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Abstract
Background: Evolutionary conservation of RNA secondary structure is a typical feature of many
functional non-coding RNAs. Since almost all of the available methods used for prediction and
annotation of non-coding RNA genes rely on this evolutionary signature, accurate measures for
structural conservation are essential.

Results: We systematically assessed the ability of various measures to detect conserved RNA
structures in multiple sequence alignments. We tested three existing and eight novel strategies that
are based on metrics of folding energies, metrics of single optimal structure predictions, and
metrics of structure ensembles. We find that the folding energy based SCI score used in the RNAz
program and a simple base-pair distance metric are by far the most accurate. The use of more
complex metrics like for example tree editing does not improve performance. A variant of the SCI
performed particularly well on highly conserved alignments and is thus a viable alternative when
only little evolutionary information is available. Surprisingly, ensemble based methods that, in
principle, could benefit from the additional information contained in sub-optimal structures,
perform particularly poorly. As a general trend, we observed that methods that include a consensus
structure prediction outperformed equivalent methods that only consider pairwise comparisons.

Conclusion: Structural conservation can be measured accurately with relatively simple and
intuitive metrics. They have the potential to form the basis of future RNA gene finders, that face
new challenges like finding lineage specific structures or detecting mis-aligned sequences.

Background
RNA secondary structures serve important functions in
many non-coding RNAs and cis-acting regulatory ele-
ments of mRNAs [1,2]. They mediate RNA-protein/RNA-
RNA interactions in many different biological pathways
and some even show enzymatic activity themselves. Func-

tional constraints lead to evolutionary conservation of the
RNA structure that in many cases can exceed the level of
sequence conservation. Therefore, conserved structures
are characteristic evolutionarily signatures of functional
RNAs. Most programs developed for the detection of
novel functional RNAs rely on these signatures.
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QRNA [3] was the first program that detects conserved
RNAs. It models RNA structure in a pair of sequences
using a stochastic context free grammar. Similarly, Evo-
Fold [4] models the structure of a multiple alignment tak-
ing into account a phylogenetic tree (phylo-SCGF).
AlifoldZ [5] also analyzes multiple alignments. It uses,
however, a thermodynamic folding model based on the
RNAalifold algorithm [6]. All three programs fold and
evaluate the conservation of the potential RNA at the
same time. As a consequence, their scores combine contri-
butions of RNA stability and conservation.

RNAz [7] disentangles both contributions by calculating
two separate scores for stability and conservation. The lat-
ter, dubbed structure conservation index (SCI), is thus a
measure for structural conservation only. Two other pro-
grams, MSARi [8] and ddbRNA [9], are available that also
calculate a pure conservation score.

In this paper, we revisit the problem and propose a series
of other possible strategies to measure structural conserva-
tion and compare their performance on a large data set of
structural RNA families. The main motivation is to
explore alternatives and possible improvements to cur-
rently applied measures, especially the SCI used in RNAz.
This study seems worthwhile, since comparative
approaches like RNAz and others are starting to get exten-
sively used to annotate RNA structures on a genome wide
scale [4,10-21]. At the same time, however, the increasing
availability of additional sequence data makes it necessary
to already reconsider and adapt these strategies. For exam-
ple, while for the first prototype-screens in the human
genome [4,15] only 7 vertebrate genomes were available,
we now face the challenge of analyzing alignments of up
to 28 species [22]. While the signal from RNA stability is
important when only few sequences are available, more
emphasis has to be put on the evolutionary signature in
future screens. This might improve the specificity of the
predictions, a major limitation of current algorithms [23].

However, the results presented here are not only of rele-
vance for comparative de novo ncRNA prediction. The SCI,
for example, has also been used to measure structural sim-
ilarity in a clustering approach to find new ncRNA fami-
lies within one species [13,24]. In principle, conservation
measures of that kind could also be useful for general RNA
homology search algorithms that combine sequence and
structure conservation [25].

Moreover, using a structure conservation measure on an
alignment of sequences that are known to have a con-
served RNA structure can help to assess the quality of the
alignment. This idea has been used to benchmark the per-
formance of multiple alignment programs on structural
RNAs [26,27], and more recently to detect mis-aligned

sequences and assist in the semi-automatic improvement
of RNA alignments [28].

Finally it must be noted that assessing structural conserva-
tion, at the same time, means measuring change of RNA
structures throughout evolution. Exploring different ways
to quantify such structural changes can help inferring
structure based phylogenies [29,30] and might improve
our understanding of RNA structure evolution [30,31].

Methods for measuring structural conservation
Structural conservation can be measured on different lev-
els. In the following sections we describe 11 different
methods that are based on (i) comparison of predicted
minimum free energies (i.e. not on their minimum free
energy structures), (ii) comparison of single structures, (iii)
comparison of ensembles of structures representing the
whole folding space, and (iv) the two specialized methods
used by ddbRNA and MSARi. A short summary of all
methods is given in Table 1.

Methods based on folding energies

The idea to evaluate structure similarity indirectly through
the minimum free energy (MFE) rather than by direct
comparison of the structure itself seems to be counter-
intuitive at the first glance. The principle, however,
becomes clear when considering the RNAalifold algo-
rithm. RNAalifold implements a consensus folding algo-
rithm for a set of aligned RNA sequences. It extends
standard dynamic programming algorithms for RNA sec-
ondary prediction [32] by averaging the energy contribu-
tions over all sequences and incorporating covariation
terms into the energy model to reward compensatory
mutations and to penalize non-compatible base-pairs.
This procedure results in a "consensus MFE" for the align-
ment. The absolute value of the consensus MFE is of little
value to assess the conservation of structures since it
mainly reflects the folding energy that is heavily depend-
ent on the nucleotide composition and the length of the
alignment. Therefore, the consensus MFE Econs is normal-

ized by the average MFE  of the single sequences as

computed by RNAfold giving the structure conservation
index

If the sequences show equally stable folding energies if
forced to fold into a common structure compared to being
folded independently, this indicates a conserved structure
and the SCI is high. The lower bound of the SCI is zero,
indicating that RNAalifold is not able to find a consensus
structure, while a SCI close to one corresponds to perfect

Esingle

SCI E Econs single= / (1)
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structure conservation. Compensatory mutations adding
additional bonus energies to the consensus MFE can even
give rise to a SCI higher than one.

