
Beyond Energy Minimization: Approaches to

the kinetic Folding of RNA

Christoph Flamm a, Ivo L. Hofacker a,

aInstitute of Theoretical Chemistry

University of Vienna, Währingerstraße 17, 1090 Wien, Austria

Abstract

The term RNA folding is often used synonymously with the prediction of equilibrium
structures. Yet many RNAs function thanks to their ability to undergo structural
changes. In this contribution we present a systematic overview of existing approaches
to the prediction of RNA folding kinetics, and in particular discuss the strengths
and limitations of each method.
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Introduction

Most functional RNA molecules depend on their structure to perform their
respective function. RNA secondary structures have established themselves as
the most convenient level of description, mostly because of the availability
of efficient algorithms to predict the structure of minimum free energy [1–3].
In fact, on the level of secondary structures, any equilibrium property of an
RNA molecule can be computed either directly via the partition function over
all structures [4] or by sampling structures from the Boltzmann ensemble [5].
Nevertheless, the equilibrium view of RNA folding can be misleading: The time
needed to reach equilibrium can become very long and, since RNAs in the cell
have high turnover, may easily exceed the lifetime of the RNA molecule.

The tendency of RNA molecules to form long-lived folding intermediates is
a direct consequence of the high stability of RNA helices. It is therefore not
surprising that nature makes use of this feature to produce RNAs that can
switch between conformational states with different function.

It is still an open question to what extent the functional structures of natural
RNAs are determined by folding kinetics rather than equilibrium thermo-
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dynamics. Nevertheless, there is a growing number of well-studied examples
where RNA function is clearly mediated by structural changes, and thus the
static view of RNA structure is insufficient.

The renewed interest in RNA as a versatile biomolecule has also inspired di-
verse experimental approaches to measure folding kinetics in detail, ranging
from classical temperature jump experiments [6] to time-resolved NMR spec-
troscopy [7, 8] and single molecular methods [9]. In this contribution we aim
to provide an overview of the different computational strategies for modeling
RNA folding kinetics and discuss strengths and limitations of the respective
approaches.

Evidence for Kinetic Folding in Natural RNAs

Moreover, in a cellular context the nascent RNA molecule starts folding before
the transcription process is completed and the folded structure may therefore
depend on the speed of elongation, site-specific pausing of the RNA poly-
merase, and interactions of the nascent RNA molecule with proteins or small-
molecule metabolites [10, 11].

In naturally occurring (m)RNAs two broad classes of structural elements,
capable of toggling between alternative conformations, can be observed which
differ mainly in their switching mechanism. To the first class belong structure
elements whose functions are triggered by a local or global external signals such
as temperature, pH, or binding of small metabolites. These types of elements
therefore function as a sensor, and are often located in the 5’-UTRs of mRNAs,
in particular of fundamental metabolic genes [12]. Typical examples include
RNA thermometers [13] or Riboswitches [14].

Riboswitches, for example, are common regulatory elements in bacteria. In
general, they can be divided into an aptamer part that binds to a small
metabolite and an “expression platform” whose structure modulates gene
expression. Conformational changes in the aptamer part are relayed to the
expression platform where translation can be modulated by changing the ac-
cessibility of the ribosome entry site. Similarly, transcription can be effected
by the formation (or destruction) of a terminator hairpin. Riboswitches con-
trol gene expression directly without any intermediates, and thus allow an
extremely rapid response to environmental changes. They can be found in all
kingdoms and are presumably one of the oldest regulatory mechanisms [15].

The second class are “self-induced” RNA switches [16], that are initially
present in a long-lived metastable state, that eventually re-folds spontaneously
without an outside trigger. Self-induced switches allow to limit biologically
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functional properties of RNA structures to certain time windows. The most
prominent examples are the attenuation regulation of bacterial amino acid
bio-synthetic operons [17] or the hok/soc RNA antitoxin system [18] for the
maintenance of R1 plasmid in E. coli.

A deeper understanding of how this additional layer of RNA regulation in-
tegrates into cell-wide regulatory circuits requires the study of the folding
kinetics of RNA. Furthermore, several computational studies suggest that
the folding pathways of naturally occurring RNAs are encoded within their
primary sequences [19–21]. In other words, evolution has optimized the co-
transcriptional folding pathway of these sequences by employing strategies
like transient structural elements guiding the folding or the suppression of
the formation of alternative helices that would compete with the functional
structure.

