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Abstract

Background: Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in

genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction

programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic

folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control

strategies to assess the significance of such predictions. While there have been randomization algorithms for

single sequences for many years, the problem has remained challenging for multiple alignments and there is

currently no algorithm available.

Results: We present a program called SISSId that simulates multiple alignments of a given average dinucleotide

content. Meeting additional requirements of an accurate null model, the randomized alignments are on average

of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic

substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a

distance based approach, a tree is estimated under this model which is used to guide the simulations. The new

algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In

addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a

new variant of a thermodynamic structure based RNA gene finding program called SISSIz that is not biased by

the dinucleotide content.

1



Conclusions: We presented an efficient algorithm to randomize multiple alignments preserving dinucleotide con-

tent. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative

controls for the training of machine learning based programs, or as a null model of a standalone RNA gene finding

program. Other applications in comparative genomics that require randomization of multiple alignments can be

considered.

Availability : SISSId/SISSIz are available as open source C code that can be compiled for every major platform

and downloaded here: www.tbi.univie.ac.at/papers/SUPPLEMENTS/SISSIz.

1 Background

Comparative genome analysis is currently the most widely used strategy to detect and annotate noncoding

RNAs (ncRNAs) [1, 2]. In the past few years a series of different algorithms have been developed that

predict functional ncRNAs on the basis of conserved secondary structure [3–10]. Some of these methods have

been used to predict novel ncRNAs on a genome wide scale [7, 11–14]. In combination with experimental

verification (microarray, RT-PCR, Northern blot) these methods could successfully uncover many examples

of novel ncRNAs [15–20]. However, in particular in large vertebrate genomes the signal-to-noise ratio of true

predictions and false positives is thought to be relatively low [20]. In a recent paper, Babak and colleagues

demonstrated that comparative ncRNA gene finders are strongly biased by the genomic dinucleotide content

leading to an excess of false predictions [21]. Especially methods that are based on a thermodynamic folding

model are sensitive to this effect: In the so-called nearest neighbour model, energies are not assigned to single

base-pairs but rather to neighbouring base-pairs that stack on each other. As a consequence, the folding

stability of genomic sequences does not only depend on the monunucleotide content but also the dinucleotide

content.

To assess the significance of predicted structures, e.g. to estimate the false discovery rate in a genomic

screen for ncRNAs, one should therefore compare the genomic predictions to the results obtained on ran-

domized data with the same dinucleotide content. In the case of single sequences, there are well known

and widely used algorithms to generate dinucleotide controlled random sequences either by shuffling or first

order Markov chain simulation [22, 23]. However, there is currently no algorithm to randomize multiple

sequence alignments preserving the dinucleotide content. Babak and colleagues [21] added the conserva-
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tion of dinucleotides as an additional constraint to the commonly used (mononucleotide) shuffling algorithm

shuffle-aln.pl [5] and applied it to pairwise alignments. Their approach corresponds to a heuristic used in

reference 24, that is very inefficient as only a small subspace of the whole permutation space is covered1. But

even a more efficient shuffling algorithm will soon run into difficulties on multiple alignments. Unless two

neighbouring columns are 100% conserved, there are several different dinucleotide pairs in these columns. It

is therefore impossible to exactly preserve the dinucleotide content as in the single sequence case.

In this paper, we address the problem in a different way. In analogy to a first order Markov model for

single sequences, we simulate alignments of a given dinucleotide content. We present a substitution model

that captures the neighbour dependencies and all other relevant alignment features. We describe a time

efficient way to estimate a tree under this model that we use as a guide to simulate alignments of the desired

properties. This new control strategy is tested on genomic alignments and the effect on thermodynamic

RNA structure predictions is studied.

2 Algorithm

2.1 Requirements for an accurate null model

An optimal null model preserves all the features of the original data with the exception of the signal under

question that needs to be removed efficiently. In our case, the data are multiple alignments of homologous

sequences and the signal of interest is an evolved RNA secondary structure. Correlations arising from

base-pairing patterns need to be removed. Currently, alignments are usually randomized by shuffling the

alignment columns (see ref. 5 for a discussion of this method). Although the shuffling approach has its

limitations and considering dinucleotides seems difficult, it is an appealing approach because it is relatively

simple, fast, and extremely conservative. Changing the order of the columns does not change the mutational

patterns within the columns and thus the underlying phylogenetic tree is exactly preserved.

In this paper we attempt to simulate new alignments from scratch. Even the most sophisticated model

cannot capture all evolutionary processes and therefore a simulation approach will inevitably change the

original data more than shuffling does. So much care has to be taken to preserve all the relevant characteristics

of the data. To qualitatively assess the most important parameters that need to be considered in our model,

we performed a series of simulation experiments. Using a simple tree with four taxa we simulated alignments

under the HKY evolutionary model [25]. We systematically varied model and tree parameters to study how

1The heuristic exchanges only positions that have the same neighbours left and right. For the short sequence ACAGCCAA for
example not a single permutation can be found that way. However, there are 11 such permutations according to the Altschul
& Erikson algorithm [22].
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Figure 1: Parameters effecting thermodynamic consensus RNA structure predictions. As a basic parameter
set we used equal base frequencies of 0.25, a transition/transversion rate ratio κ = 1, and the following tree
((A:0.09,B:0.09):0.09,(C:0.09,D:0.09):0.09) One parameter was varied at a time while others were
kept constant. If necessary branch lengths were adjusted to keep a MPI of 0.75 ± 0.01. 1000 alignments of
length 80 were simulated under each condition. Cumulative histograms for the RNAalifold consensus folding
energies are shown. Please note that we plot negative minimum free energies, i.e. higher values correspond
to more stable folds. (A) Base frequencies were varied to get high and low G+C content. (B) Two specific
dinucleotide frequencies were elevated 3-fold while the mononucleotide content was kept constant. (C) Branch
lengths were equally scaled to produce alignments with lower or higher MPI identity than for the basic tree. (D)
The transition/transversion rate ratio was varied. κ = 1 means equal rates, while κ > 1 gives more transition
than transversions. (E) The alignment of size 80 was divided into a central block of 40 and two flanking regions
of 20. We set 100% conservation in the central block and low conservation in the flanks (rate “high-low-high”)
and the other way round (“low-high-low”). The total average MPI was always 0.75. (F) We tested all possible
topologies of this 4 taxa tree and adjusted the branch lengths to give a MPI of 0.75. For one given topology, all
the branch lengths were of the same length.
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they affect thermodynamic RNA consensus structure predictions in the alignment. We used RNAalifold [26]

to predict consensus secondary structures which is the the basis of the AlifoldZ [5] and RNAz [6] gene finders.

