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Semantics and Ambiguity of Stochastic RNA
Family Models

Robert Giegerich and Christiandder zu Siederdissen

Abstract

Stochastic models such as hidden Markov models or stochewtitext free grammars can fail to return the
correct, maximum likelihood solution in the case of sen@atnbiguity. This problem arises when the algorithm
implementing the model inspects the same solution in diffeguises. It is a difficult problem in the sense that
proving semantic non-ambiguity has been shown to be algoritally undecidable, while compensating for it (by
coalescing scores of equivalent solutions) has been shovire tNP-hard. For stochastic context free grammars
modeling RNA secondary structure, it has been shown thadligtertion of results can be quite severe. Much less
is known about the case when stochastic context free grasnmadel the matching of a query sequence to an
implicit consensus structure for an RNA family.

We find that three different, meaningful semantics can beda®d with the matching of a query against
the model — a structural, an alignment, and a trace semaffesn models correctly implement the alignment
semantics, and are ambiguous with respect to the other twargés, which are more abstract. We show how
provably correct models can be generated for the trace dermalfor approaches where such a proof is not possible,
we present an automated pipeline to cheokst factunfor ambiguity of the generated models.

We propose that both the structure and the trace semangéiagaath-while concepts for further study, possibly
better suited to capture remotely related family members.

Index Terms

RNA secondary structure, RNA family models, covariance et@dsemantic ambiguity.

. INTRODUCTION
A. Background: Semantics and ambiguity in stochastic nioglel

Stochastic modelsStochastic models are powerful and widely used technigmnesomputational
biology. In this article, we study covariance models impdéented by stochastic context free grammars
(SCFGs), which include hidden Markov models (HMMs) as a fagsc Let us start our discussion with
this simpler model.

An important application of HMMs in biosequence analysithis modeling of protein families. There,
aligned protein sequences are processed into family maaglemented as HMMs using the HMMer
package [7] and stored in the Pfam data base [2]. Running g/ g@guence against a model returns a
score that indicates the likelihood that the query belonghé sequence family. Scanning a long sequence
with the model reveals those regions that most likely sharewlutionary relationship with the model
family.

An application of similar importance is the modeling of stural RNA families. Models are generated
with the tool Infernal [8], [15] and accessed via the Rfam data base [9]. Here, arGSi@fplements a
covariance model of RNA sequences that share a consensusdseg structure. A “parse” of a query
sequence with the model grammar shows how well it matchedaimgly sequences, accounting for
sequence as well as structure conservation.

HMMs and SCFGs use quite a different nomenclature. Neviethe mathematically, HMMs are a
subclass of SCFGs — those cases where the context-free graomderlying the SCFG belongs to the
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subclass of regular grammars. Where the SCFG literatur¢li8] uses the terminology of formal language
theory, such as grammars and parses, the HMM literaturengref terminology of transition rules and
paths. The CYK algorithm, which returns the highest scopargse according to a SCFG, is a generalization
of the Viterbi algorithm, which returns the highest scortngnsition path for an HMM. In this article,
we will build on the established SCFG terminology, becatisaakes the theory more general and also
because our immediate practical interest lies with comagamodels as used in Rfam.

Modeling semantic ambiguityThe problem of semantic ambiguity has been recently adeldeissa
series of papers. Giegerich [10] pointed out the problemsamgested a suitable formalization: the parse
trees constructed by a SCFG parser represent some rea-olmdcts of interest, for example alternative
secondary structures for an RNA sequence. If some of thasegactually represent the same object, we
have a case of semantic ambiguity. By specifying an exph@pping of parses to a canonical (unique)
representation of our objects of interest, it may be possiblprove presence or absence of ambiguity.
The use of a canonical representation appears to be a ngcessension to the standard framework of
stochastic modeling, in order to deal with ambiguity in ateggatic manner. It plays the role of associating
a precise semantics to the parse trees (namely, the seactiuey represent), and coding this meaning
within the model is the key to tackling it computationally. The té'seamantic” ambiguity that we use in
this article catches this fact, and discerns it from symtanbiguity as studied in formal language theory.
In our case, syntactic ambiguity only means that a grammarspacify severatlifferentstructures for a
given sequence, which is a good thing rather than a probleconmbinatorial optimization. Note that in
textbooks covering SCFGs [1], [6], the pitfall of semantmakaguity has not yet been paid attention to,
and the most likely parse is taken for granted to indicatentiost likely structure.

Ambiguity — does it really matterDowell and Eddy [5] approached the ambiguity issue from
the pragmatic side and investigated whether it really matie practice. They compiled a number of
plausibility arguments, why one might hope that the mostljikparse somehow points to the most likely
structure, even in the presence of ambiguity. But then, tledyted such hopes: For two ambiguous
grammars, they tested how often the most likely parse retuhy the SCFG was different from the most
likely structure. For one grammar (G1), the result was wrémg20% of all tested sequences. For the
other grammar (G2), which was a refinement of G1 for the sakeetitr parameter training, the result
was wrong even for 98%. Dowell and Eddy provided a first ergirtest for the presence of ambiguity,
and continued studying parameter estimation for sevetairative, non-ambiguous grammars.

Algorithmic undecidability of semantic ambiguityfthe idea of ambiguity checking was further
worked out by Reeder et al. [16]. They gave a proof that, inegan presence or absence of semantic
ambiguity is formally undecidable. However, they conttdalia series of further techniques for ambiguity
checking, where the most powerful one involves translabbithe SCFG into a context-free grammar
generating the canonical representation introduced if [LBen, a semi-decision procedure such as a
parser generator may be able to demonstrate presence @ absence of ambiguity in many relevant
cases. The simple unambiguous grammars studied in [5] weneeg unambiguous in this mechanized
fashion. Moreover, the rather sophisticated grammar deslidpy Voss et al. for probabilistic shape analysis
[21] could also be proved non-ambiguous in a similar way. Stuely by Reeder et al. [16] also indicated
some techniques of avoiding ambiguity. However, there aseg where the expressiveness of the model
— the capability of adapting the parameters of the model toamihg set — may suggest to prefer a
semantically ambiguous grammar.

Algorithmic infeasibility of ambiguity compensatioi©an we still obtain the desired result when
the grammar is ambiguous? Such a case was studied in the HidMtlire by Brejova et al. [4] under
the name “path labeling problem”. In HMM modeling, the modskElf often is more refined than the
final result. For example, the gene structure of a sequentebeandicated by a labeling of residues
by E (exon) or | (intron) states. Yeast, for example, has tvasses of introns, “short” and “long”. The
stochastic model, in order to capture the length distrdsubf introns, requires several states to model
intronic residues. Therefore, several transition pathsuph the model may differ in their points of
transition between intronic states, while they lead to #mes path labeling and hence, indicate the same
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gene structure. Here, the path labeling constitutes therceal mapping: Paths are equivalent when they
have the same labeling, and the HMM is semantically ambigwaoen this happens. Brejova et al. then
studied what we call ambiguity compensation: can the dlgaribe modified such that all scores of paths
with the same labeling accumulate? Their main result wass thayeneral, this problem is NP-hard, and
hence, computationally infeasible. This does not rule bat ambiguity compensation may be practical
in restricted cases, but in general, we are better advisesldinl semantic ambiguity altogether.

Unresolved questionsFhere are three questions that were not addressed: (1) DemvekEddy studied
semantic ambiguity in principle, but worked with rather dregample grammars. Grammars such as those
underlying Rfam are much larger, and they do not simply assigtructure to an RNA sequence, but
they also relate it to the family model. It is unclear how tleengantics of a model should be defined. (2)
While methods for ambiguity checking in formal languageottyehave been advanced recently [3], the
step from a large, tool-generated SCFG to the context-fraengpar suitable for ambiguity checking is
still left open. (3) Are the models used in practice actualynantically unambiguous, and if so, based
on which semantics? These are the questions we will address.

B. Contributions of this article

This article provides a theoretical and a software-teaingontribution, and their application to Rfam
models.

On the theory side, we formally define three alternative seits for covariance models for RNA
families — astructure atrace, and amlignment semanticg\ll three of them have a well-defined biological
meaning, which is interesting to implement. Whether or npaeticular grammar is in fact semantically
ambiguous depends, of course, on the chosen semantics.dehsliv provably non-ambiguous models
with respect to the trace semantics can be constructed.

On the technical side, we provide an automated pipeline dcaepts a grammat, a canonical
representation mapping (written in a particular style)d pnoduces a gramma¥ which is syntactically
ambiguous if and only 7 is semanticallyambiguous. Connecting this pipeline to a (syntactic) ambyg
checker for context-free grammars, this automaesianticambiguity checking as far as its intrinsic
undecidability allows for it.

In the application, we apply our formalism to Rfam models. Wel that Rfam models faithfully
implement the alignment semantics, although their desonipgn the literature at one point suggests a
structure semantics. With respect to the structure andrtdee tsemantics, they are ambiguous. In the
conclusion, we argue that both the structure and the travarstics are worth further study, because they
are more abstract and may be better suited to capture rgnretated family members.

The article is organized as follows: In Section Il we revieWawis known about semantics and ambiguity
of simple SCFGs as used for structure prediction, about guitlgichecking, and ambiguity compensation.
In Section Il we turn to family model grammars and find thagrthare three alternative ways to define
their semantics. In Section IV we describe precisely a neyerdhm of model generation for the trace
semantics and prove its correctness (i.e. non-ambiguitiyeofienerated models). In Section V we describe
a software for upward compilation and ambiguity checkingRédm models. This pipeline is applied in
Section VI. We conclude with a discussion of open resear@stipns which arise from our findings.

