced triangles is
therefore the same. One triangle ‘points’ to the outer arc and one to the inner arc incident to the same nucleotide.

Fig. 4. Decomposition of one non-terminal in the full loop-based model with
triples. The l.h.s. of the production rule denotes a structure enclosed by a base
pair where the base at the 3′ end is part of a triple. The second base pair of
this triple ends within the structure. The structural element is either bulge
like (first column) or multiloop like. In the first case, we have to distinguish
whether the enclosed structure has a normal pair or a triple at its 5′ side. In the
multiloop case, we use the linear decomposition into components familiar
from the Turner model with a non-terminal denoting a partial multiloop
containing at least one base pair. Here, we need to distinguish whether the 5′
end of the rightmost component and 3′end of the left components are triples
or not. As the multiloop part is not implemented in our current version, it is
grayed out.

again possibly with shared nucleotides. Figure 4 gives an example
for the full loop-based decomposition of one particular non-terminal.
In our current implementation, we use several simplifications in
particular for multiloops that involve triplets. Some information on
the complete grammar used in our implementation can be found in
the Appendix A, other information is available on the RNAwolf
homepage.

4 IMPLEMENTATION

4.1 Folding software
The implementation available on the RNAwolf homepage is written in the
high-level functional programming language Haskell. While this leads to an
increase in running times (by a constant factor), the high-level notation and
a library of special functions lead to very concise programs, and enable, e.g.
the use of multiple cores.

Currently, the following algorithms are implemented: (i) an optimizer
which takes a set of melting experiments and the PDB database as input

and produces a parameter file optimized as described below. (ii) A folding
program which expects a sequence of nucleotides as input and produces an
extended secondary structure prediction which includes nucleotide pairs of
non-canonical types. Furthermore, it can contain motifs with base triplets.
(iii) An evaluation program which expects both, a sequence and a secondary
structure. The input is then evaluated to return the score of said structure
and, if requested, tries to fill the given (canonical) structure with additional
pairs. This allows to turn a classical secondary structure into an extended
secondary structure by filling large loops with non-canonical pairs.

At the moment, base triplets have been restricted slightly in that shared
nucleotides are only possible in stem structures, not within a multibranched
loop motif. Allowing shared nucleotides between two helices of a multiloop
would slow down multiloops by a significant factor. Nevertheless, we will lift
this restriction for the full nearest neighbor model we plan to implement. In
the full model, we will be able to use data gathered from our current model to
reduce the combinatorial complexity of the algorithm within multibranched
loops.

4.2 Parameter estimation
In contrast to the Turner model, which considers only canonical base pairs
[i.e. Watson–Crick and GU (wobble) pairs], we include all types of base pairs.
Thus, we also have to derive parameters for all possible base pair families
in our motifs of choice. To this end, we need to find sufficient evidence for
each parameter and we need an efficient numerical algorithm for optimizing
the parameters.

(i) Even if a large body of sequence/structure pairs is available to train
the parameters, it is still highly unlikely that each parameter is witnessed. A
simple calculation for canonical stacked pairs already produces 44 ×122 =
36864 (ignoring symmetries) parameters to be trained. While symmetries
reduce the number of distinct parameters, canonical stacks still require
∼10000 independent parameters. In total, the number of parameters easily
reaches 105, which means that only a very small set of parameters will
actually be observed in experimentally verified structures.

(ii) The second problem is of numerical nature in that it gets hard to
estimate a solution in R100000 even under ideal circumstances. In addition,
the computational effort for the computation of the solution vector is rather
high. There are two different types of approaches to this problem, described
in some detail by Andronescu et al. (2007). In max-margin formulations,

i132

 at O
esterreichische Z

entralbibliothek fuer Physik on N
ovem

ber 2, 2011
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

CHAPTER 7. EXTENDED RNA SECONDARY STRUCTURES 91

[17:54 7/6/2011 Bioinformatics-btr220.tex] Page: i133 i129–i136

Extended RNA secondary structures

parameters are optimized such as to drive them away from wrongly
determined structures and toward correctly determined ones. Alternatively,
the conditional likelihood of known structures is maximized. Andronescu
et al. (2010) described an extension of the algorithm that can deal with
unobserved configurations by employing a hierarchical statistical model.

We have selected yet another way of dealing with the immense number
of features. Instead of optimizing the full set of parameters directly, we first
optimize the parameters for a restricted model closely following the simple
unambiguous grammar given in Figure 3. In short a loop of type m (e.g.
stacked pair, bulge, etc.) enclosed by two pairs p1, p2 is assigned an energy
ε(m)+εm(p1)+εm(p2), where ε(m) depends on the type and size of the loop
but is independent of sequence, and the pair energies depend on the identity
of the nucleotides as well as the LW type (e.g. GC,cWW).

We call our model enhanced Nussinov as it distinguishes between loops of
different types (say bulges of different lengths are assigned different scores)
but assumes that pair energies are independent as in the Nussinov model.

This approach has several advantages. First, the resulting algorithm is an
accessible ‘toy-model’ that can be employed to test different hypotheses.
Second, the estimated parameters provide a useful set of priors for the
full model. This is important since, in contrast to the work of Andronescu
et al. (2007), we cannot derive a complete set of priors from known data.
Finally, the computational requirements are significantly lower. Training a
full Boltzmann model for conditional likelihood maximization might easily
have taken months of CPU time (Andronescu et al., 2010).

Here, we utilize both melting experiments and PDB data for parameter
estimation. Melting experiments yield a small set of sequences, structures
and corresponding free energies. The structural data, unfortunately, provides
almost exclusively canonical Turner features and no information regarding
the base pair family, although it can be assumed that all pairs are of the
Watson–Crick (cWW) style. The PDB data, on the other hand, contain not
only non-canonical base pairs, but also provide information on the base pair
family. In addition, PDB entries typically refer to structures that are much
larger than those used in melting experiments.

Together, both sets provide data required for the estimation of an extended
set of parameters. In order to keep computation times short, we employ the
original no-max-margin constraint-generation approach used by Andronescu
et al. (2007). While not providing the most accurate parameters in the
original paper, the relatively short runtimes of ∼1 CPU day are convenient
for experimental purposes. In addition, since we are training an enhanced
Nussinov-style model, we can assume that the prediction accuracy is limited
by the structure of the model. More advanced, and hence computationally
more expensive, training methods are therefore unlikely to lead to substantial
improvements of the prediction accuracy.

4.3 Optimization
Our task is to estimate the energy contributions xj for a given collection of
features j. In this context, a feature corresponds to a terminal symbol in our
grammar with a fixed underlying sequence, such as as GC/GC stacked pair or
a 1×3-loop with sequence (G—AUC) where GA is a Hoogsteen pair and GC
is a Watson–Crick pair. We are given the following types of data: (i) a matrix
A whose entries Ai,j encode how often feature j occurs in sequence/structure
pair i, and (ii) a vector y containing measured melting temperatures yi for
experiment i.

Constraints are now generated as follows. For each entry k of the PDB,
we extract the (extended) secondary structure features. This means that
neither pseudoknots nor intermolecular interactions (which require more
complicated grammars) are considered. The entry f T

j of the row vector f T

counts how often feature j is observed in the structure. Using the current
parameter values x (see below), the sequence of PDB entry k is folded and
the corresponding feature vector gT is constructed. If the predicted fold has a
lower free energy than the known structure, a new constraint (f −g)T x≤0 is
introduced. Note that f T x and gT x are, by construction, the free energies of
the known and the predicted structure evaluated with the current parameters
x. Since the true structure is expected to be the thermodynamic ground state,

its free energy must be smaller than that of any other structure. The constraint
matrix D contains all currently active constraints where Dk,. is the k-th active
constraint (in this notation Dk,. selects the k-th row, while D.,l would select
the l-th column).

Following Andronescu et al. (2007), we use a slack variable dk for
each constraint so that Dk,.x≤dk . This guarantees that the problem remains
feasible as otherwise conflicting constraints could reduce the feasible set for
x to the empty set. The slack variables dk are bounded from below by 0≤dk

because (f −g)T x≥0, with equality for cooptimal structures.
Norm minimization problems can drive individual variables xi to extreme

values. We, therefore, constrain the energy contribution of individual features
to |xi|<5 kcal/mol. A subset S of features that act as penalties are constrained
to positive values, xj>0 for j∈S. The set S is defined along the following
principles: unpaired loop regions destabilize the structure relative to a random
coil and hence should be penalized. Hairpins, bulges and interior loops fall
into this category. In addition, 1×2 and 2×3 stems, which are otherwise
modeled as 2×2 stems, are penalized. Hence, for e.g. the 2×3 loop CAUGG
with A unpaired, we have ε(CG)+ε(UG)+ε(2×3) where ε(2×3) is the
penalty term.

Parameter estimation is thus reduced to the constrained norm optimization
problem ∥∥∥∥

(
A 0
D −I

)(
x
d

)
−

(
y
0

)∥∥∥∥
2

(4.1)

with the linear constraints

−5<xj<5, 0<xl, l∈S, 0<dk . (4.2)

Since this optimization problem is convex it can be solved efficiently.
The parameter vector x is optimized iteratively. Initially, D is empty and

no slack variables d are used. After the first step, all PDB sequences have
been folded and those for which the predicted structure is different from the
known structure are included as a row in D as described above. The slack
variables are initialized as dk =Dk,.x+γ for each constraint k, where γ ∈R+
is a small constant. Iterations of the optimization procedure continue until
no more constraints have to be added.

The computational effort required, both to estimate the parameters and to
fold a single sequence, is higher than what is required for the Turner model.
The additional computational effort required by the folding algorithm is
mainly a result of the inclusion of the pair family information. In the case of
2-loops (stacks, bulges, interior loops), we incur an additional factor of 12
since each possible pair family has to be considered. More problematic are
multibranched loops in the case of shared nucleotides as now there are up to
12×11 possibilities to connect a shared nucleotide with its pairing partners.

4.4 Comparison with turner parameters
A comparison with the parameter sets by Turner (Turner and Mathews,
2010) shows that individual contributions are similar enough to make the
the ‘enhanced Nussinov’ model a useful prior in the parameter optimization
for the full model. Consider, for example, canonical 2×2 stacks, where one
pair is of type GC, cWW type and the other pair is of type XY, cWW,
with XY ∈{GC,CG,AU,UA,GU,UG} and cWW stands for cis/Watson–
Crick/Watson–Crick, the canonical pair type. In the Turner-2004 model,
energy contributions range from −1.5 to −3.4 kcal/mol, while the base-
pair contribution for the GC, cWW pair is −1.36 kcal/mol in the optimized
‘enhanced Nussinov’ model. Depending on the second pair, we observe
discrepancies of ≈0.5 when comparing the sum of individual pair energies
to the total stacking energy. This level of agreement is expected and suggests
that it makes sense in later iterations of parameter estimation to constrain
features to tighter intervals than the current setting of using the open interval
of]−5,5[.

5 RESULTS AND DISCUSSION
MC-Fold-DP: MC-Fold-DP and the original MC-Fold by
(Parisien and Major, 2008) show comparable performance on a

i133

 at O
esterreichische Z

entralbibliothek fuer Physik on N
ovem

ber 2, 2011
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

92 CHAPTER 7. EXTENDED RNA SECONDARY STRUCTURES

[17:54 7/6/2011 Bioinformatics-btr220.tex] Page: i134 i129–i136

C.Höner zu Siederdissen et al.

Table 1. Prediction accuracy of MC-Fold, MC-Fold-DP and
RNAfold 1.8.4 on a set of 347 sequences from the RNAstrand
database

Algorithm Count MCC F S PPV

MC-Fold, ≤50 nt 298 0.74 0.74 0.80 0.70
MC-Fold, ≤100 nt 37 0.54 0.54 0.66 0.46
MC-Fold, >100 nt 12 0.49 0.49 0.53 0.46

MC-Fold-DP, ≤50 nt 298 0.71 0.71 0.77 0.68
MC-Fold-DP, ≤100 nt 37 0.53 0.53 0.64 0.45
MC-Fold-DP, >100 nt 12 0.38 0.37 0.51 0.29

RNAfold, ≤50 nt 298 0.76 0.76 0.73 0.81
RNAfold, ≤100 nt 37 0.73 0.73 0.73 0.73
RNAfold, >100 nt 12 0.63 0.63 0.66 0.60

All sequences are <200 nt long. The longest sequence took just under an hour of
computation time using MC-Fold. MC-Fold-DP can compute the predicted structure
in ∼1 s (loading the MC-Fold motif database requires an additional 1–2 s). Prediction
quality has been measured on canonical base pairs only for comparison purposes. Note
the small number of sequences >100 nt. (MCC, Matthews correlation coefficient; F,
F-Measure; S, Sensitivity; PPV, Positive Predictive Value).

set of 347 sequences selected from the RNAstrand (Andronescu
et al., 2008) database. There are several differences between
the two algorithms. First, the runtime, where MC-Fold-DP is
about ×200−×1000 faster for biologically relevant sequences (i.e.
<1000 nt). Table 1 shows a small comparison of the prediction
accuracy given different measures. Second, we allow for sparse
data correction, which can be disabled by the user. And third, the
algorithm accepts non-canonical input (e.g. ‘N’ characters) and can
be configured to calculate approximate scores for motifs containing
such characters.

Differences in predictions are the result of internals of the orignial
algorithm that have remained unknown to us since they are not
described in full detail in Parisien and Major (2008).

It should be noted that our reformulation makes MC-Fold-DP
amenable for the parameter optimization approaches pioneered by
Andronescu et al. (2010) for which a polynomial-time prediction
algorithm is crucial. The non-ambiguous grammar allows even
the advanced, Boltzmann Likelihood-based, approaches to be
employed. This presents an opportunity for future research.

RNAwolf: we compared our enhanced Nussinov algorithm to
three state-of-the-art thermodynamic folding algorithms [RNAfold
(Hofacker et al., 1994), UNAfold (Markham and Zuker, 2008) and
RNAstructure (Reuter and Mathews, 2010)] to assess the prediction
quality of our model. We folded a subset of 550 randomly chosen
structures from RNAstrand (Andronescu et al., 2008) and compared
the F-measure of our results with those of the other programs. The
results in Figure 5A show that, not unexpectedly, the ‘enhanced
Nussinov’ algorithm cannot compete with state-of-the-art tools due
to its simplified energy model.

Interestingly, once we focused on data gathered from the PDB
database (Fig. 5B), the results showed a remarkable improvement.
This could suggest that the PDB structures used for training do not
sufficiently cover the RNA structure space and that additional RNAs
(for which only secondary structure information is available) should
be included in the training.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
um

be
r

of
 p

re
di

ct
io

ns

F-measure of prediction

RNAwolf
RNAfold 1.8.4
UNAFold 3.8

RNAstructure 5.2

 0

 10

 20

 30

 40

 50

 60

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
um

be
r

of
 p

re
di

ct
io

ns

F-measure of prediction

RNAwolf
RNAfold 1.8.4
UNAFold 3.8

RNAstructure 5.2

A

B

Fig. 5. (A) Histogram of F-measures for different folding algorithms, given
550 random RNAstrand entries. (B) F-measures, given 155 PDB entries from
the RNAstrand, which are a subset of the 550 random RNAstrand entries.

Because of the large number of base pair types, the ‘enhanced
Nussinov-algorithm’, has to perform more work than classical
secondary structure prediction programs when filling the dynamic
programming matrices. This is reflected by rather high runtimes
(25 s for 100 nt, 110 s for 200 nt). However, the asymptotic time
complexity is still in O(n3).

A constrained folding variant of the ‘enhanced-Nussinov’
algorithm can be used, for example, to predict non-canonical base
pairs in large interior loops of structures. As an example, Figure 6,
shows that RNAwolf is able to correctly predict the non-canonical
base pairs in a situation where the canonical base pairs are already
given, i.e. where the input consists of both the sequence and a dot-
bracket string representing canonical Watson–Crick base pairs. Only
the zig-zag motif (upper part of the interior loop) was not predicted,
presumably due to the large penalty of +3.89 for each of the two
1×2 stacks.

Further results and a semi-automatic system for secondary
structure prediction comparison (SSPcompare) are available on
the RNAwolf homepage. Table 1 has been created using said
program.

6 CONCLUSION
Large experimentally verified RNA structures contain a sizable
number of non-canonical base pairs (Stombaugh et al., 2009).

i134

 at O
esterreichische Z

entralbibliothek fuer Physik on N
ovem

ber 2, 2011
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

CHAPTER 7. EXTENDED RNA SECONDARY STRUCTURES 93

[17:54 7/6/2011 Bioinformatics-btr220.tex] Page: i135 i129–i136

Extended RNA secondary structures

A B

Fig. 6. Prediction of non-canonical base pairs with RNAwolf. (A) Known
structure of PDB entry 1dul. (B) Constrained prediction (canonical base
pairs were given) of 1dul. Only the central part of the structure is shown.
The outer part of the stem contains only canonical base pairs and is not
shown.

However, only a few RNA folding programs predict non-canonical
pairs (Do et al., 2006; Parisien and Major, 2008). With the
exception of MC-Fold, the pair families are not explicitly taken
into account. Here, we have shown that the prediction of non-
canonical pairs together with the corresponding pair families and
their possible interactions in base triples is feasible by efficient
dynamic programming approaches. Although direct thermodynamic
measurements are not available to cover all aspects of such
an extended and refined model of RNA structures, meaningful
parameter sets can nevertheless be constructed. To this end, the
information of the thermodynamic measurements is combined with
a feature analysis of 3D structures using one of several approaches
to large-scale parameter optimization. The extended combinatorial
model, which in essence covers the LW representations of RNA
structures, allows a much more detailed modeling of the intrinsic
structures in particular of hairpins, interior loops and bulges.

We emphasize that our contribution does not yet provide a full-
fledged loop-based LW-style energy model. In essence, we still lack
an implementation for the full model of multiloops. As the example
of Figure 6 suggests, interactions of adjacent loops as in the MC-
Fold model may also be required to obtain satisfactory prediction
accuracies for practical applications. Due to the computational
cost, it will also make sense to investigate the trade-off between
further refinements of the model and speed-ups resulting from
additive approximations. Another facet that naturally should be
taken into account is coaxial stacking, in particular in the context
of multiloops (Tyagi and Mathews, 2007). We have demonstrated
here that the goal of an accurate, practically applicable folding
algorithm for LW structures is meaningful and reachable: the work
of Parisien and Major (2008) shows that major improvements of
prediction accuracy can be obtained by employing LW-based folding
algorithms.Although RNAwolf does not yet reach the desired levels
of accuracy, it allows us to explore the missing components of the
energy model in a systematic manner, and it demonstrates that this
can be achieved without leaving the realm of fast, efficient and exact

dynamic programming approaches. The next step, therefore, is a
toolkit for optimizing parameters in the full loop-based model.

An interesting possibility for further extensions of the model is
the explicit incorporation of recurring RNA structural motifs with
non-canonical pairs, such as Kink-Turns (Klein et al., 2001), into
the grammar and the energy model. This may be particularly useful
in those cases where motifs are not crossing-free and hence would
require a pseudoknot version of the folding algorithm. While the
inclusion of various types of pseudoknots is conceptually not more
difficult than for ordinary secondary structures, the parametrization
of such models will be even more plagued by the lack of training
data in the LW framework.