Modeling the Folding Process

Most approaches to kinetic RNA folding aim to directly model the physical
folding process. All these approaches are based on a straightforward descrip-
tion of folding in terms of a stochastic process. In general any such model is
defined by three key ingredients: (i) The state space, comprising the set of
structures or conformations a given RNA sequence may assume, (ii) a move-

set defining the elementary transitions that can occur between such confor-
mations, and (iii) transition rates for each of these allowed transitions.

The folding process can now be described as a continuous time Markov process,
governed by a master equation for the state probabilities Px(t) of observing
state x at time t.

dPx(t)

dt
=

∑

y 6=x

[Py(t)kxy − Px(t)kyx]. (1)

kxy is the transition rate from state y to state x, with kxy > 0 for all transi-
tions allowed by the move set. Conservation of probability, i.e. the fact that
∑

x Px(t) = 1 for all t, implies that the diagonal elements kxx = −
∑

x 6=y kyx.

Since we aim to describe a physical process that converges towards thermo-
dynamic equilibrium in the limit of long time, the move-set and rates have
to meet additional ergodicity requirements. Firstly, the Markov chain should
be irreducible, i.e. it should be possible to reach every conformation y from
any starting conformation x using a finite number of moves. Secondly, the
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transition rates should fulfill the detailed balance condition

πykxy = πxkyx. (2)

Here πx the is the stationary distribution of the process, which in our case
should be the Boltzmann distribution πx = exp(−∆G(x)/RT )/Z, with ∆G(x)
the free energy of state x and Z the partition function Z =

∑

x exp(−∆G(x)/RT ).
If the above conditions are fulfilled, Markov chain theory guarantees that the
stationary state πx is unique and limt→∞ Px(t) = πx for any initial condition
Px(0).

As an example, let’s consider the simple model folding kinetics in the space
of secondary structures, as used e.g. in the kinfold program [22]. Given an
RNA molecule with sequence s, the state space is given by the set of secondary
structures X that are compatible with s. , i.e. structures that can be formed
by sequence s while considering only Watson-Crick (GC, AU) and wobble (GU)
pairs and avoiding pseudo-knots.

The simplest move-set considers only addition and removal of single base pairs.
In other words a transition between conformation x and y is allowed only if the
two structures differ by a single base pair. It is easy to see that this move-set is
ergodic, since any structure x can be converted into the “open chain” structure
containing no base pairs, by successively removing all base pairs. Note also,
that move-sets introduce a notion of distance between conformations as the
minimum number of moves needed to move from x to y. In the case of single
base pair addition and removal this is known as the “base-pair distance”.

For pseudoknot-free secondary structures there is a well established energy
model that assigns a free energy to every structure based on the Turner energy
rules [23–25]. Based on these energies the Metropolis rule [26] is the simplest
and most widely used rule to obtain transition rates that satisfy detailed
balance:

kxy = Γ · max
(

1, e(∆G(x)−∆G(y))/RT
)

(3)

The constant Γ sets the time-scale of the process and should be chosen by
comparison with experiment.

Other possibilities for the choice of conformation space, move-set, and rate
models will be described below. Note that the master equation 1 can be written
in vector form with K = (kxy) the transition rate matrix

d

dt
P (t) = KP (t) (4)
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This equation gives rise to the formal solution

P (t) = et·KP (0) (5)

where P (0) is the initial distribution vector.

Simulation Techniques

If the the dimension of K, i.e. the total number of conformations, is small
enough to allow diagonalization, then the complete folding behavior can be
computed with ease for arbitrarily long times. In most cases, however, the size
of the conformation space makes this approach infeasible, and the only prac-
tical recourse is stochastic simulation of eq.(4) using Monte-Carlo techniques.

It may be worth noting that special care has to be taken in Monte-Carlo
simulation to conserve detailed balance, since the number of neighbors for
different conformations is not constant. In a basic rejection based Monte-
Carlo implementation the transition rate for the move x → y is the product
of two parts, the a priori probability to attempt a certain move A(x → y)
times the acceptance probability P(x → y). Normally, one would simply chose
a neighbor at random, and thus A is the inverse of the number of neighbors
of the start conformation A(x → y) = 1/|N (x)|. Since this is not constant,
using the Metropolis rule for the acceptance probability does not guarantee
detailed balance.