[1. A SUMMARY OF SEMANTIC AMBIGUITY THEORY

In this section, we review known results on the problem ofaetic ambiguity. The only new contribu-
tion in this section is that the method for ambiguity chegksuggested in [16] has now been automated.
Along with this review, we introduce the concepts and thenfalism to be further developed subsequently.

A. SCFGs and their semantic ambiguity

Context-free grammarsGiven an alphabetl of symbols,.A* denotes the set of all strings of symbols
from A, including the empty string. A context-free grammat> is a formal system that generates a
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Fig. 1. Grammars G1 and G5 taken from [5)].is the axiom and only nonterminal symbol in either grammaaand b denote arbitrary
bases out ofa,c, g,u}, as SCFGs allow non-standard base pairs (albeit with loveglility). Hence, a rule like5 — aSb is a shorthand

for 16 different rules.
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Fig. 2. Three derivation trees for the sequeneeug . t1 and¢2 are derived withG1, ¢5 is derived withG5.

language of strings oved. It uses a set’ of nonterminal symboJsone of which is designated as the
axiom Its derivation rules (productionshave the formX — «, whereX € V anda € (V U A)*. A
derivation of a terminal stringy € A* starts from the axiom symbol, and in each step, replaces bne o
the nonterminal symbols in the emerging string accordingrte of the productionst Xy — xay may

be a chosen transition wheXi — « is a production ofG. Such a derivation can be represented uniquely
in the form of a tree, and by reversing the angle of view (froemeyating a string from the axiom to
reducing a given string towards the axiom), this tree is aldted a parse tree. Two grammars are shown
in Fig. 1 , and three such parse trees are shown in Fig. 2. Amgeanis (syntactically) ambiguoud
there is a string that has at least two different parse tieesa classical result of formal language theory
[12] that syntactic ambiguity of context-free grammarsastally undecidable. This means, there is no
algorithm that can decide presence or absence of ambifpuigll context-free grammars. However, there
are semi-decision procedures that return either YES, NO AYBE, which have proved quite powerful

in practice [3].

Stochastic CFGsA stochastiacontext-free grammar augments each production rule witaresition
probability, such that the probabilities assigned witlerative rules for the same nonterminal symbol sum
up to 1. For rules which simply generate a terminal symbda,abksociated probability is called emission
probability. We do not distinguish these two types of praliads here. In a derivation, the probabilities
of all applied rules multiply. In such a way, a parse ttegf string x assigns a probability’(¢, =) with
x. The CYK algorithm, givenr, computes the parsg,.(z) = argmaz:{P(t,z) | t parse forz}.

SCFG semanticswWhen modeling RNA structure, treemanticsSsc g of an SCFGG is defined as
follows: Each parse treeaccording toG associates an RNA secondary structSger¢(t) with sequence
x: terminal symbols (denoting RNA bases) produced in the ssteye with productions lik& — aSb are
considered base paired, while all other ones are consideredired. Denoting structures in the familiar
dot-bracket notation, where a dot denotes an unpaired basematching brackets denote paired bases,
we Observeggcj:g(tl) = Sgc]:g(tQ) = Sgc]:g(t5) = ".(.)." .

When there exist # t' but Sscrg(t) = Sscrg(t’) for grammarG, we say thatG is semantically
ambiguous This occurs with the treed and¢2 for grammarG1 in Fig.2. There are no such trees with
G5. Hence,G1 is semantically ambiguous, whil@5 is an example of a non-ambiguous grammar.
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With a semantically unambiguous grammar, the most likekg@also means the most likely structure
for = — this is exactly what we hope to find. If the grammar is sencafii ambiguous, the most likely
structures,,; may have several parses such that = Sscrg(ti1) = Sscrg(t2) = ..., with probabilities
p(t1, ), p(te, x), ..., and P(s.,:) = >; p(t;, x). In this situation, it is not guaranteed that one of the marse
t; has maximal probability, and some unrelated parse (indigat different structure), will be returned
by the CYK algorithm. For the gramma¢sl and G2 studied in [5} , this happens in 20% resp. 98% of
all test cases.

Many simple grammars can be specified for RNA structure thatret semantically ambiguous.
Different (non-ambiguous) grammars for the same problewe Hdifferent characteristics with respect
to the probability distributions they define. For exampl@mmarGhs, attributed to Ivo Hofacker in [5], is
arguably the smallest grammar for the purpose. It has onlya2dmeters and showed “abysmal” modeling
performance in [5].

B. Embedding SCFGs in a more general framework

In order to deal with ambiguity checking and compensatiathbn theory and practice, we embed
SCFGs in the more general framework of algebraic dynamigmaraming (ADP) [11]. This will allow us
to replace the probabilistic scoring scheme “hardwiredthia SCFG concept by other evaluation schemes,
or use several such schemes in combination. In our apgicate will in fact generate equivalent ADP
code from Rfam models, to be used for a variety of differemppees aside from stochastic scoring.

Algebraic dynamic programmingADP is a declarative method to design and implement dynamic
programming algorithms over sequence data. ADP and stbchasdeling tools serve complementary
purposes (while both rely on the same type of dynamic progreag algorithms for their implementation).
ADP is designed to give the author of a DP algorithm maximaiveaience — high level of abstraction,
re-usable components, and compilation into efficient tacgee. Any type of combinatorial optimization
over sequences is possible, provided that Bellman’s Rieaf Optimality holds. Grammars in ADP are
produced by a human designer and are typically small — at @awpared to grammars derived from
data by stochastic modeling tools. These, in turn, come aitlard-wired scoring scheme for maximizing
probability or log-odds scores, and the capability to trdia parameters via expectation maximization.
Many of the grammars constructed by automatic modelingstsakch adnfernal have probably never
been inspected by a human eye.

The ADP formalism starts from aignature which is a supply of function symbdlsOne of these,
namedh by convention, designates the objective function, to bel usesubsequent analyses. The other
ones are placeholders for scoring functions.

For example, these are the signatures we will use withand G'5:

G1 G5

openl : AxV —V openr : Vx A—V open: AxV =V

pair : AXxV xA—=V split:VxV -V pair : AXV X AXxV =V

nil : 'V h:[V]—[V] nil - V h:[V]—[V]

Here, A denotes the underlying sequence alphabetan arbitrary value domain, and’] a list of
values.

Grammars in ADP are tree grammarstr@e grammars analogous to a context free grammar, except
that the righthand side iX — « now is a tree, built from the function symbols of the signat(wther
thanh) at inner nodes, and nonterminal symbols as well as termsyrabols residing at the leaves of the

'Dowell and Eddy use the term “structural ambiguity” ratheart “semantic ambiguity”. This is consistent with our temoibgy, because
for simple SCFGs, a structural semantics is the only onetihatbeen considered so far. When we will turn to family maqdlsre will
be different semantics which can be employed. Again, thelebe a structural semantics, but it is not the one impleradnin today’s
modeling approaches.

2Java programmers may think of it as an interface
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Fig. 3. Tree grammar versions of string grammars G1 (left) @5 (right).

tree. Occasionally, we have a nullary function symbol, \whit¢so marks a leaf. Figure 3 shows the tree
grammar versions of G1 and G5.

The derivation with a tree grammar works as with CFGs, extegt now it produces a tree. It may
derive the same tree in different ways (syntactic ambigaityree grammars), but this is easily avoided,
and besides, syntactic ambiguity is decidable for thissctafdree grammars. Therefore, we can assume
that each tree has a unique derivation (or tree-parsettaeh derived tree contains, as the string of its
leaf symbols, some sequengec A*. These trees represent the candidates in the combinaseaath
space associated with sequengeand in order to avoid the use of “tree” in too many connotajove
will henceforth refer to them asandidates

The introduction of a tree grammar, based on a signature raftiftns, seems like a minor, artificial
change of formalism, but has a profound impact: it decoufiiescandidates which we analyze from the
grammar which generates them. There can be more functiotie isignature than there are productions
in the grammar, but normally, there are less. Different grems over the same signature can be used to
derive the same set of candidates. Candidates only reflectdignature — they bear no resemblance of
the derivation and the grammar which generated them. Oudidates:1,t2 andt5 as derived by the tree
grammars are shown in Figure 4.

The function symbols that constitute the inner nodes of #relate can be used to associate a variety
of meanings with each candidate. This is done by specifymgwaluation algebra- i.e. a data domain
and a set of functions (which compute on this domain), onesfmh function symbol in the signatdye
including h. Whatever evaluation we define will be computed by a geneW&-Gke algorithm. We do
not worry about implementation issues here, and denoterthlyss of input sequence with grammar
G and evaluation algebr& as a function call7(B, x).

SCFGs encoded in ADPTo run an ADP grammar as a SCFG, one simply provides an ei@uat
algebra which implements the function symbols in the sigreaby functions that compute probabilities.

Evaluation algebra PROB for G1:

h = maximum

pair(a,z,b) = pap* split(x,y) = Dsplit * T * Y
openl(a,x) = pgxx nil () — P
openr(r,a) = pgxT

The probability scoreg,, pa, pspiit, Pnir @re to be estimated from the data.
Evaluation algebra PROB for G5:

h = maximum
pair(a,,b,y) = Pap*T*Y
open(a, ) = pu*x

nil() = Pnil

3Java programmers may think of implementing the “interfadeit — please — with pure mathematical functions withoue sitfects.
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Fig. 4. Candidategl,¢2 andt5, as derived by their tree grammatd and G5.