The folding algorithm introduced here, furthermore, sets the stage
for a complete suite of bioinformatics tools for LW structures.
Simple extension can cover the cofolding of two or more RNAs
along the lines of (Bernhart et al., 2006; Dimitrov and Zuker,
2004; Dirks et al., 2007). Consensus structures can be predicted
from given sequence alignments using the same recursions. As
in RNAalifold (Bernhart et al., 2008), it suffices to redefine
the energy parameters for alignment columns instead of individual
nucleotides. Instead of RIBOSUM-like scores as measures of
conservation (Klein and Eddy, 2003), one naturally would employ
the isostericity rules for the individual base pair types (Leontis
et al., 2002; Lescoute et al., 2005). Inverse folding algorithms
(Andronescu et al., 2004; Busch and Backofen, 2006; Hofacker
et al., 1994) design RNA sequences that fold into prescribed
structures by iteratively modifying and folding sequences to
optimize their fit to substructures of the target. This strategy can
immediately be generalized to LW structures; in fact, in essence
it suffices to replace secondary structure folding by LW style
folding. Combining the algorithmic ideas of this contribution with
the Sankoff-style alignment approach of Zhong et al. (2010) and
the progressive multiple alignment scheme of mlocarna (Will
et al., 2007) directly leads to an LW variant of structural alignment
algorithms.

ACKNOWLEDGEMENTS
The authors thank the participants of the Refined presentation of
RNA structures workshop for lively discussions, Marc Parisien for
kindly answering questions about MC-Fold, the curators of the
FR3D database, and Ronny Lorenz for providing comparative data
for other folding programs.

Funding: Austrian GEN-AU projects ‘bioinformatics integration
network III’ and ‘regulatory ncRNAs’ in part.

Conflict of Interest: none declared.

REFERENCES
Andronescu,M. et al. (2004) A new algorithm for RNA secondary structure design.

J. Mol. Biol., 336, 607–624.
Andronescu,M. et al. (2007) Efficient parameter estimation for RNAsecondary structure

prediction. Bioinformatics, 23, i19–i28.
Andronescu,M. et al. (2008) RNA STRAND: The RNA secondary structure and

statistical analysis database. BMC Bioinformatics, 9, 340.
Andronescu,M. et al. (2010) Computational approaches for RNA energy parameter

estimation. RNA, 16, 2304–2318.
Bafna,V. et al. (2006) Consensus folding of unaligned RNA sequences revisited.

J. Comput. Biol., 13, 283–295.

i135

 at O
esterreichische Z

entralbibliothek fuer Physik on N
ovem

ber 2, 2011
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

94 CHAPTER 7. EXTENDED RNA SECONDARY STRUCTURES

[17:54 7/6/2011 Bioinformatics-btr220.tex] Page: i136 i129–i136

C.Höner zu Siederdissen et al.

Bernhart,S.H. et al. (2006) Partition function and base pairing probabilities of RNA
heterodimers. Algorithms Mol. Biol., 1, 3.

Bernhart,S.H. et al. (2008) RNAalifold: improved consensus structure prediction for
RNA alignments. BMC Bioinformatics, 9, 474.

Busch,A. and Backofen,R. (2006) INFO-RNA — a fast approach to inverse RNA
folding. Bioinformatics, 22, 1823–1831.

Dimitrov,R.A. and Zuker,M. (2004) Prediction of hybridization and melting for double-
stranded nucleic acids. Biophys. J., 87, 215–226.

Dirks,R.M. et al. (2007) Thermodynamic analysis of interacting nucleic acid strands.
SIAM Rev., 49, 65–88.

Dowell,R.D. and Eddy,S.R. (2004) Evaluation of several lightweight stochastic context-
free grammars for RNA secondary structure prediction. BMC Bioinformatics, 5, 7.

Do,C.B. et al. (2006) CONTRAfold: RNA secondary structure prediction without
physics-based models. Bioinformatics, 22, e90–e98.

Do,C.B. et al. (2008) Efficient multiple hyperparameter learning for log-linear models.
In Platt,J.C. et al. (eds), Advances in Neural Information Processing Systems
20. Proceedings of the Twenty-First Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, 2007, MIT Press,
pp. 3–6.

Hofacker,I.L. et al. (1994) Fast folding and comparison of RNA secondary structures.
Mh. Chemie/Chem. Mon., 125, 167–188.

Klein,D.J. et al. (2001) The kink-turn: a new RNA secondary structure motif. EMBO
J., 20, 4214–4221.

Klein,R.J. and Eddy,S.R. (2003) RSEARCH: finding homologs of single structured
RNA sequences. BMC Bioinformatics, 4, 44.

Leontis,N.B. and Westhof,E. (2001) Geometric nomenclature and classification of RNA
base pairs. RNA, 7, 499–512.

Leontis,N.B. et al. (2002) The non-Watson-Crick base pairs and their associated
isostericity matrices. Nucleic Acids Res., 30, 3497–3531.

Lescoute,A. et al. (2005) Recurrent structural RNA motifs, isostericity matrices and
sequence alignments. Nucleic Acids Res., 33, 2395–2409.

Leontis,N.B. and Lescoute,A.W.E. (2006) The building blocks and motifs of RNA
architecture. Curr. Opin. Struct. Biol., 16, 279–287.

Markham,N.R. and Zuker,M. (2008) UNAFold: software for nucleic acid folding and
hybridization. Methods Mol. Biol., 453, 3–31.

Parisien,M. and Major,F. (2008) The MC-Fold and MC-Sym pipeline infers RNA
structure from sequence data. Nature, 452, 51–55.

Reeder,J. et al. (2005) Effective ambiguity checking in biosequence analysis. BMC
Bioinformatics, 6, 153.

Reuter,J.S. and Mathews,D.H. (2010) RNAstructure: software for RNA secondary
structure prediction and analysis. BMC Bioinformatics, 11, 129–129.

Sankoff,D. (1985) Simultaneous solution of the RNA folding, alignment, and proto-
sequence problems. SIAM J. Appl. Math., 45, 810–825.

Stombaugh,J. et al. (2009) Frequency and isostericity of RNA base pairs. Nucleic Acids
Res., 37, 2294–2312.

Turner,D.H. and Mathews,D.H. (2010) NNDB: the nearest neighbor parameter database
for predicting stability of nucleic acid secondary structure. Nucleic Acids Res., 38,
D280–D282.

Tyagi,R. and Mathews,D.H. (2007) Predicting helical coaxial stacking in RNA
multibranch loops. RNA, 13, 939–951.

Will,S. et al. (2007) Inferring non-coding RNA families and classes by means of
genome-scale structure-based clustering. PLoS Comput. Biol., 3, e65.

Wuchty,S. et al. (1999) Complete suboptimal folding of RNA and the stability of
secondary structures. Biopolymers, 49, 145–165.

Zhong,C. et al. (2010) RNAMotifScan: automatic identification of RNA structural
motifs using secondary structural alignment. Nucleic Acids Res., 38, e176.

APPENDIX A

A PAIRFAMILY-AWARE GRAMMAR
Here, we discuss in some more detail how the base pair types
affect the grammar and, hence, the folding algorithm. We start from
Figure 3 and the corresponding recursion in Equation (3.1). Each
base pair is now colored by its LW family. In particular, therefore,
base pairs have type-dependent energy contributions εij[ϑ] for pairs
not involved in base triples and energy contributions depending on

the type of the pair and on the type of the incident pairs: εaij[ϑ,ψ]
if the 5′ nucleotide i is a triplet, εaij[ϑ,φ] if the 3′ nucleotide i is
a triplet and εcij[ϑ,ψ,φ] if both delimiting nucleotides are triplets.
Similarly, therefore, non-terminals delimited by triples must be
colored by the base pair type(s) to allow the evaluation of the energy
of the enclosing base pair. In the simplest case, as implemented in
RNAwolf, we may assume that εbij[θ,ψ] only depends on the pair
type θ for permitted combinations of pair types and is +∞ otherwise.
With explicit representation of the pair family types, Equation (3.1)
becomes

Fij =min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fi+1,j,Cij,U
′
ij,V

′
ij,W

′
ij

min
i<k<j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cik +Fk+1,j

V ′
i+1,k +Fk+1,j

U ′
i,k−1 +Fk+1,j

W ′
ij +Fi+1,k

Fi+1,k−1 +min
θ,ψ

{
Ukj[ψ]+εaik[θ,ψ]}

min
θ,ψ,φ

{
Ui,k−1[ψ]+Uk,j,φ+εcik[θ,ψ,φ]}

Here, we use the abbreviations

U ′
ij =min

θ,ψ

(
Ui,j−1[θ]+εaij[θ,ψ]

)

V ′
ij =min

θ,ψ

(
Vi+1,j[θ]+εbij[θ,ψ]

)

W ′
ij =min

θ

(
Wi,j[ψ,φ]+εcij[θ,ψ,φ]

)
which are obtained by carrying out the optimization over the
combinations of base pairing types at all triples.

The non-terminal C, designating a structure enclosed by an
ordinary base pair remains unchanged since the minimization Cij =
Fi+1,j−1 +minθ εij[ϑ] can be carried out in the simplified energy
model. The triplet terms, however, are now conditioned on the pair
family at all nodes represented as triangles in Figure 3. For instance,
for a structure delimited by triplet vertices at both ends which are
not connected by a pair, we obtain a recursion of the form

W∗
ij [θ,ψ]= min

i<k<j

⎧⎪⎨
⎪⎩

Fi+1,k−1 +εaik[θ]+Uk+1,j[ψ]
minφFi+1,k−1 +εbik[θ,φ]+Wk+1,j[φ,ψ]
minφVi+1,k[φ]+εbik[θ,φ]+Vk+1,j[ψ]

and Wij[θ,ψ]=W∗
ij [θ,ψ] if θ �=ψ and

Wij[θ,θ]=min{W∗
ij [θ,θ],Fi+1,j−1 +εij[θ].

Similar recursions are obtained for the full loop-based model. For
instance, for the two interloop terms in Figure 4 we have to compute

V∗
ij [θ,ψ]= min

k,l,ψ

{
I[i,j,θ|k,lψ]+Vkl[ψ]
I′[i,j,θ|k,lψ]+minφWkl[ψ,φ,θ]

where the matrices V∗, V and W now refer to the non-terminal
symbols in Figure 4 and I[...] and I′[...] denote the tabulated
energy contributions for the two different types of interior loops with
3′-triplet. For more detail, we refer to the Supplementary Material
which we will make available together with the full loop-based
model on the RNAwolf homepage.

i136

 at O
esterreichische Z

entralbibliothek fuer Physik on N
ovem

ber 2, 2011
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

CHAPTER 7. EXTENDED RNA SECONDARY STRUCTURES 95

96 CHAPTER 7. EXTENDED RNA SECONDARY STRUCTURES

Chapter 8

Sneaking Around concatMap:
Efficient Combinators for Dynamic
Programming

Christian Höner zu Siederdissen.
Sneaking Around concatMap: Efficient Combinators for Dynamic Program-
ming.
in Proceedings of the 17th ACM SIGPLAN international conference on Functional pro-
gramming ICFP’12. pages 215–226, ACM, New York, NY, USA, 2012

CHzS designed the study, designed and implemented the ADPfusion library, and wrote
the paper.

”Sneaking Around concatMap: Efficient Combinators for Dynamic Programming”
© 2012 Association for Computing Machinery, Inc. Reprinted by permission.
http://doi.acm.org/10.1145/2364527.2364559

97

Sneaking Around concatMap
Efficient Combinators for Dynamic Programming

Christian Höner zu Siederdissen
Institute for Theoretical Chemistry, University of Vienna, 1090 Wien, Austria

choener@tbi.univie.ac.at

Abstract
We present a framework of dynamic programming combinators
that provides a high-level environment to describe the recursions
typical of dynamic programming over sequence data in a style
very similar to algebraic dynamic programming (ADP). Using a
combination of type-level programming and stream fusion leads to
a substantial increase in performance, without sacrificing much of
the convenience and theoretical underpinnings of ADP.

We draw examples from the field of computational biology,
more specifically RNA secondary structure prediction, to demon-
strate how to use these combinators and what differences exist be-
tween this library, ADP, and other approaches.

The final version of the combinator library allows writing algo-
rithms with performance close to hand-optimized C code.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.4 [Program-
ming Languages]: Optimization

General Terms Algorithms, Dynamic Programming

Keywords algebraic dynamic programming, program fusion,
functional programming

1. Introduction
Dynamic programming (DP) is a cornerstone of modern computer
science with many different applications (e.g. Cormen et al. [6,
Cha. 15] or Sedgewick [34, Cha. 37] for a generic treatment).
Durbin et al. [8] solve a number of problems on bio-sequences with
DP and it is also used in parsing of formal grammars [15].

Despite the number of problems that have been solved using
dynamic programming since its inception by Bellman [1], little on
methodology has been available until recently. Algebraic dynamic
programming (ADP) [10, 12, 13] was introduced to provide a
formal, mathematical background as well as an implementation
strategy for dynamic programming on sequence data, making DP
algorithms less difficult and error-prone to write.

One reviewer of early ADP claimed [10] that the development
of successful dynamic programming recurrences is a matter of
experience, talent, and luck.

The rationale behind this sentence is that designing a dynamic
programming algorithm and successfully taking care of all corner

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’12, September 9–15, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1054-3/12/09. . . $10.00

cases is non-trivial and further complicated by the fact that most
implementations of such an algorithm tend to combine all devel-
opment steps into a single monolithic program. ADP on the other
hand separates three concerns: the construction of the search space,
evaluation of each candidate (or correct parse) available within this
search space, and efficiency via tabulation of parts of the search
space using annotation [13] of the grammar.

In this work we target the same set of dynamic programming
problems as ADP: dynamic programming over sequence data. In
particular, we are mostly concerned with problems from the realm
of computational biology, namely RNA bioinformatics, but the
general idea we wish to convey, and the library based on this idea, is
independent of any specific branch of dynamic programming over
sequence data.

In particular, our introductory example uses the CYK algorithm
[15, Cha. 4.2] to determine if the input forms part of its context-free
language. In other words: our library can be used to write generic
high-performance parsers.

The idea of expressing parsers for a formal language using high-
level and higher-order functions has a long standing in the func-
tional programming community. Hutton [20] designed a library
for combinator parsing around 20 years ago. Combining simple
parsers for terminal symbols using symbolic operators is now wide-
spread. The parsec (see [30, Cha 16] for a tutorial) library for
Haskell might be the most well-known. Combinators can be used to
build complex parsers in a modular way and it is possible to design
new combinators quite easily.

The crucial difference in our work is that the combinators in
the ADPfusion library provide efficient code, comparable to hand-
written C, directly in the functional programming language Haskell
[19]. The work of Giegerich et al. [13] already provided an imple-
mentation of combinators in Haskell, albeit with large constants,
for both space and time requirements. Translation to C [11], and
recently a completely new language (GAP-L) [33] and compiler
(GAP-C) based on the ideas of ADP were introduced as a remedy.
Another recent, even more specific, approach is the Tornado lan-
guage [32] for stochastic context-free grammars designed solely to
parse RNA sequences.

Most of the work on domain-specific languages (DSL) for dy-
namic programming points out that using a DSL has a number of
benefits [11], either in terms of better parser error handling, higher
performance, or encapsulation from features not regarded as part of
the DSL.

Designing a DSL written as part of the host language, provides a
number of benefits as well, and strangely, one such benefit is being
able to use features not provided by the DSL. Designing a language
with a restricted set of features always poses the danger of having a
potential user requiring exactly that feature which has not yet been
made available. A direct embedding, on the other hand, simply does

215

98 CHAPTER 8. SNEAKING AROUND CONCATMAP

not have this problem. If something can be expressed in the host
language, it is possible to use it in the DSL.

Another point in favor of staying within an established language
framework is that optimization work done on the backend is auto-
matically available as well. One of the points made by our work
is that it is not required to move to a specialized DSL compiler
to achieve good performance. Furthermore, certain features of the
Haskell host language yield performance-increasing code genera-
tion (almost) for free.

What we can not provide is simplified error handling, but this
becomes a non-issue for us as we specifically aim for Haskell-savvy
users or those interested in learning the language.

We can also determine the appropriateness of embedding the
ADPfusion DSL by looking at the guidelines given by Mernik et al.
[27, Sec. 2.5.2] on “When and How to Develop Domain-Specific
Languages”. Most advantages of the embedded approach (develop-
ment effort, more powerful language, reuse of infrastructure) are
ours while some disadvantages of embedding (sub-optimal syntax,
operator overloading) are easily dealt with using the very flexible
Haskell syntax and standards set by ADP.

Our main contributions to dynamic programming on sequence
data are:

• a generic framework separating grammatical structure, seman-
tics of parses, and automatic generation of high-performance
code using stream fusion;

• removal of the need for explicit index calculations: the combi-
nator library takes care of corner cases and allows for linked
index spaces;

• performance close to C with real-world examples from the area
of computational biology;

• the possibility to use the library for more general parsing prob-
lems (beyond DP algorithms) involving production rules.

“Sneaking around concatMap” is a play on one of the ways
how to write the Cartesian product of two sets. (Non-) terminals in
production rules of grammars yield sets of parses. Efficient, generic
treatment of production rules in an embedded DSL requires some
work as we will explain in this work.

The outline of the paper is as follows: in the next section we
introduce a simple parsing problem. Using this problem as an
example, we rewrite it using ADP in Sec. 3, thereby showing the
benefits of an embedded DSL. A short introduction to stream fusion
follows (Sec. 4).

Armed with knowledge of both ADP and stream fusion, we
write DP combinators that are compiled into efficient code in Sec.
5. We expand on ADPfusion with nested productions for more
efficient code (Sec. 6).

Runtime performance of ADPfusion is given for two examples
from RNA bioinformatics in Sec. 7 with comparisons to C pro-
grams.

Sections 8 and 9 are on specialized topics and we conclude with
remarks on further work and open questions in Sec. 10.

2. Sum of digits
To introduce the problem we want to solve, consider a string of
matched brackets and digits like ((1)(3)). We are interested in the
sum of all digits, which can simply be calculated by

sumD = sum ◦ map readD ◦ filter isDigit
readD x = read [x] :: Int.

The above algorithm works, because the structure of the nesting
and digits plays no role in determining the semantics (sum of digits)
of the input. For the sake of a simple introductory example, we

S → 1 | 2 | ... | 0 -- single digit
| (S) -- ’(’ substring ’)’
| S S -- split into substrings

S

S()

S S

)S((S)

1 3

Figure 1. top: A context-free grammar for the nested-digits prob-
lem of Sec. 2. CFGs describe the structure of the search space. The
semantics of a parse are completely separate.
bottom: Successful parse of the string ((1)(3)). The semantics of
this parse are 4 using the sum of digits semantics.

now assume that we have to solve this problem using a parser that
implements the following three rules:

1. a digit may be read only if the string is of size 1, and the single
character is a digit;

2. an outermost pair of brackets may be removed, these rules are
then applied recursively to the remaining string;

3. the string may be split into two non-empty substrings to which
these rules are applied recursively.

These rules can be written as a context-free grammar (CFG)
and such a grammar is shown in Fig. 1 together with the successful
parse of the string ((1)(3)). As can be seen, the grammar describes
the structure of parses, but make no mention of any kind of seman-
tics. We simply know that a string is a word in the grammar but
there is no meaning or semantics attached to it. This, of course,
conforms to parsing of formal languages in general [15].

