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Semantics and Ambiguity of Stochastic RNA
Family Models

Robert Giegerich and Christian Höner zu Siederdissen

Abstract

Stochastic models such as hidden Markov models or stochastic context free grammars can fail to return the
correct, maximum likelihood solution in the case of semantic ambiguity. This problem arises when the algorithm
implementing the model inspects the same solution in different guises. It is a difficult problem in the sense that
proving semantic non-ambiguity has been shown to be algorithmically undecidable, while compensating for it (by
coalescing scores of equivalent solutions) has been shown to be NP-hard. For stochastic context free grammars
modeling RNA secondary structure, it has been shown that thedistortion of results can be quite severe. Much less
is known about the case when stochastic context free grammars model the matching of a query sequence to an
implicit consensus structure for an RNA family.

We find that three different, meaningful semantics can be associated with the matching of a query against
the model – a structural, an alignment, and a trace semantics. Rfam models correctly implement the alignment
semantics, and are ambiguous with respect to the other two semantics, which are more abstract. We show how
provably correct models can be generated for the trace semantics. For approaches where such a proof is not possible,
we present an automated pipeline to checkpost factumfor ambiguity of the generated models.

We propose that both the structure and the trace semantics are worth-while concepts for further study, possibly
better suited to capture remotely related family members.

Index Terms

RNA secondary structure, RNA family models, covariance models, semantic ambiguity.

I. INTRODUCTION

A. Background: Semantics and ambiguity in stochastic modeling

Stochastic models:Stochastic models are powerful and widely used techniques in computational
biology. In this article, we study covariance models implemented by stochastic context free grammars
(SCFGs), which include hidden Markov models (HMMs) as a subclass. Let us start our discussion with
this simpler model.

An important application of HMMs in biosequence analysis isthe modeling of protein families. There,
aligned protein sequences are processed into family modelsimplemented as HMMs using the HMMer
package [7] and stored in the Pfam data base [2]. Running a query sequence against a model returns a
score that indicates the likelihood that the query belongs to the sequence family. Scanning a long sequence
with the model reveals those regions that most likely share an evolutionary relationship with the model
family.

An application of similar importance is the modeling of structural RNA families. Models are generated
with the tool Infernal [8], [15] and accessed via the Rfam data base [9]. Here, an SCFG implements a
covariance model of RNA sequences that share a consensus secondary structure. A “parse” of a query
sequence with the model grammar shows how well it matches thefamily sequences, accounting for
sequence as well as structure conservation.

HMMs and SCFGs use quite a different nomenclature. Nevertheless, mathematically, HMMs are a
subclass of SCFGs – those cases where the context-free grammar underlying the SCFG belongs to the
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subclass of regular grammars. Where the SCFG literature [8], [18] uses the terminology of formal language
theory, such as grammars and parses, the HMM literature prefers a terminology of transition rules and
paths. The CYK algorithm, which returns the highest scoringparse according to a SCFG, is a generalization
of the Viterbi algorithm, which returns the highest scoringtransition path for an HMM. In this article,
we will build on the established SCFG terminology, because it makes the theory more general and also
because our immediate practical interest lies with covariance models as used in Rfam.

Modeling semantic ambiguity:The problem of semantic ambiguity has been recently addressed in a
series of papers. Giegerich [10] pointed out the problem andsuggested a suitable formalization: the parse
trees constructed by a SCFG parser represent some real-world objects of interest, for example alternative
secondary structures for an RNA sequence. If some of these parses actually represent the same object, we
have a case of semantic ambiguity. By specifying an explicitmapping of parses to a canonical (unique)
representation of our objects of interest, it may be possible to prove presence or absence of ambiguity.
The use of a canonical representation appears to be a necessary extension to the standard framework of
stochastic modeling, in order to deal with ambiguity in a systematic manner. It plays the role of associating
a precise semantics to the parse trees (namely, the structures they represent), and coding this meaning
within the model is the key to tackling it computationally. The term“semantic” ambiguity that we use in
this article catches this fact, and discerns it from syntactic ambiguity as studied in formal language theory.
In our case, syntactic ambiguity only means that a grammar can specify severaldifferentstructures for a
given sequence, which is a good thing rather than a problem incombinatorial optimization. Note that in
textbooks covering SCFGs [1], [6], the pitfall of semantic ambiguity has not yet been paid attention to,
and the most likely parse is taken for granted to indicate themost likely structure.

Ambiguity – does it really matter:Dowell and Eddy [5] approached the ambiguity issue from
the pragmatic side and investigated whether it really matters in practice. They compiled a number of
plausibility arguments, why one might hope that the most likely parse somehow points to the most likely
structure, even in the presence of ambiguity. But then, theyrefuted such hopes: For two ambiguous
grammars, they tested how often the most likely parse returned by the SCFG was different from the most
likely structure. For one grammar (G1), the result was wrongfor 20% of all tested sequences. For the
other grammar (G2), which was a refinement of G1 for the sake ofbetter parameter training, the result
was wrong even for 98%. Dowell and Eddy provided a first empirical test for the presence of ambiguity,
and continued studying parameter estimation for several alternative, non-ambiguous grammars.

Algorithmic undecidability of semantic ambiguity:The idea of ambiguity checking was further
worked out by Reeder et al. [16]. They gave a proof that, in general, presence or absence of semantic
ambiguity is formally undecidable. However, they contributed a series of further techniques for ambiguity
checking, where the most powerful one involves translationof the SCFG into a context-free grammar
generating the canonical representation introduced in [10]. Then, a semi-decision procedure such as a
parser generator may be able to demonstrate presence or prove absence of ambiguity in many relevant
cases. The simple unambiguous grammars studied in [5] were proved unambiguous in this mechanized
fashion. Moreover, the rather sophisticated grammar designed by Voss et al. for probabilistic shape analysis
[21] could also be proved non-ambiguous in a similar way. Thestudy by Reeder et al. [16] also indicated
some techniques of avoiding ambiguity. However, there are cases where the expressiveness of the model
– the capability of adapting the parameters of the model to a training set – may suggest to prefer a
semantically ambiguous grammar.