The SCI, as given above, requires the computation of a
consensus structure for the whole alignment. Alterna-
tively, one can consider formulating a similar measure
based on pairwise comparisons of all sequences. To this
end, the folding energy of each sequence is evaluated
when forced to fold into the structures of the other
sequences. The pairwise SCI for an alignment  is given
by

where E(x|Sy) denotes the free energy of sequence x when
adopting the minimum free energy structure Sy of
sequence y, and N is the number of sequences in the align-
ment. The free energies for a given sequence in a given
structure can be easily evaluated with the program RNAe-

val from the Vienna RNA package [33]. Therefore, we refer
to this method as the "RNAeval" method.

Methods based on single structures
A more intuitive way to assess structural similarity is by
comparing structures themselves rather than comparing
the energies associated with these structures. Conserva-
tion measures derived from various structure metrics are
described in this section. Unlike the energy based meth-
ods from the previous section that are inherently linked to
thermodynamic folding, the following methods do not
depend on the way of how structures are predicted. There
are several different ways, like thermodynamic energy
minimization [34], kinetic folding [35] or probabilistic
models [36-38], but the choice of the method will not
influence the underlying concept. However, since the goal
of this study is not to compare the accuracy of different
folding algorithms, we use here exclusively energy mini-
mization (RNAfold) to ensure comparability between all
methods.

Base-pair distance
The most simple distance measure between two sequences
is the Hamming distance, i.e. the number of positions
with different nucleotides. For RNA structures, one could
think of calculating the Hamming distance of two strings
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Table 1: Overview of methods

Category Methods Description Reference
s

Methods based on folding energies SCI RNAalifold consensus energy normalized by dividing by 
the average energy of the single sequences folded 
independently.

[7]

SCIRN Aeval Evaluation of energies of sequences under the constraint 
of being forced to fold into the structures of the other 
sequences in comparison to the unconstrained energies.

this work

Methods based on single structures Base-pair distance Number of base-pairs not shared by two structures. [64]
Mountain metric Distance as the difference of two mountain functions, 

which give the number of base-pairs enclosing a position.
[40]

Tree editing Based on the representation of RNA secondary 
structures as trees. A distance is deined as the cost of 
transforming one tree into the other.

[41-43]

Methods considering the entire folding space Ensemble distance Base-pair distance extended to compare ensembles of 
structures.

this work

Ensemble mountain metric Distance as the difference of two mountain functions, 
which give the number of base-pairs that are, on average, 
expected to enclose a position.

[47]

RNApdist like distance Distance measure based on the comparison of vectors of 
probabilities of being paired upstream, paired 
downstream, and unpaired.

[33,48]

RNAshapes Similarity measure based on probabilities of abstract 
shapes.

[49]

Other Methods ddbRNA Evaluates compensatory mutations in all possible stem 
loops in all sequences of an alignment.

[9]

MSARi Evaluation of the statistical significance of short, 
contiguous potential base-pair regions under different 
distribution models.

[8]
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in dot bracket notation with the three characters "(", ".",
")". However, this does not account for the correlations
between the opening and closing positions that are char-
acteristic for the structure.

An alternative to the Hamming distance more suitable for
secondary structures is the so-called base-pair distance.
The base-pair distance between to RNA secondary struc-
tures Sx and Sy is defined as the number of base-pairs not
shared by the two structures. Formally it can be described
in terms of set theory, where the base-pair distance corre-
sponds to the cardinality of the symmetric set difference:

with  = 1 if (i,j) is a base-pair of structure Sx, and  =

0 otherwise. dBP itself is not a suitable measure for com-

parison as long it is not set in relation to the union of the
base-pairs in Sx and Sy. The normalized base-pair distance

scaled to the interval [0, 1] between two structures is given
by

The overall score for a multiple alignment  can either
be calculated as the average of all pairwise sequence com-
parisons

or as the average of all comparisons of each sequence to a
consensus structure

If not stated otherwise, also all other methods that are
based on pairwise comparisons can be calculated either as
the average over all (N - 1)N/2 pairwise comparisons, or
the average of all N comparisons to the consensus struc-
ture.

Mountain metric

The mountain metric is based on the mountain represen-
tation of RNA secondary structures [39] and follows the
idea that the distance between two structures Sx and Sy can

be expressed as the difference of the two mountain
graphs. For this purpose, a lp-norm can be defined that

induces a metric  on two secondary structures Sx and Sy

as the difference of the two mountain functions m(Sx) and

m(Sy) [40]:

The mountain function mk(S) is defined as the number of
base-pairs enclosing position k. The effect that base-pairs
are weighted differently can be overcome by scaling each
base-pair to the range it spans.

As  is expected to grow with the length of sequences,

we are in the need of defining a normalized distance
measure to be able to compare distances for sequence
pairs of different length. The maximal distance of a sec-
ondary structure Smax on a sequence of length n to the

open chain Sopen is obtained if Smax is a stem of maximal

height (N(n - 3)/2Q), which is a hairpin loop enclosing three

unpaired bases. The normalized mountain metric  is

then defined as the ratio of the distance  (Sx, Sy) of two

secondary structures with length n to the maximal dis-

tance  (Smax, Sopen) at length n:

Tree editing
RNA secondary structures can be represented as ordered,
rooted trees [41-43]. The tree representation can be
deduced from the dot-bracket notation (characters "("
and ")" correspond to the 5' base and the 3' base in the
base-pair, respectively, while "." denotes an unpaired
base), as the brackets clearly imply parent-child relation-
ships. The ordering among the siblings of a node is
imposed by the 5' to 3' nature of the RNA molecule. To

d S S S S S S S S S S

S S S

BP x y x y y x x y x y

x y

( , ) |( \ ) ( \ ) | | | | |

| | | | |

= ∪ = ∪ − ∩

= + −2 xx y ij
x

ij
y

ij
x

ij
y

i j

S∩ = + −
<
∑| ( )δ δ δ δ2

(3)

δ ij
x δ ij

x

D S S
Sx Sy Sx Sy

Sx Sy

ij
x

ij
y

ij
x

ij
y

i j
BP x y( , )

| | | |

| |

( )

=
∪ − ∩

∪
=

+ −
<

δ δ δ δ2∑∑

+ −
<
∑ ( )δ δ δ δij

x
ij
y

ij
x

ij
y

i j

(4)



2
1( )

( , )
,

N N
D S SBP x y

x y

x y

− ∈
>

∑
 (5)

1
N

D S SBP x consensus

x

( , )
∈
∑


(6)

dM
p

d S S m S m S m S m S p
M
p

x y x y k x k y
p

k

n

( , ) : || ( ) ( ) ||: ( | ( ) ( ) | )= − = −
=

∑
1

1

(7)

m S
j ik

k ji k

( ) =
− −

<<
∑∑ 1

1 (8)

dM
p

DM
p

dM
p

dM
p

D S S
dM

p Sx Sy

dM
p Smax Sopen

M
p

x y( , )
( , )

( , )
= (9)
Page 4 of 19
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:122 http://www.biomedcentral.com/1471-2105/9/122
avoid formation of an unconnected forest of trees, a vir-
tual root has to be introduced.