One way to circumvent this problem is to use a rejectionless Monte-Carlo
approach. In this Monte-Carlo variant, all possible moves from the start con-
formation x are evaluated and the new conformation y is chosen from this
list with probability P (x → y) = k(x → y)/

∑

z k(x → z). The clock is
then advanced by a value ∆t chosen from a Poisson distribution with mean
1/

∑

z k(x → z). This algorithm is known in physics as the “n-fold way” or
“Bortz-Kalos-Liebowitz (BKL)” method [27], while in chemistry it is usually
referred to as the Gillespie algorithm [28].

Rather than perform Monte-Carlo at constant temperature one may use sim-
ulated annealing techniques in order to accelerate folding [29]. Here the simu-
lation starts at a high temperature which is gradually lowered to physiological
temperature. It should be noted that the folding pathway obtained along such
a cooling schedule need not coincide with the folding pathway at constant tem-
perature. Finally, some authors use optimization techniques such as genetic
algorithms rather than Monte Carlo simulation. Note that the cross-over oper-
ation employed in genetic algorithms has no equivalent in the physical folding
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process. Nevertheless, the technique has been used to predict likely folding
pathways [30, 31].

As we will see below most existing approaches are based on the model de-
scribed here and mainly differ in the set of allowed conformations (e.g. with
or without pseudo-knots), the move-set, as well as the energy rules and result-
ing rate model.

Move Sets and Coarse Grained Configuration Spaces

As mentioned above, the most elementary move-set consists only of base-
pair insertion and deletion and corresponds to the smallest possible steps in
conformation space. While this allows the most detailed description of fold-
ing pathways, it necessarily leads to extremely long simulation runs. Many
approaches therefore choose to allow larger structural changes by using the
formation or destruction of an entire helix as the basic step. This allows to
explore the conformation space in a much smaller number of steps and conse-
quently enables the simulation of larger RNAs up the size of large ribosomal
RNAs. An intermediate between base pair moves and helix moves that allows
changing several uncorrelated base pairs in a single time step is introduced
in [32].

Helix based methods usually start by compiling a list of all allowed helices,
where typically only saturated helices are used, that cannot be extended on
either side. In order to keep the list small a minimum helix length of typically
3 or 4 is required.

In the simplest version, a helix is either present in it’s entirety or completely
absent. Thus, an allowed conformation is uniquely determined by the set of
helices that are present in the structure, and may be represented by a binary
vector that specifies which helices are present and which are absent. Clearly,
only non-overlapping helices can be present simultaneously in any given struc-
ture. Folding simulations in this scenario are no more complicated than in the
case of single base pair moves. The space of allowed conformations is however
severely restricted. The problem is that two long helices are mutually exclu-
sive if they overlap even by a single base. Any conformation where one helix
is shortened in order to accommodate another is thus excluded.

It is therefore common to include conformations with partial helices [33–36].
An insertion move may now insert a partial helix or even shorten existing
helices in order to make room. This is followed by a local optimization where
the extents of conflicting helices are optimized to obtain a structure that is a
local energy minimum. While this has been used quite successfully in practice,
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Fig. 1. Conflict resolution for helix kinetics and a scenario for possible violation
of reversibility. In the first step helix C is inserted. Since helices B and C partially
overlap, the end point k is optimized leading to a shortened helix B’. In the next two
steps helix A is destroyed and re-formed. However, helices A and B partially overlap,
and since helix B has already been shortened after insertion of C, optimization of
the cut-point between A and B results in an elongated A with B being eliminated.
Thus, removal and re-insertion of helix A did not restore the original conformation,
the Markov chain is not reversible.

from the theoretical point of view there are some caveats.

Given a set of helices, the concrete structure that is produced by inserting
these helices will in general depend on the order in which they were inserted.
This makes it difficult to even judge how many different conformations can
be formed by the algorithm. Moreover, it is in general not possible to ensure
that the resulting Markov process is reversible. The exact way this conflict
resolution is done varies between implementations, but in all cases it is a local
optimization procedure that affects only helices adjacent to the newly inserted
of destroyed helix. As a consequence it cannot be guaranteed that a series of
moves, followed by their corresponding reverse moves recovers the original
structure. An example for such a scenario is shown in figure 1. In practice, one
assumes that such cases are rare and should therefore introduce no noticeable
artifacts.