Algorithmic infeasibility of ambiguity compensation:Can we still obtain the desired result when
the grammar is ambiguous? Such a case was studied in the HMM literature by Brejova et al. [4] under
the name “path labeling problem”. In HMM modeling, the modelitself often is more refined than the
final result. For example, the gene structure of a sequence can be indicated by a labeling of residues
by E (exon) or I (intron) states. Yeast, for example, has two classes of introns, “short” and “long”. The
stochastic model, in order to capture the length distribution of introns, requires several states to model
intronic residues. Therefore, several transition paths through the model may differ in their points of
transition between intronic states, while they lead to the same path labeling and hence, indicate the same
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gene structure. Here, the path labeling constitutes the canonical mapping: Paths are equivalent when they
have the same labeling, and the HMM is semantically ambiguous when this happens. Brejova et al. then
studied what we call ambiguity compensation: can the algorithm be modified such that all scores of paths
with the same labeling accumulate? Their main result was that, in general, this problem is NP-hard, and
hence, computationally infeasible. This does not rule out that ambiguity compensation may be practical
in restricted cases, but in general, we are better advised toavoid semantic ambiguity altogether.

Unresolved questions:There are three questions that were not addressed: (1) Dowell and Eddy studied
semantic ambiguity in principle, but worked with rather small example grammars. Grammars such as those
underlying Rfam are much larger, and they do not simply assign a structure to an RNA sequence, but
they also relate it to the family model. It is unclear how the semantics of a model should be defined. (2)
While methods for ambiguity checking in formal language theory have been advanced recently [3], the
step from a large, tool-generated SCFG to the context-free grammar suitable for ambiguity checking is
still left open. (3) Are the models used in practice actuallysemantically unambiguous, and if so, based
on which semantics? These are the questions we will address.

B. Contributions of this article

This article provides a theoretical and a software-technical contribution, and their application to Rfam
models.

On the theory side, we formally define three alternative semantics for covariance models for RNA
families – astructure, a trace, and analignment semantics. All three of them have a well-defined biological
meaning, which is interesting to implement. Whether or not aparticular grammar is in fact semantically
ambiguous depends, of course, on the chosen semantics. We show how provably non-ambiguous models
with respect to the trace semantics can be constructed.

On the technical side, we provide an automated pipeline thataccepts a grammarG, a canonical
representation mapping (written in a particular style), and produces a grammar̂G which is syntactically
ambiguous if and only ifG is semanticallyambiguous. Connecting this pipeline to a (syntactic) ambiguity
checker for context-free grammars, this automatessemanticambiguity checking as far as its intrinsic
undecidability allows for it.

In the application, we apply our formalism to Rfam models. Wefind that Rfam models faithfully
implement the alignment semantics, although their description in the literature at one point suggests a
structure semantics. With respect to the structure and the trace semantics, they are ambiguous. In the
conclusion, we argue that both the structure and the trace semantics are worth further study, because they
are more abstract and may be better suited to capture remotely related family members.

The article is organized as follows: In Section II we review what is known about semantics and ambiguity
of simple SCFGs as used for structure prediction, about ambiguity checking, and ambiguity compensation.
In Section III we turn to family model grammars and find that there are three alternative ways to define
their semantics. In Section IV we describe precisely a new algorithm of model generation for the trace
semantics and prove its correctness (i.e. non-ambiguity ofthe generated models). In Section V we describe
a software for upward compilation and ambiguity checking ofRfam models. This pipeline is applied in
Section VI. We conclude with a discussion of open research questions which arise from our findings.

II. A SUMMARY OF SEMANTIC AMBIGUITY THEORY

In this section, we review known results on the problem of semantic ambiguity. The only new contribu-
tion in this section is that the method for ambiguity checking suggested in [16] has now been automated.
Along with this review, we introduce the concepts and the formalism to be further developed subsequently.

A. SCFGs and their semantic ambiguity

Context-free grammars:Given an alphabetA of symbols,A∗ denotes the set of all strings of symbols
from A, including the empty stringǫ. A context-free grammarG is a formal system that generates a
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G1: S → ε | aS |Sa | aSb |SS G5: S → ε | aS | aSbS

Fig. 1. Grammars G1 and G5 taken from [5].S is the axiom and only nonterminal symbol in either grammar.a and b denote arbitrary
bases out of{a, c, g, u}, as SCFGs allow non-standard base pairs (albeit with low probability). Hence, a rule likeS → aSb is a shorthand
for 16 different rules.
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Fig. 2. Three derivation trees for the sequenceaacug . t1 and t2 are derived withG1, t5 is derived withG5.

language of strings overA. It uses a setV of nonterminal symbols, one of which is designated as the
axiom. Its derivation rules (productions)have the formX → α, whereX ∈ V and α ∈ (V ∪ A)∗. A
derivation of a terminal stringw ∈ A∗ starts from the axiom symbol, and in each step, replaces one of
the nonterminal symbols in the emerging string according toone of the productions:xXy → xαy may
be a chosen transition whenX → α is a production ofG. Such a derivation can be represented uniquely
in the form of a tree, and by reversing the angle of view (from generating a string from the axiom to
reducing a given string towards the axiom), this tree is alsocalled a parse tree. Two grammars are shown
in Fig. 1 , and three such parse trees are shown in Fig. 2. A grammar is (syntactically) ambiguousif
there is a string that has at least two different parse trees.It is a classical result of formal language theory
[12] that syntactic ambiguity of context-free grammars is formally undecidable. This means, there is no
algorithm that can decide presence or absence of ambiguityfor all context-free grammars. However, there
are semi-decision procedures that return either YES, NO or MAYBE, which have proved quite powerful
in practice [3].

Stochastic CFGs:A stochasticcontext-free grammar augments each production rule with a transition
probability, such that the probabilities assigned with alternative rules for the same nonterminal symbol sum
up to 1. For rules which simply generate a terminal symbol, the associated probability is called emission
probability. We do not distinguish these two types of probabilities here. In a derivation, the probabilities
of all applied rules multiply. In such a way, a parse treet of string x assigns a probabilityP (t, x) with
x. The CYK algorithm, givenx, computes the parsetopt(x) = argmaxt{P (t, x) | t parse forx}.

SCFG semantics:When modeling RNA structure, thesemanticsSSCFG of an SCFGG is defined as
follows: Each parse treet according toG associates an RNA secondary structureSSCFG(t) with sequence
x: terminal symbols (denoting RNA bases) produced in the samestep with productions likeS → aSb are
considered base paired, while all other ones are consideredunpaired. Denoting structures in the familiar
dot-bracket notation, where a dot denotes an unpaired base,and matching brackets denote paired bases,
we observeSSCFG(t1) = SSCFG(t2) = SSCFG(t5) = ".(.)." .