Not surprisingly, base composition is one of the parameters affecting the predicted folding energies

strongest (Fig. 1A). High G+C content leads to more stable RNA predictions, while high A+T content

gives less stable predictions. As mentioned in the introduction and in fact the main motivation of this paper,

also dinucleotide content affects folding energies. We used our simulation algorithm that is described below

to simulate alignments of the same mononucleotide content but varying dinucleotide content. Fig. 1B shows

for example that a three times enriched ApT content lead to more stable predictions. The excess of some

other dinucleotides like for example GpT can cause the opposite effect leading to less stable predictions.

Another major parameter that needs to be controlled is the sequence diversity of the alignment. Variation

of the branch lengths of the tree gives alignments with different sequence diversity which we usually measure

as the mean pairwise sequence identity (MPI)2. High diversity (i.e. low MPI) makes it difficult to predict

a consensus structure if there is no selection pressure for it. On the other hand, almost perfectly conserved

sequences fold readily in some random structure even if there is no natural RNA structure present. Therefore

we observe a strong dependency on the MPI (Fig. 1C).

One well known characteristic of natural mutation processes are the different rates for transitions and

transversions [27]. Interestingly, this also affects the consensus structure predictions. A model with equal

transition/transversion rates (parameter κ = 1 in the HKY model) gives less stable predictions than a model

with more realistic rates (e.g κ = 4, Fig. 1D). This parameter affects the type of column patterns observed

in the simulated alignments which in turn affects how well they can form consensus base pairs.

Natural mutation processes are not homogeneous across all sites, in particular in functional genomic

regions. It was observed previously that mutation patterns within an alignment can affect structure pre-

dictions [5]. For example, an alignment containing a 100% conserved block with low mutation rate that is

flanked by highly divergent regions of high mutation rate can have different folding energies compared to

an alignment with homogeneous rates but the same overall MPI (Fig. 1E). The same is true for patterns

of insertions and deletions which was also already discussed in reference 5 and which we do not show here

explicitly again.

We also tested the effect of different tree topologies, but did not find a significant influence of this

parameter at least in our four taxa example.
2We found it convenient to use use both identity and distance measures at different places in this paper although this might

complicate the notation at some points.
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Figure 2: Site dependencies for overlapping dinucleotides (red-gray): The substitution process of a given nu-
cleotide xk at site k by another one depends on the states xk−1, xk, xk+1, the subsequence sk. Qk has the
dimension 64× 64, where only one mutation is allowed at the current site k. The substitution rate for the whole
sequence q(x) is the sum of each rate q(k) = Qk(sk, sk) multiplied with a site-specific scaling factor fk, with
k = 1, · · · , l.

Taken together, an accurate randomization procedure needs to generate alignments that preserve (i)

mono- and dinucleotide content, (ii) mean pairwise sequence identity, (iii) transition/transversion rate ratio

(iv) site-specific mutation rates, and (v) gap patterns.

In the next section we describe a model that is capable of simulating alignments under these constraints.

2.2 Model

Sequence evolution is usually described by a time-continuous Markov process [27, 28]. The most commonly

used models assume that all sites of a sequence evolve independently from each other rendering it impossible

to model dinucleotide dependencies between neighbouring pairs. Various evolutionary models have been

proposed in the past years to overcome this limitation [29–36]. We make use of the recently introduced

framework called SISSI (SImulating Site-Specific Interactions). SISSI allows to define site dependencies of

arbitrary complexity in the form of a “neighbourhood system” that also may include overlapping depen-

dencies [37]. Given the requirements of our specific problem, we extended and simplified several aspects of

SISSI as necessary.

Following the general framework of SISSI, we introduce a site-specific rate matrix Qk for every site

k = 1, · · · , l in a sequence x = (x1, · · · ,xl). This matrix defines the substitution process at site k, where the

substitution of a given nucleotide xk ∈ A = {A,C,G,U} by another one depends on the states xk−1, xk, xk+1

(Fig. 2).

Thus, the instantaneous rate matrix Qk has the dimension |A|3 × |A|3 = 64 × 64 . The stationary

distribution of Qk determines the equilibrium dinucleotide content of our system (see the next section for

how the required trinucleotide frequencies of Qk are calculated from the dinucleotide frequencies).

6



To be able to control the transition/transversion rate ratio and the site-specific mutation rates, we have

to add two additional parameters. Let sk = (xk−1, xk, xk+1) represent the current triplet of sequence x and

y = (y1, y2, y3) another triplet in A3. First, we introduce a general parameter r(sk,y) ≥ 0 to incorporate the

additional mechanistic rates. Second, we introduce a site-specific scaling factor fk with k = 1, . . . , l, such

that:
1
l
·

l∑
1

fk = 1. (1)

We impose the usual restriction, that only one substitution per unit time is admissible [38,39]. Moreover,

Qk only allows for substitutions at site k. The diagonal elements of our instantaneous rate matrix Qk are

defined by the mathematical requirement that the sum of each row is zero.