Evaluating a candidate in this interpretation yields itshability score, akin to what is achieved by a
SCFG, if the candidate was a parse tree. This is how we exfiresaathematical equivalent of an SCFG
in ADP. The advantage is: once we have the grammar in ADP ferencan use it for other purposes
besides stochastic scoring.
Encoding the canonical mappingiWe use a second evaluation algebra to encode the canonical
mapping of candidates to their “meanings”. Let us call it CAN
Evaluation algebra CAN for G1.:

h = id

pair(a,z,b) = "(" +z+")" split(z,y) = x+vy
openl(a,z) = " -" +ux nil() = "™
openr(z,a) = xz+" "

In algebra CAN, we define the functions such that they comgduen the candidate, the dot-bracket
representation of its associated structure. In other waZddN implements the semanticc g for G1.
Operator+ here denotes string concatenation, atdlenotes the identity function.

Evaluating the G1-candidate$ and¢2 in the algebras PROB and CAN, we obtain

PROB(t1) = split(openl(a,pair(a,openl(c,nil),u), openr(nil,g)) = Psplit * Prit * Pau * Pa * Pe * Pg
PROB(t2) = split(openl(a,nil), openr(pair(a, openr(nil,c),u),g)) = Psplit * Pit * Pau * Pa * Pe * Pg
CAN(t1) = split(openl(a, pair(a, openl(c,nil), u), openr(nil, g)) = ()

CAN(t2) = split(openl(a, nil), openr(pair(a, openr(nil, c),u), g)) =

In this way, the structure — the meaning of our candldatesctwtiemdes about ambiguity — now
becomes part of our operational machinery. We can@allC’ AN, "aacug"” ), and multiple occurences
of ".(.)." in the output witness the semantic ambiguity@f. We leave it to the reader to define an
analogous algebras PROB and CAN for the signature of G5. Aepgowfeature of the ADP approach is
the use of algebra products (see [20] for the precise de@imitFor example, calling'5(PROB*C AN, x)
will give us all the structures for: that achieve the maximum probability score. Since the gram@b
is semantically non-ambiguous, there may still be seveaatidates achieving maximal probability, but
they must all produce different structures as indicated BNCWhen the grammar is ambiguous (like
G1), neither of the optimal candidates may indicate the rikedy structure, as explained in Section IlI-A.
G1(PROB x CAN, z) returns the optimal candidates together with their assediatructures, possibly
delivering duplicates, but we cannot be sure if any of themotks the most likely structure.
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Fig. 5. GrammaiG1 derived from G1

C. Automated checking of semantic ambiguity

We now introduce a systematic and automated approach t@aitypchecking. Consider a tree grammar
and a canonical mapping algebra which maps candidatesingswver some alphabet. In this setting,
one can substitute the string composing functions of thekaly into the righthand sides of the tree
productions. By partial evaluation, we eliminate the treesl righthand sides become strings over A.
Starting from the tree grammar G1, we rewrite its rules ittose of grammaé1, shown in Fig. 5.

Note that the first rule inG1 is derived from 16 productions in G1, but since these are aliytu
exclusive due to their terminal symbols, only one corresiig rule is retained irz1.

In this way, from our tree gramma¥ we obtain a context-free (string) gramm@rwith the following
property: ~

Theorem 1 The tree gramma¢ is semantically ambiguous if and only if the string gramngais
syntactically ambiguous. R

The proof of this theorem was given in [16]. At that time, thermgmarG was handwritten — the
new aspect here is that it is now produced automatically filerand the canonical mapping algebra.
This is further described in Section V, where we present thelime cm2adpfor upward compilation of
Infernalgenerated models into the ADP framework. Taking thesetitarsts together —

1) the automated re-coding of an SCFG in ADP as a tree gramimar

2) the specification of a unique string representation asriaal mapping algebr&’ AN,

3) the automated derivation of a string grammafrom G and C' AN,
we are now in a state where we can take a SCFG and submit it tatamatic ambiguity checker.

The only step which is not automated is, of course, the spatiifin of the canonical mappingAN.
Naturally, we must say at one point what the meaning of oudicites really is. However, for grammars
coming from the same modeling domain, this must be done onég,0as the canonical mapping is the
same for all grammars. In this sense, the ambiguity checgipgline is completely automated now.

D. Ambiguity compensation

The canonical mapping defines (as its reverse image) a sienegtivalence relation on the evaluated
candidates. Ambiguity compensation means that all scordsrmthe same equivalence class should be
accumulated, rather than maximized over. Let us assumédéambment that we know how to accumulate
these scords We obtain an accumulating algebPaRO B,,.. from PROB by replacing the (maximizing)
objective functionh by the suitable accumulating functidn,... By calling G1(CAN %« PRO B, ),
we correctly compute the probabilities, accumulated over ¢équivalence classes modultAN. So,
mathematically, ambiguity compensation is not a problemd ao additional programming effort is
required except for the coding &f,...

However, we will experience an exponential slowdown of awgpam, consistent with the intractability
result of [4]. The asymptotic efficiency of the algorithm ieated by the number of equivalence classes
modulo C'AN, which must be computed in total — and their number is, in ggnexponential in the
length of the input sequence. Such an approach is feasibledderate length RNAs when equivalence
classes are defined via shape abstractions [21], but wh&N simply denotes feasible structures of the
input sequence, one cannot get very far by this (otherwise glegant) method.

“For example, log-probabilities must be re-converted imubpbilities in order to be added, which may cause numepmatlems.
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E. Ambiguity in sequence comparison: alignments versussa

The phenomenon of semantic ambiguity is not peculiar to SCHGarises with HMMs, and in fact,
already with simple, pairwise sequence alignments. As BEGFGs, it depends on the meaning we
associate with alignments. Seen as a syntactic object,a@giment of two sequencesandy stands for
itself and is distinct from all others. But sequence alignteare often interpreted as a reconstruction of
evolutionary history, where both sequences have develfspeda common ancestor. Matched residues in
the alignment (bases for DNA, amino acids for protein seqaeghare considered preserved by evolution.
Mismatches mean accepted point mutations. Gaps mean nelugsshat have been inserted in either
or y. (If we see the same process as evolving freno y, “insertions” in x appear as deletions, which
has no effect on the subsequent discussion.) If new sequescbeen inserted in bothandy between
two preserved residues, there is no particular orderinghe$d events. The alignment, however, offers
two representations for the same fact: we may write both

X:  ACAGGGG---CAC X: ACA---GGGGCAC
y:  ACA----TTTCAC y:  ACATTT----CAC,

denoting the same evolutionary history. Classical bigimfatics textbooks do not fail to point to this
fact [19], [22]. Naturally, if this situation arises &tlocations during the evolution of the sequences, this
process hag* aligments representing it — significantly disturbing anycsiastic model.

“Alignments” where only matches and mismatches are spdcified hence, adjacent deletions/insertions
remain implicit, avoid this problem. They are callgdcesin [19], and we will adopt this naming later.
An unambiguous notation for traces could be e.g.

x:  ACA[GGGG]CAC
y: ACA[TTT] CAC

where the square brackets designate inserted sequencetergibwith respect to each other. Another
way to avoid ambiguity in alignments is presented later, wive return to this aspect in Section IlI-C.

[1l. SEMANTICS OF SCFGBASED FAMILY MODELS

In this section we turn our attention to SCFGs which descRIMA family models, called family
model grammars for short. The previously developed SCF@itelogy is not sufficient to understand
their properties. We will extend it appropriately. In pauiar, we will find that there are three reasonable,
alternative semantics for family model grammars.

A. From RNA folding SCFGs to family model grammars

There are three important differences between the SCFG& damd others) have used them as models
for structures of individual RNA molecules, and their usdamily modeling.

Family model grammars encode a consensus struct@emmars likeG1 or G5 are unrestricted
RNA folding grammars. They will fold a sequence into all fikées secondary structures according to the
rules of base pairing. This makes the grammars relativebllsiraving one rule for every structural feature
considered by the scoring scheme, say a base pair or an edgdzase. The scoring scheme evaluates
alternative parses and selects the result from the comfuketimg space of the query sequence.

This is different with grammars that model an RNA family wétparticular consensus structure The
consensus structuré is “hard-coded” in the grammar. To show a concrete consemsaishall use star and
angle brackets in place of dots and parenthesis,"@.g<* <* >>><x>x" _ This is only for clarity — there
is no difference, in principle, between the consensus addary structures. For every position where
(say) a base pair is generated, the family model grammar lspecal copy of the base pair generating
production, with nonterminal symbols renamed. The general S — aSu becomesS; — aS; u for
each position where ana—u base pair is irC'. The transition parameter associated with this rule can be
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trained to reflect the probability of an—w pair in this particular position. The type of grammar we have
seen before, therefore, only serves as a prototype fromhwsuch position-specific rules are generated.

A family consensus structure of residues will lead to a model grammé&if- with kn productions,
wherek is a small constant. Hence, while folding a query with apprate lengthn and grammaiG1
would requireO(n?) computing steps, matching the sequence to the family graniparuns inO(n*)
time, simply because the size 6% is in O(n).