When there existt 6= t′ but SSCFG(t) = SSCFG(t′) for grammarG, we say thatG is semantically
ambiguous. This occurs with the treest1 and t2 for grammarG1 in Fig.2. There are no such trees with
G5. Hence,G1 is semantically ambiguous, whileG5 is an example of a non-ambiguous grammar.
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With a semantically unambiguous grammar, the most likely parse also means the most likely structure
for x – this is exactly what we hope to find. If the grammar is semantically ambiguous, the most likely
structuresopt may have several parses such thatsopt = SSCFG(t1) = SSCFG(t2) = . . ., with probabilities
p(t1, x), p(t2, x), . . ., andP (sopt) =

∑
i p(ti, x). In this situation, it is not guaranteed that one of the parses

ti has maximal probability, and some unrelated parse (indicating a different structure), will be returned
by the CYK algorithm. For the grammarsG1 andG2 studied in [5]1 , this happens in 20% resp. 98% of
all test cases.

Many simple grammars can be specified for RNA structure that are not semantically ambiguous.
Different (non-ambiguous) grammars for the same problem have different characteristics with respect
to the probability distributions they define. For example, grammarG5, attributed to Ivo Hofacker in [5], is
arguably the smallest grammar for the purpose. It has only 21parameters and showed “abysmal” modeling
performance in [5].

B. Embedding SCFGs in a more general framework

In order to deal with ambiguity checking and compensation, both in theory and practice, we embed
SCFGs in the more general framework of algebraic dynamic programming (ADP) [11]. This will allow us
to replace the probabilistic scoring scheme “hardwired” inthe SCFG concept by other evaluation schemes,
or use several such schemes in combination. In our application, we will in fact generate equivalent ADP
code from Rfam models, to be used for a variety of different purposes aside from stochastic scoring.

Algebraic dynamic programming:ADP is a declarative method to design and implement dynamic
programming algorithms over sequence data. ADP and stochastic modeling tools serve complementary
purposes (while both rely on the same type of dynamic programming algorithms for their implementation).
ADP is designed to give the author of a DP algorithm maximal convenience – high level of abstraction,
re-usable components, and compilation into efficient target code. Any type of combinatorial optimization
over sequences is possible, provided that Bellman’s Principle of Optimality holds. Grammars in ADP are
produced by a human designer and are typically small – at least compared to grammars derived from
data by stochastic modeling tools. These, in turn, come witha hard-wired scoring scheme for maximizing
probability or log-odds scores, and the capability to trainthe parameters via expectation maximization.
Many of the grammars constructed by automatic modeling tools such asInfernal have probably never
been inspected by a human eye.

The ADP formalism starts from asignature, which is a supply of function symbols2. One of these,
namedh by convention, designates the objective function, to be used in subsequent analyses. The other
ones are placeholders for scoring functions.

For example, these are the signatures we will use withG1 andG5:

G1 G5
openl : A× V → V openr : V ×A → V open : A× V → V

pair : A× V ×A → V split : V × V → V pair : A× V ×A× V → V

nil : V h : [V ] → [V ] nil : V h : [V ] → [V ]

Here, A denotes the underlying sequence alphabet,V an arbitrary value domain, and[V ] a list of
values.

Grammars in ADP are tree grammars. Atree grammaris analogous to a context free grammar, except
that the righthand side inX → α now is a tree, built from the function symbols of the signature (other
thanh) at inner nodes, and nonterminal symbols as well as terminalsymbols residing at the leaves of the

1Dowell and Eddy use the term “structural ambiguity” rather than “semantic ambiguity”. This is consistent with our terminology, because
for simple SCFGs, a structural semantics is the only one thathas been considered so far. When we will turn to family models, there will
be different semantics which can be employed. Again, there will be a structural semantics, but it is not the one implemented in today’s
modeling approaches.

2Java programmers may think of it as an interface
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Fig. 3. Tree grammar versions of string grammars G1 (left) and G5 (right).

tree. Occasionally, we have a nullary function symbol, which also marks a leaf. Figure 3 shows the tree
grammar versions of G1 and G5.

The derivation with a tree grammar works as with CFGs, exceptthat now it produces a tree. It may
derive the same tree in different ways (syntactic ambiguityof tree grammars), but this is easily avoided,
and besides, syntactic ambiguity is decidable for this class of tree grammars. Therefore, we can assume
that each tree has a unique derivation (or tree-parsetree).Each derived tree contains, as the string of its
leaf symbols, some sequencew ∈ A∗. These trees represent the candidates in the combinatorialsearch
space associated with sequencew, and in order to avoid the use of “tree” in too many connotations, we
will henceforth refer to them ascandidates.

The introduction of a tree grammar, based on a signature of functions, seems like a minor, artificial
change of formalism, but has a profound impact: it decouplesthe candidates which we analyze from the
grammar which generates them. There can be more functions inthe signature than there are productions
in the grammar, but normally, there are less. Different grammars over the same signature can be used to
derive the same set of candidates. Candidates only reflect their signature – they bear no resemblance of
the derivation and the grammar which generated them. Our candidatest1, t2 andt5 as derived by the tree
grammars are shown in Figure 4.

The function symbols that constitute the inner nodes of the candidate can be used to associate a variety
of meanings with each candidate. This is done by specifying an evaluation algebra– i.e. a data domain
and a set of functions (which compute on this domain), one foreach function symbol in the signature3,
including h. Whatever evaluation we define will be computed by a generic CYK-like algorithm. We do
not worry about implementation issues here, and denote the analysis of input sequencex with grammar
G and evaluation algebraB as a function callG(B, x).

SCFGs encoded in ADP:To run an ADP grammar as a SCFG, one simply provides an evaluation
algebra which implements the function symbols in the signature by functions that compute probabilities.

Evaluation algebra PROB for G1:

h = maximum
pair(a, x, b) = pab ∗ x split(x, y) = psplit ∗ x ∗ y

openl(a, x) = pa ∗ x nil() = pnil

openr(x, a) = pa ∗ x

The probability scorespa, pab, psplit, pnil are to be estimated from the data.
Evaluation algebra PROB for G5:

h = maximum
pair(a, x, b, y) = pab ∗ x ∗ y

open(a, x) = pa ∗ x

nil() = pnil

3Java programmers may think of implementing the “interface”, but – please – with pure mathematical functions without side effects.