One way of parsing an input string is to use the CYK parser,
which is a bottom-up parser using dynamic programming [15, Cha.
4.2].

We have chosen the example grammar of Fig. 1 for two reasons.
First, it covers a lot of different parsing cases. The first production
rule describes parsing with a single terminal on the right-hand side.
The second rule includes a non-terminal bracketed by two terminal
characters. The third rule requires parsing with two non-terminals.
In addition, there are up to n − 1 different successful parses for
the n − 1 different ways to split the string into two non-empty
substrings. The third rule makes use of Bellman’s principle of
optimality. Parses of substrings are re-used in subsequent parses
and optimal parses of substrings can be combined to form the
optimal parse of the current string. This requires memoization.

Second, these seemingly arbitrary rules are actually very close
to those used in RNA secondary structure prediction, being de-
scribed in Sec. 7, conforming to hairpin structures, basepairing, and
parallel structures. Furthermore, important aspects of dynamic pro-
gramming (DP) and context-free grammars (CFGs) are included.

In the next section, we introduce algebraic dynamic program-
ming (ADP), a domain-specific language (DSL) for dynamic pro-
gramming over sequence data embedded in Haskell. Using the ex-
ample from above, we will be able to separate structure and seman-
tics of the algorithm.

216

CHAPTER 8. SNEAKING AROUND CONCATMAP 99

-- signature
readDigit :: Char → S
bracket :: Char → S → Char → S
split :: S → S → S
h :: [S] → [S]

-- structure or grammar
sd = (
readDigit <<< char ‘with‘ isDigit |||
(bracket <<< char ‘cThenS‘ sd ‘sThenC‘ char)

‘with‘ brackets |||
split <<< sd ‘nonEmpty‘ sd ... h)

-- additional structure encoding
isDigit (i,j) = j-i≡1 && Data.Char.isDigit (inp!j)
brackets (i,j) = inp!(i+1)≡’(’ && inp!j≡’)’
-- (!) is the array indexing operator: array ! index

-- semantics or algebra
readDigit c = read [c] :: Int
bracket l s r = s
split l r = l+r
h xs = if null xs then [] else [maximum xs]

Figure 2. Signature, structure (grammar), and semantics (alge-
bra) of the sum-of-digits example (Sec. 2). The functions cThenS,
sThenC, and nonEmpty chain arguments of terminals like char
and non-terminals like sd. A special case is with that filters can-
didate parses based on a predicate. The symbolic functions (<<<),
(|||), and (...) apply a function, allow different parses, and se-
lect a parse as optimal, respectively.

3. Algebraic dynamic programming
In this section we briefly recall the basic premises of algebraic dy-
namic programming (ADP) as described in Giegerich et al. [13].
We need to consider four aspects. The signature, defining an inter-
face between a grammar and algebra, the grammar which defines
the structure of the problem, its algebras each giving specific se-
mantics, and memoization.

ADP makes use of subwords. A subword is a pair (Int,Int)
which indexes a substring of the input. Combinators, terminals, and
non-terminals all carry a subword as the last argument, typically as
(i,j) with the understanding that 0 ≤ i ≤ j ≤ n with n being
the length of the input.

3.1 Signature
We have a finite alphabet A of symbols over which finite strings,
including the empty string ε can be formed. In addition, we have a
sort symbol denoted S. A signature Σ in ADP is a set of functions,
with each function fi ∈ Σ having a specific type fi :: ti1 →
· · · → tin → S where tik ∈ {A+, S}. In other words, each
function within the signature has one or more arguments, and each
argument is a non-empty string over the alphabet or of the sort type
which in turn is also the return type of each function. It is possible
to use arguments which are derivative of these types, for instance
providing the length of a string instead of the string itself. Such
more specific cases are optimizations which do not concern us here.

The signature Σ includes an objective function h : {S} → {S}.
The objective function selects from a set of possible answers those
which optimize a certain criterion like minimization or maximiza-
tion.

3.2 Grammar
Grammars in ADP vaguely resemble grammatical descriptions as
used in text books [15] or formal methods like the Backus-Naur
form. They define the structure of the search space or the set of all
parses of an input. In Fig. 2 we have the grammar for the sum of
digits example of Fig. 1. The grammar has one non-terminal sd,
which is equivalent to S of the context-free grammar. Furthermore,
we have the three rules again. There are, however, major differences
in how one encodes such a rule. Consider the third rule (S → S S)
which now reads (split <<<sd ‘nonEmpty‘ sd) minus the left-
hand side. From left to right, we recognize one of the function
symbols of the signature (split), a combinator function (<<<)
that applies the function to its left to the argument on its right, the
non-terminal (sd), a second combinator function (‘nonEmpty‘)
in infix notation, and finally the non-terminal again.

What these combinators do is best explained by showing their
source, which also leads us back to why we want to “sneak around
concatMap”.

infix 8 <<<
(<<<) :: (a→b) → (Subword→[a]) → Subword → [b]
(<<<) f xs (i,j) = map f (xs (i,j))

infixl 7 ‘nonEmpty‘
nonEmpty :: (Subword → [y→z])

→ (Subword → [y]) → Subword → [z]
nonEmpty fs ys (i,j) = [f y

| k ← [i+1..j-1]
, f ← fs (i,k)
, y ← ys (k,j)]

or equivalently

nonEmpty fs ys (i,j) = concatMap idx [i+1..j-1]
where
idx k = concatMap (λf → map f (ys (k,j))) (fs (i,k))

Each combinator takes a left and a right argument and builds a
list from the Cartesian product of the two inputs, with (<<<) taking
care of the scalar nature of the function to be mapped over all in-
puts. Importantly, all first arguments are partially applied functions
which has a performance impact and hinders optimization.

The third argument of each combinator is the subword index
that is threaded through all arguments. (Non-) terminals are func-
tions from a subword to a list of values. For example char returns
a singleton list with the i’th character of the input when given the
subword (i, i+ 1) and an empty list otherwise.

char :: Subword → [Char]
char (i,j) = [inp!i | i+1≡j]

Similarly, the non-terminal sd is a function

sd :: Subword → [S]
sd = ... -- grammar as above

which can be memoized as required.
As a side note, in GHC Haskell, concatMap is not used in the

implementation of list comprehensions, but the message stays the
same: as we will see later in runtime measurements concatMap
and list comprehensions are hard to optimize.

We complete the argument combinators with cThenS and
sThenC (having the same type as nonEmpty):

infixl 7 ‘cThenS‘ ‘sThenC‘

cThenS fs ys (i,j) = [f y | i<j, f ← fs (i,i+1)
, y ← ys (i+1,j)]

217

100 CHAPTER 8. SNEAKING AROUND CONCATMAP

sThenC fs ys (i,j) = [f y | i<j, f ← fs (i,j-1)
, y ← ys (j-1,j)]

We are still missing two combinators, (|||) and (...). Both
are simple, as ADP deals solely with lists, we just need to take care
of the subword index in each case.

infixr 6 |||
(|||) :: (Subword→[a])→(Subword→[a])→Subword→[a]
(|||) xs ys (i,j) = xs (i,j) ++ ys (i,j)
infix 5 . . .
(...) :: (Subword→[a])→([a]→[a])→Subword→[a]
(...) xs h (i,j) = h (xs (i,j))

There is an actual difference in the grammars of Fig. 1 and Fig.
2. In Fig. 1 the terminal symbols are explicit characters like ‘1‘ or
‘(‘, while in Fig. 2 char matches all single characters. We use this
to introduce another useful combinator (with) that allows us to
filter parses based on a predicate:

with :: (Subword→[a])→(Subword→Bool)→Subword→[a]
with xs p (i,j) = if p (i,j) then xs (i,j) else []

3.3 Algebra
We now have the grammar describing the structure of the algo-
rithm. The function symbols of the signature are included and can
be “filled” using one of several algebras describing the seman-
tics we are interested in. Apart from the objective function h, all
functions describe the semantics of production rules of the gram-
mar. In our example above (Fig. 2) we either read a single digit
(readDigit), keep just the sum of digits of the bracketed substring
(bracket), or add sums from a split operation.

The objective function (h) selects the optimal parse according
to the semantics we are interested in. In this case the maximum over
the parses.

Another possibility is to calculate some descriptive value over
the search space, say its total size. As an example, the Inside-
Outside algorithm [23],[8, Ch. 10] adds up all probabilities gen-
erated by productions in a stochastic CFG instead of selecting one.

The specialty of ADP grammars is that they form tree gram-
mars [10], [9, Sec. 2.2.1]. While they are analogous to context-free
grammars, the right-hand sides of productions form proper trees
with function symbols from the signature as inner nodes and termi-
nal and non-terminal symbols at the leaves. For the example parse
in Fig. 1 (bottom) this has the effect of replacing all non-terminal
symbols (S) with function symbols from the signature. This also
means that we can, at least in principle, completely decouple the
generation of each parse tree from its evaluation. While the size of
the search space might be prohibitive in practice, for small inputs,
an exhaustive enumeration of all parses is possible. In an imple-
mentation, data constructors can be used as functions, while the
objective function is simply the identity function. This allows us to
print all possible parse trees for an input.

Each such tree has at its leaf nodes a sequence of characters, a
word, from the alphabet:w ∈ A∗. And for each given wordw there
are zero or more trees representing this word. If no tree for a given
word exists, then the grammar can not parse that word and if more
than one tree exists then the grammar is syntactically ambiguous in
this regard. This kind of ambiguity is not problematic, typically
even wanted, as the objective function can be used to evaluate
different tree representations of a word w and return the optimal
one.

3.4 Memoization
As noted in Sec. 3.2, non-terminals in grammars can be memoized.
ADP introduces a function

tabulated :: Int →(Subword →[a]) →Subword →[a],
used as sd = tabulated (length input) (productions),
that stores the answers for each subword in an array. Depending on
the algorithm, other memoization schemes, or none at all, are pos-
sible. In general, memoization is required to make use of Bellman’s
principle of optimality and reduce the runtime of an algorithm from
exponential to polynomial.

3.5 ADP in short
To summarize, algebraic dynamic programming achieves a separa-
tion of concerns. Parsing of input strings for a given grammar is del-
egated to the construction of candidates which are correct parses.
Evaluation of candidates is done by specifying an evaluation alge-
bra, of which there can be more than one. Selection from all can-
didates based on their evaluation is done by an objective function
which is part of each evaluation algebra. Memoization makes the
parsing process asymptotically efficient. Giegerich et al. [13] pro-
vide a much more detailed description than given here.

As our objective is to perform parsing, evaluation and selection
more efficiently, we will, in the next sections, change our view of
dynamic programming over sequence data to describe our approach
starting with streams as a more efficient alternative to lists.

4. Stream fusion
We introduce the basics of stream fusion here. Considering that the
ADPfusion library is based around applications of map, flatten
(a variant of concatMap, more amenable to fusion), and fold,
these are the functions described. For advanced applications, the
whole range of fusible functions may be used, but those fall outside
the scope of both this introduction to stream fusion and the paper
in general. In addition, here and in the description of ADPfusion,
we omit that stream fusion and ADPfusion are parametrized over
Monads.

Stream fusion is a short-cut fusion system for lists [7], and more
recently arrays [25], that removes intermediate data structures from
complicated compositions of list-manipulating functions. Ideally,
the final, fused, algorithm is completely free of any temporary
allocations and performs all computations efficiently in registers,
apart from having to access static data structures containing data.
Stream fusion is notable for fusing a larger set of functions than was
previously possible, including zipping and concatenating of lists.

Stream fusion is built upon two data types, Stream captures
a function to calculate a single step in the stream and the seed
required to calculate said step. A Step can indicate if a stream is
terminated (Done). If not, the current step either Yields a value or
Skips, which can be used for filtering. One other use of Skip is
in concatenation of streams which becomes non-recursive due to
Skip as well. Unless a stream is Done, each new Step creates a
new seed, too.

data Stream a = ∃ s. Stream (s → Step a s) s
data Step a s = Done

| Yield a s
| Skip s

The point of representing lists as sequence co-structures is that
no function on streams is recursive (except final folds), permitting
easy fusion to generate efficient code.

We construct a new stream of a single element using the
singleton function. A singleton stream emits a single element
x and is Done thereafter. Notably, the step function defined here
is non-recursive.

singletonS x = Stream step True where
step True = Yield x False
step False = Done

218

CHAPTER 8. SNEAKING AROUND CONCATMAP 101

Mapping a function over a stream is non-recursive as well, in
marked contrast to how one maps a function over a list.

mapS f (Stream step s) = Stream nstp s where
nstp s = case (step s) of
Yield x s’ → Yield (f x) s’
Skip s’ → Skip s’
Done → Done

As a warm-up to stream-flattening, and because we need to
concatenate two streams with (|||) anyway, we look at the stream
version of (++).

(Stream stp1 ss) ++S (Stream stp2 tt) =
Stream step (Left ss) where

step (Left s) = case s of
Yield x s’ → Yield x (Left s’)
Skip s’ → Skip (Left s’)
Done → Skip (Right tt)

step (Right t) = case t of
Yield x t’ → Yield x (Right t’)
Skip t’ → Skip (Right t’)
Done → Done

The Left and Right constructors encode which of the two
streams is being worked on, while the jump from the first to the
second stream is done via a (again non-recursive) Skip.

The flatten function takes three arguments: a function mk
which takes a value from the input stream and produces an initial
seed for the user-supplied step function. The user-supplied step
then produces zero or more elements of the resulting stream for
each such supplied value. Note the similarity to stream concatena-
tion. Left and Right are state switches to either initialize a new
substream or to create stream Steps based on this initial seed.

Again, it is important to notice that no function is recursive, the
hand-off between extracting a new value from the outer stream and
generating part of the new stream is done via Skip (Right (mk
a, t’)).

flattenS mk step (Stream ostp s) = Stream nstp (Left s)
where

nstp (Left t) = case (ostp s) of
Yield a t’ → Skip (Right (mk a, t’))
Skip t’ → Skip (Left t’)
Done → Done

nstp (Right (b,t)) = case (step b) of
Yield x s’ → Yield x (Right (s’,t))
Skip s’ → Skip (Right (s’,t))
Done → Left t

Finally, we present the only recursive part of the stream fusion,
folding a stream to produce a final value.

foldS f z (Stream step s) = loop f z where
loop f z = case (step s) of
Yield x s’ → loop (f z x) s’
Skip s’ → loop z s’
Done → z

If such code is used to build larger functions like

foldS (+) 0 (flattenS id f (singletonS 10)) where
f x = if (x > 0)

then Yield x (x-1)
else Done

call-pattern specialization [31] of the constructors (Yield,
Skip, Done) creates specialized functions for the different cases,
and inlining merges the newly created functions, producing an ef-
ficient, tight loop. A detailed explanation can be found in Coutts

et al. [7, Sec. 7] together with a worked example. The GHC com-
piler [36] performs all necessary optimizations.

5. Designing efficient combinators for dynamic
programming

Algebraic dynamic programming is already able to provide asymp-
totically optimal dynamic programming recursions. A dynamic
program written in ADP unfortunately comes with a rather high
overhead compared to more direct implementations. Two solutions
have been proposed to this problem. The first was translation of
ADP code into C using the ADP Compiler [35] and the second a
complete redesign providing a new language and compiler (GAP-L
and GAP-C) [33]. Both approaches have their merit but partially
different goals than ours. Here we want to show how to keep most
of the benefits of ADP while staying within Haskell instead of hav-
ing to resort to a different language.

We introduce combinators in a top-down manner, staying close
to our introductory example of Fig. 2. An important difference is
that functions now operate over stream fusion [7] streams instead
of lists. This change in internal representation lets the compiler
optimize grammar and algebra code much better than otherwise
possible.

We indicate the use of stream fusion functions like mapS with
a subscript S to differentiate between normal list-based functions
and stream fusion versions.

5.1 Combining and reducing streams
Two of the combinators, the choice between different productions
(|||) and the application of an objective function, stay essentially
the same, except that the type of h is now Stream a →b, instead
of [a] → [b]. The objective function returns an answer of a
scalar type, say Int, allowing for algorithms that work solely with
unboxed types, or a vector type (like lists, boxed, or unboxed
vectors). This gives greater flexibility in terms of what kind of
answers can be calculated and choosing the best encoding, in terms
of performance, for each algorithm.

infixl 7 |||
(|||) xs ys ij = xs ij ++S ys ij

infixl 6 . . .
(...) stream h ij = h (stream ij)

In addition, the index is not a tuple anymore, but rather a vari-
able ij of type DIM2. Instead of plain pairs (Int,Int) we use
the same indexing style as the Repa [22] library. Repa tuples are
inductively defined using two data types and constructors:

data Z = Z
data a :. b = a :. b
type DIM1 = Z :. Int
type DIM2 = DIM1 :. Int

The tuple constructor (:.) resembles the plain tuple construc-
tor (,), with Z as the base case when constructing a 1-tuple
(Z:.a). We can generalize the library to cover higher-dimensional
DP algorithms just like the Repa library does for matrix calcula-
tions. It allows for uniform handling of multiple running indices
which are represented as k-dimensional inductice tuples as well,
increasing k by one for each new (non-) terminal. Using plain tu-
ples would require nesting of pairs. Also, subwords are now of type
DIM2 instead of (Int,Int).

5.2 Creating streams from production rules
As of now, we can combine streams and reduce streams to a sin-
gle value or a set of values of interest. As streams expose many

219

102 CHAPTER 8. SNEAKING AROUND CONCATMAP

optimization options to the compiler (cf. Sec. 4 and [7]), we can
expect good performance. What is still missing is how to create a
stream, given a production rule, in the first place. Rules such as
readDigit <<<char with a single terminal or non-terminal to the
right are the simplest to construct.

The combinator (<<<) applies a function to one or more argu-
ments and is defined as:

infixl 8 <<<
(<<<) f t ij =
mapS (λ(_,_,as) → apply f as) (streamGen t ij)

The streamGen function takes the argument arg on the right
of (f <<<arg), with arg of type DIM2 →α, and the current sub-
word index to create a stream of elements. If α is scalar (expressed
as DIM2 →Scalar β), the result is a singleton stream, containing
just β, but α can also be of a vector type say [β], in which case a
stream of β arguments is generated, containing as many elements
as are in the vector data structure.

We use a functional dependency to express1 that the type of
the stream r is completely determined by the type of the (non-)
terminal(s) t.

class StreamGen t r | t → r where
streamGen :: t → DIM2 → Stream r

The instance for a scalar argument (DIM2 →Scalar β) fol-
lows as:

instance StreamGen (DIM2 → Scalar β) (DIM2,Z:.Z,Z:.β)

delaying the actual implementation for now.
Streams generated by streamGen have as element type a triple

of inductively defined tuples we call “stacks”, whose stack-like
nature is only a type-level device, no stacks are present during
runtime.

The first element of the triple is the subword index, the second
gives an index into vector-like data structures, while the third el-
ement of the triple holds the actual values. We ignore the second
element for now, just noting that (non-) terminals of scalar type do
not need indexing, hence Z as type and value of the index. Argu-
ments are encoded using inductive tuples, and as we only have one
argument to the right of (<<<), the tuple is (Z:.α), as all such
tuples or stacks (e.g. subword indices, indices into data structures,
argument stacks) always terminate with Z.

