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Abstract
The folding kinetics of RNA and other biomolecules can be described as an stochastic pro-
cess in the discrete state space of an energy landscape, which incorporates both the thermo-
dynamic and the kinetic view of a molecule. The thermodynamic view is a result of statistical
mechanics, whereby the different states of the molecule are seen as gaseous particles. The
kinetic view introduces a kinetic reaction coordinate in the system, because the molecule
can under normal conditions not switch from one state to any other without passing through
intermediate states. The folding landscape reflects these restrictions by defining a topologi-
cal neighborhood, resulting in a hyper surface. Adding the energy parameter results in an
energy landscape, which allows for investigating the folding of the molecule as trajectory on
its hyper surface.
In the case of biomolecules structural changes are called folding kinetics. The temporal de-
velopment of a molecule is simulated as a stochastic process, whereby the probabilities
to occupy particular states at a particular time are calculated. Several algorithms have be-
en developed to perform this task. The problem is that the execution of the computational
implementation of these algorithms requires much time and memory, so that it is almost im-
possible to predict the folding kinetics of larger biomolecules. A first step was to partition the
conformational space (as it deals with probabilities) into macro states, which represent not
only one but many micro states, with the assumption that it is sufficient to describe the folding
kinetics as transitions between such macro states (coarse graining). Although the partitioning
of the state space into for example gradient basins as macro-states results in a remarkable
reduction of computational effort to predict the folding process, it is still impossible to calcula-
te the dynamics of larger RNA molecules. Therefore it is necessary to investigate particular
properties of this model and evaluate their accordance with the dynamics of the folding pro-
cess. The main task of this work will be to define exclusion (or inclusion) criteria based on
topological properties of the energy landscape, resulting in further reduction of the conforma-
tion space (enhanced coarse graining) and evaluate correlations of these properties with the
folding process to improve and/or enable prediction of larger RNA molecules. In particular
we will compare the investigated features with the states of interest[19].
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Kurzfassung
Die Faltungskinetik von RNA und anderen Biomolekülen kann als stochastischer Prozeß im
diskreten Phasenraum einer Energielandschaft beschrieben werden, was sowohl die ther-
modynamische als auch die kinetische Sichtweise beinhaltet. Die thermodynamische Sicht-
weise ist ein Ergebnis der statistischen Mechanik, wobei die verschieden Zustände des Mo-
leküls als gasförmige Teilchen betrachtet werden. Die kinetische Sichtweise führt eine kineti-
sche Reaktionskoordinate ein, da das Molekül unter normalen Bedingungen nicht von einem
in einen anderen Zustand wechseln kann, ohne dabei Zwischenzustände zu durchlaufen.
Die Faltungslandschaft spiegelt diese Einschränkungen wider indem sie eine topologische
Nachbarschaft definiert, woraus eine Hyperfläche resultiert. Das Hinzufügen des Energiepa-
rameters führt zu einer Energielandschaft, was uns die Untersuchung der Molekülfaltung als
Trajektorie auf der Hyperfläche ermöglicht.
Im Fall von Biomolekülen werden strukturelle Veränderungen als Faltungskinetik bezeichnet.
Die zeitliche Entwicklung eines Moleküls wird als stochastischer Prozeß simuliert, wobei die
Wahrscheinlichkeiten einen bestimmten Zustand zu einer bestimmten Zeit einzunehmen be-
rechnet werden. Um diese Aufgabe zu bewältigen wurden mehrere Algorithmen entwickelt.
Das Problem ist, dass die Ausführung der Implementation dieser Algorithmen auf Computern
viel Zeit und Speicherbedarf beansprucht, weshalb es beinahe unmöglich ist die Faltungski-
netik größerer Biomoleküle vorherzusagen. Ein erster Schritt bestand in der Partitionierung
des Konformationsraums (da er mit Wahrscheinlichkeiten operiert) in Makrozustände, wel-
che nicht einen sondern viele Mikrozustände repräsentieren, unter der Annahme dass es
genügt den Faltungsprozess als Übergänge zwischen solchen Makrozuständen zu beschrei-
ben (''gröbere Auflösung''). Obwohl die Partitionierung des Phasenraumes in beispielsweise
Gradientbasins als Makrozustände zu einer beachtlichen Reduktion des rechnerischen Auf-
wands der Vorhersage des Faltungsprozesses geführt hat, ist es immer noch nicht möglich
die Dynamik größerer RNA-Moleküle zu berechnen. Deshalb ist es notwendig bestimmte Ei-
genschaften dieses Models zu untersuchen und ihrer Übereinstimmung mit der Dynamik des
Faltungsprozesses zu evaluieren. Die Hauptaufgabe dieser Arbeit wird darin bestehen Aus-
schlußkriterien (oder Einschlußkriterien) basierend auf den topologischen Eigenschaften der
Energielandschaft zu definieren, was zu einer weiteren Reduktion des Konformationsraumes
führen wird (''verbesserte grobe Auflösung''), und die Korrelation dieser Eigenschaften mit
dem Faltungsprozeß zu evaluieren um die Vorhersage größerer RNA-Moleküle zu verbes-
seren und/oder zu ermöglichen. Insbesondere werden die untersuchten Eigenschaften mit
den states of interest[19] verglichen.
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1 Introduction

1.1 The importance of structure
The function of all kind of machinery (be it physical, chemical or biological) operating at a
level above its functional representation is determined by its structure. The only system not
depending on its structure, is structure itself, namely the subatomic particles, waves and fiel-
ds. There is no structure of structure, because this would not only be an infinite regress, but
also require a new quality of meaning. Function does not require the change of structure, it
is the change of structure. The structural foundation in which these changes occur need for
their part be able to map the functionality of the systems in an executable way. The structural
level of such base systems need not only be suitable to represent the complexity required
to perform system maintaining actions, but also not too error prone on the mapping level.
Such levels seem to be far above the ''structure'' of the universe, although it is impossible to
measure this position from a non anthropocentric view.
If an executable system changes its state, it changes its structure. A different structure results
in different functionality, which is again able to change the structure and so on. A completely
unchangeable structure cannot interact with the environment (at least not beyond its quantum
uncertainty). Since structure is so important, it seems natural, that more stable systems such
as living organisms, have found a way to preserve their structure. The basic functionality of
all stable systems is the ability to transport the system in space and time. This complex task
seems to be impossible, since any action of the system requires its manipulation. The contra-
diction is avoided by performing only changes which further stabilize the system. However,
this does not work always perfectly, because no system has direct access to its mapping
system (and many have not even indirect access). If systems tend to stay functional for lon-
ger, they must have developed particular functionalities to do this. A wide spread method is
to use ''backup systems'', which means that a system can rebuild its functionality of its own
as long as the functionality to do this is working. The only way to create functional structures
is to use other structures as model. These model structures are often non functional (on the
operating level of the system), resulting in the remarkable ability to preserve the ''structure''
of structure by use of structure not as functionality representation, but as a code to control
the formation of other structures - structure as information.
To clarify things it must be said, that we are always talking about coded information, not about
information as such. This definition problem is analog to the ''structure of structure''-problem.
There is no encoded information in structure, structure is the encoded information. The na-
ture of non encoded information (if it exists) is currently subject of research.
For our considerations we always mean encoded information, when using the term informa-
tion.
Although the changes and development of a systems could be seen as information process,
they are all structural processes. In this sense the use of structure as information storage by
decoding the information is nothingmore than a structural transformation occurring during the
permanent transport of the system. Since we should not argument teleological, such infor-
mational structures could be the result of accidental transformations. And since the structural
information (depending on the interacting system) remains the same, the transformation can
happen in both directions. Systems will only survive if the control these transformations to
stay as long as possible in a functional state (if they do not, it is not probable to encounter
them).
System with the ability to partly rebuild themselves are already quite sophisticated. But with
the ability to transform in principle all structures into structural information, the step from re-
building to reproduction is not so unlikely. From an evolutionary point of view such a system
has become almost immortal, although its stability is only phylogenetical, not ontogenetical.
The problem might be, that the complexity of a system correlates with its error possibilities.
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Since systems are not isolated, they might mutually influence their development, which re-
sults finally in sexual reproduction. The information stored in a system might not only encode
its own functionality. Depending on the definition of the system-borders, different systems
will have different experiences, which can then be interchanged and incorporated in further
adaption processes of all individual systems. Those type of interchanges could have also
played an important role in the origin of self organizing systems, whereby the individual parts
were just chemical reactions, until the system developed new structural mappings and func-
tionalities (theory of the hyper cycle [7]).

1.2 Functionality of RNA in living organisms
Structures play two important roles in the world - functionality and information storage.
Since this proposition does not only apply to all kind of computing machinery (computers in
the strictest sense), but also to all living organisms, the structure of biomolecules is essential
for their functionality. Analyses have shown, that (functional) structure is much more conser-
ved than sequence (informational structure). We observe a relation between structure and
functionality, which seems to have also been a crucial step in biochemical evolution in the
form of back coupling of the phenotype on the genotype [7].

The three big groups of biomolecules operating in living organisms (proteins, DNA, RNA) all
fulfill this relation.

RNA DNA Protein
Genetic Information yes yes no
Catalysis yes no yes
Regulation/Interactions yes yes yes
Structure Usually singe stranded Usually duplex Different

Table 1: Functions of biomolecules

As seen in table 1 only RNA has the ability to work in all fields. It has been thought for de-
cades, that RNA cannot act catalytically or regulative. Its only purpose seemed to be an
information transporter. Although this is a very useful feature, because it uncouples the func-
tional from the informal structure, it is more complicated. Effective systems do not need to
be big and complicated, so we can neither say if the current distribution of information is
the result of a long or short development, nor if future systems will have less or even more
biomolecules for information processing.
RNA has a special position among the biomolecules. Despite its comparatively simple struc-
ture it overtakes many tasks, what makes it very interesting and suitable for research.