TCBB SUBMISSION 7

gnil

u

a

a

c
nil

nila

t1: t2:

a

split

openl openr

pair

openl

openr

pair

openr

open

a

a
open

u
open

pair

c g nilnil

t5:

openl

c

u

g

nil

split

Fig. 4. Candidatest1, t2 and t5, as derived by their tree grammarsG1 andG5.

Evaluating a candidate in this interpretation yields its probability score, akin to what is achieved by a
SCFG, if the candidate was a parse tree. This is how we expressthe mathematical equivalent of an SCFG
in ADP. The advantage is: once we have the grammar in ADP form,we can use it for other purposes
besides stochastic scoring.

Encoding the canonical mapping:We use a second evaluation algebra to encode the canonical
mapping of candidates to their “meanings”. Let us call it CAN.

Evaluation algebra CAN for G1:

h = id

pair(a, x, b) = " (" + x + " )" split(x, y) = x + y

openl(a, x) = " · " + x nil() = ""
openr(x, a) = x + " · "

In algebra CAN, we define the functions such that they compute, from the candidate, the dot-bracket
representation of its associated structure. In other words, CAN implements the semanticsSSCFG for G1.
Operator+ here denotes string concatenation, andid denotes the identity function.

Evaluating the G1-candidatest1 and t2 in the algebras PROB and CAN, we obtain
PROB(t1) = split(openl(a, pair(a, openl(c, nil), u), openr(nil, g)) = psplit · pnil · pau · pa · pc · pg

PROB(t2) = split(openl(a, nil), openr(pair(a, openr(nil, c), u), g)) = psplit · pnil · pau · pa · pc · pg

CAN(t1) = split(openl(a, pair(a, openl(c, nil), u), openr(nil, g)) = ".(.)."
CAN(t2) = split(openl(a, nil), openr(pair(a, openr(nil, c), u), g)) = ".(.)."

In this way, the structure – the meaning of our candidates, which decides about ambiguity – now
becomes part of our operational machinery. We can callG1(CAN, "aacug" ), and multiple occurences
of ".(.)." in the output witness the semantic ambiguity ofG1. We leave it to the reader to define an
analogous algebras PROB and CAN for the signature of G5. A powerful feature of the ADP approach is
the use of algebra products (see [20] for the precise definition). For example, callingG5(PROB∗CAN, x)
will give us all the structures forx that achieve the maximum probability score. Since the grammar G5
is semantically non-ambiguous, there may still be several candidates achieving maximal probability, but
they must all produce different structures as indicated by CAN. When the grammar is ambiguous (like
G1), neither of the optimal candidates may indicate the mostlikely structure, as explained in Section II-A.
G1(PROB ∗ CAN, x) returns the optimal candidates together with their associated structures, possibly
delivering duplicates, but we cannot be sure if any of them denotes the most likely structure.



TCBB SUBMISSION 8

Ĝ1: S → (S) | .S |S. |SS | ε

Fig. 5. Grammar̂G1 derived from G1

C. Automated checking of semantic ambiguity

We now introduce a systematic and automated approach to ambiguity checking. Consider a tree grammar
and a canonical mapping algebra which maps candidates to strings over some alphabet̂A. In this setting,
one can substitute the string composing functions of the algebra into the righthand sides of the tree
productions. By partial evaluation, we eliminate the trees, and righthand sides become strings overV ∪ Â.
Starting from the tree grammar G1, we rewrite its rules into those of grammar̂G1, shown in Fig. 5.

Note that the first rule in̂G1 is derived from 16 productions in G1, but since these are mutually
exclusive due to their terminal symbols, only one corresponding rule is retained in̂G1.

In this way, from our tree grammarG we obtain a context-free (string) grammarĜ with the following
property:

Theorem 1 The tree grammarG is semantically ambiguous if and only if the string grammarĜ is
syntactically ambiguous.

The proof of this theorem was given in [16]. At that time, the grammarĜ was handwritten – the
new aspect here is that it is now produced automatically fromG and the canonical mapping algebra.
This is further described in Section V, where we present the pipeline cm2adpfor upward compilation of
Infernal-generated models into the ADP framework. Taking these constituents together –

1) the automated re-coding of an SCFG in ADP as a tree grammarG,
2) the specification of a unique string representation as canonical mapping algebraCAN ,
3) the automated derivation of a string grammarĜ from G andCAN ,

we are now in a state where we can take a SCFG and submit it to an automatic ambiguity checker.
The only step which is not automated is, of course, the specification of the canonical mappingCAN .

Naturally, we must say at one point what the meaning of our candidates really is. However, for grammars
coming from the same modeling domain, this must be done only once, as the canonical mapping is the
same for all grammars. In this sense, the ambiguity checkingpipeline is completely automated now.

D. Ambiguity compensation

The canonical mapping defines (as its reverse image) a semantic equivalence relation on the evaluated
candidates. Ambiguity compensation means that all scores within the same equivalence class should be
accumulated, rather than maximized over. Let us assume for the moment that we know how to accumulate
these scores4. We obtain an accumulating algebraPROBacc from PROB by replacing the (maximizing)
objective functionh by the suitable accumulating functionhacc. By calling G1(CAN ∗ PROBacc, x),
we correctly compute the probabilities, accumulated over the equivalence classes moduloCAN . So,
mathematically, ambiguity compensation is not a problem, and no additional programming effort is
required except for the coding ofhacc.

However, we will experience an exponential slowdown of our program, consistent with the intractability
result of [4]. The asymptotic efficiency of the algorithm is affected by the number of equivalence classes
modulo CAN , which must be computed in total – and their number is, in general, exponential in the
length of the input sequence. Such an approach is feasible for moderate length RNAs when equivalence
classes are defined via shape abstractions [21], but whenCAN simply denotes feasible structures of the
input sequence, one cannot get very far by this (otherwise quite elegant) method.