The final ingredient of (<<<), apply, is now comparatively
simple to implement and takes an n-argument function f and ap-
plies it to n arguments (Z:.a1:.· · · :.an). We introduce a type
dependency between the arguments of the function to apply and
the arguments on the argument stack, using an associated type syn-
onym.

class Apply x where
type Fun x :: ∗
apply :: Fun x → x

instance Apply (Z:.a1:. · · · :.an → r) where
type Fun (Z:.a1:. · · · :.an → r)

= a1 → · · · → an → r
apply fun (Z:.a1:. · · · :.an) = fun a1 · · · an

5.3 Extracting values from (non-) terminals
As a prelude to our first stream generation instance (that we still
have to implement) we need to be able to extract values from ter-
minals and non-terminals. There are three classes of arguments
that act as (non-) terminals. We have already encountered the

1 Instead of type families for reasons explained in Sec. 9.

type (DIM2 →Scalar β) for functions returning a single (scalar)
value. A second class of functions yields multiple values of type β:
(DIM2 →Vector β). In this case we do not have vector-valued
arguments to but rather multiple choices from which to select.
Finally, we can have data structures. A data structure can again
store single (scalar) results or multiple results (vector-like) for each
subword. For data structures, it will be necessary to perform an
indexing operation (e.g. (!) is used for the default Haskell arrays)
to access values for a specific subword.

The ExtractValue type class presented below is generic
enough to allow many possible styles of retrieving values for a
subword and new instances can easily be written by the user of the
library.

We shall restrict ourselves to the instance (DIM2 →Scalar β).
Instances for other common data structures are available with the
library, including lazy and strict arrays of scalar and vector type.

The ExtractValue class itself has two associated types, Asor
denoting the accessor type for indexing individual values within
a vector-like argument and Elem for the type of the values being
retrieved.

For, say, (DIM2 →[β]), a possible Asor type is Int using the
list index operator (!!), while the Elem type is β.

For scalar types, the Asor will be Z as there is no need for an
index operation in that case.

The type class for value extraction is:

class ExtractValue cnt where
type Asor cnt :: ∗
type Elem cnt :: ∗
extractStream

:: cnt → Stream (Idx3 z,as,vs)
→ Stream (Idx3 z, as:.Asor cnt,vs:.Elem cnt)

extractStreamLast
:: cnt → Stream (Idx2 z,as,vs)
→ Stream (Idx2 z,as:.Asor cnt,vs:.Elem cnt)

type Idx3 z = z:.Int:.Int:.Int
type Idx2 z = z:.Int:.Int

extractStream and extractStreamLast are required to
correctly handle subword indices with multiple arguments in
productions. Their use is explained below, but note that
extractStream accesses the 2nd right-most subword (k, l), while
extractStreamLast accesses the rightmost (l, j) one. Consider
the production

S → x y z
i k l j

where y would be handled by extractStream and z by
extractStreamLast, and x has already been handled at this point,
its value is on the Elem stack.

Each function takes a stream and extends the accessor (Asor)
stack with its accessor and the value (Elem) stack is extended with
the value of the argument.

Now to the actual instance for (DIM2 →Scalar β):

instance ExtractValue (DIM2 → Scalar β) where
type Asor (DIM2 → Scalar β) = Z
type Elem (DIM2 → Scalar β) = β
extractStream cnt s = mapS f s where
f (z:.k:.l:.j,as,vs) =
let Scalar v = cnt (Z:.k:.l)
in (z:.k:.l:.j,as:.Z,vs:.v)

extractStreamLast cnt s = mapS f s where
f (z:.l:.j,as,vs) =
let Scalar v = cnt (Z:.l:.j)
in (z:.l:.j,as:.Z,vs:.v)

220

CHAPTER 8. SNEAKING AROUND CONCATMAP 103

5.4 Streams for productions with one (non-) terminal
We can finish the implementation for streams of
(DIM2 →Scalar β) arguments. The instance is quite simi-
lar to the singleton function presented in Sec. 4 but while
singleton creates a single-element stream unconditionally we
have to take care to only create a stream if the subword (Z:.i:.j)
is legal. An illegal subword i > j should lead to an empty stream.

instance
(ExtractValue (DIM2 → Scalar β)
) ⇒ StreamGen (DIM2 → Scalar β) (DIM2,Z:.Z,Z:.β)

where
streamGen x ij = extractStreamLast x

(unfoldrS step ij)
step (Z:.i:.j)
| i≤j = Just ((Z:.i:.j,Z,Z), (Z:.j+1:.j))
| otherwise = Nothing

In this case, we use the subword ij as seed. If the subword is
legal, a stream with this subword and empty (Z) Asor and Elem
stacks is created. The new seed is the illegal subword (j + 1, j)
which will terminate the stream after the first element.

We then immediately extend the stream elements using
extractStreamLast which creates the final stream of type
(DIM2,Z:.Z,Z:.β) by adding the corresponding accessor of type
Z and element of type β as top-most element to their stack. With
one argument, the only argument is necessarily the last one, hence
the use of extractStreamLast instead of extractStream.

Using the construction scheme of only creating streams if sub-
words are legal, we effectively take care of all corner cases. Illegal
streams (due to illegal subwords) are terminated before we ever try
to extract values from arguments. This means that ExtractValue
instances typically do not have to perform costly runtime checks of
subword arguments.

5.5 Handling multiple arguments
We implement a single combinator (nonEmpty) as this is already
enough to show how productions with any number (≥ 2) of argu-
ments can be handled. In addition, nonEmpty has to deal with the
corner case of empty subwords (i = j) on both sides. That is, its
left and right argument receive only subwords of at least size one.

Recall that in ADP the first argument to each combinator turns
out to be a partially applied function that is immediately given its
next argument with each additional combinator. Partially applied
functions, however, can reduce the performance of our code and
make it impossible (or at least hard) to change the subword index
space dependent on arguments to the left of the current combina-
tor as the function would already have been applied to those argu-
ments.

By letting nonEmpty have a higher binding strength than (<<<)
we can first collect all arguments and then apply the corresponding
algebra function. In addition, we need to handle inserting the cur-
rent running index, Asor indices of the arguments, and Elem values
for a later apply. Hence nonEmpty is implemented in a completely
different way than in ADP:

infixl 9 ‘nonEmpty‘
xs ‘nonEmpty‘ ys = Box mk step xs ys where

mk (z:.i:.j,vs,as) = (z:.i:.i+1:.j,vs,as)
step (z:.i:.k:.j,vs,as)
| k+1≤j = Yield (z:.i:.k :.j,vs,as)

(z:.i:.k+1:.j,vs,as)
| otherwise = Done

The nonEmpty combinator does, in fact, not combine the argu-
ments xs and ys at all but only prepares two functions mk and step.

1,2,4
xs1,2 xs1,2
ys12,4 ys22,4

1,3,4
xs1,3 xs1,3
ys13,4 ys23,4

extractStreamLast ys

streamGen (Box mk step xs ys) =

1,2,4
xs1,2

1,3,4
xs1,3

(extractStream xs

1,2,4 1,3,4 (flattenS mk step

1,4 (unfoldrS step ij)))

Figure 3. A stream from two arguments built step-wise bottom to
top. First, a running index is inserted between the original subword
(1, 4) indices using flatten. Then, elements are extracted from
the scalar argument xs. The vector-like argument ys yields two
elements for each subword (indices 1 and 2). (step as in Sec. 5.4)

These define the set of subwords (i, k) and (k, j) splitting the cur-
rent subword (i, j) between xs and ys. Again, we make sure that
any corner cases are caught. The first value for k is i + 1, after
which k only increases. Hence xs is nonEmpty. In step we also
stop creating new elements once k + 1 > j meaning ys is never
empty. Finally, should the initial subword (i, j) have size j−i < 2,
the whole stream terminates immediately.

Of course, we are not constructing a stream at all but rather
a Box. The implication is that two or more (non-) terminals in a
production lead to nested boxes where xs is either another Box or
an argument, while ys is always an argument. Furthermore mk and
step are the two functions required by flatten. The streamGen
function will receive such a nested Box data structure whenever
two or more arguments are involved. The compiler can deconstruct
even deeply nested boxes during compile time, enabling full stream
fusion optimization for the production rule, completely eliminating
all intermediate data structures just presented. We expose these
optimizations to the compiler with StreamGen instances that are
recursively applied during compilation.

5.6 Streams from productions with multiple arguments
Efficient stream generation requires deconstucting Boxes, correct
generation of subwords in streams, and extraction of values from
arguments. This can be achieved with a StreamGen instance for
Boxes and an additional type class PreStreamGen.

These instances will generate the code shown in Fig. 3 (right).
The StreamGen instance fo the outermost Box

instance
(ExtractValue ys, Asor ys ∼ a, Elem ys ∼ v
, PreStreamGen xs (idx:.Int,as,vs)
, Idx2 undef ∼ idx
) ⇒ StreamGen (Box mk step xs ys)

(idx:.Int,as:.a,vs:.v) where
streamGen (Box mk step xs ys) ij

= extractStreamLast ys
(preStreamGen (Box mk step xs ys) ij)

handles the last argument of a production, extracting values
using extractStreamLast. PreStreamGen instances handle the
creation of the stream excluding the last argument recursively em-
ploying preStreamGen.

And we finally make use of flatten. This function allows us to
create a stream and use each element as a seed of a substream when

221

104 CHAPTER 8. SNEAKING AROUND CONCATMAP

adding an argument further to the right – basically on the way back
up from the recursion down of the nested Boxes.

The type class PreStreamGen follows StreamGen exactly:

class PreStreamGen s q | s → q where
preStreamGen :: s → DIM2 → Stream q

To handle a total of two arguments, including the last, this
PreStreamGen instance is sufficient2:

instance
(ExtractValue xs, Asor xs ∼ a, Elem xs ∼ v
, Idx2 undef ∼ idx
) ⇒ PreStreamGen (Box mk step xs ys)

(idx:.Int,as:.a,vs:.v) where
preStreamGen (Box mk step xs ys) ij

= extractStream xs
(flattenS mk step
(unfoldrS step ij))

step (Z:.i:.j)
| i≤j = Just ((Z:.i:.j,Z,Z), Z:.j+1:.j)
| otherwise = Nothing

For three or more arguments we need a final ingredient. Thanks
to overlapping instances (cf. Sec. 9.1 on overlapping instances) this
instance

instance
(PreStreamGen (Box mkI stepI xs ys) (idx,as,vs)
(ExtractValue ys, Asor ys ∼ a, Elem ys ∼ v
, Idx2 undef ∼ idx
) ⇒ PreStreamGen (Box mk step (Box mkI stepI xs ys) zs)

(idx:.Int,as:.a,vs:.v) where
preStreamGen (Box mk step box@(Box _ _ _ ys) zs) ij

= extractStream ys
(flattenS mk step Unknown
(preStreamGen box ij))

which matches two or more nested Boxes, will be used except
for the final, innermost Box. Then, the above (more general) in-
stance is chosen and recursion terminates.

As the recursion scheme is based on type class instances,
the compiler will instantiate during compilation, exposing each
flatten function to fusion. Each of those calculates subword sizes
and adds to the subword stack, while Asor and Elem stacks are
filled using extractStream and extractStreamLast, thereby
completing the ensemble of tools required to turn production rules
into efficient code.

5.7 Efficient streams from productions
Compared with ADP combinators (Sec. 3) we have traded a small
amount of additional user responsibilities with the potential for
enormous increases in performance.

The user needs to write an instance (of ExtractValue) for data
structures not covered by the library or wrap such structures with
(DIM2 →α) accordingly.

New combinators are slightly more complex as well, requiring
the mk and step function to be provided, but again several already
exist. Even here, the gains outweigh the cost as each combinator has
access to the partially constructed subword, Asor, and Elem stack
of its stream step. One such application is found in the RNAfold
algorithm (Sec. 7.2) reducing the runtime from O(n4) to O(n3) as
in the reference implementation.

2 for type inference purposes, additional type equivalence terms are required
for mk and step which are omitted here

6. Applying Bellman’s principle locally
All major pieces for efficient dynamic programming are now in
place. A first test with a complex real-world dynamic program un-
fortunately revealed disappointing results. Consider the following
production in grammar form:

S → char string S string char
i i+1 k l j-1 j

Two single characters (char) bracket three arguments of vari-
able size. A stream generated from those five arguments is quadratic
in size, due to two indices, k and l, with i + 1 ≤ k ≤ l ≤ j − 1
with k (l) to the left (right) of S. We would like to evaluate the outer
arguments (the char terminals) only once, but due to the construc-
tion of streams from left to right, the right-most argument between
(j − 1, j) will be evaluated a total of O(n2) times. Depending on
the argument, this can lead to a noticeable performance drain.

Two solutions present themselves: (i) a more complex evalua-
tion of (non-) terminals or (ii) making use of Bellman’s principle.
As option (i) requires complex type-level programming, basically
determining which argument to evaluate when, and option (ii) has
the general benefit of rewriting productions in terms of other pro-
ductions, let us consider the latter option.

If Bellman’s principle holds, a problem can be subdivided into
smaller problems that, when combined, yield the same result as
solving the original problem, and each subproblem is reused mul-
tiple times.

If the above production has the same semantics under an objec-
tive function, as the one below, we can rewrite it, and benefit from
not having to evaluate the right-most argument more than once.

S → char T char T → string S string
i i+1 j-1 j i+1 k l j-1

We want to introduce another non-terminal (T) only concep-
tually, but translation into ADPfusion is actually quite easy. Given
the original code

f <<< char ‘then‘ string ‘then‘ s ‘then‘ string
‘then‘ char ... h

the new nested version is

f <<< char ‘then‘
(g <<< string ‘then‘ s ‘then‘ string ... h)
‘then‘ char ... h

This version still yields efficient code and the final char ar-
gument is evaluated just once. In terms of ADPfusion, bracketing
and evaluation of subproductions (g <<< string ‘then‘ · · ·) is
completely acceptable, the inner production has type (DIM2 →α),
variants of which are available by default.

The availability of such an optimization will depend on the
specific problem at hand and will not always be obvious. As the
only changes are a pair of brackets and an inner objective function,
changes are easily applied and a test harness of different input
sequences can be used to determine equality of the productions
with high certainty – even without having to prove that Bellman’s
principle holds. One particularly good option is to automate testing
using QuickCheck [5] properties.

7. Two examples from RNA bioinformatics
In this section, we test the ADPfusion library using two algorithms
from the field of computational biology. The Nussinov78 [29]
grammar is one of the smallest RNA secondary structure prediction
grammars and structurally very similar to our introductory example
of Figs. 1 and 2. The second algorithm, RNAfold 2.0 [26] tries to
find an optimal RNA secondary structure as well.

222

CHAPTER 8. SNEAKING AROUND CONCATMAP 105

Both algorithms can be seen as variants of the CYK algorithm
[15, Sec. 4.2]. The difference is that every word is part of the
language and parsing is inherently syntactically ambiguous: every
input allows many parses. By attaching semantics (say: a score or
an energy), similar to the sum of digits semantics, the optimal parse
is chosen.

We pit ADPfusion code against equivalent versions written in
C. The Nussinov78 grammar and algebra (Fig. 4) are very simple
and we will basically measure loop optimization. RNAfold 2.0
is part of an extensive set of tools in the ViennaRNA package [26].
The complicated structure and multiple energy tables lead to a good
“real-world” test.

All benchmarks are geared toward the comparison of C and
ADPfusion in Haskell. Legacy ADP runtimes are included to point
out how much of an improvement we get by using strict, unboxed
arrays and a modern fusion framework.

The legacy ADP version of RNAfold is not directly compatible
with RNAfold 2.0 (C and ADPfusion). It is based on an older
version of RNAfold (1.x) which is roughly 5% – 10% faster than
2.0.

We do not provide memory benchmarks. For C vs. ADPfusion
the requirements for the DP tables are essentially the same, while
legacy ADP uses boxed tables and always stores lists of results with
much overhead.

The Haskell versions of Nussinov78 and RNAfold 2.0 have
been compiled with GHC 7.2.2 and LLVM 2.8; compilation op-
tions: -fllvm -Odph -optlo-O3. The C version of Nussinov78
was compiled using GCC 4.6 with -O3. The ViennaRNA package
was compiled with default configuration, including -O2 using GCC
4.6. All tests were done on an Intel Core i7 860 (2.8 GHz) with 8
GByte of RAM.

7.1 Nussinov’s RNA folding algorithm
The algorithm by Nussinov et al. [29] is a very convenient example
algorithm that is both: simple, yet complex enough to make an
interesting test. A variant of the algorithm in ADP notation is
shown in Fig. 4 together with its CFG. The algorithm expects as
input a sequence of characters from the alphabet A = {ACGU}.
A canonical basepair is one of the six (out of 16 possible) in the
set {AU,UA,CG,GC,GU,UG}. The algorithm maximizes the
number of paired nucleotides with two additional rules.

Two nucleotides at the left and right end of a subword (i, j) can
pair only if they form one of the six canonical pairs. For all pairs
(k, l) it holds that neither i < k < j < l nor k < i < l < j and
if i == k then j == l. Any two pairs are juxtaposed or one is
embedded in the other.

The mathematical formulation of the recursion implied by the
grammar and pairmax semantics in Fig. 4 is

S[i, j] = max

8>>>>><>>>>>:

0 i == j

S[i+ 1, j] i < j

S[i, j − 1] i < j

S[i+ 1, j − 1] + 1 if (i,j) pairing
maxi<k<j S[i, k] + S[k + 1, j] .

As there is only one non-terminal S (respectively DP matrix s)
and no scoring or energy tables are involved, the algorithm mea-
sures mainly the performance for three nested loops and accessing
one array.

As Fig. 5 clearly shows, we reach a performance within ×2 of
C for moderate-sized input. The C version used here is part of the
Nussinov78 package available online3.

3 Nussinov78 hackage library: http://hackage.haskell.org/
package/Nussinov78

-- signature
nil :: S
left :: Char → S → S
right :: S → Char → S
pair :: Char → S → Char → S
split :: S → S → S
h :: Stream S → S

-- structure or grammar
s = (

S → ε nil <<< empty |||
| bS left <<< base−∼∼s |||
| Sb right <<< s∼∼−base |||
| bSb pair <<< base−∼∼s∼∼−base
| S S ‘with‘ pairing |||

split <<< s+∼+s ... h)

-- semantics or algebra
nil = 0 pair a s b = s+1
left b s = s split l r = l+r
right s b = s h xs = maximumS xs

Figure 4. Top: The signature Σ for the Nussinov78 grammar. The
functions nil, left, right, pair, and split build larger an-
swers S out of smaller ones. The objective function h transforms a
stream of candidate answers, e.g. by selecting only the optimal can-
didate.
Center left: The context-free grammar Nussinov78. Character b
∈ A = {A,C,G,U}.
Center right:The Nussinov78 algorithm in ADPfusion nota-
tion with base :: DIM2 →Char. This example was taken from
[14]. Compared to the CFG notation, the evaluation functions are
now explicit as is the non-empty condition for the subwords of
split. The (−∼∼) combinator allows a size-one subword to its
left (cf. cThenS in Fig. 2). Its companion (∼∼−) to the right
(sThenC). The (+∼+) combinator enforces non-empty subwords
(nonEmpty).
Bottom: Pairmax algebra (semantics); maximizing the number of
basepairs. In pair, it is known that a and b form a valid pair due to
the pairing predicate of the grammar.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100 200 300 400 500 600 700 800 900 1000
 0.0001

 0.001

 0.01

 0.1

 1

 10

ti
m

e
 (

s)

input length

ADPfusion
C

ADP

Figure 5. Runtime in seconds for different versions of the
Nussinov78 algorithm. The Nussinov78 algorithm accesses only
one DP matrix and no “energy tables”. The comparatively high run-
time for the ADPfusion code for small input is an artifact partially
due to enabled backtracking.