The tree representation at full resolution without any loss
of information with regard to the dot-bracket notation
can be derived by assigning each unpaired base to a leaf
node and each base-pair to an internal node. The resulting
tree can be rewritten to a homeomorphically irreducible tree
(HIT) by collapsing all base-pairs in a stem into a single
internal node and adjacent unpaired bases into a single
leaf node [43]. Each node is then assigned a weight reflect-
ing the number of nodes or leaves that were combined.

Shapiro proposed another encoding that retains only a
coarse-grained shape of a secondary structure [41]. This is
useful in the case of comparison of major structural ele-
ments of a RNA molecule but it comes along with a loss
of information (cf. section "Abstract shapes"). A second-
ary structure can be decomposed into stems (S), hairpin
loops (H), interior loops (I), multi-loops (M), and exter-
nal nucleotides (E). While external nucleotides are
assigned to a leaf, unpaired bases in a multi-loop are lost.
The weighted coarse-grained approach compensates the
effect of information reduction at least by assigning to
each node or leaf the number of elements that were con-
densed to it.

Tree editing induces a metric in the space of trees and
hence a metric in the space of RNA secondary structures.
An edit script, which is a series of edit operations, namely
deletion, insertion and relabeling of a node, each assigned
a cost can transform any tree Tx into any other tree Ty. The
distance between two trees d(Tx, Ty) is then defined as the
cost of the edit script with minimal cost. Normalization of
the tree editing distance is done by comparing the dis-
tance of two trees d(Tx, Ty) to the sum of the costs of delet-
ing either of the two secondary structures, where • denotes
a tree consisting solely of a root:

Among the methods used here, tree editing is the only one
that can act on structures of unequal length. In this work
we will focus on two different implementations of tree
editing. RNAdistance [33] a tool from the Vienna RNA
package implements a tree editing algorithm initially pro-
posed by Shapiro [41] and acts on the full representation,
HIT representation [43], coarse-grained and weighted
coarse-grained representation [41]. Allali & Sagot [44]
pointed out some shortcomings of the classic tree editing
operations and introduced novel editing operations called
node-fusion and edge-fusion, implemented in the program
MiGaL. MiGaL uses a new concept of encoding trees at dif-
ferent levels of abstraction called layers [45], which are

interconnected to each other via vertex coloring opera-
tions.

Methods considering the entire folding space
Distance of structure ensembles

Because the stabilizing energies of base-pair formation are
in the same energy range as the thermal energy, RNA mol-
ecules in physiological conditions are far away from being
caged into one rigid secondary structure. Instead, one usu-
ally observes an ensemble of RNA structures, which can be
represented by an energy weighted Boltzmann distribu-
tion. McCaskill proposed a dynamic programming algo-
rithm [46] that allows to efficiently compute the partition

function Q, where ∆G is the conformational Gibb's Free
Energy change, R is the gas constant, T is the absolute tem-
perature, and  is the ensemble of possible secondary
structures.

The probability of a single structure S is then given by

and hence the probability of a single base-pair (i, j) is

where  is one if (i, j) is a base-pair of structure S, and

zero otherwise. Using these assumptions the equation of
the base-pair distance can be remodeled to calculate the

average base-pair distance  between all

structures of the two ensembles  and .D T T
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As one can see in the last line, this corresponds to the the
naïve approach of multiplying the probability of the base-

pair (i, j) in the ensemble  with the probability of not

expecting the base-pair (i, j) in the ensemble  and vice

versa. Taking a closer look at equation 14, one can see that
the distance between the structure ensemble of one

sequence �dBP( , )� is not zero. Instead, it is the aver-

age distance between the structures in the ensemble,
referred to as ensemble diversity. As we are interested in
the distance between two ensembles, one has to subtract
the average of the ensemble diversities to ensure identity

and symmetry. The ensemble distance 

between two ensembles  and  is then defined as fol-

lows:

The result, which is simply the sum over the squared dif-
ferences of the pair probabilities, is a very intuitive dis-
tance measure of two ensembles. Note that this measure
is not a metric since the triangle equation is not fulfilled.

However,  is a metric, as it corresponds

to the euclidean distance between two vectors.

Also the mountain metric approach previously discussed
can be readily extended to incorporate base-pairing prob-
abilities [47]. The mountain function mk(S) gives then the
number of base-pairs that are expected to enclose position
k on average:

Distance of one dimensional pair-probability vectors

Another method to compare the folding space of two RNA
sequences is by aligning one dimensional base-pairing
probability vectors [48], as implemented in the program
RNApdist. From all base-pairing probabilities of base i the

probabilities of being paired downstream ( ), paired

upstream ( ), and unpaired ( ) are computed:

In this study we use a RNApdist-like variant DRN Apdist as a
distance measure for a precomputed alignment of two
sequences x and y as follows:

where L is the length of the alignment and δ given by

Abstract shapes
Giegerich et al. [49] introduced the concept of abstract
shapes, coarse-grained abstractions of full secondary struc-
tures. The current implementation of RNAShapes offers
five levels of abstraction and partitions the folding space
into structural families represented by the different
shapes. The probabilities for shapes are calculated by
summing up the probabilities of all structures that are
assigned to the same shape [50,51].

A pairwise similarity measure s comparing two shape

spaces  and  can be defined as follows, where p(S|x)

and p(S|y) is the probability of shape S given sequence x
and y, respectively.

Other Methods
One key characteristic of conserved structures are com-
pensatory mutations. Compensatory mutations that
maintain the secondary structure will accumulate as this
helps keeping the RNA molecule functioning. While all
methods described so far include structure predictions
and only indirectly depend on such compensatory muta-
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tions, Di Bernardo et al. [9] proposed a method that is
solely based on the existence of compensatory mutations.
ddbRNAcounts compensatory mutations in all possible
stem loops in all sequences of an alignment without mak-
ing use of a folding model of any sort. In this paper we will
use the number of compensatory mutations per length
that is calculated by ddbRNA as measure for structural
conservation.