The only coding RNA is the messenger RNA. Its task is to transport genetic information
from the DNA to the ribosome, where proteins are built. All other RNAs are non-coding in the
sense that the do not carry genetic information. However, transfer RNAs provide the ribosome
with the amino acids they encode, according to the mRNA sequence read by the ribosome
during the translation. The ribosome itself is built of ribosomal RNAs and proteins, whereby
the active sites consist of rRNA (an example of RNA acting catalytic). Ribosomal RNA has
been found in all cells and is therefor of special importance for phylogenetical studies.
Many other types of RNA are participating in such important processes as splicing (small
nuclear RNA) or gene regulation (small interfering RNA, micro RNA).
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2 Modeling RNA

2.1 Structural levels of RNA
The RNA molecule itself is often described on different structural levels. In the case of
RNA the primary structure represents the sequence of ribonucleotides as a one-dimensional
string. It includes no real information about the spatial formation itself. Their chemical proper-
ties determine the pairing possibilities and hence the formation possibilities of the RNAmole-
cule. The chemical building blocks of RNA are the ribonucleotides adenosine monophospha-
te, cytidine monophosphate, guanosine monophosphate and uridine monophosphate.
The secondary structure contains information about base pairing (defining the topological
shape of the structure). It also includes no real information about the actual spatial formation,
but many restrictions due to the pairing abilities of the nucleobases. Those hydrogen bonds
are normally established between cytosine-guanine, adenine-uracil and guanine-uracil.
Secondary structure can be represented in many ways, for instance as dot-bracket-string or
circular graph (see figure 1).

Figure 1: Secondary structure of phenylalanine tRNA from yeast as conventional drawing (left), in circular
representation (right) and as dot-bracket string (bottom). Same colors represent the same base-pairing regions.
The chords in the circular representation must not cross in secondary structure graphs. (Adapted from [34]).

The tertiary structure of a nucleic acid is its precise three-dimensional structure. It can be
represented by the positions of the involved atoms in a coordinate system and visualized
for example as ball-and-stick model (see figure 2) giving a impression of how the molecule
might ''look''.
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Figure 2: Torsion angles of nucleic acid backbone. [30]

2.2 Formal representation of RNA
The definitions have been adapted from [22].

To represent RNA in our model we need to capture the primary and secondary structure in
a symbolic formalism.

Primary sequence
The set of all primary sequences of length n is given by

Sp(n) = {A,C,G,U}n (1)

The primary sequence p of an RNA of length n is a sequence of Sp(n).

Secondary structure
Formally a secondary structure is a set of nucleobase pairings.
The set of possible pairings is defined as

Ω = {(A,U), (U,A), (G,C), (C,G), (G,U), (U,G)}

Let p ∈ Sp(n) be a primary sequence p of length n, and i, j, k, j are positional indices of p,
then the set of all possible base pairings of p is given by

Ss(p) = {(i, j) | 1 ≤ i < j ≤ |p|, (ai, aj) ∈ Ω} (2)

Considering steric hindrance ∀(i, j) : |j− i| > 3 results in

Ss(p) = {(i, j) | 1 ≤ i < j ≤ |p| ∧ |i− j| > 3 ∧ (ai, aj) ∈ Ω} (3)
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Notice that one base can take part in many pairings in this definition.

To obtain a valid RNA secondary structure two restrictions have to be added.
The first restriction is to allow only one pairing per base.

∀(i, j), (k, l) : i = k↔ j = l

The second restriction is to prohibit pseudoknots.

∀(i, j), (k, l) : i < k < l < j ∨ k < i < j < l

i 

k 

j 

l 

5  3  
i 

k 

j 
l 5  3  

A B 

Figure 3: Loop without pseudoknot (A) and with pseudoknot (B).

A set s is a secondary structure of p if

s = {(i, j) ∈ Ss(p) | ∀(i, j), (k, l) : ((i < k < l < j) ∨ (k < i < j < l)) ∧ (i = k↔ j = l)}

If s = {} then s is the open chain.

The set of all possible secondary structures compatible with a primary structure p is given by

S(p) = {{(i, j)} ∈ P(Ss(p)) | ∀(i, j), (k, l) :
((i < k < l < j) ∨ (k < i < j < l))∧

(i = k↔ j = l)}
(4)

where P(Ss(p)) is the power set of Ss(p).

The set S(p) builds the conformation space C(p) of the primary sequence p.

2.3 Energetic description
The energy ''representing'' a molecule should not only contain its internal energy, but also
kinetic and external induced potential energy. This energy is called the free energy of the
system. Since the term ''system'' originates from thermodynamics, we should follow its no-
menclature and use the term free enthalpy (also called Free Gibbs Energy) 1.
The free enthalpy includes the available energy of the molecule to perform non-mechanical
(or better non expansion) work, resulting in the ability to change its conformation. Since a se-
condary structure is a macroscopic state, its energetic state is temperature dependent. The
1IUPAC recommends to call ''Free enthalpy'' ''Gibbs energy''. [20, http://goldbook.iupac.org/G02629.html]
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term enthalpy also includes the (thermodynamic) entropy (the number of possible micro-
states) of the system resulting in ∆G = U+ pV− T∆S.

Conceptually, there are different components that contribute to ∆G(adapted from [32]). Hy-
drogen bonding, the strongest of the weak forces, is responsible for base pairing. The very
weak van der Waal’s interactions (mainly London dispersion force) are in sum not negligible.
Actually they are responsible for the main part of stabilization via stacking of aromatic sys-
tems between neighbored nucleobases. Steric repulsion is a result of interaction of different
charges. As the entropy of the system cannot decrease, the loss of spatial freedom results
in increase of entropy of the environment, so entropy acts as an entropic ''force''. Hence the
overall enthalpy of RNA can be calculated as sum of the enthalpies of its secondary structu-
res, decomposed into ''loops'' L.

F(S) =
∑
L∈S

FL (5)

The enthalpic contributions of different loops are taken from the Turner energy model [37].

o

o

o
o

o

o

o

o

o

multi-loop

stacked base pair

hairpin-loop

interior-loop

bulge-loop

Figure 4: Typical secondary structure elements are outlined in this figure. Each structural motive can be de-
composed into loops allowing calculation of their enthalpy.(Adapted from [8]).
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3 RNA folding - thermodynamic versus kinetic view
In living organisms RNA is produced by RNA polymerase. The environment has great influ-
ence on the folding process, but beside intensive properties such as temperature or pressure
the interaction with for example solution molecules will not be taken into account, so the fol-
ding process is considered to take place in some kind of "vacuum".
The energetic state of a molecule correlates with its stability. Generally the folding process
should end in such a meta stable state. This means the molecule will only change its macro-
scopic conformation with the energy of external forces.
With these thermodynamic potentials the folding process can be seen as interaction of en-
tropy S and enthalpy H. [23]
Tertiary structures will not be considered in our calculations, because it is assumed that the
majority of free enthalpy of RNA is covered by the enthalpy of its secondary structures. Thus
we suppose the folding of RNA to be determined mainly by secondary structure formation
processes. The RNA formation process is hierarchical in the sense that intermediate se-
condary structures are formed as the RNA folds. The secondary structure motifs are better
defined than in the protein case.
During the folding process the RNA molecule will change its conformation and hence its con-
figuration and finally its secondary structure. As shown in Figure 2, RNA has many rotational
bindings due to many only partial double bonds, causing a high degree of spatial freedom.
This freedom has led to the assumption that RNA (rather than DNA) could have been the
first enzymatic active bio-molecule (''RNA-World-Hypothesis''[15]).
Due to limitations of knowledge and computer power it is currently not possible to simulate
the real process of RNA folding. Several approaches have been made to circumvent this
problem.

n Model only properties which are thought of to be important for folding.
n Use stochastic methods to narrow the solution space.
n Calculate probabilities of possible folding pathways instead of the folding process.
n Use only small sequences as input.

The first step to simulate RNA folding is to reduce the nature of the RNA molecule to pro-
perties which are relevant for the formation process. RNA folding is a biochemical reaction
based on interaction of electromagnetic fields, Van-der-Waals-forces, quantum effects and
so on. Part of the success of living organisms is the evolutionary development of error tole-
rant systems, so nature does not rely on the necessity of exact solutions, but is content with
approximative results. It is not clear whether any kind of evolution could have taken place
at levels below the molecular level[12], but this possibility cannot rule out that the organic
evolution on earth is driven by molecular forces.
Therefore it is sufficient to consider only those forces acting on the RNA molecule, and rule
out quantum effects, what makes the problem a matter of classical kinetics.
To obtain a comprehensive picture of the (temporal) development of the folding process and
enhance the prediction of stable structures it is necessary to model not only the formation of
the structures itself, but also the dynamics of transitions between different structural realizati-
on possibilities. The standard model to capture all those possibilities is the energy landscape,
which will be described in more detail in the following sections.

3.1 Continuous space models
Continuous space models based upon the calculation of infinitesimal small changes in the
conformation of molecules caused by interaction of force fields. To make these models com-
putable the changes are integrated over a finite time step by incorporation of Newtonian laws
of motion (the usual solution in Molecular Dynamics).[34]
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3.2 Discrete space models
It is not known how (and even if) nature calculates the folding process, but probably not by use
of our sophisticated models (actually nature does not need a model at all). A model is always
an idealization and simplification, whereby its quality depends on the chosen parameters. As
it is impossible to simulate the folding process itself, we describe it as sequence of changes
in free enthalpy at the level of secondary structure.
In this model a secondary structure represents an ensemble of RNA molecules, because the
spatial information about unpaired regions is neglected.
The reduction to defined states of secondary structures is responsible for the discreetness
of the model.