The entries of Qk are thus given by

Qk(sk,y) = fk ·



r(sk,y) · πk(y) if H(sk,y) = 1 and xk 6= y2

−
∑

z∈A3

z6=sk

Qk(sk, z) if H(sk,y) = 0

0 otherwise

(2)

where πk(y) is the stationary frequency of y and the Hamming distance H(sk,y) counts the number of

differences between the sites of the triplets sk and y.

In principle, we can choose any rate for the parameter r(sk,y). However, based on the requirement that we

want to define the counted dinucleotide content as the stationary distribution, we restrict here the parameter

r(sk,y) to be reversible. Any parameter of the commonly used independent nucleotide substitution models,

like HKY [25] or the general time-reversible model GTR [40] can be chosen for r(sk,y). For our application,

we use a transition-transversion rate ratio and set r(sk,y)=κ for transitions and r(sk,y)=1 for transversions.

The restriction that a substitution is only possible at site k leads to sparse rate matrices. Qk has only

|A|4 non-zero entries. Hence, we can write Qk in the form of 16 submatrices, which describe the admissible

substitutions for site k depending on the left y1 and right y3 neighbours,

A|y1, y3 C|y1, y3 G|y1, y3 U|y1, y3
A|y1, y3 

∗ κπC|y1, y3 κπG|y1, y3 κπU|y1, y3
C|y1, y3 κπA|y1, y3 ∗ κπG|y1, y3 κπU|y1, y3

G|y1, y3 κπA|y1, y3 κπC|y1, y3 ∗ κπU|y1, y3

U|y1, y3 κπA|y1, y3 κπC|y1, y3 κπG|y1, y3 ∗

(3)

Finally, we scale Qk such that the number of substitutions dk equals 1:
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dk = −
∑
z∈A3

πk(z) ·Qk(z, z) = 1. (4)

and thus the total instantaneous substitution rate for a sequence x can be written as the sum over each

rate Qk(sk, sk) multiplied with the site-specific scaling factor fk, with k = 1, · · · , l (Fig. 2),

q(x) = −
l∑

k=1

fk ·Qk(sk, sk). (5)

Without dependencies on the neighbours, Qk is of dimension 4× 4 and the model reduces essentially to

a HKY model with a specific rate for each site. We use this mononucleotide variant later in this paper for

testing and comparison to the dinucleotide model.

2.3 Simulation

For the simulation process, we essentially used the same algorithm described previously [37] with some

modifications. During the simulation process, we pick a site k with the relative mutability

P (k) =
| fk ·Qk(sk, sk) |

q(x)
, (6)

and for the chosen site k, the nucleotide xk will replaced by a new nucleotide y2 ∈ A from the corre-

sponding triplet y with probability:

P (xk → y0) =
fk ·Qk(sk,y)
| fk ·Qk(sk, sk) |

=
Qk(sk,y)
|Qk(sk, sk) |

(7)

In the most general SISSI framework Qk needs to be updated for all k sites every time one nucleotide in

x is substituted. However, in our special case we can use the same instantaneous rate matrix Qk for each

site with special conditions for r(sk,y). As a consequence, we can fix q(x) and do not need to sum over each

rate of the site, which improves the running time of the algorithm.

2.4 Parameter estimation

The idea of our randomization procedure is to estimate a tree under the model described in the previous

section and simulate sequences along this tree. Ideally, all parameters are estimated simultaneously within

a maximum likelihood framework. One problem is the high number of parameters since we want to estimate
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a specific rate for each site. A more fundamental issue is, however, that our model includes overlapping

dependencies which breaks the independence assumption necessary for basic maximum likelihood estimation.

Other possible techniques like Markov chain Monte Carlo in a Bayesian framework are not a viable alternative

either. Speed is a critical issue as the algorithm is meant to be applied to data on a genome wide scale.

Facing these difficulties, we have developed heuristic approximations to estimate the parameters and use

a distance based approach to estimate the tree. The method is fast and yet surprisingly accurate for our

application.

2.4.1 Equilibrium frequencies

The stationary frequencies of our model are set in a way that in equilibrium we obtain a dinucleotide

frequency that is the same as the dinucleotide content of the alignment to be randomized. To this end, we

first count the dinucleotide frequencies as an average of all sequences in the original alignment (see Methods

on how gaps are treated). Then, we calculate the corresponding trinucleotide frequencies needed for Qk as

a function of the single and dinucleotide frequencies as follows [30,32],

π(αβγ) =
π(αβ)π(βγ)

π(β)
(8)

where π(αβγ) are the trinucleotide frequencies, π(αβ) and π(βγ) the counted dinucleotide frequencies

and π(β) =
∑
β π(αβ) =

∑
β π(βγ) with α, β, γ ∈ {A,C,G,U}.

Fig. 3A shows an example of the dinucleotide frequency distribution of 1000 simulated alignments. We

counted the dinucleotide frequencies of an alignment of 7 5.8 rRNA sequences and set the trinucleotide

parameters of our model accordingly. On average, we get the same dinucleotide frequencies in the simulated

alignments as in the original one.

2.4.2 Distances and tree construction

To build a distance based tree, we first have to estimate the number of substitutions that have taken place

between two sequences. In other words, we have to estimate the genetic or evolutionary distance d from

the Hamming distances p under our model. Both distances are different because back mutations have taken

place that are not directly visible. To estimate the relationship between d and p, we simulate sequence pairs

separated by different branch lengths d and calculate the corresponding Hamming distances p (Fig. 3B). We

fit an exponential function to this curve:
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Figure 3: Key concepts of the algorithm shown on an example alignment of 5.8S rRNA. (A) Distribution of
dinucleotide frequencies of 1000 simulated alignments are shown. Red circles indicate the frequencies observed in
the original alignment. (B) Relationship between the number of substitutions and observed differences empirically
determined by sampling of 25 points. Each point shows the average of 10 simulations. Note that the short
distances are sampled more densely. These setting are the default values and used throughout the paper. (C)
Distribution of mean pairwise identities for 1000 random samples. The MPI of the original alignment is shown
in red. (D) Comparison of site-wise MPIs in the original alignment and the average of the corresponding sites of
1000 random alignments.
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p = â · (1− eb̂·d) (9)

Using this function, all pairwise distances are calculated for the sequences in the original alignment. From

this distance matrix a tree is constructed using the BIONJ algorithm [41]. BIONJ is a variant of the well

known neighbour joining algorithm and currently one of the most accurate algorithms for distance based

tree building.