Coventry et al. [8] follow with their MSARi algorithm a
similar but more elaborate strategy than that of ddbRNA.
Decision about structural conservation is made upon sta-
tistical significance of short, contiguous potential base-
paired regions. The partition function implementation of
RNAfold is used to predict base-pair probabilities. Each
base-pair (i, j) with a base-pairing probability higher than
5% is then examined individually. For each sequence in
the alignment a window of length seven is centered on
nucleotide i and compared with a series of windows cen-
tered around j ± {0, 1, 2} (to compensate slight mis-align-
ments). The window pair with the maximal number of
reverse complementary positions is chosen for further
analysis, which is the evaluation of the probability of see-
ing at least as many compensatory positions against a
null-hypothesis distribution for random mutations. The
estimation of the significance of observed base-pairs is
then used to assess the total significance of the alignment.

The main interest of this paper is to detect structural sim-
ilarities in a given alignment. Clearly, the problem of cal-
culating the alignment and detecting a conserved structure
is closely related. For example, structural alignment algo-
rithms based on the Sankoff algorithm [52] can be used to
detect conserved structures [18,19] or homologues of a
given structure [53]. Aligning sequences requires a notion
of sequence similarity and, therefore, sequence substitu-
tion models of RNAs have been developed. Examples are
the RIBOSUM matrices for the homology search program
RSEARCH [53] or a specifically parametrized general time
reversible (GTR) model for ITS2 sequences [54]. We do
not cover methods here that are primarily focused on the
alignment problem, such as Sankoff based algorithms,
nor methods that combine sequence and structure com-
parison such as the family of edit distances on arc anno-
tated sequences by Zhang and coworkers [55] (although
RNAdistance represents a special case of these) or tree
alignment as implemented in RNAforester [56]. If used
with a sequence weight of zero, we would expect these
methods to give similar results to the RNAdistance tree
editing. Liu & Wang [57] recently proposed a method for
RNA secondary structure similarity analysis based on the
Lempel-Ziv compression algorithm. However, since the
authors do not provide an implementation of their
method it could not be considered in this study.

Benchmarking
To assess the performance of the various methods to
detect conserved RNA structures in multiple sequence
alignments, we conducted a comprehensive benchmark
on the BRAliBase database version 2.1 [27]. This database
provides a reasonable sized data set of homologous RNAs
of different families. In addition to the structural align-
ments provided by the database we generated for each
alignment a corresponding sequence-based alignment
using CLUSTAL W [58].

Despite their shortcomings, pure sequence based align-
ments represent a more realistic scenario because struc-
tural alignments are not always available in real life
situations (e.g. genome wide screens). There are many
structural alignment programs available. As mentioned
before, the problem of structural alignment and finding
structural similarities is closely related. However, we do
not want to compare the efficiency of different alignment
programs and thus stick with the two extreme cases of
purely sequence based alignments and manually curated
reference alignments. At this point we want to mention,
that our results might be interesting for some of the align-
ment algorithms. For example, the heuristic algorithm of
CMFinder [59] uses a distance measure based on tree edit-
ing in one of the first alignment steps.

As a negative control of alignments that do not harbor a
conserved structure we randomized each alignment of the
database by shuffling. The procedure is described in detail
in reference [5]. It is as conservative as possible and keeps
the most relevant alignment parameters like base compo-
sition, conservation patterns, gap-patterns etc. intact
while any correlation arising from the original structure is
efficiently removed.

The sensitivity to detect a conserved RNA structure
depends on the sequence variation in the alignment. It is
difficult to detect any signature of a conserved structure in
alignments with high sequence identity. The more
sequence changes in the alignment the more information
is available. The overall "information content" is thus
dependent on (i) the divergence of the sequences and (ii)
the number of the sequences in the alignment. A common
measure describing sequence variation in a multiple
sequence alignment is the average pairwise sequence iden-
tity (API). Although this measure is widely used, it is only
capable of assessing sequence variation, and does not take
the number of sequences of the alignment into account.
We found it helpful to use a combined measure for the
content of evolutionary information for presenting the
results of our analysis. We used the normalized Shannon
entropy H. In the case of alignments of RNA sequences we
Page 7 of 19
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are dealing with an alphabet Σ = {A,C,G,U,-} composed
of the four nucleotides plus the gap character "-". The
probabilities are approximated by the observed frequen-

cies (e.g.  is the frequency of the character A in column

i divided by the number of sequences in the alignment).
The normalized Shannon entropy of an alignment  is
then defined as the sum of the Shannon entropies of the
individual columns divided by the length of the align-
ment denoted by L:

Although it is convenient to use this measure, most peo-
ple are more familiar with the API. Fig. 1 shows the rela-
tion of the API and the Shannon entropy for alignments
with different number of sequences.

In order to assess and compare the performance of the var-
ious strategies, we perform receiver operating characteris-

tic (ROC) curve analysis. A ROC curve [60] is a plot of the
true positive rate (sensitivity) versus the false positive rate
(1-specificity), while varying the discrimination threshold
of a scoring classifier. The more a ROC curve is shifted to
the upper left corner of the plot, the better the discrimina-
tion is. The area under the ROC curve (AUC) is a single
scalar value ranging from 0 to 1 representing the overall
discrimination capability of a method. A random classi-
fier has an AUC value around 0.5, while perfect classifica-
tion is indicated by an AUC value of 1.

Results and Discussion
Overview
The results of the benchmark are summarized in Tab. 2
and Fig. 2. The test set was binned by entropy and for each
bin we calculated the average AUC as overall performance
measure for each method. In Table 2, we additionally give
the sensitivity of each method for a given specificity of
95%. In other words, this number is the percentage of cor-
rectly identified conserved structures at a false positive
rate of 5%, a somewhat more practical measure than the
AUC. Almost all methods can be applied in a pairwise

pA
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Relation between the average pairwise sequence identity and the normalized Shannon entropyFigure 1
Relation between the average pairwise sequence identity and the normalized Shannon entropy. The Shannon 
entropy is used as measure for information content contained in an alignment throughout this paper. It depends on the average 
pairwise identity and the number of sequences in the alignment. The lines shown are regression lines for the nearly exact linear 
relationship (R2 > 0.99) between Shannon Entropy and the mean pairwise identity.
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comparison manner and as a comparison of single struc-
tures to a consensus structure/energy. We will simply refer
to these cases as 'pairwise' and 'consensus'.