3.3 Conformation space as thermodynamic ensemble
Applying a thermodynamic potential function E over the conformation space C(p) results in a
thermodynamic ensemble. Each formal structure has its free enthalpy, which can be calcu-
lated as shown above. The energy distribution of these tuples follows a Maxwell-Boltzmann
statistic with the partition function

Z ≡
∑
i

e− Ei
kBT (6)

where
kB = R/NA [J/K] . . .Boltzmann constant
R [J/molK] . . .Gas constant
NA[mol−1] . . .Avogadro constant

In the case of degenerated energy levels the partition function can be expressed in terms of
the density of states g(Ei) [5][33].

Z ≡
∑
i

g(Ei) · e
− Ei

kBT (7)

The ensemble average of any thermodynamical property depending on the energy can be
calculated as weighted sum of

⟨P⟩eq =
1
Z
·
∑
i

P(Ei) · g(Ei) · e
− Ei

kBT (8)

The partition function can be efficiently calculated by methods of Dynamic Programming (see
3.4.1).
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Figure 5: Density of States of the RNA sequence GUCGUAGUCGAUGCUAGCUGAUCAC. Left Whole energy
range. Right Enlargement of lower energy range shows the discrete nature of the state space and also an energy
gap between MFE and the most stable suboptimal structure. (Adapted from [5]).

The pure energetic view of the state space does not provide much information about the
actual folding. To overcome this problem we need to introduce an additional reaction coordi-
nate.

E
n
e
rg
y

A

N

B

Figure 6: Thermodynamic versus kinetic reaction coordinate. State B is energetically closer to N (lower ener-
gy), but state A is kinetically closer to N (smaller barrier to cross).For didactic reasons a continuous reaction
coordinate is used as abscissa. In the realm of RNA secondary structures energy and reaction coordinate are
discrete. (Adapted from [8]).

3.4 Secondary structure prediction
3.4.1 Dynamic programming

Many problems in bioinformatics can be solved by dynamic programming. The term dynamic
programming is quite confusing, since it is neither dynamic nor programming nor a dynamic
programming language nor a programming paradigm. Actually it as a mathematical method,
which has been used for centuries in physics to transform a (global) phase space into a
(time-depended) state space, whereby the optimization is done by use of functionals. This
method is in turn based more or less on the principles of scientific work as proposed by Rene
Descartes [6] and goes even back to antic geometry.
To stop confusion it was Richard Bellman who formulated the Principle of Optimality as he
worked on engineering control theory, which describes the necessary conditions to solve a
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problem with dynamic programming [3]. Bellman chose the term ''dynamic programming'' to
express the time-varying aspect of the problems (for further reasons see [4]). These conditi-
ons are optimal substructure and overlapping subproblems (if the latter condition is missed,
the problem can be solved by ''divide and conquer''2).
Optimal substructure means that a problem can be solved by solving its subproblems.
Overlapping subproblems requires that the subproblems can be solved by use of the same
algorithm in a recursive manner, thus allowing dynamic programming to solve each subpro-
blem only once. The following algorithms all use this optimization method.

3.4.2 Secondary structure prediction algorithms

The first effective algorithm for secondary structure prediction of RNA was the Algorithm
of Nussinov also called the Maximum-Matching-Algorithm. It calculates the structure with
the maximum number of nucleobases paired. Since no energetic or biological information is
used, the resulting structure is not always biological relevant. [29]
TheAlgorithm of Zuker works similar to the algorithm of Nussinov, but improves the predictive
result by incorporation of the free enthalpy of the structures. [40][39][38]
A somewhat different approach is used by the Algorithm of McCaskill. This algorithm calcu-
lates the partition function of all secondary structures and also the base pairing probability
matrix in the resulting Boltzmann weighted ensemble. [27]
TheAlgorithm ofWuchty is an enhancement of the algorithm of Zuker. It calculates all structu-
res within a given enthalpy range and finds more suboptimal structures due to better handling
of multi loops. [36]

3.5 Conformation space as discrete folding landscape
The conformation space C is now extended to a metric conformation space by introduction
of a kinetic reaction coordinate defined by a move function. A move function µ defines a
mapping of one structure to another.

µ : C → P(C), x 7→ µ(x)

The set µ(x) is the neighborhood of x defined by µ.

The function performs the mapping by adding or deleting one or more base pairs from the
secondary structure representation.

2Correctly ''Divide et impera''.
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Figure 7: Elementary moves in RNA folding. Secondary structures are shown in circle and parenthesis repre-
sentation. The structure A is changed by the formation B or the removal C of a base pair. The base pair after
a move is shown in bold, the one being changed is shown by a gray dotted line. (Adapted from [9]).

We will restrict ourselves to insertion and deletion moves (figure 7). The set of allowed move
functions defines the move setM.

Adapted from [26] a move set of size k (whereby k is the number of move functions) is defined
as follows.

Mk : C → P(C), x 7→
∪

1≤i≤k

µi(x)

with the following conditions

∀x ∈ C : x /∈M(x)
∀x, y ∈ C : y ∈M(x)↔ x ∈M(y) (symmetry)
∀x ∈ C :M(x) ∈ C (closure)
∀x, y ∈ C : ∃(ti, ti+1, . . . , tn−1, tn), ti ∈ C :
ti = x ∧ tn = y ∧ ∀1 < i ≤ n : ti ∈M(ti−1) (weak ergodicity)

The power function P(C) is needed, because each element is mapped to a set of elements.

The move setM defines a relation of topological neighborhood between the elements of the
conformation space according to their structure.
Higher dimensional spaces such as the conformational space (depending on the length of
the sequence) are better seen as a hyper surface, where each point represents a specific
state of the system (hence a specific structure). The folding process can now be seen as
movement on a hyper surface.

3.6 Discrete energy landscape
The metric conformation space can be described as a connected, undirected, simple graph
G(V, E) with vertex set V and edge set E .

However, the hypersurface represented by this graph is still euclidean ''flat''.
Applying a thermodynamic potential function E on the graph G(V , E) results in an energy
landscape E.

An energy landscape E is a tuple (G(V , E),M,E).
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The model of energy landscape was first used to describe protein folding in 1975 by Frauen-
felder [2][13]. In the case of the RNA model the conformational coordinates are the pairing
states of the nucleobases.
With the incorporation of the potential function the folding process is much better described,
because both energetic and conformational nearness are included in the model. The usual
potential function is the free enthalpy ∆G = H − T∆S, whereby the enthalpy H accounts
for the non mechanical work (such as non covalent intra-molecular forces) and the (confor-
mational) entropy S for all possible conformations and solvent configurations. As our model
assumes the folding to take place in some kind of vacuum, the environment for entropy in-
terchange should be seen as imaginary heat bath.

3.7 Topological properties of the discrete energy landscape
Several paragraphs in these section are adapted from [26], [11] and [35].

The ensembles of structures define the topology of the energy landscape, which in return
influence the folding process.
As the folding is mapped on the hypersurface it is crucial to define and understand its pro-
perties.

Neighborhood
Since the move setM generates the graph G we can define neighbors as follows.
The set of adjacent vertices of x ∈ V is given by

N (x) = {y ∈ V | {x, y} ∈ E} (9)

In other words the neighborhood N of a structure x is the set of its neighbors reachable by
the moves defined in a move setM.

N(x) = {s ∈ C | s ∈M(x)} (10)

Energetic-lexicographical order
The energy landscape of real molecules is often energetically degenerate, which means that
x, y ∈ V : E(x) = E(y) ; x = y. Of course x, y ∈ V : x = y⇒ E(x) = E(y) holds still true. For
exact definitions of properties on such landscapes we refer to [11][10][31]. Since those exact
definitions make no difference on the folding process in our model, we avoid this problem by
introduction of an energetic-lexicographically order as used in many articles [33][22][26].

All structures can be lexicographically ordered according to their dot-bracket-notation with
the alphabet A={ ''('' , '')'' , ''.'' }, whereby the order ''≺'' is defined by the order of natural
numbers encoding the characters according to the ASCII table [1].
Given two structures x, y ∈ V the order ≺lex is defined as follows.

x ≺lex y↔ x1 ≺ y1 ∨ (∃(xi, xi+1, . . . , xn−1, xn) : 1 ≤ i ≤ n < |x| : xi = yi ∧ xn+1 ≺ yn+1) (11)

((......))

(((....)))x 

y 
.(......).  

(((....)))  x 

y 

12345678910  12345678910

Figure 8: Explanation of lexicographic order. According to the ASCII table the order of alphabet A is
′′leftbracket′′ ≺ ′′rightbracket′′ ≺ ′′dot′′. On the left the first character differs (x1 ≺ y1). On the right exists a
sequence s = (x1, x2), where ∀1 ≤ i ≤ 2 : xi = yi and on the third position x3 ≺ y3.
In both cases x ≺lex y holds true.
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The lexicographical order takes effect if the energy of two structures is identical, resulting in
the energetic-lexicographical order relation denoted by the symbol <≺.

x <≺ y↔ E(x) < E(y) ∨ (E(x) = E(y) ∧ x ≺lex y) (12)

Local minimum3

A vertex x ∈ V is a local minimum if it is energetic-lexicographically lower than all its neigh-
bors. We can therefore define the set of local minima as

M = {x ∈ V | ∀y ∈ N(x) : x <≺ y} (13)

Global minimum / Minimum free energy (MFE)3
A vertex x ∈ V is a global minimum if it is energetic-lexicographically lower than all other
vertices. We can therefore define the global minimum as

MFE⇔ x ∈ V | ∀y ∈ V \ {x} : x <≺ y (14)

Walk
A walk w is a sequence of vertices. The set of all walks is defined as

W = {(wi,wi+1, . . . ,wn−1,wn)| ∀ 1 < i ≤ n = |w| : wi ∈ N(wi−1)} (15)

A structure can occur more than once in a walk.