Given that the distances and the tree is accurately estimated, we observe on average the same mean

pairwise identity in the simulated alignment as in the original one. Fig. 3C shows the distribution of MPIs of

1000 simulations of our example rRNA alignment. The average MPI of the simulations is exactly the same

as the MPI 0.73 of the original alignment.

2.4.3 Site-specific rates

Setting different mutation rates at different sites gives us the possibility to preserve natural mutation patterns

of the original alignment. The problem of finding accurate site-specific rates is illustrated in Fig. 3D. For

each site in the alignment, the MPI of this site is plotted against the average MPI observed in the simulated

alignments on the same site. If we consider equal rates for all sites, each site will have the same average

MPI which is of course equal to the overall MPI of 0.73 of the whole alignment. Ideally, the average MPI

for each simulated site is the same as the original MPI at this site. In this case, the points in the plot are

on a diagonal indicating that we have found accurate estimates for the rates.

Simple estimates for site-specific rates in combination with distance based trees have been described

previously [42]. The method includes fits to a gamma distribution which requires data of at least 1000

nucleotides and 30 sequences to get reasonable results. Here we use a different approach that also gives good

results for smaller alignments.

The substitution rate at a site is of course related to the observed sequence diversity at this site. If a site

is highly conserved the rate is low, whereas high sequence diversity indicates a high mutation rate. So in a

first step, we calculate the average number of pairwise differences 〈pk〉 for each site k in the alignment with

n sequences:

〈pk〉 =
2

n(n− 1)

n∑
i

n∑
j>i

δkij ; with δkij =
{

1 if nucleotides in sequences i, j differ at site k
0 otherwise (10)
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〈pk〉 are observed differences ignoring multiple substitutions. If we naively choose our rates proportional

to 〈pk〉 we would underestimate high rates while overestimating low rates. We therefore use the relationship

in equation 9 to correct for this effect and calculate estimates f̂k for the the rates at site k as follows:

f̂k =
1

b̂
· ln
(

1− 〈pk〉
â

)
(11)

It must be pointed out that the site-specific rates change the relationship between genetic distance and

observed differences (Fig. 3B). For correcting the site-specific rates we use the estimates for â and b̂ from

our model without site-specific rates. So this is only an approximation and one could think about iteratively

refining the estimates. However, we found that this approach already yields accurate rates within one step

as can be seen in Fig. 3D. Using the model with site-specific rates, the simulated alignments have on average

almost exactly the same site-wise MPI as the original one.

The reader will notice that the first three points deviate from the diagonal. This illustrates a limitation

of our method. With our simulation procedure we can on average only reach the level of saturation even

if we use very high rates. It is possible, however, that the original data contains sites below the level of

saturation. For example in a four way alignment a column can be ACGT, i.e. MPI=0. However, we cannot

simulate on average columns with MPI=0, since the MPI is bounded below by zero and our simulations will

always contain columns with MPI > 0. In practice this does not seem to cause any obvious problems in

particular when we have many sequences where it is unlikely to see columns below saturation.

2.4.4 Gaps

Gaps have been ignored completely so far. There are evolutionary models including gaps [43–46] and it

would be possible to include this in our simulation algorithm. However, this does not appear practical in our

case. Alignment programs produce gap patterns that do not necessarily reflect phylogenetically reasonable

insertion/deletion events [47] and thus cannot always be captured by an idealized model that is motivated

by evolutionary processes and ignores algorithmic idiosyncrasies of alignment programs. Moreover, it is

difficult to estimate reasonable gap model parameters on relatively short alignments which hold only little

information.

So we follow here a very pragmatic strategy that has also been used previously [5]: We keep exactly the

same gap pattern in our randomized alignments as in the original alignment. To this end, we simply treat

gaps as missing data and simulate nucleotide characters for the gapped positions. This is done in a way that
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the overall characteristics are not changed when they are replaced with gaps again at the end (see Methods

for details).

2.4.5 Transition/transversion rate ratio

The transition/transversion rate ratio κ is a parameter in our model that cannot be simply counted as

in the case of the dinucleotide frequencies, or empirically determined like the branch lengths. Given that

the influence of this parameter is not that critical as for example the branch length or base composition

(see Fig. 1), one possibility might be to use a fixed transition/transversion ratio if a reasonable average

value is known for the genome at hand. Alternatively, we found that a good estimate can be obtained by

using maximum likelihood on an independent mononucleotide model. We used here the HKY model with

Γ-distributed rates which is closest to our dinucleotide model.

2.5 Putting it together

Fig. 4 gives a short outline over the whole randomization procedure. We start by parametrization our

model: we count the dinucleotides and calculate the corresponding stationary trinucleotide frequencies. A

transition/transversion rate ratio for the alignment is estimated using maximum likelihood under a HKY+Γ

model. Having set these parameters, we empirically estimate the relationship between substitutions and

observed differences with equal rates for each site. This first estimate is used to calculate the site-specific

rates, which are then used for the second estimation. In the next step, the pairwise distances between

all sequences are calculated. For the calculation of the site-specific rates and the pairwise distances gap

characters are treated in a special way as missing data (see Methods). From the distance matrix a tree

is built using the BIONJ algorithm. An ancestral sequence is sampled from a first order Markov model

parametrized according to the dinucleotide frequency in the original alignment. This is used as a starting

sequence for the simulation that is guided by the tree. Finally, the gap pattern of the original alignment is

introduced into the simulated one. Fig. 5 shows our rRNA example and two randomized versions obtained

by this procedure.

