TBI-p-2010-3

Download: [Link to PDF]

Titel:
In silico Evolution of early Metabolism

Author(s):
Alexander Ullrich, Christoph Flamm, Markus Rohrschneider, Peter F Stadler

submitted to:
Proceedings of Artificial Life XII

Abstract:
We developed a simulation tool for investigating the evolution of early metabolism, allowing us to speculate on the formation of metabolic pathways from catalyzed chemical reactions and development of characteristic properties. Our model consists of a protocellular entity with a simple RNA-based genetic system and an evolving metabolism of ribozyme-catalyzed enzymes that manipulate a rich underlying chemistry. Ensuring an almost open-ended and fairly realistic simulation is crucial for understanding the first steps in metabolic evolution. We show here, how our simulation tool can be helpful in arguing for or against hypotheses on the evolution of metabolic pathways. We demonstrate that seemingly mutually exclusive hypotheses may well be compatible when we take into account that different processes dominate different phases in the evolution of a metabolic system. Our results suggest that forward evolution shapes metabolic network in the very early steps of evolution. In later and more complex stages, enzyme recruitment supersedes forward evolution, keeping a core set of pathways from the early phase.


Link to publication:

Return to Index Return to List
Last modified: 2008-10-22 12:23:11 fall