223

106 CHAPTER 8. SNEAKING AROUND CONCATMAP

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 200 300 400 500 600 700 800 900 1000
 0.001

 0.01

 0.1

 1

 10

 100

 1000

ti
m

e
 (

s)

input length

ADPfusion
C

ADP

Figure 6. Runtime in seconds for different implementations of the
RNAfold 2.0 algorithm for random input of different length. The
highly optimized C code is used by the official ViennaRNA pack-
age. ADPfusion is the code generated by our library. For illustrative
purposes, ADP is the performance of the original Haskell imple-
mentation of the older RNAfold 1.x code.

An algorithm like Nussinov78 is, however, not a good repre-
sentative of recent developments in computational biology. Modern
algorithms, while still adhering to the basic principles formulated
by Nussinov et al. [29], use multiple DP matrices and typically ac-
cess a number of additional tables providing scores for of different
features. The RNAfold 2.0 algorithm, described next, is one such
algorithm.

7.2 RNAfold
The ViennaRNA package [16, 26] is a widely used state-of-the-
art software package for RNA secondary structure prediction. It’s
newest incarnation is among the top programs in terms of predic-
tion accuracy and one of the fastest. It provides an interesting target
as it has been optimized quite heavily toward faster prediction of
results. Compared to other programs, speed differences of ×10 to
×100 in favor of RNAfold 2.0 are not uncommon [26].

The complete ViennaRNA package provides many different
algorithms which makes it impractical to re-implement the whole
package in Haskell. We concentrate on the minimum-free energy
prediction part, which is the most basic of the offered algorithms.

We refrain from showing the ADPfusion version of the gram-
mar. A version of RNAfold using recursion and diagrams for visu-
alization is described in [2] and the ADPfusion grammar itself can
be examined online4.

We do, however, give some statistics. The grammar uses 4 non-
terminals, three of which are interdependent while the fourth is be-
ing used to calculate “exterior” structures and only O(n) matrix
cells are filled instead of O(n2) as for the other three tables. A to-
tal of 17 production rules are involved and 18 energy tables. One
production has an asymptotic runtime of O(n2) for each subword
yielding a total runtime of O(n4). By restricting the maximal size
for two linear-size subwords in the grammar to at most 30, the fi-
nal runtime of RNAfold is bounded by O(n3). This restriction is
present in both the C reference version and the ADPfusion gram-
mar where we make use of a combinator that restricts the maximal
subword size based on subword sizes calculated by another combi-
nator, thus giving us the required restriction.

4 RNAFold hackage library: http://hackage.haskell.org/package/
RNAFold

Given inputs of size 100 (nucleotides) or more, ADPfusion code
is efficient enough to get within ×2 – ×3 of the C implementation.
Fig. 6 shows runtimes for legacy ADP, ADPfusion, and C code.

8. Backtracking and algebra products
ADP introduced the concept of algebra products. A typical dy-
namic programming algorithm requires two steps: a forward step
to fill the dynamic programming matrices and a backward or back-
tracking step to determine the optimal path from the largest input
to the smallest sub-problems. For a CYK parser, the forward step
determines if a word is part of the language while the backward
step yields the parse(s) for this word.

This forces the designer of a DP algorithm to write the recur-
rences twice, and keep the code synchronized as otherwise subtle
bugs can occur. Algebra products “pull” the backward step into the
forward step. Considering the case of the optimal path and its back-
trace, one writes (opt ∗∗∗backtrace), where opt is the algebra
computing the score of the optimal answer, while backtrace is its
backtrace, and (∗∗∗) the algebra product operation. This yields a
new algebra that can be used as any other.

It has the effect of storing with each optimal result the descrip-
tion of how it was calculated or some information derived from this
description. This is conceptually similar to storing a pointer to the
cell(s) used for the calculation of the optimal result.

The algebra product is a very elegant device that allows for
simple extension of algorithms with proper separation of ideas.
A backtrace does not have to know about scoring schemes as
each answer for the first argument of (∗∗∗) is combined with
exactly one answer of the second argument. Adding, say, sub-
optimal results requires a change only to opt to capture more
than one result, while co-optimal results are automatically available
from the ADP definition of the algebra product.

The algebra product as used in ADP is, unfortunately, a prob-
lematic device to use in practice. While it allows for a simple de-
sign of algorithms and removes another source of potential bugs, it
comes with a high runtime cost.

Consider an algorithm that calculates a large number of co- or
sub-optimal results, like the Nussinov78 algorithm in backtrack-
ing.

Standard implementations calculate the DP matrices in the for-
ward step and then enumerate all possible backtraces within a cer-
tain range. The forward step does not change compared to just ask-
ing for the optimal result. The backward step, while tedious to get
right, only has to deal with one backtrace at a time – unless they
all have to be stored. ADP, on the other hand, stores all backtraces
within its DP matrices. The memory cost is much higher as all an-
swers – and all answers to sub-problems – that pass the objective
function are retained within the matrices.

In addition, we can not use strict, unboxed arrays of Ints (or
Floats or Doubles) if we store backtraces directly in the DP matri-
ces.

For ADPfusion we prefer to have an explicit backtrace step. As a
consequence, the programmer is faced with a slightly bigger task of
defining the forward algebra and the backward algebra separately
instead of just using the algebra product, but this is offset by the
gains in runtime and memory usage. One can even use a version
of the algebra product operation in the backward step to keep
most of its benefits. In this case, the use of the algebra product
becomes quite harmless as we no longer store each answer within
the matrices. In terms of absolute runtime, this approach works out
favorably as well. The costly forward phase (for RNAfold: O(n3))
is as efficient as possible, while the less costly backtracking (for
RNAfold: O(n2 ∗ k), with k the number of backtracked results)
uses the elegant algebra product device.

224

CHAPTER 8. SNEAKING AROUND CONCATMAP 107

9. Technical details
9.1 Functional dependencies vs. type families
Type families [3] are a replacement for functional dependencies
[21]. As both approaches provide nearly the same functionality,
it is a good question why this library requires both: type families
and functional dependencies. The functions to extract values from
function arguments, collected in the type class ExtractValue, are
making use of associated type synonyms as this provides a (albeit
subjectively) clean interface.

The stream generation system, using the StreamGen and
PreStreamGen type classes, is based on functional dependencies.
The reasons are two-fold: (i) the replacement using type families
does not optimize well, and (ii) functional dependencies allow for
overlapping instances.

The type family-based version5 of the ADPfusion library does
not optimize well. Once a third argument, and hence nested Boxes
come into play, the resulting code is only partially optimized ef-
fecting performance by a large factor. This seems to be due to in-
sufficient compile-time elimination of Box data constructors. This
problem is currently under investigation.

Using a fixed number of instances, say up to 10, would at best
be a stop-gap measure since this restricts the user of the library to
productions of at most that many arguments and leads to highly
repetitive code.

As functional dependencies allow unlimited arguments, require
only overlapping instances, and consistently produce good code,
they are the better solution for now even though they are, in general,
not well received6.

9.2 Efficient memoization
The ADPfusion library is concerned with optimizing production
rules independent of underlying data structures, lazyness, and
boxed or unboxed data types. The author of a DP algorithm may
choose the data structure most suitable for the problem and by
giving an ExtractValue instance makes it compatible with ADP-
fusion. If priority is placed on performance, calculations can be
performed in the ST or IO monad. The PrimitiveArray7 library
provides a set of unboxed array data structures that have been used
for the algorithms in Sec. 7 as boxed data structures cost perfor-
mance.

When first writing a new DP algorithm, lazy data structures can
be used as this frees the programmer from having to specify the
order in which DP tables (or other data structures) need to be filled.
Once a proof-of-concept has been written, only small changes are
required to create an algorithm working on unboxed data structures.

10. Conclusion and further work
High-level, yet high-performance, code is slowly becoming a possi-
bility in Haskell. Projects like DPH [4] and Repa [22] show that one
does not have to resort to unsightly low-level (and/or imperative-
looking) algorithms anymore to design efficient algorithms. Fur-
thermore, we can reap the benefits of staying within a language
and having access to libraries and modern compilers compared to
moving to a domain-specific language and its own compiler archi-
tecture.

The ability to write ADP code and enjoy the benefits of au-
tomatic fusion and compiler optimization are obvious as can be
shown by the improvements in runtime as described in Sec. 7. Fur-
thermore, one can design dynamic programming algorithms with

5 github: branch tf
6 cf. “cons” on overlap: http://hackage.haskell.org/trac/
haskell-prime/wiki/OverlappingInstances
7 http://hackage.haskell.org/package/PrimitiveArray

the ease provided by ADP [10] and seamlessly enable further op-
timizations like strict, unboxed data structures, without having to
rewrite the whole algorithm, or having to move away from Haskell.

With this new high-performance library at hand, we will re-
design several algorithms. Our Haskell prototype of RNAfold 2.0
allows us to compare performance with its optimized C counter-
part. RNAwolf [18] is an advanced folding algorithm with a partic-
ularly complicated grammar including nucleotide triplets for which
an implementation is only available in Haskell. CMCompare [17]
calculates similarity measures for a restricted class of stochastic
context-free grammars in the biological setting of RNA families.

Some rather advanced techniques that have become more appre-
ciated in recent years (stochastic sampling of RNA structures [28]
being one recent example) can now be expressed easily and with
generality.

The ADP homepage [14] contains further examples of dynamic
programming algorithms, as well as certain specializations and
optimizations which will drive further improvements of this library.
Of particular interest will be dynamic programming problems not
in the realm of computational biology in order to make sure that the
library is of sufficient generality to be of general usefulness.

The creation of efficient parsers for formal grammars, includ-
ing CYK for context-free languages, is one such area of interest.
Another are domain-specific languages that have rule sets akin to
production rules in CFGs but do not require dynamic programming.

The ability to employ monadic combinators, which are available
in the library, will be of help in many novel algorithmic ideas. We
ignored the monadic aspect, but the library is indeed completely
monadic. The non-monadic interface hides the monadic function
application combinator (#<<), nothing more. This design is in-
spired by the vector8 library.

Coming back to the title of “sneaking around concatMap”, we
can not claim complete success. While we have gained huge im-
provements in performance, the resulting library is rather heavy-
weight (requiring both, functional dependencies and type families,
and by extension, overlapping, flexible, and undecidable instances).
Unfortunately, we currently see no way around this. As already
pointed out in the stream fusion paper [7, section 9], optimizing for
concatMap is not trivial. Furthermore, we would need optimiza-
tions that deal well with partially applied functions to facilitate a
faithful translation of ADP into high-performance code.

Right now, results along these lines seem doubtful (considering
that the stream fusion paper is from 2007) to become available
soon. In addition, our view of partitioning a subword allows us to
employ certain specializations directly within our framework. We
know of no obvious, efficient way of implementing them within the
original ADP framework. The most important one is the ability to
observe the index stack to the left of the current combinator making
possible the immediate termination of a stream that fails definable
criteria like maximal sum of sub-partition sizes.

The code generated by this library does show that we have
achieved further separation of concerns. While algebraic dynamic
programming already provides separation of grammar (search
space) and algebra (evaluation of candidates and selection via ob-
jective function) as well as asymptotic optimization by partial tab-
ulation, we can add a further piece that is very important in practice
– optimization of constant overhead. While the application of Bell-
man’s principle still has to happen on the level of the grammar and
by proof, all code optimization is now moved into the ADPfusion
library.

The ADPfusion library itself depends on low-level stream op-
timization using the stream fusion work [7, 25] and further code
optimization via GHC [36] and LLVM [24]. Trying to expose cer-

8 http://hackage.haskell.org/package/vector

225

108 CHAPTER 8. SNEAKING AROUND CONCATMAP

tain compile-time loop optimizations either within ADPfusion or
the stream fusion library seems very attractive at this point as does
the potential use of modern single-instruction multiple-data mech-
anisms. Any improvements in this area should allow us to breach
the final ×2 gap in runtime but we’d like to close this argument
by pointing out that it is now easy to come very close to hand-
optimized dynamic programming code.

Availability
The library is BSD3-licensed and available from hackage under
the package name ADPfusion: http://hackage.haskell.org/
package/ADPfusion. The git repository, including the type fam-
ilies (tf) branch, is available on github: https://github.com/
choener/ADPfusion.

Acknowledgments
The author thanks Robert Giegerich and the Practical Computer
Science group at Bielefeld University (ADP), Ivo Hofacker (dy-
namic programming), Roman Leshchinskiy (vector library, fu-
sion, high-performance Haskell), and his family for letting him de-
sign, code and (mostly) finish it during the 2011-12 winter holi-
days. Several anonymous reviewers have provided detailed and val-
ueable comments for which I am very thankful.

This work has been funded by the Austrian FWF, project “SFB
F43 RNA regulation of the transcriptome”

References
[1] R. E. Bellman. On the Theory of Dynamic Programming. Proceedings of the

National Academy of Sciences, 38(8):716–719, 1952.

[2] A. F. Bompfünewerer, R. Backofen, S. H. Bernhart, J. Hertel, I. L. Hofacker,
P. F. Stadler, and S. Will. Variations on RNA folding and alignment: lessons from
Benasque. Journal of Mathematical Biology, 56(1):129–144, 2008.

[3] M. M. Chakravarty, G. Keller, and S. Peyton Jones. Associated Type Synonyms.
In Proceedings of the tenth ACM SIGPLAN international conference on Functional
programming, ICFP’05, pages 241–253. ACM, 2005.

[4] M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and S. Marlow.
Data Parallel Haskell: a status report. In Proceedings of the 2007 workshop on
Declarative aspects of multicore programming, DAMP’07, pages 10–18. ACM,
2007.

[5] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. In Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, ICFP’00, pages 268–279. ACM, 2000.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT press, 2001.

[7] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream Fusion: From Lists to Streams
to Nothing at All. In Proceedings of the 12th ACM SIGPLAN international
conference on Functional programming, ICFP’07, pages 315–326. ACM, 2007.

[8] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis.
Cambridge Univ. Press, 1998.

[9] R. Giegerich and C. Höner zu Siederdissen. Semantics and Ambiguity of Stochas-
tic RNA Family Models. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 8(2):499–516, 2011.

[10] R. Giegerich and C. Meyer. Algebraic Dynamic Programming. In Algebraic
Methodology And Software Technology, volume 2422, pages 243–257. Springer,
2002.

[11] R. Giegerich and P. Steffen. Challenges in the compilation of a domain specific
language for dynamic programming. In Proceedings of the 2006 ACM symposium
on Applied computing, pages 1603–1609. ACM, 2006.

[12] R. Giegerich, C. Meyer, and P. Steffen. Towards a Discipline of Dynamic
Programming. Informatik bewegt, GI-Edition-Lecture Notes in Informatics, pages
3–44, 2002.

[13] R. Giegerich, C. Meyer, and P. Steffen. A Discipline of Dynamic Programming
over Sequence Data. Science of Computer Programming, 51(3):215–263, 2004.

[14] R. Giegerich et al. Algebraic Dynamic Programming Website. http://

bibiserv.techfak.uni-bielefeld.de/adp/, 2004.

[15] D. Grune and C. J. Jacobs. Parsing techniques: a practical guide. Springer-
Verlag New York Inc, 2008.

[16] I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and
P. Schuster. Fast Folding and Comparison of RNA Secondary Structures. Monat-
shefte für Chemie/Chemical Monthly, 125(2):167–188, 1994.

[17] C. Höner zu Siederdissen and I. L. Hofacker. Discriminatory power of RNA
family models. Bioinformatics, 26(18):453–459, 2010.

[18] C. Höner zu Siederdissen, S. H. Bernhart, P. F. Stadler, and I. L. Hofacker. A
folding algorithm for extended RNA secondary structures. Bioinformatics, 27(13):
129–136, 2011.

[19] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A History of Haskell: Being
Lazy with Class. In Proceedings of the third ACM SIGPLAN conference on History
of programming languages, HOPL III, pages 1–55. ACM, 2007.

[20] G. Hutton. Higher-order functions for parsing. Journal of Functional Program-
ming, 2(3):323–343, 1992.

[21] M. P. Jones. Type Classes with Functional Dependencies. Programming Lan-
guages and Systems, pages 230–244, 2000.

[22] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and B. Lipp-
meier. Regular, Shape-polymorphic, Parallel Arrays in Haskell. In Proceedings
of the 15th ACM SIGPLAN international conference on Functional programming,
ICFP’10, pages 261–272. ACM, 2010.

[23] K. Lari and S. J. Young. The estimation of stochastic context-free grammars
using the Inside-Outside algorithm. Computer Speech & Language, 4(1):35–56,
1990.

[24] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Code Generation and Optimization, 2004. CGO
2004. International Symposium on, pages 75–86. IEEE, 2004.

[25] R. Leshchinskiy. Recycle Your Arrays! Practical Aspects of Declarative Lan-
guages, pages 209–223, 2009.

[26] R. Lorenz, S. H. Bernhart, C. Höner zu Siederdissen, H. Tafer, C. Flamm, P. F.
Stadler, and I. L. Hofacker. ViennaRNA Package 2.0. Algorithms for Molecular
Biology, 6(26), 2011.

[27] M. Mernik, J. Heering, and A. M. Sloane. When and How to Develop Domain-
Specific Languages. ACM Computing Surveys, 37(4):316–344, 2005.

[28] M. Nebel and A. Scheid. Evaluation of a sophisticated SCFG design for RNA
secondary structure prediction. Theory in Biosciences, 130:313–336, 2011. ISSN
1431-7613.

[29] R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman. Algorithms for Loop
Matchings. SIAM Journal on Applied Mathematics, 35(1):68–82, 1978.

[30] B. O’Sullivan, D. B. Stewart, and J. Goerzen. Real World Haskell. O’Reilly
Media, 2009.

[31] S. Peyton Jones. Call-pattern Specialisation for Haskell Programs. In Proceed-
ings of the 12th ACM SIGPLAN international conference on Functional program-
ming, ICFP’07, pages 327–337. ACM, 2007.

[32] E. Rivas, R. Lang, and S. R. Eddy. A range of complex probabilistic models for
RNA secondary structure prediction that includes the nearest-neighbor model and
more. RNA, 18(2):193–212, 2012.

[33] G. Sauthoff, S. Janssen, and R. Giegerich. Bellman’s GAP - A Declarative Lan-
guage for Dynamic Programming. In Proceedings of the 13th international ACM
SIGPLAN symposium on Principles and practices of declarative programming,
PPDP’11, pages 29–40. ACM, 2011.

[34] R. Sedgewick. Algorithms. Addison-Wesley Publishing Co., Inc., 1983.

[35] P. Steffen. Compiling a domain specific language for dynamic programming.
PhD thesis, Bielefeld University, 2006.

[36] The GHC Team. The Glasgow Haskell Compiler (GHC). http://www.

haskell.org/ghc/, 2012.