Family model grammars restrict the folding space of the guek parse of a sequence in G¢
indicates a structure far, but this structure is no longer a free folding: it is alway®i@momorphic
image ofC, with some base pairings @ possibly missing, and some residues(odfpossibly deleted.
Still, the paired residues may be assigned to the basesiofdifferent ways; therefore, the structures
assigned tor by different parses may vary slightly. This restriction bétfolding space to “lookalikes”
of C' is the second difference between single sequence foldidgaamnily modeling.

Family model grammars encode the alignment of a query to tresensus:The third, important
difference is thatz. implicitly aligns = to C'. For example, a base assigned an unpaired statusriay
represent one of three situations: it may (i) be matched targraired residue i@, (i) be an inserted
base relative t@’, or (iii)) be matched to a paired residuedn but without having a pairing partner in

These three situations are explicitly distinguisheddp, they are scored separately, and the CYK
algorithm returns the parse with maximal score based o tb@ssiderations. To achieve this, the prototype
grammar needs rules which take care of deletions, insestimd different types of matches.

Together, these three differences are central to our iskaenbiguity, and we summarize them in the
following
Fact Let M be a covariance model implemented by an SQF& which implicitly encodes the consensus
structureC. Then, parsinge with G finds an optimal alignment af with C' which implicitly designates
a structures, for x. This structures, is restricted to one of many possible homomorphic images of
obtained by deleting residues and dropping base pairingsff’. There are numerous other alignments
which assign the same structugg to =, whose (smaller) likelihood contributions are not reflectsy the
optimal alignment.

B. Prototype grammar and family model example

At this point the reader rightfully expects an example of atptype grammar and a family model
grammar generated from it. We show a prototype grammar etkrivom G5 and a toy family model
grammar generated from it.

The prototype grammar G5MWe extendG5 to obtain a prototype grammar5)M capable of
describing query alignments to a modél5M extendsG5 by rules modeling insertions, deletions and
matches. Againg andb stand for arbitrary bases.

GrammarG5M, the axiom isA.

A — aA | M
M — ¢]aA | M|
GAbA | aAM | MbA | MM

From a purely syntactic point of view, this grammar appeaesrdy because the chain ruled — M
and M — M M together withM — ¢ allow for unbounded derivations that produee There is
no string in the language of this grammar which has a uniquée/at®n! Ignoring all rules except
{M —e, M— aA, M — aAb A} and mapping nonterminal symbalsand M to S, we are back at
G5. The other rules provide for insertions and deletions beiwie query and the model. Specialization
of G5M to the consensus+ <x>x" will yield the family model grammatr,,s. Its context-free core is
shown in Fig. 6 for shortness, bdt,,,; actually is a tree grammar using the same signaturéay.
Details of the generation algorithm are in Section IV.

To make our intentions explicit, we semantically enhaneegifammars by adding an evaluation function
interface.
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A1 —>CI,A1|M1
M1 —>CLA2|M2
A2 —>CLA2|M2
M2 —>CI,A3bA5|CI,A3M5|MgbA5|M3M5
Ag —>CI,A3|M3
M3 —>CI,A4|M4
A4 —>CLA4|M4
M4 — &

A5 —>CI,A5|M5
M5 —>CI,A6|M6
AG —>CLA6|M6
M6 — &

Fig. 6. Family model grammafr.ys generated fronG5M for consensugy = " * <x >x "

A — flns ‘ M

7N

M — f_nil f_mat f_del \

/ \ |

M

f PK fLr f IR \ f by

AN /\\ SN N

Fig. 7. Prototype gramma&5M as a tree grammar. Functiotfs,q:, fins and fqe; mark matches, insertions and deletions of unpaired
residues. Functiongrx, frr, fir, and fo; mark matches, partial, or total deletions of paired residunethe model.

Here is the signature:

fmat: AxV =V fPK: AXV XAXV -V
fins: AxV =V fLr: AXxV xV -V

faa: V=V fir: VXAXV =V
foa: V fog: VXV =V
o V= [V

Remember thal denotes the underlying alphabet. The tree grammar versi6ib 6/ is shown in Fig.
1.

C. Three semantics for family model grammars

Matching a queryr against a family model should return the maximum likelih@odre of — what?
There are three possibilities, which we will explicate imsteection.

For the family models, derived fro@5M/, we can use the same signature as withl/, except that
the functions get, as an extra first argument, the positidhenconsensus with which they are associated.
Hence, when specifying a semantics via an evaluation ageli=51/, this implies the analog semantics
for all generated models, as they solely consist of pos#ipecialized rules frond-5M.
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The structure semanticsfhe obvious idea is to ask for the highest scoring structesggaed tor.
This is in line with the semanticSsc g introduced for SCFGs previously. Here is the canonical rrapp
algebraC ANyt

fmat(a7 S) — 77.77 + S fPK(a, S, b’ t) — 7 (’7 + S + 77)77 _|_t
fins(a,s) =7 +s frr(a, s, t) =" +s5+t1
fdel(5> =S flR(S,b, t) = S—F”.” +t

fm‘l =" fbg(svt) =s+t

h =1d

Here agains andt denote strings derived from substructures, andenotes string concatenatiodm.
andb are the concrete residues read in the quéry.V,;,.... maps residues of the queryto their assigned
paired or unpaired status, while residues from the consews$ich are deleted (e.g. wheyfg, applies)
produce no contribution to the output. Hence, the meaningngfcandidate evaluated WithA N, IS
simply a structure for: in dot-bracket notation.

The alignment semantic8Vith the alignment semantics, we want to obtain the maximikeiihood
score of an alignment of the query to the consensus. This Insdmore refined than the structure
semantics, as a given query structure can be aligned to theensus in many different ways, and we
seek the most likely of those. Let us now formalize this idea.

For capturing the alignment semantics, we must use a caadaeigresentation that expresses not only
the structure assigned to, but also how it is aligned to the consensus structlireHence, it is an
alignment of two strings, the consensus structure and thetste assigned to the query. Both, naturally,
can be padded with gaps. The following are three differeighaients of a query sequence to the same
consensus:

(1) *h K<kk - Kk Sk S- (2) *h Ko ko kk Sk D> (3) *h S<khk - Kk Sk So-
(). I (e I _((....))..
Note that the upper line is always« <<+ >*>" when ignoring the gaps. This is because the
consensus is hard-coded in the model grammar. In contrastyuery structure i8.(......)." in
alignments (1) and (2), any(....)).." in alignment (3).

In defining the canonical mapping algelral NV,;;,,, for the alignment semantics, we use functions that
generate the alignment column-wise.
Here is the canonical mappir@AN ;g

fmat(a’s> =77 +s fPK(a787b7t) :”f”‘i‘s‘f‘”?”—l-t
fins(a,s) =77 +s frr(a, s, t) =77 L g4I 4t
faet(s) =77+ fir(s,b,1) P
Fni =" fog(s,t) =727 p s 4t
h =1d

The trace semanticsOur third semantic idea results from the fact the good oldieege alignments
have an ambiguity problem of their own. After all, we are aligg a query sequence to the model. Recall
our example from Section II-E of traces of evolutionary meges that are represented ambiguously by
sequence alignments:

X: ACAGGGG---CAC x: ACA---GGGGCAC
y: ACA----TTTCAC y:  ACATTT----CAC

This directly pertains to our problem at hand if you considexs the consensus of (say) a loop region
in the model (be it a profile HMM or an SCFG), andas the loop of a corresponding hairpin in the

5In the implementation, unfortunately, we have to replaeertte two-letter columns by ASCII encodings.
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guery. If a stochastic model assigns a probability of 0.1acheof the two alignments, the corresponding
trace

x:  ACA[GGGG]CAC
y:  ACA[TTT] CAC

has probability 0.2 (at least). We have a case of semantidgantygy which must be taken care of
even in stochastic sequence alignment. The Plan7 aramiéecf HMMer, for example, does this in a
drastic way by requiring at least one intervening match wéwitching between deletions and insertions
[17]. This simply disallows adjacent deletions and ingersi altogether (but also rules out some plausible
traces).

We will adopt a different route. It is easy to modify the aligent recurrences defining sequence
alignment (the grammar in our terminology) such that onlg of the possible arrangements of adjacent
insertions and deletions is considered as a legal alignfi€@jt With such canonization, each trace is
uniquely represented by an alignment. The reduction isifsignt: For the two short sequences shown
above, and under the affine gap model, there are 396,869j886ants, representing only 92,378 different
trace$. Traces are considerably more abstract than alignments.

Let us return to our covariance models. Our family model greams perform both folding and alignment,
and hence, they are also affected by this source of ambiguiy least if we intend that final score
designates the most likely evolutionary process thatesltte query to the model. The case even becomes
more subtle. The following alignment (4) denotes the sameetias alignment (2):

(2) C: Kk K<k —mm kK Sk DS 4) C: Kk K< Kk e Kk DSk D>
X: I (e I X: T (s ) .

What both alignments say is that a paired residue (at pasB)oin the consensu§' is deleted inz,
while another base is inserted in As with plain sequence alignments, adjacent deletionsisgttions
are unrelated; their order is insignificant.

Hence, it makes sense to introducdrace semanticgor our family model grammars: we want to
obtain the maximum likelihood score of a trace, which unigugescribes an evolutionary process of
transforming the consensus into the query.

To capture this idea, we need to design another canonicab&g’ AN;,..., which maps these two
situations (2) and (4) above to the same, unique repregamtatet us adopt the canonization rule that
insertions must always precede adjacent deletions. Byuhesboth alignments (2) and (4) are represented
in the form of (4). The canonical mapping algeldfal N, ... is almost the same &SAN,;,,, €xcept that
deletions that appear to the left of an insertion are pusbete right.