Kinetic Rate Models

The detailed balance requirement (2) leaves much freedom in the choice of ki-
netic rates, as it fixes only the ratio between forward and backward rates. The
usual Ansatz is to define transition state and set the rate using the Arrhenius
equation

kxy = Γ exp
(

−(∆G†
xy − ∆G(x))/RT

)

(6)
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where ∆G†
xy is the free energy of the transition state. The Metropolis rule

(3) thus identifies the transition state with the energetically higher of the two
states x and y. In general the exact rate model matters less when moves are
small such as in the case of single base pair moves. Such simulations there-
fore often simply use the Metropolis rule. Simulations using the symmetric
“Kawasaki” rule k = Γ exp(−∆G/(2RT )), where ∆G is the free energy differ-
ence between the two states, showed qualitatively the same behavior. Never-
theless, Schmitz and Steger [29] suggest to split ∆G into two parts, the change
in free energy from stacking interactions and the change in loop entropies. The
change in stacking energy is then used for the barrier when opening a base
pair, while the change in loop energy is used when closing a pair. Thus the
transition state corresponds to a conformation where loop penalties for bring-
ing the bases together has been paid, but the energetically favorable stacking
interactions have not yet been established.

For helix based moves the quality of the rate model is much more important.
Tacker et al. [37] propose a rate model for helix moves similar to that described
for single base pairs above: The (mostly entropic) change in loop energies is
used as activation energy when forming a helix while the change in stacking
free energies is used when opening a helix. The same approach was adopted
e.g. in [38,39]. Similarly Zhang and Chen [40] use the total change in entropy
when forming helices and the total change in enthalpy when destroying them.

In Isambert’s’ Kinefold program [35] the insertion of a helix is initiated by in-
serting a nucleus of usually length 3, choosing the energetically best nucleation
point. The rate of helix formation is then given by an Arrhenius law using the
free energy barrier for nucleation. This barrier is given by the entropic penalty
incurred by inserting the nucleus. The nucleation site may overlap an existing
helix, in which case that helix has to be shrunk to make room for the nucleus.
In this case the free energy necessary to shrink the helix is added to the barrier
as well.

In all cases the prefactor Γ can be chosen to fit experimentally measured
re-folding times.

Energy Rules

Free energies for RNA secondary structures are normally modeled using the
so-called nearest neighbor model, and parameters for this model have been
derived in the Turner group based on a large number of oligo-nucleotide melt-
ing experiments [23–25]. This model, however, does not include energies for
pseudo-knotted structures. Pseudo-knots are often neglected because it is algo-
rithmically difficult to include them in the dynamic programming algorithms
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used for predicting optimal structures. Kinetic folding algorithms, however,
do not share this problem, and consequently many kinetic folding programs
explicitly allow pseudo-knots.

The free energy of a pseudo-knotted structure is primarily composed of two
contributions, a stabilizing one arising from the base stacking in the helices
and a destabilizing one stemming from the loss in entropy of the looped re-
gions. While the former contribution is accurately described by the nearest-
neighbor energy model, the challenge lies in obtaining a realistic estimate
of the loop entropies. Modeling these pseudo-knot energies is more difficult
than for regular secondary structures in several respects: (i) There are almost
no thermodynamic measurements for pseudo-knotted structures. (ii) While a
PseudoBase [41] lists a moderate number of pseudo-knotted structures, most
of these are small H-type knots. (iii) While any pseudo-knot free secondary
structure is at least sterically feasible, most hypothetical pseudo-knotted struc-
tures are not [42]. With the exception of some models for H-type pseudo-
knots [43,44], existing approaches are therefore based on statistical mechanics
models of simple polymer chains, rather than thermodynamic measurements,
e.g. [35, 45–48].

Chen and Dill [45, 49], apparently inspired by successful work on lattice pro-
tein models, developed one of the first statistical mechanics polymer models
of RNA. In their model, a secondary structure is represented as a self-avoiding
walk on a 2D square lattice, where each nucleotide occupies one lattice point.
Hence, excluded volume effects in the loop regions and between substructures
are taken into account in coarse grained manner. The reason for this rather
drastic coarse-graining of RNA molecules is that the conformational partition
function of the lattice RNA representation can be calculated quite efficiently
up to chain lengths of about 200 nts. Starting from the conformational parti-
tion function any desired property of the RNA chain such as melting curves can
be calculated. In an attempt to improve the lattice model predictions of ther-
modynamic properties of RNA conformational change, Zhang and Chen [50]
extended the two-dimensional lattice RNA model to a three-dimensional ver-
sion on a cubic-square lattice.