3 Implementation

We implemented our method in ANSI C in a program called SISSId. The source code is freely available

under the the GNU Public Licence. The version that was used for this paper is available here: www.tbi.

univie.ac.at/papers/SUPPLEMENTS/SISSIz. Future versions of SISSId will be hosted here: www.cibiv.
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Figure 4: Overview of the algorithm. Left: the steps of the randomization procedure are shown. This algorithm is
implemented in SISSId. Right: In combination with RNAalifold consensus folding the randomization procedure
can be used to calculate z-scores and to predict significant RNA structures (SISSIz). See text for details.

           * *** *  *******     ** * ** ****        ***  ***  *  **  *******   *** 
 sequence1 GTTGCGCTGTGTGATGTTTTCGAGGACGCGTGCATTCAGCTAAATGCGCGCGCCGTGTTTTTCGAA--CATG
 sequence6 GTTGCGCTTTGTGATGCACAAGAAG-CGCGTGCAGTGCATCAAA-GCGCGTGCCGTGATTTTCGAGCGCATT
 sequence4 GTTGCACTGTGTGATGATCAAGAGG-CGCGTGC-TTAGAATAAATGCGCACGCCGTGATTTTCGATCGCATT
 sequence3 GTTGCACTGTGTGATGAACGAGAGG-CGCGTGCATCTCATTAAATCCGCATGCCGTGATTTTCGATAGCATT
 sequence2 GATGCGCATTGTGATGCAACAGAGG-CGTGTGCAGTGTATTAAATGCGCATGACGTCTTTTTCGAGCGCATA
 sequence5 GTTGCGCTGTGTGATGCAAGAGAGG-CGTGTGCATTGAACTAAATGCGCATGTCGTGATTTTCGAACGCATT
 sequence0 GCTGCACTATGTGATGTTCAGGATG-CGCGTGCCAA-AAATAAATGCGCACGATGTGATTTTCGATTGCATC

           ****   * ***** *     ** * ** ****        ***  ****   * *  *******   *** 
 sequence1 CATGTGTGCGCTGCATGAATAGCAAAAGCTTTAATGAAAACATGTTTGAAGTTTGAATGCACGATG--TTGC
 sequence6 CATGTGCGTGCTGCATGCAATGCGA-AGGTTTAGTTAGTTGATG-TTGAAGCTTCAATGCACGATGCGTTGA
 sequence4 CATGTGCGTGCTGCTTGCGTTGCAA-AGGTTTA-TTATGAGATGCTTGAATCATCAATGCACGATGAGTTGA
 sequence3 CATGTTCGTGCTGCTTTCGTTGCAA-AGGTTTAGTGATGAAATGTTTGAATCATGAATGCACGATGAGTTGA
 sequence2 CATGAGCGTGCTGCATGCGTTGCAA-AGGTTTAGTTCACGCATGCATGAAAGATGATTGCACGATGCGTTGA
 sequence5 CATGTGAGCGCTGCTTGTGATGCAA-AGGTTTAGTGAAGAGATGATTGAAAGATCAATGCACGATTTGTTGA
 sequence0 CATGTGTGTGCTGCTTCAGTCGCAA-AGGTTTATCA-TGTGATGCTTGAATCATCAACGCACGATGTGTTGA

                   * **     ***** *     ** * **  ***        ***  ***      *  *******   *** 
  L25635.1_211-360 GCAGCGAACTGCGAAACGCAATGTGGAATTGCAGAATTCAGTGAATCATCAGATTTCTGAACGCAA--TGCA
 M36008.1_959-1112 GCAGCTAGCTGCGAGAATTAGTGTG-AATTGCAGGACACATTGA-TCATCGACACTTCGAACGCACCTTGCG
U35394.1_2008-2158 GTAGTAGAATGCGATACATAATGTG-AATTGCA-AATCCTGTGAATCATTGAGTTTTTGAACGCACATTGCA
U10409.1_2025-2178 GCAGCGAATTGCGATAAGTAATGTG-AATTGCAGATTTTCGTGAATCATCGAATCTTTGAACGCATATTGCG
AF444327.1_152-305 GCAGCGAAATGCGATAAGTAATGTG-AATTGCAGAATTCAGTGAATCATCGAGTCTTTGAACGCAACTTGCG
  D10840.1_200-355 GTAGCGAAATGCGATACTTGGTGTG-AATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCG
  Y07976.1_124-271 GCAGCGAAATGCGATACGTAATGCG-AAACGCATCA-GTAGTGAGTCATCGAAACTTTGAACGCAACTTGCA

Original
alignment

al
ig

nm
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do

m
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Figure 5: Example of randomized alignments. Part of the example alignment used in Fig. 3 are shown. The grey
bars indicate the level of local conservation. Exactly conserved sites are marked by asterisks.
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at/software/sissi.

In addition we have implemented a program SISSIz that predicts RNA consensus secondary structures

using the RNAalifold algorithm allowing to calculate z-scores as described in more detail below. SISSIz

can be used as a stand-alone RNA gene prediction program similar to the Perl program AlifoldZ [5]. It is

available with the supplement of this paper and will be included in an upcoming release of the RNAz software

package that is available here: www.tbi.univie.ac.at/~wash/RNAz.

Some words on running time: One might suspect that the randomization algorithm including two times

the sampling procedure to estimate the parameters of equation 9 and the maximum likelihood estimation

of the transition transversion rate ratio is relatively slow. Indeed, it is much slower than for example

randomization by shuffling, but still very fast. To build the model for our example of 7 rRNAs of 158 length

takes 0.2 seconds on a modern Intel Core 2 Quad CPU at 2.4 GHz. To simulate 1000 alignments using this

model takes another 0.6 seconds.