AlgebraC ANy, qce
” ¥ » S » T
fmat(a,s) = - *s fPK(CL,S,b,t) ="+ s4+7)7 +1
» » < »” 7
fins(a,s) =77 +s frr(a,s,t) =" s+ bt
* < >
fdel(s) :”_”DS flR(87b7t) :7)_)7I>S+)7'77+t
< >
fnil — fbg(syt) =" """ + LN
h =1id
do(a+s) = ifa=""7 thena+ (d>s) elsed+a+ s
doe =d

Wherever a deletion is issued, we have replaced simplegstdmcatenation (+) by the operation
which moves the deletion to the right over any leading insest

5Computed with the ADP versions of classical dynamic prognémgy algorithms at http://bibiserv.techfak.uni-bielefee/adp/adpapp.html
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nil open pair ni open pair

NN TN AN

Fig. 8. GrammaiG5 as a tree grammar for parsing sequences (left) and consetrsatures (right).

S—- S—

|
*

The semantic hierarchyOur three semantics form a proper hierarchy — many alignsnesrespond
to the same trace, and many traces assign the same structhe query. This also implies that a family
model which faithfully (unambiguously) implements thegalnent semantics is ambiguous with respect
to the trace semantics, and one which faithfully impleméméstrace semantics is ambiguous with respect
to the structure semantics, which is the most abstract oftires.

Which semantics to choose? When we are mainly interestedsimuature prediction for the query,
indicating why z may perform the same catalytic or regulatory function asftimeily members, then
the structure semantics may be most appropriate. When wimtarested in estimating the evolutionary
closeness of the query to the family members, the trace d@naseems adequate. For the alignment
semantics, at the moment we see no case where it should lezrpcef

But — can we generate unambiguous family model grammars féinetetly compute either of the three
semantics?

IV. GENERATING NON-AMBIGUOUS FAMILY MODELS FOR THE TRACE SEMANTICS

In this section we show how family model grammars can be ggedrwhich are non-ambiguous with
respect to the trace semantics. This will also provide a elegsight on the meaning of the prototype
grammar’. We proceed in the following steps: (1) We start from a norbigmous prototype grammar.
(2) We show how, given a consensus structitrea model grammaé - is constructed which generates
alignments in the canonical form (insert-before-deleds) required for the trace semantics. (3) We give
a proof that for anyC', GG is hon-ambiguous under the trace semantics.

Here, we use grammadrb, because it is the smallest non-ambiguous grammar. Howtneegenerating
technique and proof carries over to any non-ambiguous fyeécgrammar, which might be more attractive
than G5 from the parameter training point of view.

The meaning of prototype grammarStarting fromG»5, our prototype grammar i&5M. We still
owe the reader the explanation why this grammar looks theitvdges. The key point ofz5M is that it
enforces the insert-before-delete convention. Only mamteal symbolA allows for insertions. Whenever
a nonterminal symbol stands in the left context of a deleteon)/ rather than amM is used.

The real understanding of the prototype grammar comes fn@olbservation that the prototype grammar
G5M is a grammar that allows to align a queryat possible models:

There is nospecificmodel encoded irG5M. This is why the grammar can be so small. But each
derivation with G5M not only assigns a structure to the query, but also impficthcodes a model,
chosen by that derivation. This meaning of the prototypengnar can be made apparent by plugging
the definitions ofC AN,,,.. into the tree gramma&5M and symbolically evaluating a bit. Doing so, the
tree operators likef,,..; or fpx are replaced by string concatenations, and we obtain thrgygrammar
GHM: -

GrammarG5M; the axiom isA.

"The reader may find it helpful to inspect the actual impleratgon of the generator and run simple experiments. We therdfiave
provided the generator among our educational ADP pagegat/bibiserv.techfak.uni-bielefeld.de/adp/nilpgaen.html
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A —
M —

LA M
| A | I M |
CAVA| TA M| “M7TA| M- M

This grammar transformation is not totally trivial becaa$¢he use of- in the definitions ofC AN, .

But from the grammar, we observe that canonical stringwveérdrom A/ cannot start with insertions. {,
while deletions {,~,”) are only applied beforé/. Hence, this grammar guarantees that the if-clause
in the definition of is never positive, and the recursive callrtalisappears. (Since the userofs the
only difference betwee@' ANy, ... and C AN;4,, transformingG5M with C AN, leads to the same
string grammaiG5.M).

What doesz5M explain aboutz5M? Replaying any derivation af5) with the analog productions
of G5M produces the representation of a model-structure alighnTédre top line displays the model
“chosen” in this derivation, the bottom line displays theisture assigned to the query. Considering only
the model string on the top line, we find that its is producedpbyductions analog ta-5, and hence,
any consensus structure is possible.

For example, running=5M on input"au” produces an infinite number of model/query alignments.
This is correct, since models of any length can be alignednto sequence with a suitable number of
deletions. Disabling for a moment the rules which deleteaingl model residues or both residues in a

pair (i.e. the uses of,.; and f,,), which are the sources of such infinity, the prototype gram@b .\
generates the following 23 alignments via the @M (C ANy qce, "aU" ):

)

[T s " eSS eSS [ONET <> es<>" ee>>" <x>
s <> TeS<S" s eSS > X s "> X s %" eSS
[ xS TesS<>"

Note that we see two alignments (labeled X) that satisfy tisert-before-delete convention, but not
their counterparts with delete-before-insert, which ibidden with the trace semantics. Let us summarize
our observations about the role of the prototype grammar.

Fact The prototype grammar describes, by virtue of its derivatjothe alignment of a query to all
possible consensi. Generating a specific family model gramamounts to restricting the prototype
grammar, such that all its derivations align the query to #@me model consensus.

In other words, in a family model grammar for consensus tirec”’, the “upper line” in a derivation
always spells out.

Generating model grammars from consensus structuvé@s:now construct a generator which reads
a CONSEeNnsUsS Structur@ such as %+ <<<xxxxx  >>*>x+ 7 and generates a gramma&b M- which
implicitly encodes alignments of a query sequenc® C. With the ADP method at our disposal, we
can use a variant of tree gramm@b to parseC’, obtained by substituting for unpaired residues and
and> for paired ones (cf. Fig. 8 (right)). Sinag&5 is non-ambiguous, there will be only one trgefor
C. We design an evaluation algebganC M which generates:5M by evaluatingt.. For the sake of
explanation, we will proceed in two steps: first we design elaragenC' F'G which generateg:5M
as a context free grammar, to explain the logic of the algoritThen, we modifyyenC' FG to genC M
which generates a tree grammar, i.e. executable ADP codiadomodel.

genC' FG has to take care of two issues. (1) It must generate copidseofules ofGG5M, specialized
to the specific positions in'. Applying (say) ruleM — aAbA whena andb are at paired positionsand
J in C, respectively, will produce the specialized productidh— aA;1bA;1:. (2) genCFG must allow
for insertions and deletions without introducing ambiguBut this has already been taken care of in the
design ofG5M. As long asgenC' F'G only uses position-specialized copies of the rules fi@m/, this
property is inherited.
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Evaluation algebrgenC' F'G; the value domain is sets of context-free productions:

nil(e;) = {Ai—aA; | M, M; — ¢} (1)
open(a;,x) = xU{A; —a A; | M} (2
U{M; —a Aiyr | My} (3

pair(a;, z,bj,y) = zUyU{A, —a A, | M} 4)
UM, — a A1 b A} (5)

UM, = a A M} (6)

UM — M b Aj} (7)

U M; — M M} (8)

Here, subscripts denote the position where a particuladymtion is applied in the parse @f. In the
output, these numbers create nonterminal symbols disihgd by subscripts. By default, the axiom of
the generated grammars if. Our reader may verify: computing5(genCFG," * <x>x") yields the
grammar7oy5 shown in Fig. 6.

Finally, to produce executable codenC' M must generate a tree grammar rather than a string grammar,
in order to integrate the scoring functions. The rules ofdbetext-free grammar derived wifenC FG
are now associated with scoring functions from the sigeatds we cannot produce graphical output, a
tree build from function symbaof and subtrees, A, b, A is coded in the forni <<< a™"A™b™A

Evaluation algebrgenC'M; the value domain is sets of tree grammar productions wiritteASCII:

nil(e;) = {A_i = fins <<< a ™™ A_i ||| M_i } (9)

U {M_i = f_nil<<<empty } (20)

open(a;,x) = xzU{A_i = fins <<< a ™ A_i ||| M_i } (11)
U{M_i = f mat <<< a ™ A_i+l ||| f_del <<< M_i+1 }(12)

pair(a;,x,b;,y) = xUyU{A_I = f_ins <<< a ™ A_i ||| M_i } (13)
U{M_.i = fPK <<<a™ A_i+1 ™ b ™ M_j+1 } (14)

U{M_i = f Lr <<< a ™ A_i+1 ™ M_j+1 } (15)

U{M_ = fIR <<< M_i+1 ™™ b ™ A j+1 } (16)

U{M_i = f bg <<< M_i+1 ™~ M_j+1 } a7

Compared to our use of the same signature with (the nonaesd) G5, all scoring functions take
as an implicit parameter, so calls to (sgy), from different positions may be trained to assign different
probabilities.