Adaptive walk
An adaptive walkA ∈W is a walk in which each vertex is followed by an energetic-lexicographical
lower neighbor.

A = {w ∈W | ∀1 ≤ i < |w| : wi+1 ∈ N(wi) ∧ wi+1 <≺ wi}

Gradient walk
A gradient walk g ∈W is a walk in which each vertex is followed by its energetic-lexicographically
lowest neighbor. The set of gradient walks is defined as

G = {w ∈W | ∀1 ≤ i < |w| : @x ∈ N(wi) : x <≺ wi+1)} (16)

Gradient basin
The gradient basin B of a local minimum m ∈ M is the set of all vertices which are element
of a gradient walk ending in m.

B(m) = {x ∈ V | ∃ g ∈ G : g1 = x ∧ g|g| = m ∧m ∈M} (17)

Each structure is uniquely assigned to a gradient basin (and its local minimum).3

Accessibility
Let Pxy be the set of all walks from x to y. We say that x and y are mutually accessible at level
η, in symbols x" η # y, if there is a walk ρ ∈ Pxy such that E(z) ≤ η for all z ∈ ρ, respectively.

The relation " η # is obviously symmetric ( x" η # y implies y" η # x ) and transitive
(x" η # y and y" η # z implies x" η # z). It is reflexive for all η ≥ E(x).

3It should be noticed, that this definition holds only true if there are not too many degenerate structures around
the minimum (which is almost never the case when modeling an RNA energy landscape), because the defi-
nition of equation 12 could result in artificial local minima (and saddle points), where all structures have the
same energy, but one or more are only lexicographically lower than all their neighbors (and by definition local
minima).
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Saddle height
The saddle height f̂(x, y) between two vertices x, y ∈ V is the minimum height at which they
are accessible from each other, i.e.,

f̂(x, y) = min
ρ∈Pxy

max
z∈ρ

f(z) = min{η|x" η # y} (18)

In particular, we have f̂(x, x) = f(x). The saddle heights f̂(x, y) forms an ultrametric distance
measure between distinct local minima.
For completeness we note that the barrier of a local minimum m ∈M is
β(m) = min{+∞; f̂(m,n)− f(m) | n ∈M ∧ f(n) < f(m)}.

Lowest saddle point
Given two verticesm,n ∈M the set of lowest saddle points S̄ connecting these local minima
is

S̄(m, n) = {x ∈ {ρ ∈ Pmn | m,n ∈M ∧m ̸= n} | E(x) = f̂(m,n)} (19)

For the sake of simplicity a saddle point s̄ can be seen as the lowest vertex which has neigh-
bors in different (gradient) basins.

Valley
The set of vertices x reachable from a lowest saddle point s̄ ∈ S̄ at the level f̂(s̄) is the valley
V(s̄).

V(s̄) = {x ∈ V | s̄" f̂(s̄) # x} (20)

Suppose two saddle points s̄1, s̄2 such that E(s̄1) < E(s̄2). If s̄1 ∈ V(s̄2) then V(s̄1) ⊆ V(s̄2),
i.e. the valley of s̄1 is a ''sub-valley'' of V(s̄2). If s̄1 /∈ V(s̄2) in which case V(s̄1) ∩ V(s̄2) = ∅,
then the valleys are disjoint.
Figure 9 depicts such a situation. Each saddle point s̄1 until s̄6 defines the valley V(s̄1),
because all of them are part of a walk ending in any of the four basins k,m, n, j, going thereby
not higher than f̂(m,n) = f̂(k,n). Since s̄7 ∈ V(s̄1) the valley defined by V(s̄7) is a sub valley
of V(s̄1). Note that this figure is the projection of an one dimensional cross section and there
might be more basin (but not valleys) accessible from the saddle points.
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(k,n) (m,n) 
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(s̅1) 

(s̅7) 

s̅3 s̅4 s̅5 s̅6 s̅2 s̅1 

s̅7 

f̂(m,n)  

f̂(m,j)  

=f̂(k,n) 

(s̅7) (s̅1)∩ 

Figure 9: Cross section through a energy landscape with degenerate saddle points.
Saddle points s̄1, s̄2 ∈ S̄(k,n), s̄3 until s̄6 ∈ S̄(m, n) and s̄7 ∈ S̄(m, j).
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Basin
Using the definition of the gradient basin, a basin B of a local minimum m can be defined as
follows.

B(m) = {x ∈ B(m) | E(x) ≤ min{f̂(m, n) | m, n ∈M ∧m ̸= n}} (21)

These are all vertices of the gradient basin which are not higher than the lowest saddle height
of all walks connecting the local minimum m with any other local minimum n.
Note that the lowest saddle point connecting two local minima need not be a vertex of the
corresponding gradient basins, because its gradient walk could end in another local mini-
mum. Since we cannot go higher than f̂(m, n) the energy of that lowest saddle point might be
lower than the energy of the lowest saddle point of the basins.
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Figure 10: Energy landscape projection in two conformational coordinates. The saddle point s̄1 defines the
basin height of local minima m and n, although it is not part of either, because its gradient walk ends in k.

3.8 Partitioning of the energy landscape into macro states
The property of valleys and sub valleys arranges the local minima and the saddle points in
a unique hierarchical structure which is conveniently represented as a tree, termed barrier
tree(first used in [18]). As a result we are able to describe the energy landscape on a more
macroscopic level consisting of (gradient) basins around local minima separated by lowest
saddle points. Such a graph can be obtained by different algorithms like barriers. Although
the barrier tree is a smoothing approximation of the actually rough landscape, it has been
very useful for simplifying the folding process and we will continue to build our considerations
upon this model.
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Figure 11: Barrier tree of an energy landscape. The global minimum is labeled with an asterisk. Local minima
are labeled with numbers, saddle points with letters. The degenerate saddles b − g are merging all together
with each other and with saddle point a. Also the basins represented by local minima 6 and 4 are merged to the
same set of saddle points b− g, because all for local minima 6,4, 2, 5 are in the same valley defined by them.
Please note that the barrier tree shown here is also only a projection, although not so much simplifying the real
situation as the depiction of the energy landscape itself.
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4 Modeling the folding process of RNA
The energy landscape provides a top approximative for modeling of the folding of an RNA
molecule with respect to energy and conformational changes, but we also need an instru-
ment to characterize its time dependent behavior. If the temporal development of a large
number of objects captured by the methods of statistical mechanics needs to be calculated,
the method of choice is often a stochastic process.

A stochastic process {Xt | t ∈ T} is a family of stochastic variables Xt over the same proba-
bility space and taking values of the measure space S, whereby the totally ordered set T is
usually interpreted as time. We define T ∈ R, resulting in a continuous time stochastic pro-
cess. The process has to fulfill the Markov property (the behavior of each state only depends
on its predecessor), resulting in a continuous time Markov process.
The process has to be time homogeneous (the states are not time dependent), resulting in
a time homogeneous continuous time Markov process.
As the conformation space is discrete the measure space of our stochastic process is also
discrete, resulting in a time homogeneous continuous time Markov process on discrete mea-
sure space (sometimes called time homogeneous continuous time Markov chain).
All our considerations are based upon time homogeneous continuous time Markov chains.

The probability to reach state j from state i within ∆t is given by

Prob{X∆t = j | X0 = i} = pji (22)

Although this transition probability is time independent, it scales with the length of the interval
∆t.
We write for small ∆t

Prob{X∆t = j|X0 = i} = k∆t+ o(∆t) (23)

whereby o(∆t) is the sum over the probabilities to pass through intermediate states between
i and j, and the factor k is a transition rate between i and j.
In contrast to transition probabilities pij the transition rates kij do not depend on the length of
time intervals. This means that the probabilistic behavior of a continuous time Markov chain
is completely described by the initial state (or distribution) and the transition rates between
distinct states.

4.1 The master equation
Section adapted from [14][16][35].

The probability distribution over a discrete state space can be expressed by the differential
form of the Chapman-Kolmogorov equation (which is called the master equation):

dPi(t)
dt

=
∑
j ̸=i

[Pj(t)kij − Pi(t)kji] (24)

where pj→i = Pj(t)kij and
pi→j = Pi(t)kji

according to laws of conditional probability.
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In this form the master equation can be seen as a gain-loss equation for the probability of
each state n, whereby the first term stands for all gains from other states j and the second
term for all losses to other states j.
The master equation describes the relation between transition probabilities and transition ra-
tes (see equation 23).

dPi(t)
dt

=
∑
j ̸=i

[Pj(t)kij − Pi(t)kji] =
∑
j

Pj(t)kij (25)

Rewriting the master equation in matricial form

d
dt
P(t) = UP(t) (26)

whereby U = (uij)i×j is a square intensity matrix (transition matrix), which contains the tran-
sition rates between different states of the system derived from the transition probabilities
k.

uij =

{
kij if i ̸= j,
−
∑

l ̸=i kil if i = j
(27)

We are interested in calculating the temporal distribution vector P(t), which can be calculated
from the explicit solution of

P(t) = etUP(0) (28)

where P(0) is the initial distribution vector.

It has been shown in [33] how P(t) can be calculated in the eigenspace of the system, be-
cause it is quite difficult to calculate the exponentiation of a matrix numerical.