226

CHAPTER 8. SNEAKING AROUND CONCATMAP 109

110 CHAPTER 8. SNEAKING AROUND CONCATMAP

Chapter 9

Outlook

The previous chapters contain a selection of scientific works exploring three topics in
bioinformatics: (i) genome-scale search for non-coding RNA with two papers, (ii) pre-
diction of extended RNA secondary structures, and (iii) performance optimization of a
domain-specific language for dynamic programming. In this chapter, some further topics
are discussed. These range from research based on the presented ideas to future areas of
exploration. In particular, avenues of unification and generalization of ideas, as well as
how these topics are tied together, are explored.

9.1 Generalizing the Language of Grammars

The key aspect of the domain-specific language for formal grammars presented in Chap-
ter 8 was to achieve performance close to C while providing a high-level programming
environment. This was, in fact, achieved. Using ADPfusion it is possible to write RNA
bioinformatics algorithms on single-sequence inputs using a high-level style of program-
ming. The framework and the Haskell compiler turn high-level code into efficient code
without the user having to think about the details of this automatic conversion. The
RNAwolf algorithm can now be re-implemented in ADPfusion just like the examples given
in Chapter 8, Nussinov78 and RNAfold. As writing a large set of rules (or recursions
in other terminology) has now become easier, implementing the full extended model for
multibranched loops, as sketched in Chapter 7, Fig. 4 becomes feasible.

In this way, the advancements in Chapter 8 actively encourage exploring new and more
complicated RNA structure spaces, by containing the complexity of writing algorithms like
RNAwolf.

Multi-tape Grammars

The Nussinov78, RNAfold, and RNAwolf algorithms have in common that they all predict
the RNA secondary structure of a single sequence. Using ADPfusion, one can also write
algorithms that accept multiple sequences as input, using the idea of multi-tape grammars.
This includes algorithms for a fixed number of inputs, like the Sankoff algorithm (Sankoff,

111

112 CHAPTER 9. OUTLOOK

1985) for structural alignment of two RNA sequences, as well as algorithms operating on a
variable number of sequences as used in RNAalifold (Bernhart et al., 2008). Other algo-
rithms require an alphabet consisting of more complex “characters”. In natural language
processing, the alignment of words in a sentence is important. By allowing more complex
terminal symbols, a wide range of algorithms can be implemented quickly and efficiently.

This flexibility to encode multiple inputs and inputs of complex types efficiently is a
clear advantage over similar frameworks. A particularly interesting question is how to
properly encode for non-linear input such as tree-like data structures.

Extending ADPfusion to allow for such additional abstraction of algorithms does not
yield performance penalties. In fact, ADPfusion has gained in raw speed since its initial
publication. Some of these performance considerations are being detailed below.

Heterogeneous Index Spaces

Further generalization options are possible due to the use of shape polymorphism. Keller
et al. (2010) defined inductive tuples, named Shapes to provide an efficient encoding of
the index space of arrays. A Shape is a recursively defined index, where each dimension
can be chosen from another domain. The shape of the lookup table for stacked pairs in
RNAfold can be encoded as B4 with B = {ACGU}, while the memoization tables for the
same algorithm use the space N × N. A length-dependent, and closing-pair dependent
hairpin could similarly be encoded using the index space B2 × N.

For RNA folding, one typically requires upper-triangular memoization matrices as only
cells (i, j) with i ≤ j need to be filled. Defining a new type of subwords makes it possible
to create such an index. Used in ADPfusion, thusly defined subwords not only explicitly
forbid illegal subwords j < i, they also, transparently for the user, create memoization
tables that are of upper-triangular form, requiring half the amount of memory, square
tables would require.

Mathematically speaking, this is not surprising and just states the domain of the index
set. Computationally however, being able to use heterogeneous index spaces, define new
basic elements of theses space (like B), and combine them freely, allows ADPfusion to work
generically over all user-defined index spaces.

9.2 Performance, Automatic Parallelization, and SIMD ex-
tensions

Haskell is an unusual choice of programming language, considering that C/C++ for perfor-
mance reasons and various scripting languages as “scripting glue” seem to be prevalent
in the computational biology community. One of the problems in choosing a high-level
language is efficiency. Traditional design of Haskell programs, especially laziness (which
entails boxing of all data), leads to performance losses1 in the range of ×60 – ×100 for
dynamic programs. See, for example, Fig. 5 and Fig. 6 in Chapter 8 for Nussinov78 and

1Performance loss is highly dependent on the algorithm. This is why Sec 4.1.2 mentions performance
losses starting at only ×1.25.

9.2. PERFORMANCE, AUTOMATIC PARALLELIZATION, AND SIMD
EXTENSIONS 113

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 200 300 400 500 600 700 800 900 1000
 0.001

 0.01

 0.1

 1

 10

 100

 1000

ti
m

e
 (

s)

input length

ADP
GAP

ADPfusion
C

Figure 9.1: Post-ICFP’12 (autumn 2012) runtimes for RNAfold. The implementation in C

provides the performance base line. Haskell ADP clearly shows the infeasibility of writing
high-performance code in the original framework which used neither fusion nor strict mem-
oization tables. The GAP compiler produces code within ×8 of the C base line. ADPfusion

comes within ×3 of C.

RNAfold implementations in ADP (Giegerich and Meyer, 2002). Fortunately, the past 3–5
years have led to very impressive improvements in terms of efficient code generation by the
compiler. Of utmost importance for the ADPfusion work was the introduction of stream
fusion by Coutts et al. (2007) which paved the way for use of the stream fusion modules
in the vector library.

In a comparison between the native C implementation of RNAfold and several re-
implementations in “ADP-like” languages, including the GAP language, ADPfusion shows
performance second only to the native implementation. The comparison in Fig. 9.1 is
done on typical inputs of length 100 – 1000 and clearly shows that high performance and
high-level implementations in a functional language are not at odds with each other.

All of the implementations in this comparison use only a single thread, they are not par-
allelized to exploit the availability of multiple cores as found in modern CPUs. Instruction-
level parallelism (SIMD instructions) is ignored as well.

Parallelization of Dynamic Programming Algorithms

Parallelization of algorithms is hard as there are a number of obstacles that have to be
overcome. Four important aspects are: (i) One first has to determine which parts of an
algorithm can be parallelized. (ii) The parallelized version of an algorithm often looks
quite different than the single-core version, and is implemented differently than the single-
core version. One has to maintain two versions of the algorithm. (iii) Race conditions

114 CHAPTER 9. OUTLOOK

need to be prevented. (iv) Parallelized code should actually be faster than serialized code.

All these aspects can be addressed efficiently in the ADPfusion framework.

(i): To discover parallelization opportunities it is advantageous to consider multiple
classes of algorithms at the same time. Common to RNA structure prediction (minimum
free energy, partition function) and RNA family model based scans is the use of upper-
triangular memoization tables. Even though the former algorithms use a small, fixed set
of tables and the latter a large, model-dependent set, they share some basic rules on how
the memoization tables are filled. Filling begins at the main diagonal(s) and continues to
the upper-right corner(s).

Typically, all elements on a single diagonal are independent of each other. With
independence comes opportunity for parallelization. As a common pattern, it has to be
identified only once and can then be shared as a function among many algorithms.

(ii): Algorithms developed in the style of ADP separate grammar, algebra, and the
table filling scheme. Parallelization can be done on the level of the filling scheme alone
and requires no changes to either the grammar or the algebra. As each grammar and
algebra are now shared between the serial and parallel version, only one version of each
algorithm needs to be maintained. Furthermore, as mentioned, a whole class of algorithms
can share one filling scheme further reducing any chance of code duplication.

(iii): Race conditions can easily occur in parallelized dynamic programs. This happens
if one parallelized calculation requests a value from a memoization table that still has to be
computed by another parallelized calculation. Haskell has a system in place that prevents
race conditions but this system requires laziness. Laziness, unfortunately, costs more in
performance than can be gained by parallelization.

Thus parallelized code still has to use the efficient filling scheme based on methods
mentioned in Sec. 4.1.2. Done wrongly, this scheme can introduce race conditions in
parallel code. In general, race conditions are very hard to detect but Haskell provides
convenient ways to test for these conditions.

Such a test algebra is much simpler than the scoring algebras that are normally used
and easily implemented by the user. Each production rule with only terminals on the
right-hand side (RHS) is evaluated to a boolean True. Production rules with non-terminals
evaluate to a logical AND of all non-terminals. The memoization tables are initialized to
False. If, after parallel calculation, any False remains in the table, a race condition has
been localized. Using Template Haskell (Sheard and Peyton Jones, 2002), creating such
an algebra can be automated. Together with QuickCheck (Claessen and Hughes, 2000),
testing a grammar for race conditions can be automated as well.

(iv): The performance aspect requires careful creation of parallelized memoization
table filling code that is compatible with the ADPfusion framework and respects the other
three aspects. The Repa library (Keller et al., 2010) is a high-performance, parallelized,
multi-core library for numerical calculations. It works on regular shape-polymorphic arrays
similar to those used by ADPfusion. In addition, ADPfusion actually uses the Shapes
defined by Repa. Both libraries are based on the vector library. Repa also provides a
sophisticated framework to guide block wise parallelization which significantly simplifies
defining the correct fill order.

9.3. EXTENDED SECONDARY STRUCTURES 115

This makes it possible to use the parallelization guidance framework developed for
Repa in ADPfusion. By this feat, most of the burden of developing efficient parallel code
is already done as all algorithms written in ADPfusion can be parallelized in this way –
as long as the algorithm itself can be parallelized.

Together, these considerations make it feasible to extend ADPfusion to support multi-
core architectures. Such an extension is most beneficial for algorithms with an asymptot-
ically higher runtime than RNA secondary structure prediction, say simultaneous folding
and alignment. In addition it is those more complex algorithms that benefit most from a
reduction in the complexity of actually implementing them with parallelization support.

SIMD Extensions

Modern CPUs are equipped with single-instruction multiple-data (SIMD) units that allow
for a level of data parallelism. Where a normal CPU instruction works on scalars, SIMD
instructions process 2–4 scalars in parallel with each instruction. For algorithms that
execute the same computational kernel repeatedly, this kind of performance improvement
can be very beneficial. Linear algebra routines are excellent candidates, as they process a
large amount of numerical data using a small set of instructions.

More generic dynamic programming algorithms require a lot more programming effort
when one wants to implement SIMD-aware versions. An algorithm like RNAfold accesses
a large number of different arrays and combines the arrays in different ways. In addition,
each algorithm in the Vienna RNA suite uses a different set of operations. Re-writing all
algorithms to use SIMD instructions would be a significant undertaking.

Recently, Mainland et al. (2013) presented an extension of stream fusion in Haskell
that includes automatic SIMD support. This extension is based on the vector library
used by ADPfusion. It is now possible to adapt ADPfusion to use SIMD extensions for
dynamic programs. Algorithms that have been implemented using our framework do not
have to be changed at all. Once the library has been adapted, performance improvements
become available for free.

Only on the library implementors side will this require additional work, due to the
multitude of ways in which arrays can be accessed and array data processed.

9.3 Extended Secondary Structures

The RNAwolf algorithm for the prediction of extended RNA secondary structures as de-
scribed in Chapter 7 predicts base pair triplets and for each paired nucleotide the pairing
edge. It provides the proof that it is possible to design an algorithm that is asymptotically
as fast as other secondary structure prediction algorithms. It is slower, by a constant,
than others but predicts structures from a larger structural space.

Now that the grammatical underpinnings of extended secondary structures have been
provided, we will have to reevaluate parametrization, multibranched loops, an extension
to a whole suite of programs, and novel algorithms that make use of the additional infor-
mation provided by extended structures.

116 CHAPTER 9. OUTLOOK

Parametrization: The most important of these questions is how to provide a set of
energy parameters that is competitive with established folding algorithms and also how
exactly the energy parameters are to be modelled. Recent research on folding algorithms
in general (Rivas et al., 2012; Rivas, 2013) suggests that significant further improvements
in prediction accuracy will be hard to achieve.

One has to find a sweet spot between grammatical complexity, ability to train the
parameters to capture important biological features, and avoid overfitting if possible. The
resulting algorithm should provide actual free energy values for folded structures instead
of just probabilities. Providing loop energy values is further complicated by the fact that
no physical experiments exist2 where melting energies for structures with non-canonical
features have been measured.

The work on isostericity of RNA base pairs (Leontis et al., 2002) gives a good starting
point on designing a useful model. Isosteric base pairs may be exchanged with each other
in RNA structures. They should have roughly the same probability of occurrence and
thus parameters for isosteric pairs can be collapsed into one parameter. This reduces
the dimensionality of the parameter space and should be considered strongly where only
a sparse set of data is available. Stacking loops in helices, on the other hand, can be
modelled in much more detail.

Three kinds of data sets are available for parameter training. Melting experiments
provide actual energy parameters, but the set of experiments is small and includes neither
non-canonical pairs nor information on the actually paired edges.

PDB (or FR3D) information is statistical in nature. Using this source, it is possible
to model base triplets and pairing edges in detail. The available structures have to be
considered carefully as the data is of variable quality and structures can be, for example,
in compounds.

The third kind of data comes from RNA family databases like Rfam. Each family is
annotated with a consensus secondary structure and nucleotide (pair) distribution fre-
quencies can be extracted. As shown by CONTRAfold (Do et al., 2006), it is possible
to achieve prediction accuracies comparable to energy-based algorithms using structure
statistics gathered from structural family databases. The number of available sequences
and structures is huge compared to the other two sources, but again of variable qual-
ity. One has to be careful, for example, to distinguish between structures with strong
experimental support and predicted (from covariance information) structures. While base
pairing information does not include triplets or the exact pairing edge, all 4 × 4 possible
pairs are considered instead of just the canonical 6.

Multibranched loops: RNAwolf currently implements a base triplet grammar for interior
loop structures. This grammar is depicted in Chapter 7, Fig. 3. Including base triplets in
interior loops already increases the number of non-terminals by four additional cases, and
27 additional rules. Allowing base triplets in multibranched loops increases this number
further. While interior loops join two helices, multibranched loops join three or more. In
addition to this, individual helices in multibranched loops may engage in coaxial stacking.

Armed with the ADPfusion framework we are confident that the complexity of the

2to the authors knowledge

9.4. RNA FAMILY MODELS 117

multibranch-enabled algorithm can now be handled, and an implementation of the triplet
model is possible even for multibranched loops.

The RNAwolf suite of programs: For now, RNAwolf consists of a minimum-free energy
structure prediction algorithm, including sub-optimal backtracking. In the near future,
this will be extended to partition function calculations and an RNAalifold variant to
predict the consensus secondary structure of a set of aligned RNA sequences. These
algorithms together will then form a core set from which further developments can follow.

Novel algorithms: The non-canonical structures that are interspersed with helical re-
gions are often the active centers of structural RNAs or, like kink-turns, form unusual
features of the three-dimensional structure. RNAz (Gruber et al., 2010) predictions pro-
duce a large number of candidates for novel structural non-coding RNAs. Each of the
candidates can be evaluated with RNAwolf to determine if it contains a region of non-
canonical base pairs. This region could be a biologically active site. It may be possible to
improve the identification of functional structures in this way.

Another use case for extended structures is the prediction of RNA-Protein binding
sites. Assuming that binding sites are formed of non-canonical structures, the successful
prediction of these sites becomes possible with this new extended model for secondary
structures.

RNA Structural Modules

Small RNA structural modules (see Chapter 2.4) are a structural feature that remains
outside of the possibilities of (even extended) secondary structure prediction. The above-
mentioned kink-turn can be partially replicated using an extended secondary structure
model, but a number of crossing interactions within the module are out of reach of the
model itself.

Recent experience with the integration of G-quadruplex structures (Lorenz et al.,
2013) has shown that structure prediction tools like RNAfold can be extended with new,
localized, structural features without harming performance. An extension of RNAfold and
RNAwolf with these modules seems possible.

In Theis et al. (2013), a library of RNA structural modules was developed. These
were extracted from PDB files and combined with Rfam multiple alignments. The resulting
database extends the number of known RNA structural modules considerably and is the
first step towards the improvements just discussed. The same modules can be used in
tools like RMdetect (Cruz and Westhof, 2011) to scan multiple alignments of sequences
for additional instances of the modules in RNA families. One of the open questions is to
what extend the novel modules have known (i.e. published) – or unknown – biological
functions.

9.4 RNA Family Models

Eddy and Durbin (1994) and Sakakibara et al. (1994) pioneered the use of stochastic
context-free grammars as models for structural RNA families. Infernal (Nawrocki et al.,

118 CHAPTER 9. OUTLOOK

2009; Kolbe and Eddy, 2011) covariance models are currently the de-facto standard with a
large database, Rfam (Gardner et al., 2009, 2011), of existing families. Infernal and Rfam

together are widely used to scan genomes for homologs of known RNA families. Since
these earlier works many improvements have been integrated into the machinery. In this
thesis two aspects of stochastic RNA family models are considered.

The first aspect is the impact of choosing a specific grammar to encode a stochastic
RNA family model. Infernal makes the assumption that the most likely parse corre-
sponds to the maximum likelihood solution using a specific semantics.

In Chapter 5 the exact semantics used by Infernal is formalized as are two others. The
three semantics, structural, trace, and alignment semantics, correspond to three different
ways in which to score the alignment of a sequence against an Infernal covariance model.

There are two main results. The first is that Infernal models are indeed unambiguous
under the alignment semantics. This proof is important to have, as one can now state
that under the alignment semantics the most likely parse tree is the maximum likelihood
solution.

From a biological standpoint, many different alignments have the same biological mean-
ing. This is a problem of sequence alignment ambiguity. All alignments with the same
biological meaning map to one trace. The second main result in Chapter 5 is the devel-
opment of a new grammar for stochastic RNA family models that is unambiguous with
regard to traces. This grammar has the potential to better capture remote homologs of
family members.

The second aspect is a measure for quality control of existing as well as novel RNA fam-
ilies discussed in Chapter 6. The Rfam data base contains over 2 200 models as of August
2012. With the CMCompare algorithm a measure, the Link Score, was introduced, that
calculates how closely related two RNA families are, when viewed through the Infernal

covariance model lens.
Instead of trying to compare a pair of structural RNA families directly, CMCompare

aligns the two stochastic context-free grammars. The maximally scoring parse of this
alignment produces a sequence, the Link Sequence. In principle, the Link Sequence can
then be scored with Infernal against the two covariance models to be compared. This
produces two bit scores. The smaller of these two scores is the Link Score. CMCompare

calculates the Link Score in addition to the Link Sequence without the detour of using
Infernal. If this score is high (20 bit were arbitrarily chosen as a cutoff) then the two
models are likely to consider the same high-scoring position in a genome as a homolog,
which creates a conflict.

Based upon these findings we can design a set of tools that uses the trace semantics
instead of the alignment semantics. In addition, we can simplify the user experience of
checking RNA family models with CMCompare and provide a model control mechanism for
a trace-based algorithm as well.

A Novel Grammar for Non-coding RNA Search

With the rise of Infernal as the, probably, most often used stochastic context-free gram-
mar for non-coding RNA search, many advances in improving the performance of the

9.4. RNA FAMILY MODELS 119

algorithm were made. The actual SCFG however has largely been untouched since its
inception.

We now have a new grammar based on traces to better capture remote homologs.
This grammar is described in Chapter 5. We also have the computational and algorithmic
framework, based on the results in Chapter 8, to implement this new grammar efficiently.