Non-ambiguity of generated model/e want to prove next that our model generaién\/ (genC M, C)
generates, for every consensus structure family model grammar which is unambiguous with respect
to the trace semantics. The proof consists of two theorems:

Theorem 2 GrammarG5M is unambiguous with respect to the trace semantics.

We might strive for an inductive proof of this theorem, butcg we already have all the necessary
machinery in place, we use an automated proof technique.

From G5M we constructz5M as explained in Section 1I-C. We have already observed thakerived
alignments comply with the insert-before-delete-conentTherefore, the generated alignments in fact
denote traces. Remember tkigi M/ generates the same model-query alignment several timesl ibaly
if G5M is syntactically ambiguous. We replace the fancy, two-ati@r columns by single character
encodings according to the foIIowing table:

‘ ‘ > | < >
|

)
P\K\'—\

‘<‘>

[T IR]

g

>
r

Ol A

a
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This turnsG5M into the grammar

A —- "I"A | M (18)
M — ¢ (29)
M — "M”A | "D’ M (20)
M — 7"PPAK” A (22)
M — LAY M (22)
M — 7" MR A (23)
M — "y M7g" M (24)
which is proved unambiguous by tlaela ambiguity checker [3].

Q.E.D.

We can now show that by the generation algorithm, semanticamobiguity is inherited fromG5 to
the family model grammars.

Theorem 3 Covariance models generated from a consensus structutey G5(genC M, C) are se-
mantically non-ambiguous under the trace semantics.

We note the following facts:

1) G5M is syntactically non-ambiguous (Theorem 2).

2) Each derivation inG5M describes an alignment of a query agais@mnemodel.

3) By construction, all these alignments observe the idsefidre-delete convention.

4) Any derivation in a generated model gramnidrM can be mapped to a derivation@bM. This

is achieved by applying, for each production frés ), the corresponding production without the
subscripts formz5M. This means that all derivatiors5)/ also observe the insert-before-delete
convention.

5) This mapping is injective. This holds because we can wljgreconstruct the positional indices to
turn aG5 derivation back into a5, derivation, by keeping track of the number of symbols from
{M,D,P,K,L,l,R,r b, g} generated so far (but not countidd

6) Hence, ifG5M- was ambiguousiz5M would also be ambiguous, in contradiction to point (1).

Altogether, if there was a trace that had two different ddrons in G5M¢, it would also have two
different derivations inG5M. This is impossible according to point (1). Hence, a modehgnarG5M
generated byenC'M is always non-ambiguous with respect to the trace semantics
Q.E.D.

The correctness proof for the model generator here cryctdpends on the non-ambiguity of the
prototype grammar. When a prototype gramrGais ambiguous, a sophisticated generator can still avoid
ambiguity in the generated models! However, in this caseoafgnight be difficult to achieve. If it fails,
we can still convert each generated modg} into the correspondlng;c, which can be submitted to
ambiguity checking. This is the situation we will encountdren turning towards the “real-world” models
in Rfam. There, we have an ambiguous prototype grammar anglassicated generation process, which
makes it hard to prove properties about. Therefore, we nguipeourselves with an automated pipeline
for ambiguity checking of Rfam models.

V. THE AMBIGUITY CHECKING PIPELINE

Our ambiguity checking pipeline consists of three suceessiages, nametm2adp adp2cfg andacla.
cm2adp: Upward compilation of Infernal generated covadamodels:The upward compilecm2adp
accepts as input the table encoding a covariance model ajedeby Infernal. It translates it into the
constituents of a mathematically equivalent ADP algorithra tree grammar, a signature, and an imple-
mentation of the stochastic scoring algebra using the petemsigenerated bipfernal. Once available in
this form, additional evaluation algebras can be used ioeptd or jointly in products with the stochastic
scoring algebra. Such semantic enrichment was the mairoperpf developingm?2adp and its scope
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will be described in a forthcoming paper. One of these appbas is the evaluation of the search space
under a canonical mapping algebra, as we do here.

adp2cfg: Partial evaluation of grammar and canonical mapgpialgebra: The adp2cfgprogram
is a simple utility implemented by Peter Steffen subsequertl6]. It accepts a tree grammaf and
a canonical mapping algebra, such that a call ta7(A, z) for some queryz, would enumerate all
the members of the search space (i.e. all parses) under timmical string mapping. Provided that the
algebraA is very simple and uses only string constants and concadenatip2cfgsucceeds with partial
evaluation to produce the context free (string) gramiiasuitable for ambiguity checking according to
Theorem 1.

acla: Ambiguity checking by language approximationghe acla phase simply calls the ACLA
ambiguity checker for context free grammars, which is basedhe recent idea of ambiguity checking
via language approximations [3]. It has been used beforeg¥ample, on the grammar designed by Voss
for probabilistic shape analysis of RNA [21]. Accumulatipgpbabilities from the Boltzmann distribution
of structures depends, just like stochastic scoring,caliif on semantic non-ambiguity.

Due to the undecidability of the ambiguity problem, theraasguarantee that treecla phase will always
return a definite answer. It may be unable to decide ambiduoitysome covariance models. However,
since the covariance models are larger, but less sophedithan the grammar by Voss, we are confident
that the formal undecidability of ambiguity will not be a ptizgal obstacle in our context.

The overall pipeline:As all family model grammars derived from the same prototgmammar use
the same signature, the evaluation algebra implementiagémonical mappings for the structural and
the alignment semantic§; ANg,.,.. andC'ANy;4,, IS the same for all, as described above. Ledenote
a covariance model generated Imjernal from consensus structur@, given inInfernals tabular output
format.

Let (G, PROB) = cm2adpM ) be the ADP program equivalent to, generated by upward compi-
lation.

Let G/C\ s = adp2cfdG-, CANg) be the context free grammar generated by partial evalyatibere
CANg is eithe/r\CANstmct or CANyign.

Then,acla(Ges) € {YES, NO, MAY BE} demonstrates semantic ambiguity or non-ambiguityof
with respect to the semantics

The trace semantics cannot be handleadhy2cfgbecause the recursive auxiliary functiom C' ANy,.qce
can only be eliminated with an inductive argument. To dertrates (non-)ambiguity with respect to the
trace semantics, one shows (non-)ambiguity with respetta@lignment semantics plus (non-)observance
of a uniqueness constraint such as the insert-beforeedetatvention. We now proceed to apply this
pipeline.

VI. SEMANTICS OF RFAM FAMILY MODELS
A. Model construction with Infernal

In this section, we look at covariance models as generatethfgynal. The difficulty here is that
the prototype grammar is ambiguous and we do not have a foilydl specification of the generation
algorithm. In order to create some suspense, we start withgwotations. The original publication [8] of
1994 states:

“...we make the Viterbi assumption that the probability loé tmodel emitting the sequence is approximately
equal to the probability of the single best alignment of nMiddesequence, rather than the sum of all probabilities
of all possible alignments. The Viterbi assumption congatly produces a single optimal solution rather than a
probability distribution over all possible alignments.”

This points at an alignment or a trace semantics. In a moentegpdate, thénfernal Manual [14] touches
on the issue of semantic ambiguity in the description of tloeleh generation process, stating:

“This arrangement of transitions guarantees that (givengihide tree) there is unambiguously one and only
one parse tree for any given individual structure. This ipamant. The algorithm will find a maximum likelihood
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parse tree for a given sequence, and we wish to interpretekigdt as a maximum likelihood structure, so there
must be a one-to-one relationship between parse trees amduses.”

This seems to aim at a structure semantics, but since the stauoture can always be aligned to the
consensus (alias the “guide tree”) in many ways, tmeustalways be several parses for it, the scores of
which should accumulate to obtain the likelihood of the ctinee.

Infernal starts from an initial multiple sequence aligntand generates models in an iteration of
consensus estimation, model generation, and parameit@ntyaHere we are concerned with the middle
step, model generation from a given (current) consensus farily consensus structufe is determined
with an ambiguous grammar, parsing the multiple alignment @maximizing a mutual information score,
and then one optimal parse (out of many) is fixed as the “guiele’t (In our construction, whety' is
given, this is simply the unique parse ©fwith tree grammar=5.) This guide tree is then used to generate
productions by specializing the following prototype graarm

Grammar G, erna taken from thelnfernal manual [14]:

State type Description Production Emission Transition
P (pair emitting) P — aYb e,(a,b)  t,(Y)

L (left emitting) L —aY  ey(a) tu(Y)

R (right emitting) R — Ya  e,(a) t,(Y)

B (bifurcation) B—-SS 1 1

D (delete) D—Y 1 tu(Y)

S (start) S —Y 1 tu(Y)

E (end) E—e 1 1

Here,Y is any stat® chosen from the nonterminal symbols (state types) in thenteft column. One
recognizes the rules of the ambiguad$ in the guise of{f P — aYb,L — aY,R — Ya,B — SS, E —
e}. The ambiguity inherent in a rule lik& — SS, parsingSSsS both as(5S)S and S(SS) is not a
problem in model generation, because the specialized fjles S;S; are always unambiguous. However,
insertions can be generated both frénand R, possibly competing for the generation of the same unpaired
residues in the query.

Ginfernar 1S NOt really the complete prototype grammar in our senseuls for partial matches of
base pairs in the consensus need to be added in the gengredimess. Overall, the generation method
appears too complicated to strive for a formal proof of narbayuity of the generated models.