In an attempt to tighten the correspondence between polymer model and the
“real” RNA structure, Cao and Chen [51] developed a lattice based “atomic”
RNA conformation model. Following Olson’s virtual bond model [52], the
RNA backbone is modeled as chain using two atoms per residue. For the
lattice, Cao and Chen chose the diamond lattice since angles and torsion
angles correspond well to typical values of the virtual bond model. For helical
regions an off-lattice 3D structure is produced initially, again using the virtual
bond model and setting all torsion angles to a standard helical value. This
tertiary structure model is then fitted onto the diamond lattice. Finally, loop
regions are modeled as self-avoiding walks on the diamond lattice such that
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Fig. 2. Left: The H-type pseudo-knot is simplest and by far most common type
of pseudo-knot. Middle: More complicated pseudo-knots such as this are neglected
in most approaches. Right: The corresponding cross-linked Gaussian gel used in
Isambert’s Kinefold to estimate the global part of the conformation entropy.

the end-points of the loops are constrained to the corresponding lattice points
of the embedded helices.

For loop types in normal secondary structures, such as hairpins, bulge and in-
ternal loops the results agree well with loop entropies from the Turner model,
at least for the longer loops. Similarly, simple H-type pseudo-knots can be
modeled well using this approach. Complex pseudo-knots are less amenable
since possible loop configurations have to be sampled separately for each pos-
sible location and orientation all helices. Consequently, the approach has so
far been used only for relatively small examples, including models RNA/RNA
interaction complexes [53] and H-type pseudoknots [54].

Isambert and Siggia [35] attack the problem of assigning a conformational en-
tropy to a knotted structure by decomposing the structure into so-called local
nets (single stranded closed circuits, that enclose up to two internal helices)
and global constrains between the local nets. For the local nets, single stranded
regions are modeled as springs and helices as stiff rods. In this approximation,
entropy contribution of the local nets can be calculated analytically [55]. The
constraints between the local nets are modeled as a cross-linked “Gaussian gel”
obtained by contracting the local nets to single vertices connected by Gaus-
sian springs, see fig. 2. The entropy of this cross-linked gel is then calculated
numerically by algebraic iteration. The approach does not explicitly include
excluded volume except through the persistence length of the RNA chain.
However, among the existing approaches this is the only one that allows for
arbitrarily complex structures. For consistency their Kinefold program uses
the above approach even for loops that are not involved in pseudo-knots and
uses Turner energies only for stacked pairs.
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Heuristic Approaches to Kinetic Folding

All of the above approaches are computationally expensive at least for some-
what longer RNAs. In particular since for stochastic simulation a fairly large
number of trajectories has to be sampled. It is therefore tempting to devise
simpler heuristics to obtain a single or a small number of plausible folding
pathways.

The simplest folding heuristic is based on a stepwise addition of single helices
to a structure in a greedy manner. The algorithm starts with an empty struc-
ture and a list of potential helices. In each step the energetically most favorable
helix, i.e. the one leading to the largest decrease in free energy is inserted, and
subsequently all helices that conflict with the selected helix (since they would
form base triples or pseudo-knots) are deleted from the list. The algorithm
stops when the list is empty or all remaining helices would increase the free
energy of the structure. In its simplest form this algorithm was introduced
already in 1984 [56] as an attempt to obtain an algorithm that is faster than
the prediction of minimum free energy structures via dynamic programming.
Various variants of this “greedy” heuristics have been implemented, that dif-
fer mostly in the way which compatible helix is chosen for addition. Li and
Wu [57], for example, pick a helix at random, provided that the free energy
of the resulting structure is lowered. Abrahams et al. [58] extend the original
method by allowing pseudo-knotted configurations as well as folding during
transcription.

Geis et al. [59] recently implemented in the program KinWalker a heuris-
tic approach which computes a co-transcriptional folding pathway for long
RNA sequences (1500 nts). The algorithm constructs a series of metastable
structures by a stepwise combination of thermodynamically optimal struc-
tural fragments, which can be calculated efficiently for all substructures by the
standard dynamic programming approach for RNA folding. In each extension
step, the energy barrier for potential structural rearrangements is estimated
and only re-arrangements with an activation barrier below some threshold are
accepted. Estimation of energy barriers is done by explicitly constructing re-
folding paths, where only shortest paths, with a minimal number of base pairs
openings and closings, are allowed.