4.2 Markov chain Monte Carlo for RNA kinetics
Section adapted from [33].
Due to the high dimensionality of the conformation space, it is computational not feasible
to calculate all transition rates between micro states with a direct approximation method.
To overcome this problem one can use a Monte Carlo method to simulate the stochastic
behavior of the probability distribution[21]. Since our model is already based upon Markov
chains, we use a Markov chain Monte Carlo method for sampling of random values, whereby
the underlying Boltzmann distribution is correlated to the Metropolis rule[28].

kij =


{
e−∆G

kBT if Gi > Gj,

1 if Gi ≤ Gj
if i ∈ N(j),

0 else
(29)

with ∆G = Gj −Gi.

The values generated by the Metropolis Rule are used in the transition matrix.
Written in the form min{e−∆G

kBT , 1} it is more clearly, that downwards transitions are more pro-
bable than upwards ones, whereas all downwards steps have the same probability 1.

Page 24 of 63



4.3 Micro state kinetics
The program kinfold[9] simulates the stochastic folding kinetics using a rejection-less Mon-
te Carlo method to solve the master equation and calculate the trajectory of a single RNA
secondary structure.
Let S(I) be the set of energetically ordered suboptimal secondary structures of the primary
sequence p ∈ S(n). A trajectory T (I) (as computed by kinfold) is a time-ordered series
of secondary structures in S(I). Because the conformation space of secondary structures
is always finite, every trajectory will reach S0 after sufficiently long time. The folding time τ
(associated with a trajectory) is defined as the first passage time, that is, the time elapsed
until S0 is encountered first.
Like almost all Monte Carlo methods the algorithm has to deal with high autocorrelation,
which means that the system could stay for a long time in a meta stable state, before reaching
the (thermodynamic) equilibrium, resulting in a quite long first passage time. Additionally we
obtain only the trajectory from the defined start structure to the defined end structure. One
solution is to reduce the number of folding paths in an appropriate way.

4.4 Reduced kinetics
To describe the folding dynamics not only of very small RNA molecules, we need to coarse-
grain the representation of the energy landscape.

4.4.1 Arrhenius Kinetics

This model uses only the transition rates between the local minima and saddle points as
obtained by the barrier tree approximation of barriers. It calculates the transitions from all
to to all local minima resulting in a dense transition matrix. Given the macro states of the
local minima m,n ∈M the transition rate is given by

rnm = r0 e
−E(n)−E(m)

kBT (30)

Very rare transitions to further ''away'' local minima are almost zero, but in summation remar-
kable, leading to an overestimation of not really occurring folding processes and an accele-
ration of the whole process.
Furthermore entropic terms are completely neglected, because there are many possible
paths connecting two local minima.

4.4.2 Barrier tree kinetics

Section adapted from [35].
Amuch better approximation can be derived from themicroscopic dynamics. LetΠ = {α, β, . . . }
be a partition of the phase space C. The classes of such a partition are macro states, for ex-
ample the gradient basins B = {b ⊆ C | b = B(m)∧ ∈ M} of the local energy minima. To
each macro state α we can assign the partition function

Zα∈Π =
∑
x∈α

e−E(x)
kBT (31)

and the corresponding free enthalpy

G(α) = −kBT lnZα. (32)
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Knowing the transition rate ryx from x to y given by
∑

y ryxPx(t),
the transition rate from macro state α to macro state β can be written as

rβα =
∑
y∈β

∑
x∈α

ryx Prob(x|α) for α ̸= β (33)

where Prob(x|α) is the probability of occupying state x given the process is in macro state α.
Describing the process in terms of its macro states using the Master equation

dPα(t)
dt

=
∑
β∈Π

rαβPβ(t) (34)

where Pα(t) =
∑

x∈α Px(t).

Assuming (local) equilibrium the probability to find the process in macro state α and occup-
ying micro state x ∈ α is

Prob(x|α) =
e− E(x)

kBT

Zα

(35)

Transition rate from macro state α to macro state β can be rewritten as

rβα =
1
Zα

∑
y∈β

∑
x∈α

ryx e−E(x)
kBT

(36)

Using the transition state model for micro states x and y

ryx = r0 e
− Eyx−E(x)

kBT (37)

whereby Eyx is the energy of a saddle point

the transition rate between two macro states α and β is given by

rβα = r0 e
−

Gβα−G(α)

kBT (38)

And the free enthalpy of the transition state (which can be seen as macro state of saddle
points) can be calculated as follows.

Gβα = −kBT ln
∑
y∈β

∑
x∈α

e− Eyx
kBT (39)

This allows us to redraw the barrier tree (which was given in terms of the energies of meta-
stable states and their connecting saddle points) in terms of free energies of the correspon-
ding macro states and their transition states.
It should be mentioned, that the conformation space actually consists not of macro states,
but of micro states (including their entropic freedom), which are of course all anticipating in
the folding process.
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5 Exploration of the energy landscape
As the probability distribution of the conformational ensembles moves on the energy land-
scape, some structures or set of structures act as (attractive or repulsive) attractors of popu-
lation probabilities. These structures are the local minima and their (gradient) basins, or very
unstable formations such the open chain. However, not all local minima are highly populated
at equilibrium distribution. What properties of the energy landscape are actually responsible
for the final state of the system?

First we will define some general properties of vertices, which will be used to evaluate spe-
cific properties of macro states.

To measure the shortest walk to reach structure y starting at structure x, we define a distance
function d.

d : C × C → N,d(x, y) 7→ argmin
l≥0

(∃w ∈W : w1 = x ∧ wl = y) (40)

Let F be the set of vertices fulfilling a particular feature.
The minimum radial size of a macro state with respect to a particular feature F can be obtai-
ned by checking for the maximal distance where all vertices fulfill this feature. As such the
minimum radius rmin is given by

rmin(m) = argmax
i≥0

({x| d(m, x) = i} ⊆ F(m)) (41)

The maximum radial size of a macro state with respect to a particular feature can be obtai-
ned by checking for the maximal distance where any vertex fulfills this feature. As such the
maximum radius rmax is given by

rmax(m) = argmax
i≥0

(∃x | d(m, x) = i ∧ x ∈ F(m)) (42)

The number of vertices of a macro state of a local minimum m up to rmin(m) is given by

Nmin(F(m)) =
∣∣{x ∈ F(m) | d(m, x) ≤ rmin(m)}

∣∣ (43)

The number of vertices of a macro state of a local minimum m up to rmax(m) fulfilling a parti-
cular feature F is given by

Nmax(F(m)) =
∣∣{x ∈ F(m) | d(m, x) ≤ rmax(m)}

∣∣ (44)

The number of vertices of a macro state of a local minimum m up to rmax(m) not fulfilling a
particular feature F is given by

Nmax(¬F(m)) =
∣∣{x ∈ C | d(m, x) ≤ rmax(m) ∧ x /∈ F(m)}

∣∣ (45)

For didactic reasons we define the radii set of local minimum m with radius r as

Rr(m) = {x ∈ C | d(m, x) ≤ r} (46)

The radii set contains all vertices with distance less or equal to r starting in m.

As the conformation space C fulfills the weak ergodicity, the radii set will contain all vertices
of C, if we set r = +∞.
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5.1 Definition gradient walk core element
Whether a macro state is more or less populated depends on the transition rates from (to)
other macro states. As shown above these transition rates can be calculated by summati-
on of the transition rates of the corresponding micro states. Highly populated macro states
such as those representing the neighborhood of the open chain or the minimum free energy
should consist of many micro-states which tend to stay in their macro-state. But besides the
fact that we compare macro states, no other topological feature has been considered. We
will now look at the ''internals'' of the macro states.

Each vertex of a macro state has neighbors in the macro state. The macro state can only be
left, if the vertex has also neighbors in other macro states (which means it is a saddle point).
That is why some vertices may lie deep in the macro state, other near the ''border''. Fur-
thermore different vertices might have a different number of neighbors below and(or) above
them. All this means, that it is more or less difficult for a structure represented by a vertex to
fold along a walk leading outside its macro state, and the number of structures having dif-
ferent difficulties to leave their macro state will be individual for each macro state and might
not correlate with the depth or entropic size of the macro state. So we will define a property
which reflects the difficulty of a structure to leave its macro state.

The simplest assumption would be to count the minimum number of steps needed to reach
a saddle point. But as we do not want to completely neglect the energetic component, we
have to consider the transition rates of the micro states (the vertices). Since a macro state
consists of all the connected vertices below the energy of the lowest saddle point (in the
case of a normal basin), a walk to leave the macro state would be a not very probably only
upwards walk without any entropic information considered (the same holds true for gradient
basins, because they are super sets of their normal basins). To incorporate all possible only
upwards walks one would need to check the combinations of all such walks for all vertices,
which is not feasible. Instead of looking for all walks going only upwards, we will only look for
the walks which go only downwards for each vertex. A special type of such only downwards
walks is of course the gradient walk as defined in equation 16. The more vertices have their
gradient walk ending in the local minimum of their basin, the more difficult it might be for any
structure of the macro state to leave. We call these vertices the gradient walk core elements
of the macro state. These vertices just build the set of vertices in the gradient basin. This first
definition of core elements might look unnecessary, but it illustrates that established con-
cepts are included in our view of stability of macro states.

The set of gradient walk core elements of a gradient basin B with local minimum m is given
by

Cgw(m) = B(m)

To obtain a value of size of a macro state, we need to use the measurement definitions pro-
vided above.

rmin(m) yields the greatest distance where all vertices are still part of the gradient basin. This
is value describes best the entropic ''size'' of the macro state.

Nmin(Cgw(m)) yields the number of gradient walk core elements up to rmin(m).
This set can also be greater than the basin of m, if the lowest saddle point is below the hig-
hest elements of this set. We call it the ''(gradient walk) core'' of the macro state. This value
reflects more the enthalpic density of the macro state.

Page 28 of 63



rmax(m) yields the greatest distance where at least one vertex is still part of the gradient ba-
sin. Since gradient basins have no upper limit, this value reflects the maximum elongation of
the macro state.