B. Checking Rfam models

We have checked 30 models from Rfam, the 15 smallest mod#isand without a bifurcation in their
consensus structure, respectively. Model names and tbegetisus structures are listed in the appendix.
Here, we give a resume of our findings:

Theorem 4 In general, Rfam models are ambiguous with respect to thetstre semantics. They do
not assign a most likely structure to the query.

This can be seen from testing with our pipeline, but is alssilg@deen by inspecting the generated
models. Actually, alignments (1) and (2) in Section IlI-@ afready an example of ambiguity with respect
to the structure semantics, though only in principle, ay e not Rfam models. The explanation is that
althoughinfernal takes care that the structural ambiguity of the prototypengnar does not enter the
model grammar, it does not compensate for the fact that thee sdructure (assigned to the query) is
aligned to the model in many ways. Hence, the score accoontkd structure associated with the optimal
alignment, which need not be the highest scoring structure.

Q.E.D.

8The description in [14] uses a mixture of SCFG and HMM terrtogy.
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Theorem 5 All tested Rfam models are non-ambiguous with respect taligpment semantics. There
is no evidence that this result should not carry over to Rfandels in general. R

This observation was proved for some of the smallest modelsproducing their grammaf; and
submitting it to the ambiguity checker. For larger modelhe AC' LA checker ran out of resources. We
applied some surgery by reducing successive stretcheshef einpaired or paired residues (in the model)
to stretches of at most three such residues. This is coreedt lzas already been tested that the rules
within such stretches do not lead to ambiguity. After suctysry, the AC LA checker succeeded for all
models except Rf00161 and Rf00384.

For these two models, we resorted to a checking techniqubke¢rahan a proof) by use of a non-
ambiguous reference grammar, as suggested in [16]: if we haeference grammadt which generates
non-ambiguously the alignments of a query to the given maithein we can compare theumber of
alignments produced by both grammars for a given input ngfhe enormous size of the search
space provides strong evidence that, if the number of alegrisnconsidered by either grammar co-
incides, the tested model grammar is also unambiguous. Pty dpis technique, we implemented a
secondGb-based model generator to generate family model grammaitsatte unambiguous for the
alignment semantics. Let us call them G5.Rf00161 and G®388. We then checked, using an eval-
uation algebraCOUNT which simply counts the number of solutions generated, &musncesr of
various lengths thaR f00161(COUNT, z) = G5.Rf00161(COUNT, z) and Rf00384(COUNT,x) =
G5.Rf00384(COUNT, z). For example, the value fgr| = 10 is 357,718,985,217,153 (Rf00161) and
261,351,290,279,573 (Rf00384). For| = 20, it is 774,380,024,914,343,603,750,401 (Rf00161) and
416,290,325,523,207,008,752,681 (Rf00384), computddpendently by both models.

Q.E.D1°

The positive result that Rfam models correctly implemewtdalignment semantics is quite remarkable,
given the notorious ambiguity introduced by the rulescaf, such asS — SS or S — aS|Sa. This is
achieved by details of thmfernal implementation. Applications of — SS are made unambiguous by
the use of the “guide tree”, effectively choosing one of thangn possible derivations of the consensus
structure. Ambiguity effects of — aS|Sa are avoided by disabling one of the alternatives in certain
situations. Last not least, for searching with a modiglernal has recently switched to using the Inside
rather than the CYK algorithm [15], which changes the sa@phat bypasses eventual ambiguity problems.
However, for optimally aligning a sequence to the model, hadce also for model building, the CYK
algorithm is still required. We will return to the use of theside algorithm in the conclusion.

Theorem 6 In general, Rfam models are ambiguous with respect to tloe samantics.

This is implied by our previous observations, as a traceespwnds to many alignments.

Q.E.D.

We also wondered whether the Rfam models could be tweakednpute the trace semantics rather
than the alignment semantics, simply by disabling some efgénerated transitions (and re-training the
parameters). Our upward compilation allows us to to elit@reertain transitions. We have been able to
reduce the number of alignments considerably, but we havdéonod a way to reduce it to the number
of traces.

C. A synopsis on RF00163 and RF01380

To give an impression of the degree of ambiguity observel wspect to structure and trace semantics,
we compute some data for RFO0163 and for RF01380, which arently the smallest Rfam models

°Note that the number of alignments only depends on the leoigthodel and query, but not on the concrete query sequenden@non
the grammar which implements the model.

strictly, this is not proved but only tested for Rf00161 ani@384 , but note that by throwing more computational ressmsiat the
problem, we can prove the remaining candidates nhonambgguenr practical concerns, and with an eye on the other madlexplicitly
studied here, a quick check by the counting method is moreopppte.
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with and without a bifurcatiot. When counting structures for = 31, computational resources were
exhausted, as in contrast to traces and alignments, we lapelpnomial time algorithm for counting
structures — for the same reasons as discussed with ambauitpensation.

Model RF00163 RF01380
CONSENSUY| <<SK<<rkkrrrx  <KKKhkkkkkk DODShkk <KKKODO>* SOO>D> | <<K<KK<K<K<Shrkx SS>% S>>>
length (size) 45 (31) 19 (12)
|x| = 12
structures 8,958 2,048
traces 35,330,137,025 141,120,525
alignments 715,114,268,248,12]L 35,330,137,025
|x| =31
structures n.a. n.a.
traces 1,916,865,700,889,408,588,480 30,405,943,383,200
alignments 1,862,835,338,733,448,037,194,650,687 208,217,738,981,165,823

The numbers of structures, traces and alignments are piegperf the search space of a model/query
alignment, independent of which algorithm traverses tharch space. They have been computed twice,
and they perfectly agree between the upward comgdiernal models resulting fronrtm2adpand the
models generated by our method fra@b /. This can be taken as a strong indication that the two
approaches are equivalent in terms of the search spacesriéag. However, different grammars lead to
different numbers of parameters and will, in general, noegeivalent as stochastic models.

D. Ambiguity compensation, revisited

Can we, given the trained and upward-compiled Rfam moddig;iwcompute the log-likelihood score
according to the alignment semantics, use the same modélswaccumulating scoring function to obtain
the trace or the structure semantics? Mathematically, yésat was explained in Section 1I-D for the
simple stochastic context free grammars generally holdslfadynamic programming algorithms which
can be expressed in the ADP framework, and hence also for odelngrammars: Given gramméf, a
scoring algebra and an algebr&’ AN (i.e. C AN et OF C ANyace), jUst replace the maximizing objective
function of S by an accumulating function, yielding scoring algeifa.. Then callG(CAN % Sy, ).
The product algebra&’ AN x S,.. maps all candidates to their equivalence classes underathenical
mapping, and performs accumulating scoring per class.rGilile ADP machinery, which provides a
generic implementation of the algebra product, ambigudgnpensation comes without reprogramming
efforts — but only in principle.

There are two obstacles to this elegant solution:

« In case of stochastic modeling, rather than multiplyingbatalities which tend towards zero as the
structure gets larger, one prefers to add their logarittibog. to the monotonicity of thég function,
the maximal log score still indicates the answer with maximprobability. However, substituting
maximization by accumulation, one needs to compute and lzlgriobabilities, potentially creating
numerical problems.

. Efficiency of computing withG(C AN % S,.., ) depends on the number of canonical objects con-
structed, and as this number (in the case of covariance sjoideexponential in the length of the
query, this is practical only for very short sequences andllsmodels. The implementation by a
product algebra will have efficiency @#(a"n*), wherea may be close to 1, but probably not close
enough. Our counting results on the small models RFO0163R&@1 380 indicate this.

"The number of structures without a bifurcation fef = n is bounded from above bg”~*. The bound is sharp whem < 2(p + 1),
wherep is the number of base pairs in the model. For largethe restriction that the query cannot be assigned more fgise than the
consensus becomes effective. This is why we se&' dor n = 12 and still cannot compute the exact number fioe= 31.
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Semantics| Direct computation in| Computation by ambiguity
O(n*) with compensation 0 (a™ - n*)
with

alignment | Gai(PROB q) —

trace Giracel PROB ¢) Gali(CANyace * PROByc, )
structure | — G ai(CANstryct * PROBc, )
Gtrace(CANstruct * PROBycc, (Z)
sequence | Gai(PROB, q) Gali(CANseq * PROBy, )
Gtrace(PRO&c& (Z) Gtrace(CANseq * PRO&CQ Q)
TABLE |

THE SEMANTIC HIERARCHY. WE INDICATE GRAMMARS AND EVALUATION ALGEBRAS USED FOR EACH TASK. n IS THE LENGTH OF THE
QUERY q. @« DENOTES THE BASE OF THE EXPONENTIAL FACTORWHICH IS INCURRED WITH AMBIGUITY COMPENSATION. &« DECREASES
FROM TOP TO BOTTOM FOR THE SEQUENCE SEMANTICSa = 1, AND BOTH COLUMNS DESCRIBE THE COMPUTATION VIA THEINSIDE
ALGORITHM, USED WITH EITHER GRAMMAR.

VIl. CONCLUSION
A. Summary of results

We have studied the problem of generating non-ambiguouslyfanodels from consensus structures.
We clarified the notion of a semantics for family model gramsnand found that there are three well
motivated, alternative definitions: the structure, thedrand the alignment semantics.