Armed with these two tools, it is possible to test the effect of a trace-based grammar
for genome-wide scans. Just as with the planned improvements for extended secondary
structures (Section 9.3) it will be required to implement the new grammar in ADPfusion to
guarantee good performance and to provide a parameter-training mechanism that trans-
lates from RNA family models to the trace-based equivalent of covariance models (“trace-
CMs”).

The former task is actually quite straight-forward due to the possibility of encoding
the pair of RNA family model and query sequence using a heterogeneous index shape
(Sec. 9.1) which considerably simplifies the grammatical implementation.

The complexity of the latter task depends on a number of factors. Infernal uses a
Bayesian prior that ties a number of different model features together to improve prediction
accuracy (Nawrocki and Eddy, 2007). It should be possible to transfer this prior for
parameter estimation of trace-CMs in the new grammar. Maximum-likelihood training
without prior information would be even simpler and can be used at least to test the new
search tool. The design of a specialized parameter estimator for trace-CMs could be more
involved.

Quality Control for RNA Family Models

The Link Score, as a measure of similarity between RNA families, has been put to use to
show that certain families of RNA replication elements (Chen and Brown, 2012) are actu-
ally well-separated from the rest of the Rfam database. The high Link Scores between
the newly proposed families are indicative of a Clan (in Rfam terminology) of related fam-
ilies, as they should be. Similarity between RNA families was also considered in a study
on structure and accessibility (Lange et al., 2012) to assert that there was no undue se-
quence or structural bias in the test data. In general, the Rfam database has improved in
quality as measured by lower Link Scores when compared to earlier updates (considering
versions 9 – 11 of Rfam).

To further simplify checking non-coding RNA families for uniqueness, or similarity to
other, already known, families, a web server has been made available (Eggenhofer et al.,
2013). It removes the problem of having to install the CMCompare command line tools.
The web server provides a suite of additional features, from working with a whole set of
families to providing graphical output, that simplifies examining the “neighborhood” of one
or multiple RNA families. It is envisioned to extend the server to other stochastic family
models. This includes Hidden-Markov models as used by the Pfam database (Bateman
et al., 2002).

Care has to be taken in interpreting the calculated Link Score between two families.
Rfam does not follow the concept of “one family – one model” strictly. For a number of
families, it would be very complicated to keep all sequences in one big family. There are,

120 CHAPTER 9. OUTLOOK

for example, six RNaseP families currently in Rfam. Each of these families is diverged on
the structure and sequence level from the others. Trying to combine the six families into
one would dilute the statistical power of the family compared to the six source families
individually. To make the user aware that thusly related families can assign the same
locus as a homolog, around 100 clans of related families have been defined.

High Link Scores therefore can mean either: two families that should be re-evaluated
to increase their discriminatory power, or that a known or new Rfam clan has been discov-
ered. The more one moves toward automated generation of complete family models and
away from manual curation, the more important measures of quality will become. In this
regard, it is appropriate to explore how the meaning of discriminatory power or familial
relationships between models can be refined.

Finally, once the novel grammar for RNA family models (Chapter 5) is available in a
more comprehensive suite of tools it, too, will be provided with a CMCompare-based quality
control measure for generated families.

9.5 From Functions to Grammars and Back

The four scientific works presented in this thesis make use of the language of formal
grammars to solve different problems in RNA bioinformatics. Using a formal grammar
abstracts away more low-level problems that otherwise tend to obstruct the view. In this
way one moves up from individual (recursive) functions to whole grammars.

Beginning with ADPfusion (Chapter 8) it has been possible to take a grammatical
description and embed it efficiently and directly in Haskell. The grammar is parametrized
over the algebra, which provides the scoring functions, and the input(s).

In Haskell and ADPfusion a grammar is just a normal function. This statement in
itself is not noteworthy as it simply mirrors the effect of embedding a domain-specific
language in Haskell. In contrast to this, the consequences are remarkable. By making the
grammatical symbols, the terminals and non-terminals, of the grammar variable as well,
we gain a further level of abstraction.

A grammar is now a function over its symbols, an algebra, and an input set which
itself is tied to the terminal symbols. This is important because now a grammar becomes
a function providing the structure for a set of algorithms.

It was mentioned in this thesis that the natural-language community uses formal gram-
mars to describe language features, perform alignments, and other tasks. This is quite
similar to many tasks done in RNA bioinformatics. One can probably find many fields
where the same algorithms are used once topic-specific details, like the alphabet of the
terminal characters, have been stripped away.

Viewed in this way, it should be possible to provide a library of grammars that provide
an abstract description of a certain task. This description can be made concrete for a
given problem by providing the correct terminal and non-terminal symbols. From this
point on, the grammar behaves as usual, expecting a scoring scheme in the form of an
algebra and the input for which to calculate a result. The shared grammar might be used
in RNA secondary structure prediction and alignment of human languages, dependent on

9.5. FROM FUNCTIONS TO GRAMMARS AND BACK 121

which symbols have been selected.
This concept is quite fascinating because it apparently comes without further costs.

Grammatical design is not more complicated and actually doesn’t change at all. Even the,
for ADPfusion, most important aspect of performance can be handled – the additional level
of abstraction comes for free as grammars are already functions. In this more abstract
setting they just require some additional arguments.

Using this approach we expect to be able to tackle novel problems more rapidly because
more and more parts of our machinery become re-usable. Ultimately, it is envisioned to
abstract away more and more of the details of each specific algorithm until they are reduced
to their core functionality that is unique to each problem and solution.

It should, of course, not be concealed that frameworks like ADPfusion have to be
extended to allow this to happen. It is not possible to remove details of implementations
completely from our view but it is at least possible write a generic design once and then
re-use it.

122 CHAPTER 9. OUTLOOK

Bibliography

Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers: Principles, Techniques, and Tools. Pear-

son/Addison Wesley, 2007.

Tatsuya Akutsu. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete

Applied Mathematics, 104(1):pages 45–62, 2000.

Can Alkan, Emre Karakoc, Joseph H Nadeau, S Cenk Sahinalp, and Kaizhong Zhang. RNA-RNA Interaction Prediction

and Antisense RNA Target Search. Journal of Computational Biology, 13(2):pages 267–282, 2006.

Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic Local Alignment Search

Tool. Journal of Molecular Biology, 215(3):pages 403–410, 1990.

Mirela Andronescu, Anne Condon, Holger H. Hoos, David H. Mathews, and Kevin P. Murphy. Efficient parameter estimation

for RNA secondary structure prediction. Bioinformatics, 23(13):pages i19–i28, 2007.

Mirela Andronescu, Anne Condon, Holger H. Hoos, David H. Mathews, and Kevin P. Murphy. Computational approaches

for RNA energy parameter estimation. RNA, 16(12):pages 2304–2318, 2010a.

Mirela S. Andronescu, Christina Pop, and Anne E. Condon. Improved free energy parameters for RNA pseudoknotted

secondary structure prediction. RNA, 16(1):pages 26–42, 2010b.

Mirela Ştefania Andronescu. Computational approaches for RNA energy parameter estimation. Ph.D. thesis, The Uni-

versity Of British Columbia (Vancouver), 2008.

Alex Bateman, Ewan Birney, Lorenzo Cerruti, Richard Durbin, Laurence Etwiller, Sean R. Eddy, Sam Griffiths-Jones,

Kevin L. Howe, Mhairi Marshall, and Erik L.L. Sonnhammer. The Pfam Protein Families Database. Nucleic Acids

Research, 30(1):pages 276–280, 2002.

Richard E. Bellman. On the Theory of Dynamic Programming. Proceedings of the National Academy of Sciences,

38(8):pages 716–719, 1952.

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, TN Bhat, Helge Weissig, Ilya N Shindyalov, and Philip E

Bourne. The Protein Data Bank. Nucleic Acids Research, 28(1):pages 235–242, 2000.

Stephan H. Bernhart, Ivo L. Hofacker, Sebastian Will, Andreas R. Gruber, and Peter F. Stadler. RNAalifold: improved

consensus structure prediction for RNA alignments. BMC Bioinformatics, 9(1):page 474, 2008.

Richard Bird. Pearls of Functional Algorithm Design. Cambridge University Press, 2010.

Richard Bird, Geraint Jones, and Oege de Moor. More haste, less speed: lazy versus eager evaluation. Journal of Functional

Programming, 7(5):pages 541–547, 1997.

Athanasius F. Bompfünewerer, Rolf Backofen, Stephan H. Bernhart, Jana Hertel, Ivo L. Hofacker, Peter F. Stadler, and

Sebastian Will. Variations on RNA folding and alignment: lessons from Benasque. Journal of Mathematical Biology,

56(1):pages 129–144, 2008.

David Burkett, John Blitzer, and Dan Klein. Joint Parsing and Alignment with Weakly Synchronized Grammars. In

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for

Computational Linguistics, pages 127–135. Association for Computational Linguistics, 2010.

123

124 BIBLIOGRAPHY

Liming Cai, Russell L. Malmberg, and Yunzhou Wu. Stochastic modeling of RNA pseudoknotted structures: a grammatical

approach. Bioinformatics, 19(suppl 1):pages i66–i73, 2003.

Neil A. Campbell and Jane B. Reece. Biologie. Spektrum Verlag, Heidelberg, Berlin, 6. edition, 2003.

Manuel M.T. Chakravarty, Gabriel C. Ditu, and Roman Leshchinskiy. Instant Generics: Fast and Easy. 2009.

Augustine Chen and Chris Brown. Distinct families of cis-acting RNA replication elements epsilon from hepatitis B viruses.

RNA Biology, 9(2):pages 1–7, 2012.

Hamidreza Chitsaz, Raheleh Salari, S Cenk Sahinalp, and Rolf Backofen. A partition function algorithm for interacting

nucleic acid strands. Bioinformatics, 25(12):pages i365–i373, 2009.

Noam Chomsky. Three models for the description of language. IRE Transactions on Information Theory, 2(3):pages

113–124, 1956.

Noam Chomsky. On Certain Formal Properties of Grammars. Information and control, 2(2):pages 137–167, 1959.

Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In Proceedings

of the fifth ACM SIGPLAN international conference on Functional programming, ICFP’00, pages 268–279. ACM,

2000.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT

press, 2001.

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream Fusion: From Lists to Streams to Nothing at All. In

Proceedings of the 12th ACM SIGPLAN international conference on Functional programming, ICFP’07, pages 315–

326. ACM, 2007.

Francis Crick. Central Dogma of Molecular Biology. Nature, 227:pages 561–563, 1970.

José Almeida Cruz, Marc-Frédérick Blanchet, Michal Boniecki, Janusz M. Bujnicki, Shie-Jie Chen, Song Cao, Rhiju Das,

Feng Ding, Nikolay V. Dokholyan, Samuel Coulbourn Flores, Lili Huang, Christopher A. Lavender, Véronique Lisi,

François Major, Katarzyna Mikolajczak, Dinshaw J. Patel, Anna Philips, Tomasz Puton, John Santalucia, Fredrick Si-

jenyi, Thomas Hermann, Kristian Rother, Magdalena Rother, Alexander Serganov, Marcin Skorupski, Tomasz Soltysin-

ski, Parin Sripakdeevong, Irina Tuszynska, Kevin M. Weeks, Christina Waldsich, Michael Wildauer, Neocles B. Leontis,

and Eric Westhof. RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction. RNA,

18(4):pages 610–625, 2012.

José Almeida Cruz and Eric Westhof. Sequence-based identification of 3D structural modules in RNA with RMDetect.

Nature Methods, 8(6):pages 513–519, 2011.

Noah M Daniels, Andrew Gallant, and Norman Ramsey. Experience report: Haskell in computational biology. In Pro-

ceedings of the 17th ACM SIGPLAN international conference on Functional programming, pages 227–234. ACM,

2012.

Rhiju Das and David Baker. Automated de novo prediction of native-like RNA tertiary structures. Proceedings of the

National Academy of Sciences, 104(37):pages 14 664–14 669, 2007.

Rhiju Das, John Karanicolas, and David Baker. Atomic accuracy in predicting and designing noncanonical RNA structure.

Nature methods, 7(4):pages 291–294, 2010.

Richard C Deonier, Simon Tavaré, and Michael S Waterman. Computational Genome Analysis: An Introduction. Springer,

2005.

Chuong B. Do, Daniel A. Woods, and Serafim Batzoglou. CONTRAfold: RNA secondary structure prediction without

physics-based models. Bioinformatics, 22(14):page e90, 2006.

Robin D. Dowell and Sean R. Eddy. Evaluation of several lightweight stochastic context-free grammars for RNA secondary

structure prediction. BMC Bioinformatics, 5(1):page 71, 2004.

Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Biological sequence analysis. Cambridge Univ. Press,

1998.

R Kent Dybvig. The SCHEME programming language. Mit Press, 2003.

BIBLIOGRAPHY 125

Sean R. Eddy. HMMER: profile HMMs for protein sequence analysis. Bioinformatics, 14:pages 755–763, 1998.

Sean R. Eddy and Richard Durbin. RNA sequence analysis using covariance models. Nucleic Acids Research, 22(11):pages

2079–2088, 1994.

Florian Eggenhofer, Ivo L. Hofacker, and Christian Höner zu Siederdissen. CMCompare webserver: Comparing RNA

families via Covariance Models. submitted, 2013.

Mathieu Fourment and Michael R Gillings. A comparison of common programming languages used in bioinformatics. BMC

bioinformatics, 9(1):page 82, 2008.

Paul P Gardner, Jennifer Daub, John Tate, Benjamin L Moore, Isabelle H Osuch, Sam Griffiths-Jones, Robert D Finn,

Eric P Nawrocki, Diana L Kolbe, Sean R Eddy, et al. Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids

Research, 39(suppl 1):pages D141–D145, 2011.

Paul P. Gardner, Jennifer Daub, John G. Tate, Eric P. Nawrocki, Diana L. Kolbe, Stinus Lindgreen, Adam C. Wilkinson,

Robert D. Finn, Sam Griffiths-Jones, Sean R. Eddy, and Alex Bateman. Rfam: updates to the RNA families database.

Nucleic Acids Research, 37(suppl 1):pages D136–D140, 2009.

Robert Giegerich and Christian Höner zu Siederdissen. Semantics and Ambiguity of Stochastic RNA Family Models.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(2):pages 499–516, 2011.

Robert Giegerich and Carsten Meyer. Algebraic Dynamic Programming. In Algebraic Methodology And Software Tech-

nology, volume 2422, pages 243–257. Springer, 2002.

Robert Giegerich, Carsten Meyer, and Peter Steffen. Towards a Discipline of Dynamic Programming. Informatik bewegt,

GI-Edition-Lecture Notes in Informatics, pages 3–44, 2002.

Robert Giegerich, Carsten Meyer, and Peter Steffen. A Discipline of Dynamic Programming over Sequence Data. Science

of Computer Programming, 51(3):pages 215–263, 2004.

Andrew Gill, John Launchbury, and Simon Peyton Jones. A Short Cut to Deforestation. In Proceedings of the conference

on Functional programming languages and computer architecture, pages 223–232. ACM, 1993.

Sam Griffiths-Jones. RALEE – RNA ALignment editor in Emacs. Bioinformatics, 21(2):pages 257–259, 2005.

Sam Griffiths-Jones, Alex Bateman, Mhairi Marshall, Ajay Khanna, and Sean R. Eddy. Rfam: an RNA family database.

Nucleic Acids Research, 31(1):pages 439–441, 2003.

Andreas R. Gruber, Sven Findeiß, Stefan Washietl, Ivo L. Hofacker, and Peter F. Stadler. RNAz 2.0: Improved noncoding

RNA detection. In Pacific Symposium on Biocomputing, volume 15, pages 69–79. 2010.

Andreas R Gruber, Ronny Lorenz, Stephan H Bernhart, Richard Neuböck, and Ivo L Hofacker. The Vienna RNA Websuite.

Nucleic acids research, 36(suppl 2):pages W70–W74, 2008.

Dick Grune and Ceriel J.H. Jacobs. Parsing Techniques: A Practical Guide. Springer-Verlag New York Inc, 2008.

Ralf Hinze, Thomas Harper, and Daniel W.H. James. Theory and Practice of Fusion. Implementation and Application of

Functional Languages, pages 19–37, 2011.

Ralf Hinze, Johan Jeuring, and Andres Löh. Comparing Approaches to Generic Programming in Haskell. Datatype-Generic

Programming, pages 72–149, 2007.

Ivo L. Hofacker, Martin Fekete, and Peter F. Stadler. Secondary Structure Prediction for Aligned RNA Sequences. Journal

of Molecular Biology, 319(5):pages 1059–1066, 2002.

Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, L. Sebastian Bonhoeffer, Manfred Tacker, and Peter Schuster. Fast

Folding and Comparison of RNA Secondary Structures. Monatshefte für Chemie/Chemical Monthly, 125(2):pages

167–188, 1994.

Christian Höner zu Siederdissen. Sneaking Around concatMap: Efficient Combinators for Dynamic Programming. In

Proceedings of the 17th ACM SIGPLAN international conference on Functional programming, ICFP ’12, pages 215–

226. ACM, New York, NY, USA, 2012. ISBN 978-1-4503-1054-3.

URL http://doi.acm.org/10.1145/2364527.2364559

126 BIBLIOGRAPHY

Christian Höner zu Siederdissen, Stephan H. Bernhart, Peter F. Stadler, and Ivo L. Hofacker. A folding algorithm for

extended RNA secondary structures. Bioinformatics, 27(13):pages 129–136, 2011.

Christian Höner zu Siederdissen and Ivo L. Hofacker. Discriminatory power of RNA family models. Bioinformatics,

26(18):pages 453–459, 2010.

Fenix W.D. Huang, Jin Qin, Christian M. Reidys, and Peter F. Stadler. Partition function and base pairing probabilities

for RNA–RNA interaction prediction. Bioinformatics, 25(20):pages 2646–2654, 2009.

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A History of Haskell: Being Lazy with Class. In

Proceedings of the third ACM SIGPLAN conference on History of programming languages, HOPL III, pages 1–55.

ACM, 2007.

John Hughes. Why Functional Programming Matters. The Computer Journal, 32(2):pages 98–107, 1989.

Daniel Jurafsky, Chuck Wooters, Jonathan Segal, Andreas Stolcke, Eric Fosler, G Tajchaman, and Nelson Morgan. Using

a stochastic context-free grammar as a language model for speech recognition. In Acoustics, Speech, and Signal

Processing, 1995. ICASSP-95., 1995 International Conference on, volume 1, pages 189–192. IEEE, 1995.

Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, and Ben Lippmeier. Regular,

Shape-polymorphic, Parallel Arrays in Haskell. In Proceedings of the 15th ACM SIGPLAN international conference

on Functional programming, ICFP’10, pages 261–272. ACM, 2010.

Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan. Fun with type functions. Reflections on the Work of CAR

Hoare, pages 301–331, 2010.

Diana L. Kolbe and Sean R. Eddy. Fast Filtering for RNA Homology Search. Bioinformatics, 27(22):pages 3102–3109,

2011.

Ralf Lämmel and Simon Peyton Jones. Scrap Your Boilerplate: A Practical Design Pattern for Generic Programming. In

ACM SIGPLAN Notices, volume 38, pages 26–37. ACM, 2003.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with class: extensible generic functions. In ACM SIGPLAN

Notices, volume 40, pages 204–215. ACM, 2005.