4For example, log-probabilities must be re-converted into probabilities in order to be added, which may cause numericalproblems.
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E. Ambiguity in sequence comparison: alignments versus traces

The phenomenon of semantic ambiguity is not peculiar to SCFGs. It arises with HMMs, and in fact,
already with simple, pairwise sequence alignments. As withSCFGs, it depends on the meaning we
associate with alignments. Seen as a syntactic object, eachalignment of two sequencesx andy stands for
itself and is distinct from all others. But sequence alignments are often interpreted as a reconstruction of
evolutionary history, where both sequences have developedfrom a common ancestor. Matched residues in
the alignment (bases for DNA, amino acids for protein sequences) are considered preserved by evolution.
Mismatches mean accepted point mutations. Gaps mean new residues that have been inserted in eitherx

or y. (If we see the same process as evolving fromx to y, “insertions” in x appear as deletions, which
has no effect on the subsequent discussion.) If new sequencehas been inserted in bothx andy between
two preserved residues, there is no particular ordering of these events. The alignment, however, offers
two representations for the same fact: we may write both

x: ACAGGGG---CAC x: ACA---GGGGCAC
y: ACA----TTTCAC y: ACATTT----CAC,

denoting the same evolutionary history. Classical bioinformatics textbooks do not fail to point to this
fact [19], [22]. Naturally, if this situation arises atk locations during the evolution of the sequences, this
process has2k aligments representing it – significantly disturbing any stochastic model.

“Alignments” where only matches and mismatches are specified, and hence, adjacent deletions/insertions
remain implicit, avoid this problem. They are calledtraces in [19], and we will adopt this naming later.
An unambiguous notation for traces could be e.g.

x: ACA[GGGG]CAC
y: ACA[TTT] CAC

where the square brackets designate inserted sequences unordered with respect to each other. Another
way to avoid ambiguity in alignments is presented later, when we return to this aspect in Section III-C.

III. SEMANTICS OF SCFG-BASED FAMILY MODELS

In this section we turn our attention to SCFGs which describeRNA family models, called family
model grammars for short. The previously developed SCFG terminology is not sufficient to understand
their properties. We will extend it appropriately. In particular, we will find that there are three reasonable,
alternative semantics for family model grammars.

A. From RNA folding SCFGs to family model grammars

There are three important differences between the SCFGs as we (and others) have used them as models
for structures of individual RNA molecules, and their use infamily modeling.

Family model grammars encode a consensus structure:Grammars likeG1 or G5 are unrestricted
RNA folding grammars. They will fold a sequence into all feasible secondary structures according to the
rules of base pairing. This makes the grammars relatively small, having one rule for every structural feature
considered by the scoring scheme, say a base pair or an unpaired base. The scoring scheme evaluates
alternative parses and selects the result from the completefolding space of the query sequence.

This is different with grammars that model an RNA family witha particular consensus structureC. The
consensus structureC is “hard-coded” in the grammar. To show a concrete consensus, we shall use star and
angle brackets in place of dots and parenthesis, e.g." * <<* <* >>><* >* " . This is only for clarity – there
is no difference, in principle, between the consensus and ordinary structures. For every position where
(say) a base pair is generated, the family model grammar has aspecial copy of the base pair generating
production, with nonterminal symbols renamed. The generalrule S → aSu becomesSi → aSi+1u for
each positioni where ana−u base pair is inC. The transition parameter associated with this rule can be
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trained to reflect the probability of ana−u pair in this particular position. The type of grammar we have
seen before, therefore, only serves as a prototype from which such position-specific rules are generated.

A family consensus structure ofn residues will lead to a model grammarGC with kn productions,
wherek is a small constant. Hence, while folding a query with approximate lengthn and grammarG1
would requireO(n3) computing steps, matching the sequence to the family grammar GC runs inO(n4)
time, simply because the size ofGC is in O(n).

Family model grammars restrict the folding space of the query: A parse of a sequencex in GC

indicates a structure forx, but this structure is no longer a free folding: it is always ahomomorphic
image ofC, with some base pairings ofC possibly missing, and some residues ofC possibly deleted.
Still, the paired residues may be assigned to the bases ofx in different ways; therefore, the structures
assigned tox by different parses may vary slightly. This restriction of the folding space to “lookalikes”
of C is the second difference between single sequence folding and family modeling.

Family model grammars encode the alignment of a query to the consensus:The third, important
difference is thatGC implicitly aligns x to C. For example, a base assigned an unpaired status inx may
represent one of three situations: it may (i) be matched to anunpaired residue inC, (ii) be an inserted
base relative toC, or (iii) be matched to a paired residue inC, but without having a pairing partner inx.

These three situations are explicitly distinguished inGC , they are scored separately, and the CYK
algorithm returns the parse with maximal score based on these considerations. To achieve this, the prototype
grammar needs rules which take care of deletions, insertions, and different types of matches.

Together, these three differences are central to our issue of ambiguity, and we summarize them in the
following
Fact Let M be a covariance model implemented by an SCFGGC , which implicitly encodes the consensus
structureC. Then, parsingx with GC finds an optimal alignment ofx with C which implicitly designates
a structuresx for x. This structuresx is restricted to one of many possible homomorphic images ofC

obtained by deleting residues and dropping base pairings from C. There are numerous other alignments
which assign the same structuresx to x, whose (smaller) likelihood contributions are not reflected by the
optimal alignment.

B. Prototype grammar and family model example

At this point the reader rightfully expects an example of a prototype grammar and a family model
grammar generated from it. We show a prototype grammar derived from G5 and a toy family model
grammar generated from it.

The prototype grammar G5M:We extendG5 to obtain a prototype grammarG5M capable of
describing query alignments to a model.G5M extendsG5 by rules modeling insertions, deletions and
matches. Again,a and b stand for arbitrary bases.
GrammarG5M , the axiom isA.

A → a A | M

M → ε | a A | M |
a A b A | a A M | M b A | M M

From a purely syntactic point of view, this grammar appears weird, because the chain ruleM → M

and M → M M together withM → ε allow for unbounded derivations that produceε. There is
no string in the language of this grammar which has a unique derivation! Ignoring all rules except
{M → ε, M → a A, M → a A b A} and mapping nonterminal symbolsA andM to S, we are back at
G5. The other rules provide for insertions and deletions between the query and the model. Specialization
of G5M to the consensus" * <* >* " will yield the family model grammarGToy5. Its context-free core is
shown in Fig. 6 for shortness, butGToy5 actually is a tree grammar using the same signature asG5M .
Details of the generation algorithm are in Section IV.