We developed the generation algorithm for the trace sewsniihich, to our knowledge, has not been
studied before. Along the way, we found a nice explanatiothefprototype grammar as a grammar that
allows for an infinite set of derivations, describing thegaient of the query tall possible models. The
generation process can then be described lucidly by an a&i@ualgebra denC M), which allows, for
example, for a proof of non-ambiguity of the generated madel

For a summary of the semantic hierarchy, let us introducanyether semantics. Tlsgquence semantics
assigns to each model/query alignment the same objectesesit— the aligned query sequence itself. The
canonical mapping algeb@AN,., is trivial and left to the reader. Ambiguity compensatiorttwiespect
to this mapping means summing up probabilitiesibimodel/query alignments — this is commonly known
as the Inside algorithm! According to this view, our intediege semantic levels of trace and structure
semantics can, alternatively, be viewed as as intermedizéveen CYK and Inside scoring, governed
the equivalence relation induced by the canonical mappiings view is summarized in Table 1. Note
the lack of a gramma¢-;,...;, which would allow for the polynomial-time computation dfet structure
semantics.

On the practical side, we have implemented the upward caiil of Infernal generated models to
ADP. Here this compilation was used for connecting the Rfamdes to our ambiguity checking pipeline.
The upward compiled models, however, have other applicatad interest, which will be described in a
forthcoming study. But still, upward compilation from aatatically generated tables is an ad-hoc measure,
and in the long run, one might consider producing ADP codetermodels directly when generated.

Also on the practical side, we have observed that the modgisrgted fronG5M are relatively small.
To extend the comparison, we have also implementéth-dased generator for (provably) unambiguous
family model grammars and the alignment semantics. Apglyioth our generators to Rf00163 and
Rf01380, we can give concrete examples of the blow-up faci@f. Section IlI-A). We evaluate the size
of the generated grammars.

Model Model Rfam G5 (alignment) G5 (trace)
length/size| rules/nonterminals rules/nonterminals rules/nonterminals

Rf00163| 45/ 31 617 / 139 151/ 46 182/ 77

Rf01380| 19/ 12 282 / 59 66 / 20 78132

The factor (number of rules/model length) affects the metas a constant factor. It is about 14 for the
Rfam models, 3.4 for the models derived fr@#b with alignment semantics, and 4.1 f6i5)/ -derived
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models with the trace semantics. These factors cannot leetlgircompared, asnfernal implements
affine gap scoring and some other features not included inGthased models. The factor (number
of nonterminals/model size) measures the space requitsmasn each nonterminal leads to a dynamic
programming table. Here, the respective factors are 4%,ahd 2.5, approximately.

B. Directions of future research

We shortly sketch some research questions which are raisedibfindings.

Investigation of the trace semantic§he trace semantics is new; it can be efficiently computed,
and possibly, the performance of covariance models can Ipeoirad. Such an improvement is likely
especially with respect to remote family members. This isabse, when model and query have about
the same length, one is likely to find a high-scoring alignmeithout adjacent deletions and insertions,
whose score is not falsely reduced by ambiguity. Remotelyfamembers may require more insertions
and deletions, some of them adjacent, and ambiguity stakes scale which is exponential in the number
of such situations. With an eye on the use of the alignmenteéins with Rfam, this implies that good
scores can be taken as a strong indication of family memligeratile low scores must be interpreted
with care, especially when model and query significantlyediin length.

Investigation of the structure semantic§he structure semantics has been used so far with simple
SCFGs, but not with family model grammars. The structureas#ios seems appropriate when the goal
is to use the information in the family model to assign a cetesrmost likely structure to the query. This
structure would have to be experimentally probed in ordevdnfy that the query performs the same
function as other family members.

However, in contrast to simple SCFGs, we do not know an effisigethod to compute this semantics for
family model grammars. Ambiguity compensation, as showovapsuffers from a runtime complexity
dependent on the number of structures, which in turn growsmantially with the sequence length.
Efficient computation of the structure semantics is an @dting open challenge, where one must be
aware that a polynomial time, exact algorithm may not exst.ideal modeling tool would allow the
user to specify the intended semantics, either at modelrggoe time or when starting a search.

Smaller and faster models:he smaller size and better speed of models derived from & graenmar
such a5 deserves further study. Its use may have been discourag#ehiagnosis of the “abysmal”
performance ofy5 reported in [5]. Dowell and Eddy explain this performancetiwy overloading of rules:

“The compact grammag'5, for instance, must invoke the same bifurcation rfle~ aSaS for every base

pair and for every structural bifurcation, which are quitiedent structural features that occur with very diffetren

frequencies. The productions 6f5 are thus “semantically overloaded”: they collapse too mdifferent types of

information into the same parameters.”
This explanation, appropriate as it is for simple SCFGH ptints to a remedy for the case of family model
grammars. These grammars have position-specialized gtiods, and unless we tie parameters together
irrespective of their structural position in the model, van cstill train different and adequate parameters
for different features. This requires careful engineeramgl empirical testing, but small grammars are
still in the race. Note also that filtering techniques, whidve been developed to speed up the present
Infernalgenerated models, can also be adapted to models genemated fdifferent prototype grammar.

Comparing the performance of different prototype grammdswell and Eddy diagnosed superior
performance of another unambiguous SCK (vhich stems from Pfold [13]). However, this grammar
was not tested as the prototype for model grammar generdBwen our compact algorithm of model
generation — the generator fraib is but 164 lines of ADP code — it maybe a justifiable effort teeex the
Dowell and Eddy study to different model generators, tragniamily models rather than simple SCFGs.
We conjecture that our proof of a correct implementationhef trace (or the alignment) semantics could
be adapted for a new family model generator, as long as an higaous prototype grammar is used. If
not, there is still our ambiguity checking pipeline, whicdmcbe used to show correctness of the individual
models after their generation.
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APPENDIX

Rfam models tested for non-ambiguity
15 smallest models from Rfam without a bifurcation:

RFO0032.cm #xak  <<KKK<KKwkx S>> sdokkkk
RFO0037.cm <<<<<#rk <KK<K<Kkkkkkk SSSSS* SSS>>
RF00180.CmM <<* KKK kkkarkx DSOS dekkkkkddkkkkkkddokk
RF00390.Ccm  #**xxxx* LKL kkkkkkk >>>>
RF00453.cm <<<<KKK<Ksax KKK krkkkrkkss SSSSSS>S>S>>
RFO0502.Cm #***x <<KKKKKLKK sekekedekededeke S>>k SSSSSS kkkkk
RF01072.CmM <<<<skxxkkkkkk SSS> kkkkkrAAAKIAK
RF01080.Ccm #*xxxx* LLLLKLKK *hkkkkkkkkk SSSS>S>S>
RF01081.cm <<<<K<kkkkrrrk S>> kkkkkkdokok
RF01082.Cm ###x+x <<KKKKK<Kkkkrdkx SSSSSS>
RF01112.CmM #xkxx  <<KK<K<Skkkkax  SSSS>

RFO01115.cm <<<wkkxkdx >SS dokkdnkdonk

RF01380.cm <<<<<K<K<K*xxx SS>S* SS>>

RF01381.Cm #***x <<K<K<Kkkdk  SDSSSD dkkkks

RF01382.cm #* <<<K<K<wkkk S>> dkkk

15 smallest models from Rfam with a bifurcation:

RFO0008.cm * <<<<<K<* KKK kkx SDSSS kkkkkhk KK khkkkkkk SSSSHkk SSSSSS*

RFO0057.cm  *x**xx LK hkkk K kkkkkkk SSk SSkk SSkkkkkkkk KLLKLKL LKL L hkkkkk SSSSSSS kkkkkkk
RF00161.cm <<<<*x <<KKKKLKK kkkkx SOOSSSSdkk <K<K <Kk KKK LK< kkkkkkrk SSSSS>Sk SS>>Hk S>>

RF00163.cm <<<KKK<Krrkrrk  KKKKkkkkkk DSOSk <KKKSSSS # SSSS>>
RF00184.CmM  #*xxxxxk* KL LK hkkkhkkkk SO>S kkkkkk LKL dkkkkkkkkkkkkk > > >
RFO00192.cm <<<<K<K< kkkkkkxkk SSSSSS kkkkkkkkk KL KLKLKK Fkkkkhkkhkkhk SSS>S>S>

RF00384.cm * <<k SOSSOO>ahk KKKk K<k KKKk DSOSk SO>S wkokkokkokk
RFO0454.cm  *xxkxxsk LK<k KK krkk DSkx SOOSSHx <K<K * KK<Khkx SSS* Sk SSSS kkkkkkkk

RFOOB517.CM  #*xxxxxkkk LKL kkkhkk  DOSSSShkk KKK kkkk DSSSSDSD kkkokk
RF00630.CM  #*xxxxkkkkrrx LKL dhk SKhkkdk SDkkk SOOSSHak KKK hkkkkk

SSS>55>55>5>> %

RF00681.cm <<<<<#x <KKKKKKKKKKK * KKKk SOS* KKk SD% SSOSSSSSSS dk DSk SSSS>

RF01068.cm <<<K<KKKK<K xkdk SSSSSDSD kkkkkkkkkkkrkk KKK Kkkk SSS>S>

RF01116.cmM <<<KKKKKK *kdx SSSDSSDSD kkkkkkkkkkkkkkkrrr <KL LK kkkkk  DSSDSSSS> kK

RF01388.CmM * <<rkkx <<K<K<Khkkk SSSDSwkrk DSDOKKKKKKS kkkkk SSSSDSDSD kkkkkk

RF01403.cm <<<#*x <<KKKKKK kkkkkksorx SSSSSSS kkkk DSOShkkk  KKKKKKKK kkkkk DSDDDSDSSSS dekkkk
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