4 Testing

4.1 Randomizing vertebrate genomic alignments

We tested our randomization method on vertebrate genomic alignments. In a setting similar to recent

genomic screens in vertebrates [11,20], we extracted Multiz [48] alignment blocks from human chromosome

1. We randomly selected 1000 alignment blocks between 70 and 120 in length and between 4 and 10

sequences without considering annotation information of any sort. These alignments are meant to represent

an unbiased “genomic background” that may also contain functional elements like coding exons or structured

RNAs depending on their frequency in the genome.

The alignments were randomized using our new simulation procedure with both the dinucleotide and

the mononucleotide model. In addition, we shuffled the alignments using shuffle-aln.pl. The global

distribution of dinucleotides for the original and randomized data is shown in Fig. 6. As expected, the

shuffling approach and the mononucleotide simulation give the same results. The dinucleotide distribution

obtained by these methods, however, differs from the distribution in the native alignments. One can see for

example the well known under-representation of CpGs in the native genomic data. Using our dinucleotide

based model, we obtain simulated alignments which are statistically indistinguishable from the native data

in terms of their average dinucleotide content.

Also the observed sequence diversity of the simulated alignments closely follows the original data as shown

in Fig. 7. 98.7% of the simulated alignments are within a range of ±0.05 mean pairwise identity compared
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Figure 6: Dinucleotide frequencies of genomic alignments. 1000 vertebrate genome alignments were randomized
using three different methods. The dinucleotide frequency of the native and randomized data is shown as box-plots.

to the original alignments. It must be noted, that the distribution in Fig. 7 has a mean of +0.007 which

indicates a subtle bias of the simulations towards higher MPIs. We suspect that this is an indirect result

of the way we estimate site-specific rates and related to the issue of sites below saturation discussed before.

However, this deviation does not have any practical consequences since it represents a conservative bias in

the context of RNA folding controls and, more importantly, seems to be too small to have any noticeable

effect at all.

4.2 Influence of randomization procedure on RNA predictions

The main motivation of this paper is to provide dinucleotide based controls for comparative RNA gene

predictions. Therefore, we ran RNAalifold and RNAz on the alignments to demonstrate how different ran-

domization procedures affect the results. Fig. 8A shows the distribution of RNAalifold consensus MFEs on

the genomic alignments and their different randomizations. One can see that the genomic alignments show

the most stable structures. There is a clear difference between the native genomic alignments and the shuffled

and mononucleotide simulated ones. However, the folding energies of the dinucleotide simulated alignments

are much closer to the native data. This difference between the di- and mononucleotide simulations reflects

the bias caused by the genomic dinucleotide content. The difference between the native and the dinucleotide
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Figure 7: Mean pairwise identity in randomized genomic alignments. The distribution of the difference of the
mean pairwise identity between the original genomic alignments and the simulated ones (dinucleotide model) is
shown.

controls indicates the existence of RNA signals in the genome or, alternatively, another as yet unidentified

bias.

Clearly, the differences shown here in these cumulative histograms might appear very subtle. The results

for the RNAz predictions, however, show that such differences can strongly affect the statistics of RNA gene

predictions (Fig. 8B). On this particular test set, RNAz predicts RNA signals in 4.3% of the native alignments.

Using the conventional shuffling strategy or mononucleotide based simulation one would estimate a false

positive rate of 0.8% or 0.7%, respectively. Using the more conservative dinucleotide based model the

estimate would be 2.1%, i.e. three times higher. This is consistent with the results obtained by Babak et al.

using their dinucleotide shuffling approach on pairwise alignments.

4.3 Calculating z-scores

We can directly assess the significance of a predicted RNA by calculating a z-score. The folding energy of the

native data m and the mean µ and standard deviation σ of randomized data is calculated. The significance

of the native fold can then be expressed as z = (m − µ)/σ, i.e. the number of standard deviations from

the mean. This score has been repeatedly used on single sequences applying mono- or dinucleotide shuffling

or simulation using a zero or first order Markov model [23, 24]. Using shuffled alignments as null model,

this approach is implemented in AlifoldZ [5]. The same strategy can be used in combination with our new

dinucleotide base randomization strategy without any further modifications (Fig. 4).
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Figure 8: Influence of the randomization procedure on RNA predictions. (A) Cumulative frequency distribution
of RNAalifold consensus folding energies for the native and randomized alignments. (B) Cumulative frequency
distribution of RNAz scores. The “decision-value” is the result of the support vector machine classification.
Positive values indicate a potential functional RNA while negative values indicate no significant fold. The positive
tail is magnified.
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We calculated z-scores for the genomic background alignments of chromosome 1 and three sets of well

annotated structural RNAs (H/ACA snoRNAs, miRNAs and tRNAs). A sample size of 1000 randomizations

was used. The results are summarized in Tab. 1. Using mononucleotide based randomization the z-scores

of the genomic background are approximately half a standard deviation from zero (−0.45 and −0.54, for

shuffling and mononucleotide simulation respectively). Albeit the signal does not vanish completely, the

dinucleotide based z-scores are much closer to zero (−0.12). As a result, the fraction of predicted RNAs is

lower. For the two z-score cutoffs of −2 and −3 we observe three times fewer predictions, consistent with

the RNAz results discussed before.

For the structural RNAs, we also observe that mononucleotide simulated z-scores are lower than the

dinucleotide simulated ones. Here, a dinucleotide content that favors stable RNA structures is clearly not

only a general background effect of the genomic base composition but a feature of structural RNAs. However,

this signal is lost if the more conservative dinucleotide based null model is used.

Interestingly, on the structural RNAs the z-scores obtained by shuffling are the most significant and

generally below the z-scores obtained by mononucleotide simulation. This is remarkable because on structural

RNAs shuffling has the disadvantage that the signal from compensatory mutations is not entirely removed.