Nmax(Cgw(m)) yields the number of vertices which are part of the gradient basin up to rmax(m).
This value is equal to the number of vertices in the gradient basin.

Nmax(¬Cgw(m)) yields the number of vertices which are not part of the gradient basin up
to rmax(m). This value reflects how much of the conformation space, which is in principle
reachable by macro state, is actually occupied by it.

5.2 Definition adaptive walk core element
The set of gradient walk core elements provides an estimation of size of a macro state (ad-
ditional to its energetic depth). But as we use the Metropolis rule for the calculation of the
micro state transitions, all downwards steps have the same rate of 1. This means that the
values obtained by gradient walk core complexes are overestimating the stability of a macro
state, since it seems to be much more difficult to leave (or depopulate) the (gradient) basin.

We need a more stringent definition for core elements, which are not so dependent on the
transition rates, but more on the connectivity of the vertices. A single vertex has usually many
neighbors below and above it. The more neighbors above or below, the higher the probability
to go up or down on the energy scale. The upwards steps are quite well approximated by
the micro states transition rates, but the downwards steps are all the same. To overcome
this problem we could check how many neighbors are there below and additionally what will
happen if we occupy one of these lower neighbors and so on. Again it is better not to check
how difficult it is to leave, but how easy it is to stay in the macro state, since it is not feasible
to follow all combinations of walks. We start at the local minimum and check in ascending
distance if there are vertices which could follow downwards walks leaving the macro state.
The more lower neighbors, which have only downwards walks ending in the local minimum,
a vertex has, the more difficult it is to leave the macro state (actually an upward step is re-
quired). And if more vertices have this feature, the whole macro state becomes more stable,
what means that the macro state should be a great attractor on the energy landscape.

The set of adaptive walk core elements of a basin B with local minimum m is given by

Caw(m) = {x ∈ C | @w ∈ A : w|w| ̸= m ∧ x ∈ w} (47)

|w| is the cardinality of the set w, so w|w| means the last index of walk w.

Using the measurement definitions provided above results in the following definitions.

rmin(m1) yields the greatest distance where all vertices have only adaptive walks ending in
the local minimum.

Nmin(Caw(m)) yields the number of adaptive walk core elements up to rmin(m). This set can
also be greater than the basin of m. We call it the ''(adaptive walk) core'' of the macro state.
This value reflects the enthalpic density of the really stable part of the macro state.

rmax(m) yields the greatest distance where at least one vertex has only adaptive walks ending
in the local minimum.
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Nmax(Caw(m)) yields the number of adaptive walk core elements up to rmax(m). This set can-
not be greater than the gradient basin of m, but much greater than its basin. This maximum
elongation might be important to reflect the strength of the attractor of the macro state. We
call this set of vertices the (adaptive walk) core complex.

Nmax(¬Cawm)) yields the number of vertices which are not part of the Core-Complex up to
rmax(m). This value reflects how fast the density of the Core-Complex decreases (in relation
to Nmax(Caw(m))).
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Figure 12: Cross section of energy landscape along the conformational coordinates of a macro state with
adaptive walk core elements. Filled dots are adaptive walk core elements, gray dots are adaptive walk core
elements of neighboring macro states, white dots are not part of the core complex. Each micro state is labeled
with its distance from the local minimum. The light gray part shows the elements within the minimum core
radius. The light and dark gray part together cover the elements within the maximum core radius. A little part
of the minimum core lies over the minimum saddle height, protruding out of the basin. The chain dotted line
marks the border of the gradient basin.
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Figure 13: Cross section of energy landscape along the conformational coordinates of a macro state with
gradient walk core elements. Filled dots are gradient walk core elements, gray dots are gradient walk core
elements of neighboring macro states, white dots are not part of the core complex. Each micro state is labeled
with its distance from the local minimum. The light gray part shows the elements within the minimum core radius.
The light and dark gray part together cover the elements within the maximum core radius. Different from figure
12 a great part of the minimum core elements lies over the minimum saddle height. The dark gray addition of
the maximum core elements is only so small in this simple example. Due to the less harder core definition more
elements are part of the core, even the saddle points.
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5.3 Adaptations to the definitions of the core elements
First results showed that the minimum radius rmin is almost always zero and never much
higher than 1, even in the case of highly populated macro states. A short evaluation of the
neighbors of local minima reveals that they are often energetic quite high, so the transition
rate is quite small. Since it is not very likely to overcome such a barrier, we decided to skip
checking of downward walks for those structures and assign them automatically to the core.
This will in most cases not only enlarge rmin, but also rmax. However, the significance of rmax
is still to be validated.

Set of adaptive walk core elements of a basin B with local minimum m, whereby upwards
neighbors higher than a provided energy limit ∆L are declared as core element.

Caw(∆L)(m) = {x ∈ C | ∃a ∈ A : a1 = x ∧ a|a| = m ∧ ∀1 ≤ i < |a| :(
(@b ∈ A : b1 = ai ∧ b|b| ̸= m)∨

(∃b ∈ A : b1 = ai ∧ b|b| ̸= m ∧ (E(ai)− E(ai+1)) ≥ ∆L)
)
}

(48)

Equation 48 should be read as follows. All elements x are part of the core, if there is an ad-
aptive walk a starting in x and ending in local minimum m, and additionally for each element
of this walk a if there is no adaptive walk b ending not in m, or if there is such a walk b, if the
next element of a is below the energy limit ∆L.
We call this set of vertices the adaptive walk core elements with upwards energy check.

Figure 14 depicts the situation. Element B is only part of the core, because E(B)−E(A) > ∆L.
The same holds true for element D, because E(D)−E(C) > ∆L. Without the upwards energy
limit condition the minimum radius were rmin = 0, now it is rmin = 2. The maximum radius has
also increased from rmax = 3 to rmax = 6.
Note that some parts of the core (complex) can even lie outside the gradient basin.
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Figure 14: Cross section of energy landscape along the conformational coordinates of a macro state with
adaptive walk core elements with upwards energy check. Filled dots are adaptive walk core elements with
upwards energy check, white dots are not part of the Core-Complex. Eachmicro state is labeled with its distance
from the local minimum. The light gray part shows the elements within the minimum core radius. The light and
dark gray part together cover the elements within the maximum core radius. The chain dotted line marks the
border of the gradient basin.
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5.4 Algorithms
5.4.1 Gradient walk core element enumeration

Algorithm 1 Gradient walk core element enumeration
1: T← { m } ◃ todo list of states to process
2: C(m)← ∅ ◃ core set to fill
3: while T ̸= ∅ do
4: x← argmint∈T( t ) ◃ pick smallest element from todo list
5: C(m)← C(m) ∪ { x } ◃ x is core element
6: for all n ∈ N(x) do
7: if x <≺ n then ◃ higher neighbor
8: g← gradientWalk(n) ◃ get end of gradient walk starting at n
9: if g = m then
10: T← T ∪ { n } ◃ add to T if not contained
11: end if
12: end if
13: end for
14: end while
15: report size of C(m)
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5.4.2 Adaptive walk core element enumeration

Algorithm 2 Adaptive walk core element enumeration
1: T← { m } ◃ todo list of states to process
2: C(m)← ∅ ◃ core set to fill
3: while T ̸= ∅ do
4: x← argmint∈T( t ) ◃ pick smallest element from todo list
5: allDownInCore← 1 ◃ assume x is part of core
6: for all n ∈ N(x) do
7: if n <≺ x then ◃ lower neighbor
8: if n ̸∈ C(m) then ◃ check if NOT in core
9: allDownInCore← 0
10: break ◃ stop neighbor enumeration
11: end if
12: else ◃ heigher energy neighbor
13: T← T ∪ { n } ◃ add to T if not contained
14: end if
15: end for
16: if allDownInCore = 1 then
17: C(m)← C(m) ∪ { x } ◃ x is core element
18: end if
19: end while
20: report size of C(m)
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5.4.3 Adaptive walk core element enumeration with upwards energy check

Algorithm 3 Adaptive walk core element enumeration with upwards energy check
1: T← { m } ◃ todo list of states to process
2: D← { m } ◃ list of states already added to T (to avoid duplicates and/or circles)
3: C(m)← ∅ ◃ core set to fill
4: while T ̸= ∅ do
5: x← argmint∈T( t ) ◃ pick smallest element from todo list
6: allDownInCore← 1 ◃ assume x is part of core
7: if x ∈ C(m) then ◃ check if element is part of core,
8: goto doneCheckingElement ◃ because it was too high in a previous loop
9: end if
10: for all n ∈ N(x) do ◃ check all lower neighbors
11: if n <≺ x then ◃ lower neighbor
12: if n ̸∈ C(m) then ◃ check if NOT in core
13: allDownInCore← 0
14: goto doneCheckingElement ◃ stop neighbor enumeration
15: end if
16: end if
17: end for
18: doneCheckingElement:
19: if allDownInCore = 1 then
20: for all n ∈ N(x) do
21: if E(n)− E(x) ≥ ∆L then ◃ check if neighbor is too high
22: C(m)← C(m) ∪ { x } ◃ add to core without checking its adaptive walks
23: end if
24: if n ̸∈ D then ◃ check if n is or was in T
25: T← T ∪ { n } ◃ add to T
26: D← D ∪ { n } ◃ add to D
27: end if
28: end for
29: C(m)← C(m) ∪ { x } ◃ x is core element
30: end if
31: end while
32: report size of C(m)

Page 37 of 63



5.4.4 Minimum radius computation

Based on C(m) we can identify the radius rmin up to which all vertices are Core-Elements.