To make our intentions explicit, we semantically enhance the grammars by adding an evaluation function
interface.
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A1 → a A1 |M1

M1 → a A2 |M2

A2 → a A2 |M2

M2 → a A3 b A5 | a A3 M5 | M3 b A5 | M3 M5

A3 → a A3 |M3

M3 → a A4 |M4

A4 → a A4 |M4

M4 → ε

A5 → a A5 |M5

M5 → a A6 |M6

A6 → a A6 |M6

M6 → ε

Fig. 6. Family model grammarGToy5 generated fromG5M for consensusC = " * <* >* "

a

f_nil f_mat

f_Lrf_PK f_bg

A

A

f_ins

f_lR

f_del

A M

A

M

a b a A M AbM M M

a A M

Fig. 7. Prototype grammarG5M as a tree grammar. Functionsfmat, fins and fdel mark matches, insertions and deletions of unpaired
residues. FunctionsfPK , fLr, flR, andfbg mark matches, partial, or total deletions of paired residues in the model.

Here is the signature:

fmat : A× V → V fPK : A× V ×A× V → V

fins : A× V → V fLr : A× V × V → V

fdel : V → V flR : V ×A× V → V

fnil : V fbg : V × V → V

h : [V ] → [V ]

Remember thatA denotes the underlying alphabet. The tree grammar version of G5M is shown in Fig.
7.

C. Three semantics for family model grammars

Matching a queryx against a family model should return the maximum likelihoodscore of – what?
There are three possibilities, which we will explicate in this section.

For the family models, derived fromG5M , we can use the same signature as withG5M , except that
the functions get, as an extra first argument, the position inthe consensus with which they are associated.
Hence, when specifying a semantics via an evaluation algebra for G5M , this implies the analog semantics
for all generated models, as they solely consist of position-specialized rules fromG5M .
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The structure semantics:The obvious idea is to ask for the highest scoring structure assigned tox.
This is in line with the semanticsSSCFG introduced for SCFGs previously. Here is the canonical mapping
algebraCANstruct:

fmat(a, s) = ”.” + s fPK(a, s, b, t) = ”(” + s + ”)” + t

fins(a, s) = ”.” + s fLr(a, s, t) = ”.” + s + t

fdel(s) = s flR(s, b, t) = s + ”.” + t

fnil = ”” fbg(s, t) = s + t

h = id

Here again,s and t denote strings derived from substructures, and+ denotes string concatenation.a

andb are the concrete residues read in the query.CANstruct maps residues of the queryx to their assigned
paired or unpaired status, while residues from the consensus which are deleted (e.g. wherefbg applies)
produce no contribution to the output. Hence, the meaning ofany candidate evaluated withCANstruct is
simply a structure forx in dot-bracket notation.

The alignment semantics:With the alignment semantics, we want to obtain the maximum likelihood
score of an alignment of the query to the consensus. This model is more refined than the structure
semantics, as a given query structure can be aligned to the consensus in many different ways, and we
seek the most likely of those. Let us now formalize this idea.

For capturing the alignment semantics, we must use a canonical representation that expresses not only
the structure assigned tox, but also how it is aligned to the consensus structureC. Hence, it is an
alignment of two strings, the consensus structure and the structure assigned to the query. Both, naturally,
can be padded with gaps. The following are three different alignments of a query sequence to the same
consensus:

(1) ** <<** -- * >* >- (2) ** <-< * --- ** >* > (3) ** <<** - * >* >--
._(......__). ___.(......)_. __((....)_)..

Note that the upper line is always" ** <<*** >* >" when ignoring the gaps. This is because the
consensus is hard-coded in the model grammar. In contrast, the query structure is".(......)." in
alignments (1) and (2), and"((....)).." in alignment (3).

In defining the canonical mapping algebraCANalign for the alignment semantics, we use functions that
generate the alignment column-wise.5

Here is the canonical mappingCANalign:

fmat(a, s) = ”
∗

. ” + s fPK(a, s, b, t) = ”
<

( ” + s + ”
>

) ” + t

fins(a, s) = ”
−

. ” + s fLr(a, s, t) = ”
<

. ” + s + ”
>

” + t

fdel(s) = ”
∗

” + s flR(s, b, t) = ”
<

”s + ”
>

. ” + t

fnil = ”” fbg(s, t) = ”
<

” + s + ”
>

” + t

h = id

The trace semantics:Our third semantic idea results from the fact the good old sequence alignments
have an ambiguity problem of their own. After all, we are aligning a query sequence to the model. Recall
our example from Section II-E of traces of evolutionary processes that are represented ambiguously by
sequence alignments:

x: ACAGGGG---CAC x: ACA---GGGGCAC
y: ACA----TTTCAC y: ACATTT----CAC

This directly pertains to our problem at hand if you considerx as the consensus of (say) a loop region
in the model (be it a profile HMM or an SCFG), andy as the loop of a corresponding hairpin in the

5In the implementation, unfortunately, we have to replace the nice two-letter columns by ASCII encodings.
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query. If a stochastic model assigns a probability of 0.1 to each of the two alignments, the corresponding
trace

x: ACA[GGGG]CAC
y: ACA[TTT] CAC

has probability 0.2 (at least). We have a case of semantic ambiguity, which must be taken care of
even in stochastic sequence alignment. The Plan7 architecture of HMMer, for example, does this in a
drastic way by requiring at least one intervening match whenswitching between deletions and insertions
[17]. This simply disallows adjacent deletions and insertions altogether (but also rules out some plausible
traces).

We will adopt a different route. It is easy to modify the alignment recurrences defining sequence
alignment (the grammar in our terminology) such that only one of the possible arrangements of adjacent
insertions and deletions is considered as a legal alignment[10]. With such canonization, each trace is
uniquely represented by an alignment. The reduction is significant: For the two short sequences shown
above, and under the affine gap model, there are 396,869,386 alignments, representing only 92,378 different
traces6. Traces are considerably more abstract than alignments.

Let us return to our covariance models. Our family model grammars perform both folding and alignment,
and hence, they are also affected by this source of ambiguity– at least if we intend that final score
designates the most likely evolutionary process that relates the query to the model. The case even becomes
more subtle. The following alignment (4) denotes the same trace as alignment (2):

(2) C: ** <-< * --- ** >* > (4) C: ** -<< * --- ** >* >
x: ___.(......)_. x: __._(......)_.

What both alignments say is that a paired residue (at position 3) in the consensusC is deleted inx,
while another base is inserted inx. As with plain sequence alignments, adjacent deletions andinsertions
are unrelated; their order is insignificant.

Hence, it makes sense to introduce atrace semanticsfor our family model grammars: we want to
obtain the maximum likelihood score of a trace, which uniquely describes an evolutionary process of
transforming the consensus into the query.