Energy Landscapes

Not only are stochastic simulations time consuming, it can also be tedious to
extract from them the local minima that act as meta-stable states and kinetic
traps in the folding process. It is even more difficult to identify transition states
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for re-folding between two such meta-stable states, for the simple reason that
two different trajectories, even with the same start and end points, will in
general share only few exactly identical intermediate structures.

It is therefore of interest to compute local minima, and energy barriers between
them, directly via an analysis of the energy landscape. In [22,60] we developed
a flooding algorithm that decomposes the landscape into basins surrounding
local minima connected by saddle points. Briefly, the program barriers works
by processing the conformations of a landscape in energy sorted order start-
ing at the global minimum. For each conformation x the set of neighboring
conformations N (x) (e.g. for RNA those that can be reached by opening or
closing a single base pair) is constructed. If none of the neighbors have been
observed before, x is a local minimum and thus the first member of a new
basin. If the neighborhood N (x) contains previously observed conformations
from least two basins m1, m2 then x is a saddle point connecting m1 and
m2. Finally we assign x to the lowest basin in its neighborhood. The saddle
points and local minima thus identified form a hierarchy that can be visualized
conveniently in the form of a so-called barrier tree, see figure 3 for an example.

The flooding algorithm is not specific to RNA landscapes and has in fact been
used to study the landscapes resulting from various optimization problems
[61–63]. However, in the case of RNA the analysis is aided by the availability
of an efficient algorithm that produces the low energy part of the conformation
space [3]. This makes the landscape approach effective for RNA the size of,
say a tRNA, where the complete landscape may contain over 1017 structures,
while the relevant low energy of conformations with E < 0 part may consist
of only a few million structures. While analyzing 1017 structures is clearly
infeasible, the barriers program can handle 10 million structures with ease.
Of course even the number of low energy conformations grows exponentially
with sequence length, and as a consequence the barriers approach is rarely
successful for sequences of more than 80 to 100 nt.

In general the approach is best suited to analyze refolding processes, since the
re-folding time between two local minima can be estimated directly from the
energy barrier separating them. The barrier tree is less helpful in predicting
which of several meta-stable states will be preferentially populated when the
folding process starts from an un-folded state.

Moreover, local minima can be used as a starting point for a coarse graining of
the conformation space. Wolfinger et al. [64] use a partitioning of the landscape
into macro states, where a macro state is defined as the set of all starting
conformations for which a gradient walk ends in the same local minimum m.
While constructing the tree, the barriers program identifies these “gradient
basins” and calculates effective transition rates between any two macro states
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Fig. 3. Barrier tree (left) and folding kinetics (right) for the artificial sequence UC-

CACGGCUGUUAGUGGAUAACGGC. The right panel shows the occupancy of macro
states as function of time with the open chain as initial state. The two lowest lying
local minima have almost equal energy and thus equilibrium occupancy. Local min-
imum 2 however is kinetically preferred achieving almost 80% occupancy around
t = 1000.

α, β as

k(α → β) =
∑

x∈α

∑

y∈β

k(x → y)Prob[x|α]

=
∑

x∈α

∑

y∈β

k(x → y)e−E(x)/RT /Zα,
(7)

where we have assumed local equilibrium within each macro state and Zα is the
partition function over all conformations in macro state α and the Metropolis
rule eq(3) is used to model the micro state transition probabilities k(x → y))
.

Tang et al. [65, 66] adopt a computational technique that is used for motion
planning in robotics, known as probabilistic roadmaps, to build an approxi-
mated representation of the RNA folding landscape. A probabilistic roadmap
is a graph where the vertex set represents valid sampled conformations of the
folding landscape and edges are introduced into the graph if a feasible transi-
tion exists between the two conformations. A structure based distance criterion
is used to avoid the construction of all N2 (refolding) paths between the N
nodes of the graph. The probabilistic roadmap is used as basis to calculate
the time evolution of the population of different conformations providing in-
formation on folding rates, transition states and the equilibrium distribution.
In contrast, to the analysis of folding landscapes based on exact enumeration
using the barriers program, the motion roadmap approach has been applied
to RNAs up to a size of 200nt.
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ground state (1) and deepest local minimum (4). Right fraction of trajectories ending
in either the ground state or meta-stable state. Simulations were performed using
the kinfold program either on the full length sequence or with co-transcriptional
folding and two different transcription speeds.