Algorithm 4 Minimum radius computation
1: P← ∅ ◃ set of already processed neighbors
2: A← N(m) ◃ set of actually processing neighbors
3: r(m)← 1 ◃ core radius = minimum distance where all states in A
4: while A ̸= ∅ do
5: if A ⊆ C(m) then ◃ check if all current neighbors are core
6: P← P ∪ A ◃ mark actual neighbors as processed
7: r(m)← r(m) + 1 ◃ we will extend radius
8: T← ∅ ◃ temporary set of 'new' neighbors in next radius
9: for all x ∈ A do
10: for all n ∈ N(x) do ◃ increase radius
11: if n ̸∈ P then ◃ find all non-processed neighbors = next radius
12: T← T ∪ { x }
13: end if
14: end for
15: end for
16: A← T ◃ make next radius neighbors new actual set
17: else
18: r(m)← r(m)− 1 ◃ fall back to last core radius
19: break ◃ stop exploration
20: end if
21: end while
22: report size of P
23: report core radius r
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5.4.5 Maximum radius computation

Based on C(m) we can identify the radius rmax up to which at least one vertex is a Core-
Element.

Algorithm 5 Maximum radius computation
1: P← ∅ ◃ set of already processed neighbors
2: A← N(m) ◃ set of actually processing neighbors
3: r(m)← 1 ◃ core radius = greatest distance of any state in A
4: Nmax(m)← 0 ◃ number of Core-Elements
5: while A ̸= ∅ do
6: P← P ∪ A ◃ mark actual neighbors as processed
7: r(m)← r(m) + 1 ◃ we will extend radius
8: T← ∅ ◃ temporary set of 'new' neighbors in next radius
9: for all x ∈ A do
10: if x ∈ C(m) then
11: Nmax(m)← Nmax(m) + 1 ◃ increment number of core elements
12: for all n ∈ N(x) do
13: if n ̸∈ P then ◃ find all non-processed neighbors = next radius
14: T← T ∪ { x }
15: end if
16: end for
17: end if
18: end for
19: A← T ◃ make next radius neighbors new actual set
20: end while
21: r(m)← r(m)− 1 ◃ fall back to last core radius
22: report Nmax(m)

23: report core radius r
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5.4.6 Minimum and maximum radius computation united

Algorithm 6 Minimum and maximum radius computation united
1: P← ∅ ◃ set of already processed neighbors
2: A← N(m) ◃ set of actually processing neighbors
3: rmin(m)← 1 ◃ core radius = greatest distance where all states in A
4: rmax(m)← 1 ◃ core radius = greatest distance of any state in A
5: Nmin(m)← 0 ◃ number of core elements within rmin

6: Nmax(m)← 0 ◃ number of core elements within rmax

7: isMinimumRadiusDefined← 0
8: while A ̸= ∅ do
9: P← P ∪ A ◃ mark actual neighbors as processed
10: rmax(m)← rmax(m) + 1 ◃ we will extend maximum radius
11: T← ∅ ◃ temporary set of 'new' neighbors in next radius
12: for all x ∈ A do
13: if x ∈ C(m) then
14: Nmax(m)← Nmax(m) + 1 ◃ increment number of maximum core elements
15: for all n ∈ N(x) do
16: if n ̸∈ P then ◃ find all non-processed neighbors = next radius
17: T← T ∪ { x }
18: end if
19: end for
20: end if
21: end for
22: if isMinimumRadiusDefined ̸= 0 ∧ A ⊆ C(m) then
23: rmin(m)← rmin(m) + 1 ◃ we will extend radius
24: else
25: isMinimumRadiusDefined← 1
26: Nmin(m)← P ◃ all processed elements until now are minimum core elements
27: end if
28: A← T ◃ make next radius neighbors new actual set
29: end while
30: rmin(m)← rmin(m)− 1 ◃ fall back to last minimum core radius
31: rmax(m)← rmax(m)− 1 ◃ fall back to last maximum core radius
32: report core radius rmin

33: report core radius rmax

34: report Nmin(m)

35: report Nmax(m)
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6 Computational implementation

6.1 Workflow of computer programs
The following programs were used for the calculations.

n RNAfold [17][24]
Calculate minimum free energy secondary structures and partition function of RNAs

n RNAsubopt[17][24]
Calculate suboptimal secondary structures of RNAs

n barriers [11]
Compute local minima and energy barriers of a landscape

n treekin[35]
Calculate a macro state dynamics of biopolymers

n ocfinder
Searches for the open chain in the output of barriers.

n corefinder (see section 5.4)
Enumerates all core elements of a particular type.
Calculates radii and sizes of cores and core complexes.

n Rcorestat
Statistical analysis and graphical presentation of the results.

n corestat
Controls the processing of the workflow.

RNAfold, RNAsubopt, barriers and treekin are part of the Vienna-RNA-Package[24].

Figure 15:Workflow of corestat

Based upon the output of barriers and the chosen parameters the workflow will add four
columns to each line of barriers (see figure 16).

Minimum radius rmin
Number of states within minimum radius min(F)
Maximum radius rmax
Number of states within maximum radius Nmax(F)

Additionally the number of structures which are (not) part of core complex will be printed out
for each radius in the following scheme.

r =

{ ∣∣{x ∈ F(m) | d(m, x) = r}
∣∣ if structure is in corecomplex∣∣{x ∈ C | d(m, x) = r} ∧ x /∈ F(m)

∣∣ if structure is not in corecomplex
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The radius r starts at zero and ends if no structure is part of the core complex.
The number of lines need not correspond with the maximum radius, because it is possible,
that the set of structures with maximum radius have no more neighbors (even such which
are not in the core complex), which have not been process in a previous step.

The number of structures in the core complex has to sum up to the number of structures
within maximum radius.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 ((((((((((((.....)))))))))))) -12.6 0 30 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 558930 0 -12.83 18479 -12.82 0 1 11 1981 

Radius In Core Not in Core             

0 1 0             

1 11 1             

2 49 17             

3 122 94             

4 205 265             

5 274 478             

6 317 676             

7 314 847             

8 272 925             

9 218 881             

10 146 747             

11 52 507             

12 0 184             

----------               

2  (((((....))))).(((((....))))) -10.1 1 13.2 ...........(.....)........... 1660 5626 -10.35 5565 -10.35 1 11 10 1775 

Radius In Core  Not in Core             

0 1 0             

1 10 0             

2 44 2             

3 115 24             

4 218 116             

5 334 340             

6 401 698             

7 347 1059             

8 236 1112             

9 66 832             

10 3 249             

11 0 12             

----------               

3 (((((((((...........))))))))) -8.9 1 0.3 (((((((((..(.....)..))))))))) 1 11 -8.9 77132 -9.29 0 1 13 17305 
 

Figure 16: Extended barriers output of d29-2 as generated by corefinder with adaptive walk. Columns 12-15
have been added by corefinder. The core complex is calculated without any energy limit, therefor the number
of structures in the gradient basin (column 10) does not need to match the number of structures in the core
complex (column 15).
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7 Data analysis and results

7.1 Methods of data analysis
7.1.1 Methods of data analysis of single RNAs

We call highly populated macro states the States of Interest (SOI) according to [19].
For the cutoff of SOIs we use 20%, 10%, 5% and 1%. Figure 17 displays the population
probability of macro states versus time. Most macro states are below 5%, which means that
the RNA molecule will not stay for long in any micro state of those macro states.

Figure 17: Adaptive walk macro states population versus time

From the output of Rcorestat we generate the following statistical test and plots.

n Evolution of probability distribution in time (treekin-like plots) for all methods.
Solid lines for macro states with core, dashed lines otherwise.
Labeling of curves with index of macro state and core radius in brackets.

n Distribution of macro states on minimum core radii for all methods.
n Distribution of macro states on maximum core radii for all methods.
n Log of maximum population probability versus energy.
Color coding of core status. Symbol coding of SOI status.
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n Boxplots of energy ranges per minimum core radius.
n Boxplots of energy ranges per maximum core radius.
n Boxplots of log probability ranges per minimum core radius.
n Boxplots of log probability ranges per maximum core radius.

n Table of proportion SOIs which rmin > 1 for defined SOIs and all methods.

n Table of proportion SOIs which rmax > 1 for defined SOIs and all methods.

n Table of correlations of Nmin/Nmax with energy and maximum population probability for
all methods.

n Analysis of variance between groups of core radii by energy and maximum population
probability.

7.1.2 Methods of data analysis of many RNAs

Many statistics/plot can be adapted from analysis of one RNA to many RNAs.

Additionally we test the correlation of theGC content and the length of the RNA sequencewith

n Proportion of SOIs which have rmin > 0 and those which have rmax > 0
n RNA-Sequence-Length
n Summation of Nmin of all macro states
n Summation of Nmax of all macro states
n Median and minimum of energy of all macro states with maximum rmin and rmax

n Median and maximum of maximum probability of all macro states with maximum rmin
and rmax

7.2 Data Analysis of specific RNAs
7.2.1 RNA molecule d29-2

Primary sequence GGCUGCGUGUAGCCGGACUGUAUGCAGUC.
All structure up to 30 kcal/mol above the global minimum have been processes, resulting in
382 macro states.
The figures display the temporal development of the population probability of the macro sta-
tes. Macro states with core are shown as continuous lines, macro states without core are
shown as dashed lines. For macro states populated more than 10 % their index and mini-
mum core radius (in brackets) is displayed.

Figure 18 show plots based on the data generated by treekin. Macro states with core are
represented as continuous lines, macro states without core as dashed lines. For macro states
populatedmore than 10% their index andminimum core radius (in brackets) is displayed. The
plots reveal the sharpness of the different core definitions. We see the best results in lower
plot showing that the (meta-)stable switching macro states 1 and 2 have a core, whereas
the open chain 74 has not. Aside from the necessity of adjusting the upwards energy limit,
we need to check why macro state 10 is higher populated, has no adaptive walk core, but a
gradient walk core (maybe it is important for the switching initiation).
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Figure 18: Macro states population versus time with minimum radii
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Figure 19 shows the distribution of macro states on different minimum core radii for each
core definition. The middle plot shows that the adaptive walk core definition is too hard for
calculation of minimum core radii.