The number of “compatible” columns that can form a consensus base-pair remains unchanged. Therefore,

the average consensus MFE is closer to the original one as can be seen for example in the case of the snoRNAs

that have many compensatory mutations. This should result in a conservative z-score closer to zero, the

opposite of what we observe. The reason is the different standard deviations which is lower for shuffling than

for simulation.

This shows that there are many effects that have to be taken into account. To test how the overall

classification performance of a z-score based RNA gene prediction approach depends on the null model, we

generated receiver operating characteristic curves for the different approaches (Fig. 9). We ask how well

the true ncRNAs can be distinguished from the background alignments from chromosome 1. Indeed, the

dinucleotide based model shows a better overall classification performance than mononucleotide simulation

or shuffling. However, in the regions of high specificity which are the only relevant regions for practical

applications, we do not see a marked difference between the methods in terms of sensitivity. At a false

positive rate of 0.05 we obtain sensitivities of 0.84, 0.84 and 0.88 for mononucleotide shuffling, mononucleotide

simulation and dinucleotide simulation, respectively. At a false positive rate of 0.01 all methods essentially

perform equally well (see zoomed ROC curve in Fig. 9).
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Table 1: z-scores statistic of genomic background and structured RNAs

Consensus MFE1 Fraction below cutoff

Data type Null model Native Mean Stdv. z1 −2 −3 −4

Background Shuffling −5.50 −4.55 1.92 −0.45 0.09 0.03 0.01
SISSI mono −5.50 −4.19 2.16 −0.54 0.09 0.03 0.01
SISSI di −5.50 −5.09 2.46 −0.12 0.03 0.01 0.00

snoRNA Shuffling −34.69 −19.41 3.12 −4.97 0.86 0.77 0.61
SISSI mono −34.69 −17.13 3.84 −4.72 0.90 0.78 0.65
SISSI di −34.69 −17.99 4.09 −4.17 0.82 0.73 0.52

miRNA Shuffling −30.84 −13.85 2.75 −6.18 0.94 0.92 0.85
SISSI mono −30.84 −13.04 3.15 −5.80 0.95 0.90 0.83
SISSI di −30.84 −14.19 3.38 −5.05 0.94 0.85 0.74

tRNA Shuffling −29.80 −23.16 3.15 −2.12 0.49 0.13 0.00
SISSI mono −29.80 −22.98 3.50 −1.95 0.49 0.07 0.00
SISSI di −29.80 −23.24 3.66 −1.80 0.36 0.04 0.00

1The average of all examples in the test set is shown.
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Figure 9: Accuracy of z-score based classification of structured RNAs. As a positive examples we used tRNAs,
H/ACA snoRNAs, and miRNAs. As negative examples we used alignments randomly chosen from the genome.
ROC curves are shown in dependence on the null model used. The relevant high specificity area is magnified.
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5 Discussion

Any experiment is only as good as its controls. What is true for experimental biology clearly also holds in

the field of computational biology. The value of even the most sophisticated algorithm remains unclear if

the significance of the results cannot be assessed properly. In this paper we addressed the problem of finding

an adequate control strategy for comparative noncoding RNA predictions, which are started to get widely

used for genome annotation.

Babak et al. demonstrated that currently used null models based on mononucleotide shuffling lead to an

underestimation of the false positive rate in such screens. Although single opinions may be different [49], it

is generally accepted that in the context of RNA gene prediction one should consider dinucleotide content as

“background” rather than “signal”. However, while there have been dinucleotide controlled randomization

algorithms for single sequences for more than 20 years, it is a non-trivial problem in the case of multiple

sequence alignments.

Here we devised a simulation procedure that produces alignments that have on average a given din-

ucleotide frequency and sequence diversity (globally and locally). The corresponding model needs to be

relatively complex including overlapping dependencies and site-specific rates. Clearly, this model with a

high number of parameters would not be a reasonable choice for use in phylogenetic analysis, but it turned

out to be a good choice for this specific application.

We have to use heuristics and simplifications to estimate the tree and parameters for this model in

reasonable time. The accuracy of our approach is measured in terms of how well the simulations reflect

the properties of the original data. In this respect, we found that our strategy performs very well. Again,

phylogenetic analysis was not the goal here, but some of the techniques introduced here might be of interest

in this context. For example, we found that in the mononucleotide case our estimations for site-specific rates

are surprisingly competitive when compared to the currently best maximum likelihood methods (data not

shown).

The influence of the null model for genomic RNA predictions was found to be remarkable. Consistent with

Babak and colleagues’ findings on pairwise alignments, we observed three times more false positives using

dinucleotide controls than using mononucleotide controls. This clearly shows that the new approach should

be the method of choice to get more sensible estimates of the significance of comparative RNA predictions.

Following the idea of AlifoldZ, we can use our new null model to directly predict significant RNA

structures. The z-scores calculated this way are not biased by the dinucleotide content. SISSIz is thus

the first comparative gene finding program, that explicitely corrects for this effect. However, by using
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this conservative null model we also loose part of the signal in true structured RNAs. This might be the

main reason, why we observed only minor improvements in the overall classification performance compared

to AlifoldZ. This does not necessarily generalize to other gene finders. AlifoldZ generally gives very

significant results on well conserved RNAs as used in the test here and is relatively specific. On this test

set which is relatively easy to classify (sensitivities higher than 80% at reasonable specificities) the choice of

the null model might not be that critical. However, in more difficult cases with only weak RNA signals a

dinucleotide model could give more improvements. In such cases the RNAz algorithm is preferable. However,

there is still no RNAz version based on a dinucleotide model, mainly for two reasons. First, it is still an

unsolved question how to compute dinucleotide based z-scores efficiently without shuffling. Second, so far

there was no way to produce a dinucleotide controlled negative test set that is necessary for training of the

support vector machine [6]. With the method presented here, at least the second problem is now solved.