As a main result one can note that over all entropy ranges
and for both the structural and sequence based align-
ments, either an energy based method (SCI/RNAeval) or
the base-pair distance performs best. These methods are
followed by the tree editing methods based on RNAdis-
tance. MiGaL based tree editing, mountain metric and
ensemble methods perform significantly worse.

SCI/RNAeval and base-pair distance
In general, the SCI shows the best overall discrimination
power on the structural alignments. On the medium and
high entropy sets it apparently makes use of the large
number of consistent/compensatory mutations that are
explicitly considered in the SCI through the RNAalifold
consensus energy that contains a covariation score. The
use of the covariation scoring model in RNAalifold does
improve the discrimination capability of the SCI signifi-
cantly compared to a version where the covariation score
was turned off (data not shown).

Results of the benchmarkFigure 2
Results of the benchmark. AUC values (area under the ROC curve) are shown as general performance measure for different 
methods, different alignment sets and different regions of information content. Also refer to Tab. 2.
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Only on the low entropy set that contains highly con-
served alignments with little evolutionary information the
SCI is outperformed by the RNAeval and base-pair dis-
tance measures. In cases with only a few structural
changes, the base-pair distance, which considers the exact
position of pairs, seems to be more sensitive than the SCI
that uses the folding energy as abstraction of the structure.

Interestingly, the clear winner in the low entropy set is the
RNAeval method that, similar to the SCI, also uses the
folding energy instead of the structure itself. Still, it per-
forms significantly better (p-values < 0.001) than the SCI.
The SCI and the RNAeval approach operate on two differ-
ent scales. While the SCI is bounded below by 0, the
RNAeval approach is bounded above by 1, which causes
favoring of two extreme cases. In the case of the SCI an
alignment with loads of compensatory and consistent
mutations will yield a SCI above 1 due to the covariance
score. The RNAeval approach will give at most 1 as com-
pensatory and consistent mutations are not specially
rewarded. In the case of an alignment of sequences that do
not share a common fold the SCI will be 0, while the

RNAeval approach will yield a value below 0 as the evalu-
ation of a sequence forced to fold into a structure that is
not likely to be adopted by that sequence will give positive
energy values. Hence, in the case of the SCI we are dealing
with a better dispersion of positive examples, and vice
versa in the RNAeval approach with a better dispersion of
negative examples.

The overall trend looks slightly different on the CLUSTAL
W generated alignments. The SCI loses discrimination
power and the base-pair distance performs equally well
or, in most cases, even better. So it seems that the base-
pair distance is more robust against alignment errors than
the SCI.

Another difference between the results for the structural
and CLUSTAL W sets is the overall shape of the curves in
Fig. 2. For the structural alignments, the classification
power increases with increasing information content. This
trend is of course entirely expected, and it is also visible
for the CLUSTAL W alignments. However, there are two
marked valleys at about 0.6 and 0.9 Shannon entropy. The

Table 2: Comparison of different strategies

Structural CLUSTAL W

Method Variant Low Medium High Low Medium High

Energy based SCI 0.79 0.32 0.95 0.70 1.00 1.00 0.79 0.31 0.80 0.42 0.90 0.72
RNAeval 0.82 0.43 0.86 0.45 1.00 0.99 0.82 0.42 0.76 0.32 0.90 0.68

Base-pair distance consensus 0.80 0.28 0.93 0.56 1.00 0.99 0.79 0.27 0.85 0.40 0.92 0.79
pairwise 0.83 0.28 0.90 0.54 0.99 0.98 0.83 0.27 0.81 0.40 0.90 0.78

Mountain metric consensus 0.78 0.34 0.82 0.38 0.92 0.63 0.78 0.34 0.73 0.29 0.80 0.41
pairwise 0.79 0.29 0.75 0.33 0.76 0.34 0.79 0.29 0.73 0.30 0.75 0.34

Tree editing consensus, full 0.77 0.32 0.88 0.44 0.99 0.95 0.77 0.32 0.77 0.31 0.86 0.60
consensus, HIT 0.76 0.30 0.89 0.46 0.99 0.97 0.76 0.28 0.78 0.33 0.87 0.60
consensus, coarse grained 0.71 0.22 0.81 0.34 0.95 0.73 0.72 0.21 0.74 0.26 0.83 0.45
consensus, w. coarse grained 0.74 0.26 0.84 0.36 0.98 0.88 0.74 0.25 0.73 0.28 0.82 0.46
pairwise, full 0.78 0.31 0.77 0.36 0.88 0.63 0.78 0.31 0.75 0.34 0.87 0.56
pairwise, HIT 0.77 0.27 0.77 0.36 0.90 0.66 0.76 0.26 0.76 0.34 0.89 0.63
pairwise, coarse grained 0.72 0.16 0.68 0.23 0.74 0.24 0.72 0.16 0.68 0.22 0.78 0.30
pairwise, w. coarse grained 0.76 0.23 0.71 0.28 0.81 0.41 0.75 0.15 0.71 0.23 0.82 0.35
pairwise, MiGaL-Layer 0 0.62 0.07 0.61 0.07 0.67 0.06 0.62 0.07 0.60 0.06 0.66 0.04
pairwise, MiGaL-Layer 1 0.74 0.27 0.68 0.24 0.77 0.33 0.74 0.27 0.68 0.24 0.76 0.33
pairwise, MiGaL-Layer 2 0.74 0.23 0.70 0.29 0.82 0.42 0.73 0.22 0.69 0.27 0.78 0.37
pairwise, MiGaL-Layer 3 0.76 0.27 0.71 0.30 0.84 0.49 0.75 0.26 0.71 0.29 0.82 0.47

Ensemble distance consensus 0.64 0.32 0.61 0.15 0.72 0.25 0.63 0.31 0.60 0.14 0.70 0.24
pairwise 0.65 0.42 0.61 0.15 0.72 0.26 0.65 0.32 0.61 0.30 0.72 0.31