Figure 19: Minimum core radii of different methods
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Figure 20: Maximum core radii of different methods

Figure 20 shows the distribution of macro states on different maximum core radii for each
core definition. The influence of the core definition on the maximum radius is weak, only the
weak gradient walk core definition can be seen as a slightly larger greatest maximum core
radius.
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Figure 21: Energy versus logarithmic maximum population plots of different methods

Figure 21 are plots of energy versus logarithmic maximum population probability. Higher
populated macro states are colored red, otherwise black. Macro states with core are disks,
otherwise circles. In the middle plot we see again the hard adaptive walk core definition
resulting in only one macro state with core, which is at least highly populated. The results
of the gradient walk cores seems to be in better accordance (see upper plot), although the
open chain (index 74) features also a core. In the lower plot the open chain has no core, but
all other highly populated macro states. Although this is the best result, more in particular
energetically unstable states also feature a core (indices 126,138,157,293).

Page 48 of 63



Threshold 20% 10% 5% 2% 1%
Gradient walk 0.75 0.6 0.6363636 0.5263158 0.4137931
Adaptive walk 0.25 0.2 0.09090909 0.05263158 0.03448276
Adaptive walk energy check 0.75 0.8 0.5454545 0.4210526 0.3103448

Table 2: Percent of SOI macro states with rmin > 1

Threshold 20% 10% 5% 2% 1%
Gradient walk 0.75 0.6 0.7272727 0.7368421 0.6206897
Adaptive walk 1.0 1.0 1.00 1.00 0.9310345
Adaptive walk energy check 1.0 1.0 1.00 1.00 1.00

Table 3: Percent of SOI macro states with rmax > 1

Tables 2 and 3 summarize the proportion of SOIs which are also core elements. In table 2
we see good accordance and its decrease as the threshold goes lower. The values of the
gradient walk method are too high, but the adaptive walk method does not look too strict here
(actually the adaptive walk energy check method is too weak).
The weak accordance of the gradient walk method in table 3 is due to the fact, that there is
only one gradient walk for each structure.

Energy Maximum probability
Nmin Nmax Nmin Nmax

Gradient walk -0.2967136 -0.1702163 0.8830793 0.5925826
Adaptive walk -0.1844292 -0.3367850 0.4625818 0.3616787
Adaptive walk energy check -0.2977745 -0.1254210 0.4427226 0.2834822

Table 4: Correlation of energy and maximum probability with Nmin and Nmax of macro states.

Table 4 summarizes the correlation of energy and maximum population probability with the
number of core states. The correlation is weak or almost not existing. Only the gradient walk
method, which represents best the size of the gradient basin, has a higher value. The degree
of attraction of cores obtain by the other methods seems to be not so strong.

Significance of core radii

To test if the categorization of macro states in groups of different core radii is corresponding
to the ranges of energy or maximum population probability we used the Analysis of Variance
(ANOVA) or if the requirements are not met, the Kruskal–Wallis one-way analysis of varian-
ce. All results depict that rmin and rmax are not randomly assigned to macro states.
Figures 22 - 25 show the distribution of ranges for each core definition. The variance of the
categories defined by minimum core radii is more significant than those defined by maximum
core radii, but this is also due to the fact, that there are more maximum core radii.

Figure 22 and 23 show distribution of energy ranges.
Figure 24 and 25 show the distribution of maximum probability ranges. Mind the logarithmic
scale of population probability. The best result can be seen on the lower plot of figure 25,
which also reveals some outliers on maximum core radius 7.
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Figure 22: Energy ranges per minimum core radius
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Figure 23: Energy ranges per maximum core radius
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Figure 24: Log probability ranges per minimum core radius
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Figure 25: Log probability ranges per maximum core radius
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7.3 Data analysis of many RNAs
To test the influence of properties of RNA on the core parameters we generated for each
length of 20 to 30 base pairs 100 random RNA sequences.

The strongest correlation was between the GC content and the lowest energies of all macro
states with core per sequence.

Minimum energy of macro states with greates rmin -0.436738
Minimum energy of macro states with greates rmax -0.3751044
Maximum probability macro states with greates rmin 0.03419664
Maximum probability macro states with greates rmax -0.3751044

Table 5: Correlations of GC content obtained by random RNA sampling

Themissing of correlation could be due to bad quality of the samples. The GC content follows
a normal distribution, not a uniform distribution.
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8 Conclusion and outlook
It has been shown that there are topological properties of the energy landscape which are
related to the population probability of macro states. Our results show, that macro states with
core tend to be more stable and hence higher populated than that without core. In particular
macro states with rmin > 0 are always highly populated and macro states with rmax = 0 are
never highly populated.
Different types of stability criteria have been used to search for core elements, whereby the
adaptive walk with energy check yielded the best results in consideration of the fact, that the
open chain (which was only highly populated in their function as start structure) had never
and the (meta) stable chains had always a core. This revealed also that the energy parameter
can of course not be neglected when testing the stability of macro states.

8.1 Computational improvement
The first step is the reduction of complexity of the computational implementation by avoiding
the flooding ansatz. Particularly the algorithm of scanning the core complexes works by ge-
nerating all neighbors recursively until no core element is found.
The current implementation of the algorithms is also suboptimal regarding memory manage-
ment resulting in huge memory consumption. The problem is that one of the fastest methods
to look up an element in a list consists of the use of associative arrays (hashes), which require
thorough memory management. Currently we use an array to store elements of predefined
size so that the pointers in the hash table point to addresses in the array. Instead some me-
thods proposed in [25] should be used.
Even for longer sequences and/or greater energy ranges the implementation should make
use of multi (core-)processor systems. The next step will be to obtain those macro states
a priori without the use of any information provided by other programs, to really reduce the
computational effort.

8.2 Methodical extension
The number of structures contained in a core (Nmin and Nmax) is not correlated to their radii,
but we could calculate the free enthalpy of the partition function summation of only the core
elements and use these values in the Arrhenius kinetics(see 4.4.1). The same idea can be
applied to barrier tree kinetics (see 4.4.2) by using only core elements as transition structures
(in the case of greater macro states only elements of the core complex will have transitions
to other macro states). This would reveal if the folding dynamics can really be reduced to
those few trajectories. Even the Monte Carlo method used in [9] (see 4.3) could be restricted
to core elements. We will continue to look for additional adaptations of the core definitions to
find algorithms, which are better capturing the stability of the macro states. Maybe it could
even be possible to check some properties of the RNA molecule and then decide which al-
gorithm is the best to use.

The models based upon reduced folding kinetics have been extended by parameters provi-
ding information about the stability of macro states. The restriction of the folding process on
macro states which are depicted as stable seems to be a viable option to improve this method
of RNA dynamics prediction. Although the model involves many assumptions and approxi-
mations, we discovered one more feature on the way asymptotically converging towards the
perfect simulation of the RNA folding process.
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Epilogue
Do not use LATEX if you do not need to!
The quality of this work has been deteriorated due to the use of LATEX. Half of the time have
been spent dealing with problems caused by LATEX. Although the concept behind LATEX might
not be bad, the realization is awful. LATEXis like a program from the stone age of computation.
For almost every function you need an additional package. The style which seems to have
been introduced by LATEX should apparently suggests more professionalism, but actually it is
opposed to environmental protection and contradicts the methods of effective data storage.
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List of abbreviations and symbols

≺lex Lexicographical predecessor
<≺ Energetic-Lexicographical predecessor
x" η # y Accessibility of y from x at height η
A Set of adaptive walks
B(m) Basin of m
B(m) Gradient basin of m
Caw(m) Set of adaptive walk core elements (structures) of m
Caw(∆L)(m) Set of adaptive walk core elements (structures) with energy check of m
Cgw(m) Set of gradient walk core elements (structures) of m
C(p) Conformation space of p
d(x, y) Distance between x and y
DNA Deoxyribonucleic acid
E Potential function
E Set of edges
E Energy landscape
F Set of vertices with particular feature
F(s) Free enthalpy of secondary structure s
f̂(x, y) Saddle height between x and y
g Density of state
G Free enthalpy / Gibbs (free) energy
G Set of gradient walks
G Graph
H Enthalpy
kB Boltzmann constant
kij Transition rate
L Loop

Limit (in the term Caw(∆L)(m))
µ Move function
Mk Move set of size k
M Set of local minima
MFE Minimum Free Energy
N(x) Neighborhood of x
N (x) Set of adjacent vertices of x
NA Avogadro constant
Nmin Number of vertices within rmin
Nmax Number of vertices within rmax
Ω Set of possible base pairings
p Primary sequence / Primary structure

Pressure (in the term pV)
pij Transition probability
P Power set

Probability (in the term ⟨P⟩eq)
Pt Temporal distribution vector
Pxy Set of walks from x to y
rmin Minimum core radius
rmax Maximum core radius
R Gas constant
R(m) Radii set of m
RNA Ribonucleic acid
rRNA Ribosomal RNA
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s Secondary structure
S Entropy (in the term T∆S)
S(p) Set of secondary structures compatible with p
Sp(n) Set of primary sequences of length n
Ss(p) Set of possible base pairings of p
S̄(m,n) Set of lowest saddle points between m and n
SOI State of interest
T Temperature
tRNA Transfer RNA
uij Transition matrix
U Inner energy
V Volume (in the term pV)
V(s̄) Valley of s̄
V Set of vertices
W Set of walks
Z Partition function
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