Folding on Variable Landscapes

In many cases one is interested how RNA structure changes in response to
changes in external parameters like ionic conditions. This type of folding on a
variable landscape occurs in several special applications, such as when mod-
elling “pulling experiments” [67] where an external force is applied to the
RNA, or when modeling the transport of an RNA molecule through a pore [].
More importantly, all naturally produced RNAs undergo folding during tran-
scription: Since transcription is slow compared to local folding processes, the
partially synthesized RNA will start folding while the molecule is still being
synthesized.

While folding of full length RNAs from the unfolded state usually results
in variety of primary folding products, co-transcriptional folding can channel
folding trajectories such that almost all molecules fold into the same (possibly
meta-stable) structure, see fig. 4 for an example. Thus, for RNAs with several
long-lived states it is essential to consider co-transcriptional folding in order
to predict which of these will be preferentially populated initially.

For all methods that simulate trajectories it is relatively straightforward to
include co-transcriptional folding [68]. In the simplest case the total simulation
is simply divided into slices length τ , corresponding to the mean time for
extending the RNA by one nucleotide. At the end of these time slices the
RNA is extended by adding an unpaired nucleotide at the 3’ end. Instead of
using fixed time slices, RNA extension itself can also be treated as a stochastic
process. Most of the tools mentioned above allow to perform co-transcriptional
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folding in this way. For the energy landscape approach discussed above, it is
possible to analyse the folding landscape for all partially synthesized RNAs
separately, and then construct a mapping that establishes the correspondence
between the local minima in different size landscapes [69].

In nature, however the situation is still more complicated, since transcription
speed is far from constant. Many genes contain specific pause site [70] where
transcription is temporarily stalled. Recent evidence suggests that these pause
sites are indeed functional, guiding the folding process in order to avoid the
formation of severely misfolded intermediates [11].

RNA polymerase II (RNAP) is a highly conserved enzyme that has been stud-
ied extensively and shows little variation even between bacteria and eukary-
otes. Over the past decade a fairly large amount of structural, biochemical and
kinetic information about RNAP [71] and the fundamental biological process
of transcription [72] has been collected, and single molecule methods have been
established to detect transcription pause sites [73]. Nevertheless, no detailed
mechanistic model has been put together that is valid across species, and al-
lows the prediction of transcription speed or pause sites [74, 75]. The above
studies imply that pause sites are not just determined by sequence signals but
also by the RNA structure. A truly faithful simulation of folding during tran-
scription would therefore have to include the interplay between the structure
currently formed by the nascent RNA strand with transcription speed of the
polymerase.

Concluding Remarks

In contrast to the prediction of ground state structures and equilibrium proper-
ties, modelling of RNA folding dynamics remains a challenging problem. Since
most approaches are computationally expensive, it is important to choose a
method that is suitable for the size of the RNA in question.

For short RNAs of up to around a hundred nucleotides, methods operating at
the resolution of single base pairs are most suitable and and will presumably
provide the highest accuracy. Helix based approaches are much faster, and
therefore represent the method of choice for medium size RNAs. The web
based Kinefold and RNAkinetics servers fall in this category and allow the
simulation of sequences up to 400nt and 300nt, respectively.

An interesting alternative is the analysis of energy landscapes. The resulting
barrier trees provide a convenient summary of possible folding scenaria without
the need to sample trajectories from different initial states. In addition, barrier
trees form the basis for a coarse graining such that the folding dynamics can
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be solved exactly in the reduced conformation space.

Unfortunately, a systematic benchmark comparing the accuracy of different
methods is difficult due to the small number and limited resolution of experi-
mental measurements. Nevertheless, there are several examples where compu-
tational results were shown to be in good qualitative agreement with experi-
ment. Occasionally, kinetic folding is used as means to include pseudo-knots in
RNA structure prediction. However, current attempts to derive free energies
for pseudo-knotted structures are still quite rough. Given the the poor accu-
racy of pseudo-knot energy compared to regular secondary structure elements,
it is not certain that pseudo-knot inclusion leads to an overall improvement
in prediction accuracy.

The emerging fields of synthetic biology and nucleic acid based nanotech-
nology, can be expected to further boost the interest of folding dynamics,
especially in the context of RNA/DNA design problems.

In the future, we expect that the design of RNA/DNA molecules with particu-
lar dynamic properties will become an important application for the methods
discussed here, especially in the emerging fields of synthetic biology and nu-
cleic acid based nanotechnology.
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