To capture this idea, we need to design another canonical algebraCANtrace, which maps these two
situations (2) and (4) above to the same, unique representation. Let us adopt the canonization rule that
insertions must always precede adjacent deletions. By thisrule, both alignments (2) and (4) are represented
in the form of (4). The canonical mapping algebraCANtrace is almost the same asCANalign, except that
deletions that appear to the left of an insertion are pushed to the right.

AlgebraCANtrace

fmat(a, s) = ”
∗

. ” + s fPK(a, s, b, t) = ”
<

( ” + s + ”
>

) ” + t

fins(a, s) = ”
−

. ” + s fLr(a, s, t) = ”
<

. ” + s + ”
>

” ⊲ t

fdel(s) = ”
∗

” ⊲ s flR(s, b, t) = ”
<

” ⊲ s + ”
>

. ” + t

fnil = ”” fbg(s, t) = ”
<

” ⊲ s + ”
>

” ⊲ t

h = id

d ⊲ (a + s) = if a = ”
−

. ” thena + (d ⊲ s) elsed + a + s

d ⊲ ε = d

Wherever a deletion is issued, we have replaced simple string concatenation (+) by the operation⊲
which moves the deletion to the right over any leading insertions.

6Computed with the ADP versions of classical dynamic programming algorithms at http://bibiserv.techfak.uni-bielefeld.de/adp/adpapp.html
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Fig. 8. GrammarG5 as a tree grammar for parsing sequences (left) and consensusstructures (right).

The semantic hierarchy:Our three semantics form a proper hierarchy – many alignments correspond
to the same trace, and many traces assign the same structure to the query. This also implies that a family
model which faithfully (unambiguously) implements the alignment semantics is ambiguous with respect
to the trace semantics, and one which faithfully implementsthe trace semantics is ambiguous with respect
to the structure semantics, which is the most abstract of thethree.

Which semantics to choose? When we are mainly interested in astructure prediction for the query,
indicating whyx may perform the same catalytic or regulatory function as thefamily members, then
the structure semantics may be most appropriate. When we areinterested in estimating the evolutionary
closeness of the query to the family members, the trace semantics seems adequate. For the alignment
semantics, at the moment we see no case where it should be preferred.

But – can we generate unambiguous family model grammars and efficiently compute either of the three
semantics?

IV. GENERATING NON-AMBIGUOUS FAMILY MODELS FOR THE TRACE SEMANTICS

In this section we show how family model grammars can be generated which are non-ambiguous with
respect to the trace semantics. This will also provide a deeper insight on the meaning of the prototype
grammar7. We proceed in the following steps: (1) We start from a non-ambiguous prototype grammar.
(2) We show how, given a consensus structureC, a model grammarGC is constructed which generates
alignments in the canonical form (insert-before-delete),as required for the trace semantics. (3) We give
a proof that for anyC, GC is non-ambiguous under the trace semantics.

Here, we use grammarG5, because it is the smallest non-ambiguous grammar. However, the generating
technique and proof carries over to any non-ambiguous prototype grammar, which might be more attractive
than G5 from the parameter training point of view.

The meaning of prototype grammars:Starting fromG5, our prototype grammar isG5M . We still
owe the reader the explanation why this grammar looks the wayit does. The key point ofG5M is that it
enforces the insert-before-delete convention. Only nonterminal symbolA allows for insertions. Whenever
a nonterminal symbol stands in the left context of a deletion, an M rather than anA is used.

The real understanding of the prototype grammar comes from the observation that the prototype grammar
G5M is a grammar that allows to align a query toall possible models:

There is nospecificmodel encoded inG5M . This is why the grammar can be so small. But each
derivation with G5M not only assigns a structure to the query, but also implicitly encodes a model,
chosen by that derivation. This meaning of the prototype grammar can be made apparent by plugging
the definitions ofCANtrace into the tree grammarG5M and symbolically evaluating a bit. Doing so, the
tree operators likefmat or fPK are replaced by string concatenations, and we obtain the string grammar
Ĝ5M :

GrammarĜ5M ; the axiom isA.

7The reader may find it helpful to inspect the actual implementation of the generator and run simple experiments. We therefore have
provided the generator among our educational ADP pages at http://bibiserv.techfak.uni-bielefeld.de/adp/nilpairopen.html
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A →
−. A | M

M → ε |
∗. A |

∗

M |
<

( A
>

) A |
<. A

>

M |
<

M
>. A |

<

M
>

M

This grammar transformation is not totally trivial becauseof the use of⊲ in the definitions ofCANtrace.
But from the grammar, we observe that canonical strings derived fromM cannot start with insertions (

−. ),
while deletions (

∗

,
<

,
>

) are only applied beforeM . Hence, this grammar guarantees that the if-clause
in the definition of⊲ is never positive, and the recursive call to⊲ disappears. (Since the use of⊲ is the
only difference betweenCANtrace and CANalign, transformingG5M with CANalign leads to the same
string grammarĜ5M ).

What doesĜ5M explain aboutG5M? Replaying any derivation ofG5M with the analog productions
of Ĝ5M produces the representation of a model-structure alignment. The top line displays the model
“chosen” in this derivation, the bottom line displays the structure assigned to the query. Considering only
the model string on the top line, we find that its is produced byproductions analog toG5, and hence,
any consensus structure is possible.

For example, runningĜ5M on input "au" produces an infinite number of model/query alignments.
This is correct, since models of any length can be aligned to any sequence with a suitable number of
deletions. Disabling for a moment the rules which delete unpaired model residues or both residues in a
pair (i.e. the uses offdel and fbg), which are the sources of such infinity, the prototype grammar Ĝ5M
generates the following 23 alignments via the callG5M(CANtrace, "au" ):

"--" " ** " "<> * " "<<>>" "<><>" "- * " " * <>" "<><>" "<<>>" "< * >"
".." ".." "._." "..__" "_._." ".." ".._" "._._" "._._" "_.."
"-<>" " * <>" "<><>" "<>-" "<<>>" "-<>" X "<>" "<->" X "<> * " "<<>>"
".._" "._." ".__." "_.." "_._." "._." "()" ".._" "_.." "__.."
" * -" "< * >" "<><>"
".." ".._" "_.._"

Note that we see two alignments (labeled X) that satisfy the insert-before-delete convention, but not
their counterparts with delete-before-insert, which is forbidden with the trace semantics. Let us summarize
our observations about the role of the prototype grammar.