Finally, we want to add that our randomization algorithm is not only of interest in the context of RNA

gene prediction. It can be used for other comparative genomics applications whenever random alignments are

needed as control. One could consider other applications in the context of RNA structures (e.g. prediction

of conserved miRNA target sites) but also in different context (e.g. conserved sequence motifs). Currently

our software implements a mono- and dinucleotide model which should be sufficient for many applications.

In principle, however, it is also possible to consider higher order correlations within this framework.

6 Methods

6.1 Treating gaps

Gapped positions are treated as missing data. When counting the dinucleotide content, dinucleotides in-

cluding a gap (N-, -N, --) are ignored. During simulation, gap positions are filled with nucleotides and

gaps are re-introduced afterwards. Note that this way, if two nucleotides N1 and N2 are separated by a gap

(e.g. N1----N2) the dinucleotide N1N2 is not in equilibrium. Depending on how gaps are treated in the

downstream analysis this might be or might not be of concern. In any case, since not every gap position but

only every gap opened is affected, this (potential) error is generally very small for reasonable alignments. So

we did not consider correcting for this effect which would require reconstructing the gap history and setting

lineage specific neighbourhood systems.

For calculating the site-specific rates, we also treat gaps as missing data and calculate 〈pk〉 in eq. 10

only over non-gap positions. After the simulation, the whole column has on average 〈pk〉 estimated from the

non-gap positions that does not change when originally gapped positions are masked again. For calculating
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the observed differences p between two sequences we set positions that includes gaps to the average 〈pk〉 at

this site.

6.2 Distances above the level of saturation

When calculating genetic distances between two sequences the problem may occur that the observed number

of differences is higher than the level of saturation. We found that this problem becomes severe when

considering site-specific rates that generally lead to much lower levels of saturation (cf. Fig. 3B). We use

a simple trick to overcome this limitation. We add additional sites during the simulation with site-specific

rates that correspond to the average of the whole alignment (i.e. 〈pk〉 is set to 1-MPI in eq. 11 for all these

additional sites). They act as “buffer sites” that reduces the number of mutation events that repeatedly

hit the same sites of high rate leading to many double substitutions. As a consequence, the overall level of

observed differences is higher and we do not run into problems building the distance matrix. In the end, the

sites are removed again and since the relative rate ratios between the sites remained unchanged, we get the

desired site-specific mutation patterns.

6.3 Limiting base composition variation

During the testing of the influence of the randomization procedure on RNA folding, we made an interesting

observation. As expected, the variance of the folding energies of randomized data is higher with simulation

than with shuffling. However, we also observed that there is difference in the mean. Simulation leads

to slightly higher (i.e. less stable) folding energies than shuffling. We observed this behaviour not only on

multiple alignments but also on single sequences using shuffling vs. first order Markov simulation. We suspect

that extreme deviations in the base composition that can occur in simulated data do not symmetrically lead

to the same deviations of the folding energies but preferentially impair the formation of RNA structures.

To compensate for this effect, we have introduced an option in our software that only outputs simulated

alignments, that are within a specific range of mononucleotide frequencies. We can thus limit our simulations

to mononucleotide frequencies that are almost exactly as in the original data. As a distance measure we

use the Euclidean distance
∑
α∈A,G,C,T

√
(πsα − πα)2 with πα the desired frequency of nucleotide α in the

original alignment, and πsα the observed frequency in the simulation. For all the data shown in Figs. 8,9 and

Tab. 1 we used simulations with this cutoff set to 0.05.
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6.4 Software

For the simulations in Figs. 1 we used seq-gen version 1.3.2 (http://tree.bio.ed.ac.uk/software/

seqgen, [50]) Monunucleotide shuffling was carried out using shuffle-aln.pl with option “--mode

conservative2”. Together with alifoldz.pl it is available here: http://www.tbi.univie.ac.at/papers/

SUPPLEMENTS/Alifoldz. For the tests in Figs. 1 and 8 and we used RNAalifold from the Vienna RNA

package version 1.6.1. with options “-nc 0 -cv 0” (www.tbi.univie.ac.at/~ivo/RNA, [51]) and RNAz

version 1.0 with standard parameters (www.tbi.univie.ac.at/~wash/RNAz). For implementation of our

software we used a series of third party C-code that is available as open source: levmar by Manolis

Lourakis (http://www.ics.forth.gr/~lourakis/levmar) for least squares fitting, BIONJ by Olivier Gas-

cuel (http://www.crt.umontreal.ca/~olivierg/bionj.html, [41]), PHYML by Stéphane Guindon and

Olivier Gascuel (http://atgc.lirmm.fr/phyml, [52]) for maximum likelihood estimation of the transi-

tion/transversion rate, Vienna RNA package by Ivo L. Hofacker and others for consensus folding in SISSIz.

6.5 Genomic data

The genomic example alignments were extracted from Multiz 17-way vertebrate alignments available at the

UCSC genome browser (genome.ucsc.edu, [53]). We used the rnazWindow.pl script from the RNAz software

package (www.tbi.univie.ac.at/~wash/RNAz, [54]) to get typical alignment blocks as used previously in

genomic ncRNA screens (e.g. [20] or [14]). For set of structural RNAs we extracted annotated H/ACA

snoRNAs, miRNAs and tRNAs (excluding any pseudogene annotations). We chose this set of RNAs because

it is currently the only reliable annotation of known ncRNAs with a reasonable number of examples and

relatively different characteristics. It should be noted, that the tRNAs are poorly represented in the align-

ments used (either no homologuous sequences at all, or very closely related species are aligned). Therefore

they only give relatively insignificant z-scores in Tab. 1 in contrast to previous studies [5].

The test alignments are available for download here: www.tbi.univie.ac.at/papers/SUPPLEMENTS/

SISSIz.
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