Mountain metric 
using base-pair 
probabilities

consensus 0.48 0.17 0.58 0.27 0.65 0.40 0.50 0.18 0.56 0.24 0.61 0.28

pairwise 0.78 0.32 0.75 0.34 0.76 0.31 0.79 0.32 0.72 0.30 0.74 0.31
RNApdist-like consensus 0.76 0.28 0.79 0.37 0.89 0.44 0.76 0.27 0.73 0.30 0.74 0.25

pairwise 0.75 0.25 0.78 0.36 0.86 0.45 0.75 0.24 0.73 0.28 0.78 0.30

Low, Medium and High refer to the same information content categories as shown in Fig. 2. Each column consists of two numbers: Left: average 
AUC, Right: sensitivity at 5% false positive rate. Bold numbers indicate the most accurate method in each category.
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first one is caused by a prevalence of pairwise alignments
with low sequence identity. An average pairwise identity
of 60% to 65% or below is considered as critical with
regard to secondary structures for alignments generated
solely on sequence information [26]. This results in a rel-
atively low discrimination capability in this region. As
soon as low identity pairwise alignments do not consti-
tute the majority of instances in a bin, the predictive
power rises again. The second performance drop is again
caused by prevalence of alignments with low sequence
identity, in this case alignments with three sequences.

Tree editing
The best tree editing approach (the consensus approach
using the HIT representation), in general shows weaker
performance than the SCI on both the structural and the
CLUSTAL W generated data sets. Detailed results for all
tree editing methods are shown in Fig. 3. There is a clear
hierarchy among tree editing approaches. An abstraction
of structural details in the representation is accompanied
with a loss in discrimination power, which is especially
well pronounced on the structural data set. Tree editing
using the full and HIT representations, which encode a
RNA secondary structure without any loss of information,
give best results, while the coarse grained approach which
is abstracting at most shows the weakest performance.

The weighted coarse-grained approach maintains a higher
level of structural information than the coarse-grained
representation and therefore generally performs better.
The use of different costs for the tree editing operations
has significant influences on the discrimination power of
the methods. Tree editing distances of the coarse-grained
and weighted coarse-grained representations were calcu-
lated using the cost matrix of the Vienna RNA package and
the costs initially proposed by Shapiro [42]. Although the
editing costs are in both cases chosen more ore less arbi-
trarily, the weighted coarse-grained approach using the
Vienna RNA package costs performs significantly better or
at least equally well on both structural and CLUSTAL W
generated alignments than the weighted coarse-grained
approach using Shapiro's costs (data not shown).

As MiGaL makes use also of the nucleotide sequence and
not secondary structures alone, we evaluated MiGaL only
in pairwise comparisons. Also for the MiGaL methods, we
observe the trend that the more information is encoded in
a representation or layer, respectively, the better the dis-
crimination capability. However, despite its more sophis-
ticated algorithm, MiGaL performs worse than the simpler
tree editing algorithms of the Vienna RNA package.

Tree editing is the only method that can be applied per se
to sequences of unequal length, and is hence not sub-
jected to the alignment quality. This seems to be an advan-

tage of this method. However, this only holds for pairwise
comparisons as the calculation of a consensus structure is
dependent on a given alignment. Since the consensus
approaches show much better performance than their
pairwise counterparts on structural alignments, and at
least comparable results on CLUSTAL W generated align-
ments, the advantage of alignment independent pairwise
comparisons is questionable.

Mountain metric
The mountain metric shows the weakest performance of
all methods that are based on single structures. This trend
becomes even worse when using base-pairing probabili-
ties. Although the mountain representation allows easy
comparison of RNA structures by visual examination,
when put to formalism by the mountain metric this
approach fails. The weak performance indicates that the
difference in the mountain functions of closely related
RNA molecules is in many cases in the range of differences
one obtains by comparing non-related structures.

Ensemble methods
In principle, secondary structure predictions that take into
account the whole thermodynamical ensemble of the
folded RNA hold more information than the mere MFE
structure. However, we observe that this does not translate
into improved detection performance of conserved RNA
structures (Fig. 2, Table 2). The ensemble distance shows
only moderate performance on structural alignments, and
fails completely on CLUSTAL W generated alignments. It
seems that taking into account sub-optimal base-pairs
only adds noise to the comparison and blurs the signal
instead of improving it.

The extreme sensitivity to alignment errors can be
explained by the fact that each probability of each possi-
ble base-pair of one sequence has to be compared to the
corresponding probability of the other sequences or the
consensus, respectively. A base-pair present in one ensem-
ble that does not have a counterpart in the other ensem-
bles adds its full squared probability to the distance.

The RNApdist-like methods show best overall perform-
ance of the ensemble based methods. This is consistent
with the observations above, since the RNApdist method
only considers a condensed and thus lessnoisy version of
the full pair-probability matrix.

Consensus versus pairwise comparison
In general, one can observe that methods based on the
comparison to a consensus structure perform better than
methods based on pairwise comparisons only. The con-
sensus structure predicted by RNAalifold which is usually
more accurate than single structures prediction, improves
the discrimination power significantly. There are two
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exceptions: In the case of the ensemble methods and in
the low entropy test-set, the trend is reversed with pairwise
methods performing better than their consensus variant.

In the case of the ensemble methods, this is apparently
due to the way base-pairing probabilities are calculated by
RNAfold and RNAalifold. For single sequence there are no
special rules for two bases to form a base-pair, they just
have to belong to the set of valid base-pairs. RNAfold can
therefore assign a base-pair probability to each valid base-
pair. On the alignment level this is more complicated as
we are dealing with columns of nucleotides rather than
with single nucleotides. In the RNAalifold algorithm, only
those column pairs in which at least 50% of the sequences
can form a base-pair are used in the computation. In the
case of the consensus comparison approach there may be

many base-pairing probabilities in the single sequences
that do not have a consensus counterpart.

Also in the low entropy range, which is dominated by
alignments with little sequence variation, pairwise com-
parison approaches show better discrimination capability
than their consensus counterparts. Here, there is almost
no additional mutational information that could give
RNAalifold an advantage over RNAfold on single
sequences.

Other methods
As both ddbRNA and MSARi show limitations to the data
sets that can be applied, we evaluated both methods only
on appropriate subsets of our test set. In case of ddbRNA
these are pairwise and three-way alignments, and in case
of MSARi 10-way and 15-way alignments.