Sita J. Lange, Daniel Maticzka, Mathias Möhl, Joshua N. Gagnon, Chris M. Brown, and Rolf Backofen. Global or local?

Predicting secondary structure and accessibility in mRNAs. Nucleic Acids Research, 2012.

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In

Code Generation and Optimization, 2004. CGO 2004. International Symposium on, pages 75–86. IEEE, 2004.

Neocles B. Leontis, Jesse Stombaugh, and Eric Westhof. The non-Watson-Crick base pairs and their associated isostericity

matrices. Nucleic Acids Research, 30(16):pages 3497–3531, 2002.

Neocles B. Leontis and Eric Westhof. Geometric nomenclature and classification of RNA base pairs. RNA, 7(4):pages

499–512, 2001.

Neocles B. Leontis and Eric Westhof. Analysis of RNA motifs. Current Opinion in Structural Biology, 13(3):pages 300–308,

2003.

Roman Leshchinskiy. Recycle Your Arrays! Practical Aspects of Declarative Languages, pages 209–223, 2009.

Felipe Lessa, Daniele Neto, Kátia Guimarães, Marcelo Brigido, and Maria Walter. Regene: Automatic Construction of a

Multiple Component Dirichlet Mixture Priors Covariance Model to Identify Non-coding RNA. Bioinformatics Research

and Applications, pages 380–391, 2011.

Art Lew and Holger Mauch. Dynamic Programming: A Computational Tool, volume 38. Springer, 2006.

Ronny Lorenz, Stephan H. Bernhart, Fabian Externbrink, Jing Qin, Christian Höner zu Siederdissen, Fabian Amman,

Ivo L. Hofacker, and Peter F. Stadler. RNA Folding Algorithms with G-Quadruplexes. In M.C.P. De Souto and M.G.

Kann, editors, Brazilian Symposium on Bioinformatics (BSB 2012), Lecture Notes in Bioinformatics, volume 7409,

pages 49–60. Springer, Heidelberg, 2012.

Ronny Lorenz, Stephan H. Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph Flamm, Peter F. Stadler,

and Ivo L. Hofacker. ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6(26), 2011.

BIBLIOGRAPHY 127

Ronny Lorenz, Stephan H. Bernhart, Jing Qin, Christian Höner zu Siederdissen, Andrea Tanzer, Fabian Amman, Ivo L.

Hofacker, and Peter F. Stadler. 2D meets 4G: G-Quadruplexes in RNA Secondary Structure Prediction. IEEE/ACM

Transactions on Computation Biology and Bioinformatics, 2013.

Zhi John Lu, Douglas H. Turner, and David H. Mathews. A set of nearest neighbor parameters for predicting the enthalpy

change of RNA secondary structure formation. Nucleic Acids Research, 34(17):pages 4912–4924, 2006.

Rune B Lyngsø and Christian NS Pedersen. Pseudoknots in rna secondary structures. In Proceedings of the fourth annual

international conference on Computational molecular biology, pages 201–209. ACM, 2000.

Geoffrey Mainland, Roman Leshchinskiy, Simon Peyton Jones, and Simon Marlow. Haskell Beats C Using Generalized

Stream Fusion. 2013.

David H. Mathews, Jeffrey Sabina, Michael Zuker, and Douglas H. Turner. Expanded Sequence Dependence of Thermo-

dynamic Parameters Improves Prediction of RNA Secondary Structure. Journal of Molecular Biology, 288(5):pages

911–940, 1999.

John S. Mattick and Igor V. Makunin. Non-coding RNA. Human Molecular Genetics, 15(Review Issue 1):pages R17–R29,

2006.

John S. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structure.

Biopolymers, 29(6-7):pages 1105–1119, 1990.

Irmtraud M. Meyer and István Miklós. SimulFold: Simultaneously Inferring RNA Structures Including Pseudoknots,

Alignments, and Trees Using a Bayesian MCMC Framework. PLoS computational biology, 3(8):page e149, 2007.

Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual Symposium on Logic

in Computer Science (LICS’89), pages 14–23. IEEE, 1989.

Ulrike Mückstein, Hakim Tafer, Stephan H. Bernhart, Maribel Hernandez-Rosales, Jörg Vogel, Peter F. Stadler, and Ivo L.

Hofacker. Translational control by RNA–RNA interaction: Improved computation of RNA–RNA binding thermody-

namics. Bioinformatics Research and Development, pages 114–127, 2008.

Ulrike Mückstein, Hakim Tafer, Jörg Hackermüller, Stephan H. Bernhart, Peter F. Stadler, and Ivo L. Hofacker. Thermo-

dynamics of RNA–RNA binding. Bioinformatics, 22(10):pages 1177–1182, 2006.

Eric P. Nawrocki and Sean R. Eddy. Query-Dependent Banding (QDB) for Faster RNA Similarity Searches. PLoS Com-

putational Biology, 3(3):page e56, 2007.

Eric P. Nawrocki, Diana L. Kolbe, and Sean R. Eddy. Infernal 1.0: inference of RNA alignments. Bioinformatics,

25(10):pages 1335–1337, 2009.

Ruth Nussinov, George Pieczenik, Jerrold R. Griggs, and Daniel J. Kleitman. Algorithms for Loop Matchings. SIAM

Journal on Applied Mathematics, 35(1):pages 68–82, 1978.

Chris Okasaki. Purely functional data structures. Cambridge University Press, 1999.

Marc Parisien and Francois Major. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature,

452:pages 51–55, 2008.

Dimitri D. Pervouchine. IRIS: Intermolecular RNA Interaction Search. Genome informatics series, 15(2):page 92, 2004.

Simon Peyton Jones. Call-pattern Specialisation for Haskell Programs. In Proceedings of the 12th ACM SIGPLAN

international conference on Functional programming, ICFP’07, pages 327–337. ACM, 2007.

Simon L. Peyton Jones and André L.M. Santos. A transformation-based optimiser for Haskell. Science of Computer

Programming, 32(1):pages 3–47, 1998.

Jens Reeder and Robert Giegerich. Design, implementation and evaluation of a practical pseudoknot folding algorithm

based on thermodynamics. BMC bioinformatics, 5(1):page 104, 2004.

Christian M. Reidys, Fenix W.D. Huang, Jørgen E. Andersen, Robert C. Penner, Peter F. Stadler, and Markus E. Nebel.

Topology and prediction of RNA pseudoknots. Bioinformatics, 27(8):pages 1076–1085, 2011.

128 BIBLIOGRAPHY

Vladimir Reinharz, François Major, and Jérôme Waldispühl. Towards 3D structure prediction of large RNA molecules: an

integer programming framework to insert local 3D motifs in RNA secondary structure. Bioinformatics, 28(12):pages

i207–i214, 2012.

Elena Rivas. The four ingredients of single-sequence RNA secondary structure prediction: A unifying perspective. submitted,

2013.

Elena Rivas and Sean R. Eddy. The language of RNA: a formal grammar that includes pseudoknots. Bioinformatics,

16(4):pages 334–340, 2000.

Elena Rivas, Raymond Lang, and Sean R. Eddy. A range of complex probabilistic models for RNA secondary structure

prediction that includes the nearest-neighbor model and more. RNA, 18(2):pages 193–212, 2012.

Yasubumi Sakakibara, Michael Brown, Richard Hughey, I Saira Mian, Kimmen Sjölander, Rebecca C Underwood, and David

Haussler. Stochastic context-free grammers for tRNA modeling. Nucleic Acids Research, 22(23):pages 5112–5120, 1994.

David Sankoff. Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM Journal on

Applied Mathematics, pages 810–825, 1985.

Michael Sarver, Craig L. Zirbel, Jesse Stombaugh, Ali Mokdad, and Neocles B. Leontis. FR3D: Finding Local and Composite

Recurrent Structural Motifs in RNA 3D Structures. Journal of Mathematical Biology, (56):pages 215–252, 2008.

K. Sato, Y. Kato, M. Hamada, T. Akutsu, and K. Asai. IPknot: fast and accurate prediction of RNA secondary structures

with pseudoknots using integer programming. Bioinformatics, 27(13):pages i85–i93, 2011.

Georg Sauthoff. Bellman’s GAP: A 2nd Generation Language and System for Algebraic Dynamic Programming. Ph.D.

thesis, Bielefeld University, 2011.

Georg Sauthoff, Stefan Janssen, and Robert Giegerich. Bellman’s GAP - A Declarative Language for Dynamic Programming.

In Proceedings of the 13th international ACM SIGPLAN symposium on Principles and practices of declarative

programming, PPDP’11, pages 29–40. ACM, 2011.

Georg Sauthoff, Mathias Möhl, Stefan Janssen, and Robert Giegerich. Bellman’s GAP – a Language and Compiler for

Dynamic Programming in Sequence Analysis. Bioinformatics, 2013.

Tim Sheard and Simon Peyton Jones. Template Meta-programming for Haskell. In Proceedings of the 2002 ACM SIGPLAN

workshop on Haskell, pages 1–16. ACM, 2002.

Jennifer A Smith. RNA Search with Decision Trees and Partial Covariance Models. IEEE/ACM Transactions on Com-

putational Biology and Bioinformatics (TCBB), 6(3):pages 517–527, 2009.

TF Smith and MS Waterman. Identification of Common Molecular Subsequences. Journal of Molecular Biology, 147:pages

195–197, 1981.

Guy L Steele. Common LISP: the language. Digital Press, 1990.

Peter Steffen. Compiling a Domain Specific Language for Dynamic Programming. Ph.D. thesis, Bielefeld University,

2006.

David A. Terei and Manuel M.T. Chakravarty. An LLVM Backend for GHC. In Proceedings of the third ACM Haskell

symposium on Haskell (Haskell ’10), pages 109–120. ACM, 2010.

Corinna Theis, Christian Höner zu Siederdissen, Ivo L. Hofacker, and Jan Gorodkin. Automated identification of 3D

modules with discriminative power in RNA structural alignments. submitted, 2013.

Ignacio Tinoco, Philip N. Borer, Barbara Dengler, Mark D. Levine, Olke C. Uhlenbeck, Donald M. Crothers, and Jay

Gralla. Improved Estimation of Secondary Structure in Ribonucleic Acids. Nature, 246(150):pages 40–41, 1973.

Ignacio Tinoco, Olke C. Uhlenbeck, and Mark D. Levine. Estimation of Secondary Structure in Ribonucleic Acids. Nature,

230(5293):pages 362–367, 1971.

Douglas H. Turner and David H. Mathews. NNDB: the nearest neighbor parameter database for predicting stability of

nucleic acid secondary structure. Nucleic Acids Research, 38:pages D280–D282, 2010.

Philip Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Computer Science, 73(2):pages

231–248, 1990.

BIBLIOGRAPHY 129

Amy E. Walter, Douglas H. Turner, James Kim, Matthew H. Lyttle, Peter Müller, David H. Mathews, and Michael

Zuker. Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding.

Proceedings of the National Academy of Sciences, 91(20):pages 9218–9222, 1994.

Stefan Washietl, Ivo L. Hofacker, and Peter F. Stadler. Fast and reliable prediction of noncoding RNAs. Proceedings of

the National Academy of Sciences of the United States of America, 102(7):pages 2454–2459, 2005.

Sebastian Will, Tejal Joshi, Ivo L. Hofacker, Peter F. Stadler, and Rolf Backofen. LocARNA-P: Accurate boundary

prediction and improved detection of structural RNAs. RNA, 18(5):pages 900–914, 2012.

Sebastian Will, Kristin Reiche, Ivo L. Hofacker, Peter F. Stadler, and Rolf Backofen. Inferring Non-Coding RNA Families

and Classes by Means of Genome-Scale Structure-Based Clustering. PLoS Computational Biology, 3(4):page e65, 2007.

ISSN 1553-7358.

Han Min Wong, Linda Payet, Julian Leon Huppert, et al. Function and targeting of G-quadruplexes. Current Opinion in

Molecular Therapeutics, 11(2):page 146, 2009.

Stefan Wuchty, Walter Fontana, Ivo L. Hofacker, and Peter Schuster. Complete suboptimal folding of RNA and the stability

of secondary structures. Biopolymers, 49(2):pages 145–165, 1999. ISSN 0006-3525.

Tianbing Xia, John SantaLucia Jr, Mark E. Burkard, Ryszard Kierzek, Susan J. Schroeder, Xiaoqi Jiao, Christopher Cox,

and Douglas H. Turner. Thermodynamic Parameters for an Expanded Nearest-Neighbor Model for Formation of RNA

Duplexes with Watson-Crick Base Pairs. Biochemistry, 37(42):pages 14 719–14 735, 1998.

Zizhen Yao, Zasha Weinberg, and Walter L. Ruzzo. CMfinder a covariance model based RNA motif finding algorithm.

Bioinformatics, 22(4):pages 445–452, 2006.

Michael Zuker. On Finding all Suboptimal Foldings of an RNA Molecule. Science, 244(4900):pages 48–52, 1989.

Michael Zuker and Patrick Stiegler. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary

information. Nucleic Acids Research, 9(1):pages 133–148, 1981.

Christian Höner zu Siederdissen
Institut für Theoretische Chemie
Währinger Straße 17
1090 Wien
Austria
Tel: +43-1-4277-52737
Fax: +43-1-4277-52793
choener@tbi.univie.ac.at

http://www.tbi.univie.ac.at/∼choener/
Date of Birth: September, 6th 1981
Nationality: Germany

Research Interests

computational biology • RNA secondary structure prediction
• genome-wide search for structural non-coding RNAs
• optimization methods (dynamic programming, convex optimiza-
tion)

functional programming • functional programming as a tool for computational biology
• high-performance functional programming
• Haskell (a lazy functional programming language)

Bayesian statistics • statistical methods as a basis for accurate prediction algorithms

Education

July 2008 – • PhD student with Prof. Dr. Ivo L. Hofacker at the Institut für
Theoretische Chemie, Universität Wien; thesis title: Grammatical
Approaches to Problems in RNA Bioinformatics

Feb 2008 – Jun 2008 • research assistant with Prof. Dr. Robert Giegerich, AG Praktische
Informatik, Universität Bielefeld

2002 – Dec 2007 • Diploma (Masters) in Computer Science in the Natural Sciences,
Bielefeld University ; supervisors: Prof. Dr. Sven Rahmann & Prof.
Dr. Robert Giegerich; thesis title: Determination of the Sum For-
mula for Small Molecules from High Resolution FT-ICR Spectra

130

List of Publications

[1] Corinna Theis, Christian Höner zu Siederdissen, Ivo L. Hofacker, and Jan Gorodkin.
Automated identification of 3D modules with discriminative power in RNA structural
alignments. submitted, 2013.

[2] Florian Eggenhofer, Ivo L. Hofacker, and Christian Höner zu Siederdissen. CMCom-
pare webserver: Comparing RNA families via Covariance Models. submitted, 2013.

[3] Ronny Lorenz, Stephan H. Bernhart, Jing Qin, Christian Höner zu Siederdissen, An-
drea Tanzer, Fabian Amman, Ivo L. Hofacker, and Peter F. Stadler. 2D meets 4G:
G-Quadruplexes in RNA Secondary Structure Prediction. IEEE/ACM Transactions
on Computation Biology and Bioinformatics, 2013.

[4] Joaquin Vierna, Stefanie Wehner, Christian Höner zu Siederdissen, Andrés Mart́ınez-
Lage, and Manja Marz. Evolutionary analysis of 5S ribosomal DNA in metazoans.
submitted, 2013.

[5] Christian Höner zu Siederdissen. Sneaking Around concatMap: Efficient Combinators
for Dynamic Programming. In Proceedings of the 17th ACM SIGPLAN international
conference on Functional programming, ICFP ’12, pages 215–226, New York, NY,
USA, 2012. ACM.

[6] Ronny Lorenz, Stephan H. Bernhart, Fabian Externbrink, Jing Qin, Christian Höner
zu Siederdissen, Fabian Amman, Ivo L. Hofacker, and Peter F. Stadler. RNA Fold-
ing Algorithms with G-Quadruplexes. In M.C.P. De Souto and M.G. Kann, editors,
Brazilian Symposium on Bioinformatics (BSB 2012), Lecture Notes in Bioinformatics,
volume 7409, pages 49–60. Springer, Heidelberg, 2012.

[7] Conrad Helm, Stephan H. Bernhart, Christian Höner zu Siederdissen, Birgit Nickel,
and Christoph Bleidorn. Deep sequencing of small RNAs confirms an annelid affinity
of Myzostomida. Molecular Phylogenetics and Evolution, 64:198–203, 2012.

[8] Ronny Lorenz, Stephan H. Bernhart, Christian Höner zu Siederdissen, Hakim Tafer,
Christoph Flamm, Peter F. Stadler, and Ivo L. Hofacker. ViennaRNA Package 2.0.
Algorithms for Molecular Biology, 6(26), 2011.

[9] Christian Höner zu Siederdissen, Stephan H. Bernhart, Peter F. Stadler, and Ivo L.
Hofacker. A folding algorithm for extended RNA secondary structures. Bioinformat-
ics, 27(13):129–136, 2011.

[10] Manja Marz, Andreas R. Gruber, Christian Höner zu Siederdissen, Fabian Amman,
Stefan Badelt, Sebastian Bartschat, Stephan H. Bernhart, Wolfgang Beyer, Stefanie
Kehr, Ronny Lorenz, Andrea Tanzer, Dilmurat Yusuf, Hakim Tafer, Ivo L. Hofacker,
and Peter F. Stadler. Animal snoRNAs and scaRNAs with exceptional structures.
RNA Biology, 8(6):1–9, 2011.

[11] Robert Giegerich and Christian Höner zu Siederdissen. Semantics and Ambiguity of
Stochastic RNA Family Models. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 8(2):499–516, 2011.

131

List of Publications (continued)

[12] Matthias Hackl, Tobias Jakobi, Jochen Blom, Daniel Doppmeier, Karina Brinkrolf,
Rafael Szczepanowski, Stephan H. Bernhart, Christian Höner zu Siederdissen, Juan A.
Hernandez Bort, Matthias Wieser, Renate Kunert, Simon Jeffs, Ivo L. Hofacker,
Alexander Goesmann, Alfred Pühler, Nicole Borth, and Johannes Grillari. Next-
generation sequencing of the Chinese hamster ovary microRNA transcriptome: iden-
tification, annotation and profiling of microRNAs as targets for cellular engineering.
Journal of Biotechnology, 153:62–75, 2011.

[13] Christian Höner zu Siederdissen and Ivo L. Hofacker. Discriminatory power of RNA
family models. Bioinformatics, 26(18):453–459, 2010.

[14] Christian Höner zu Siederdissen. Determination of the Sum Formula for Small
Molecules from High Resolution FT-ICR Spectra. Diploma Thesis, AG Genomin-
formatik, Technische Fakultät, Universität Bielefeld, 2007.

[15] Christian Höner zu Siederdissen, Susanne Ragg, and Sven Rahmann. Discovering
Biomarkers for Myocardial Infarction from SELDI-TOF Spectra. In Reinhold Decker
and Hans J. Lenz, editors, Advances in Data Analysis, Studies in Classification, Data
Analysis, and Knowledge Organization, pages 569–576. Springer Berlin Heidelberg,
2007.

132