Detailed benchmark results for the tree editing methodsFigure 3
Detailed benchmark results for the tree editing methods. AUC values are shown for all variants of the tree editing 
methods, including different algorithms and abstraction levels. Also refer to Tab. 2.
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In this study we use ddbRNA to evaluate the number of
compensatory mutations per length as a measure of evo-
lutionary conservation of structure. The ddbRNA
approach shows only moderate discrimination capability
and performs significantly worse than the SCI on both
structural and CLUSTAL W generated alignments (Fig. 4).
ddbRNA is extremely sensitive to the alignment quality as
the detected stems must be present in all sequences of an
alignment.

As MSARi implements a strategy that compensates slight
mis-alignments, the results are almost identical for struc-
tural and CLUSTAL W generated alignments, but it shows
significant lower discrimination capability than most
other methods tested in this paper, e.g. the SCI as shown
in Fig. 4. The shape of the ROC curves for MSARi indicates
that only a few conserved instances are detected as truly
conserved. They are assigned very low p-values and it is
not likely to find false positive examples at this low level.
However, a large fraction of conserved instances is not
considered to be conserved and is assigned a p-value of 1.

Due to the exponential growth of the shape space with the
length of the sequence and the resulting computational
costs, we evaluated the RNAshapes approach as a proof of
concept only on a small set of tRNAs. Although this
method shows clear discrimination capability, it is far
below the performance of the SCI which is able to per-

fectly separate this specific tRNA test set (Fig. 5). The
observation that the shape type 1 (lowest level of abstrac-
tion) performs significantly better than the shape type 5
(highest level of abstraction) is consistent with the obser-
vations that increasing abstraction of detailed structural
information is related to a loss in discrimination power.

Correlation of methods
We have tested a variety of different methods in order to
measure the same property, namely structural conserva-
tion. A question that is still open is whether all these
methods essentially detect the same features or focus on
different aspects of the conserved structures. To get some
clues on this question, we investigated the correlation
between selected measures (Fig. 6). All methods correlate
statistically significantly (p < 0.001) with each other on
the tested subset. The degree of correlation varies, how-
ever. Not surprisingly, among the highest correlations
(correlation coefficient 0.93) are the two tree editing
methods using the HIT representation and MiGaL Layer 3,
as they act both on trees of full structural detail. The base-
pair distance is also highly correlated with the tree editing
methods. The SCI shows the highest correlation to RNAe-
val (0.68), which again does not come unexpected, as
both measures are based on folding energies. However,
the relatively high degree of correlation between SCI/
RNAeval and the other methods is remarkable. RNAeval,
for example, has the same degree of correlation to the

Performance of the MSARi and ddbRNA algorithmsFigure 4
Performance of the MSARi and ddbRNA algorithms.Left: AUC values for ddbRNAin comparison to the SCI. Only 
pairwise and three-way alignments were considered. Right: ROC curves of 10- and 15-way alignments for MSARi in compari-
son to the SCI.
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pairwise base-pair distance (0.82) as the pairwise base-
pair distance to the pairwise RNAdistance measure. This
shows that also SCI/RNAeval, methods that actually do
not regard the structure, effectively measure it. This seems
noteworthy, as the name "Structure conservation index"
has been criticized in the past of being misleading because
the SCI does not measure structural conservation explic-
itly.

Dependence on base composition
All scores used in this study are normalized with respect to
sequence length and the number of sequences in the
alignment. In principle, all our methods should also be
independent of the base composition. The energy based
methods SCI and RNAeval compare folding energies in a
way that the absolute value of the free energy (which is
clearly dependent on the GC content) is also normalized.
All other methods, except tree editing using MiGaL with
Layer 3, do not even explicitly consider the sequence but
act on the predicted structure only. Although all methods
should be normalized for base composition by construc-
tion, we still investigated how they are affected by the GC
content.

The somewhat surprising results are shown in Fig. 7.
While pairwise tree editing, base-pair distance and moun-
tain metric approaches do not show any significant corre-
lation to the GC content, energy based methods and tree
editing using a consensus structure derived by RNAalifold

show high correlation. The consensus base-pair distance
method shows little correlation, but correlation increases
slightly when moving to higher entropy ranges (data not
shown).

These results suggest that the observed GC-dependence is
mainly a consequence of using a RNAalifold consensus
structure. In the case of the SCI, this is easiest to under-
stand. The SCI is the ratio of the consensus energy and the
mean of the single sequence energies. Both components
are functions of the base composition, with higher GC
content resulting in lower free energies. Although consen-
sus predictions use the same energy model as single
sequence predictions, the additional constraints imposed
by folding several sequences together result in a slightly
different GC dependence. Similar effects seem to be
responsible for the GC dependence of the RNAeval meas-
ure and the consensus based tree editing measures.

For the purpose of this study, the GC dependence does
not directly affect the results due to the design of our
benchmark. The positive and negative test set contains
sequences with the same base composition. However, for
practical reasons when considering these measures in
RNA gene finding algorithms this effect is of relevance.
The GC dependence of the SCI seems to be the main rea-
son why the RNAz program shows a small bias towards
GC rich regions [61].

Statistical significance of the scores
In this study we compared the different methods on the
basis of their ability to discriminate between alignments
containing true conserved structures and random con-
trols. While this approach gives us information on the per-
formance of the methods relative to each other, none of
the scores used in this study (except the MSARi p-value) is
normalized for sequence diversity. Alignments with 100%
sequence identity get, by definition, the highest score of
perfect structure conservation. For the purpose of detect-
ing evolutionary conserved structures this is of little help.
Ideally, one would like to answer the question of whether
there is an unusually conserved structure in an alignment
despite the given sequence diversity.

This problem can be addressed in different ways. The opti-
mal solution is to devise a direct statistical model as in the
case of MSARi. However, this seems only feasible if one
considers a simplified score like the base-pair derived
score in MSARi. It seems impossible to analytically derive
the background distribution of a more complex score like
the SCI, since it depends on complex folding algorithms
that cannot be modeled directly.

As an alternative, machine learning algorithms can be
used. In the case of RNAz, the dependence of the SCI on

Performance of the RNAshapes based methodFigure 5
Performance of the RNAshapes based method. ROC 
curves are shown for different abstraction levels on a test set 
of 461 five-way alignments of tRNAs from the structural data 
set.
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the number of sequences and the average pairwise identity
is trained on a large test set of known ncRNAs and random
alignments.

Yet another possibility is to derive the background distri-
bution empirically for each alignment under test. This
approach is used by AlifoldZ, which calculates a z-score by
comparing the score of the original alignment to the score
distribution of randomized alignments.

This last method is computationally demanding, but has
the advantage that it can be applied to any score without
modification.

Availability
We have set up a web-server that calculates relevant scores
used in this study for a given alignment and assesses the
statistical significance by calculating a z-score and an

empirical p-value. The web server can be accessed under
http://rna.tbi.univie.ac.at/cgi-bin/SCA.cgi.

Conclusion
The aim of this work was to find the most effective ways
to detect evolutionarily conserved RNA structures in
sequence alignments. A few methods and algorithms have
been proposed previously. Here, we devised a series of
novel measures and evaluated their performance system-
atically on a large test set of known conserved RNA struc-
tures.

As the most accurate measures we could identify the fold-
ing energy based "structure conservation index" and a
measure based on the base-pair-distance structure metric.
Interestingly, these two are among the simplest methods
tested and generally outperform all of the more sophisti-
cated methods. Only the methods based on tree editing
distances could compete to some degree with the SCI/

Correlation of selected methodsFigure 6
Correlation of selected methods. Lower triangular matrix scatter plots of the different scores with local regression 
indicted by red lines. Upper triangular matrix displays the corresponding Pearson correlation coefficients. Data points are 
shown for structural alignments in an entropy range from 0.4 to 0.6 and a GC content limited to an interval of 0.48 to 0.52.
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base-pair distance. Here we can note that more complex
tree representations show better performance than simpli-
fied "coarse grained" abstractions. However, more sophis-
ticated algorithms like MiGaL do not give better results
than the basic algorithms as implemented in the Vienna
RNA package. All other methods show only very poor per-
formance and do not appear to be a reasonable choice in
any "real-life" application. Among these methods we have
to list the mountain metric, all methods based on struc-
ture ensembles and also the ddbRNA and MSARi algo-
rithm.

As a general trend we could observe that the measures
relying on a consensus structure prediction by the RNAal-
ifold algorithm have clear advantage over methods that
only use single sequence structure predictions.

All these results are fairly consistent over all tested align-
ments with one notable exception. For highly conserved
sequences the RNAeval approach based on pairwise fold-
ing energy comparisons shows the highest accuracy and
all other measures, including the SCI, perform signifi-
cantly worse.

Taken together we can conclude that the simple methods
based on either folding energies or base-pair distance are
the methods of choice. Although the SCI was the only
method that was tested when RNAz was first published,

our results clearly show that this was a reasonable choice.
An interesting new aspect is the GC dependence of the SCI
that we observed here. This makes it necessary to consider
base composition when evaluating the statistical signifi-
cance of the SCI, for example by including the GC content
as an additional classifier in the RNAz machine learning
algorithm. This can be expected to increase the specificity
of the program.

Another result which has practical implications is the fact
that the SCI performs poorly on highly conserved
sequences. The RNAeval method turned out to be signifi-
cantly better and might help to improve ncRNA gene pre-
diction under these particularly difficult conditions.

The ever-growing pace of current genome sequencing
projects confronts current RNA gene finders with new
problems. Having sequences of dozens or even hundreds
of species, the paradigm of detecting conserved structures
will change. Only a few extraordinarily conserved RNAs
like tRNAs or rRNAs will show a signal of structure conser-
vation across the whole phylogeny. The next generation of
RNA gene finders will have to deal with the problem of
finding lineage specific and evolving structures. The strat-
egies presented here can be the basis of algorithms that
find sub-groups of related structures or detect outliers of
mis-aligned sequences. We plan to enhance our programs
RNAz and AlifoldZ with such capabilities. The results

Dependency on nucleotide composition of selected methodsFigure 7
Dependency on nucleotide composition of selected methods. The scores of a subset of randomized pairwise align-
ments of tRNAs in an entropy range from 0.4 to 0.6 are plotted against the average GC content of the sequences in the align-
ment. Correlation coefficients are indicated in red at the bottom of each plot.
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obtained here guide such efforts as they clearly show
which measures are worth considering and which should
be avoided.

Methods
All results presented in this paper are based on the BRAli-
Base 2.1 data set [27]. It consists of 18,990 structural align-
ments of 36 RNA families. Alignments are divided into
subsets of alignments with 2, 3, 5, 7, 10, and 15 sequences
(see additional File 1). For each alignment in BRAliBase
2.1 a corresponding sequence based alignment using
CLUSTAL W, version 1.83, with standard settings was gen-
erated. Negative controls (i.e. alignments without natu-
rally evolved secondary structure) were generated by
shuffling using shuffle-aln.pl [5] with option "--
conservative2". This shuffling procedure maintains the
gap pattern and only columns with the same degree of
conservation are shuffled. This results in randomized
alignments of the same length, the same number of
sequences, the same nucleotide composition, the same
overall conservation, the same local conservation and the
same gap pattern. For each alignment in the original BRAl-
iBase 2.1 and CLUSTAL W data set, respectively, five rand-
omized alignments were generated for subsequent ROC
analysis.

Alignments in both data sets were split according to their
normalized Shannon entropy (equation 21) in sub sets
with a bin size of 0.05. For determination of a minimal
sample size, we followed the strategy proposed by Hanley
& McNeil [60]. A minimal sample size of 200 positive and
200 negative instances seems to yield reasonable results
(i.e. low standard error). The relative gain in a lower
standard error is small when moving to a higher sample
size. To statistically assess the significance of the differ-
ence of two AUC values we then used the non-parametric
method by DeLong [62]. Calculation of AUC values was
done using the R statistical package, version 2.5.1, and the
ROCR package [63].

As many methods can only be applied to structures of
equal length, RNA sequences without gap characters were
folded using RNAfold. The alignment of the sequences
was then used to reintroduce gaps into structures
(denoted simply as .) or to adjust the position of base-
pairs when using base-pairing probabilities.

Programs and options used
The following program versions and options were used
from the Vienna RNA package, version 1.6.5: RNAfold for
calculations of MFE structures and base-pair probabilities
of single sequences with options -p -d2. RNAalifold for
calculation of consensus structures and consensus base-
pair probabilities with options -p -d2. RNAeval for energy
evaluations of a sequence in a given secondary structure.

RNAdistance for calculation of base-pair distances with
option -DP and tree editing distances with options -
Dfhwc and additional option -S when calculations are
done using Shapiro's cost matrix.

Other programs not part of the Vienna RNA package:
RNAshapes version 2.1.1 with options -p-t [1|2|3|4|5].
migal version 2 with options -M --memory 1000. ddbRNA
with standard options. MSARi with standard options.
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