Fact The prototype grammar describes, by virtue of its derivations, the alignment of a query to all
possible consensi. Generating a specific family model grammar amounts to restricting the prototype
grammar, such that all its derivations align the query to thesame model consensus.

In other words, in a family model grammar for consensus structure C, the “upper line” in a derivation
always spells outC.

Generating model grammars from consensus structures:We now construct a generator which reads
a consensus structureC such as “*** <<<***** >>* >** ” and generates a grammarG5MC which
implicitly encodes alignments of a query sequencex to C. With the ADP method at our disposal, we
can use a variant of tree grammarG5 to parseC, obtained by substituting* for unpaired residues and<
and> for paired ones (cf. Fig. 8 (right)). SinceG5 is non-ambiguous, there will be only one treetC for
C. We design an evaluation algebragenCM which generatesG5MC by evaluatingtC . For the sake of
explanation, we will proceed in two steps: first we design an algebragenCFG which generatesG5MC

as a context free grammar, to explain the logic of the algorithm. Then, we modifygenCFG to genCM

which generates a tree grammar, i.e. executable ADP code forthe model.
genCFG has to take care of two issues. (1) It must generate copies of the rules ofG5M , specialized

to the specific positions inC. Applying (say) ruleM → aAbA whena andb are at paired positionsi and
j in C, respectively, will produce the specialized productionMi → aAi+1bAj+1. (2) genCFG must allow
for insertions and deletions without introducing ambiguity. But this has already been taken care of in the
design ofG5M . As long asgenCFG only uses position-specialized copies of the rules fromG5M , this
property is inherited.
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Evaluation algebragenCFG; the value domain is sets of context-free productions:

nil(εi) = {Ai → a Ai | Mi, Mi → ε} (1)

open(ai, x) = x ∪ {Ai → a Ai | Mi} (2)

∪ {Mi → a Ai+1 | Mi+1} (3)

pair(ai, x, bj, y) = x ∪ y ∪ {Ai → a Ai | Mi} (4)

∪ Mi → a Ai+1 b Aj+1} (5)

∪ Mi → a Ai+1 Mj+1} (6)

∪ Mi → Mi+1 b Aj+1} (7)

∪ Mi → Mi+1 Mj+1} (8)

Here, subscripts denote the position where a particular production is applied in the parse ofC. In the
output, these numbers create nonterminal symbols distinguished by subscripts. By default, the axiom of
the generated grammars isA1. Our reader may verify: computingG5(genCFG, " * <* >* " ) yields the
grammarToy5 shown in Fig. 6.

Finally, to produce executable code,genCM must generate a tree grammar rather than a string grammar,
in order to integrate the scoring functions. The rules of thecontext-free grammar derived withgenCFG

are now associated with scoring functions from the signature. As we cannot produce graphical output, a
tree build from function symbolf and subtreesa, A, b, A is coded in the formf <<< a˜˜˜A˜˜˜b˜˜˜A .

Evaluation algebragenCM ; the value domain is sets of tree grammar productions written in ASCII:

nil(εi) = {A_i = f_ins <<< a ˜˜˜ A_i ||| M_i } (9)

∪ {M_i = f_nil<<<empty } (10)

open(ai, x) = x ∪ {A_i = f_ins <<< a ˜˜˜ A_i ||| M_i } (11)

∪ {M_i = f_mat <<< a ˜˜˜ A_i+1 ||| f_del <<< M_i+1 } (12)

pair(ai, x, bj , y) = x ∪ y ∪ {A_i = f_ins <<< a ˜˜˜ A_i ||| M_i } (13)

∪ {M_i = f_PK <<< a ˜˜˜ A_i+1 ˜˜˜ b ˜˜˜ M_j+1 } (14)

∪ {M_i = f_Lr <<< a ˜˜˜ A_i+1 ˜˜˜ M_j+1 } (15)

∪ {M_i = f_lR <<< M_i+1 ˜˜˜ b ˜˜˜ A_j+1 } (16)

∪ {M_i = f_bg <<< M_i+1 ˜˜˜ M_j+1 } (17)

Compared to our use of the same signature with (the non-specialized)G5, all scoring functions takei
as an implicit parameter, so calls to (say)fdel from different positions may be trained to assign different
probabilities.

Non-ambiguity of generated models:We want to prove next that our model generatorG5M(genCM, C)
generates, for every consensus structureC, a family model grammar which is unambiguous with respect
to the trace semantics. The proof consists of two theorems:

Theorem 2 GrammarG5M is unambiguous with respect to the trace semantics.
We might strive for an inductive proof of this theorem, but since we already have all the necessary

machinery in place, we use an automated proof technique.
FromG5M we constructĜ5M as explained in Section II-C. We have already observed that its derived

alignments comply with the insert-before-delete-convention. Therefore, the generated alignments in fact
denote traces. Remember thatG5M generates the same model-query alignment several times if and only
if Ĝ5M is syntactically ambiguous. We replace the fancy, two-character columns by single character
encodings according to the following table:

∗. −. ∗
<

(
>

)
<. > < >. < >

M I D P K L r l R b g
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This turnsĜ5M into the grammar

A → ”I” A | M (18)

M → ε (19)

M → ”M” A | ”D” M (20)

M → ”P” A ”K” A (21)

M → ”L” A ”r” M (22)

M → ”l” M ”R” A (23)

M → ”b” M ”g” M (24)

which is proved unambiguous by theacla ambiguity checker [3].
Q.E.D.

We can now show that by the generation algorithm, semantic non-ambiguity is inherited fromG5 to
the family model grammars.

Theorem 3 Covariance models generated from a consensus structureC by G5(genCM, C) are se-
mantically non-ambiguous under the trace semantics.

We note the following facts:
1) Ĝ5M is syntactically non-ambiguous (Theorem 2).
2) Each derivation inG5M describes an alignment of a query againstsomemodel.
3) By construction, all these alignments observe the insert-before-delete convention.
4) Any derivation in a generated model grammarG5MC can be mapped to a derivation inG5M . This

is achieved by applying, for each production fromG5MC , the corresponding production without the
subscripts formG5M . This means that all derivationsG5MC also observe the insert-before-delete
convention.

5) This mapping is injective. This holds because we can uniquely reconstruct the positional indices to
turn a Ĝ5 derivation back into aĜ5C derivation, by keeping track of the number of symbols from
{M, D, P, K, L, l, R, r, b, g} generated so far (but not countingI).

6) Hence, ifG5MC was ambiguous,G5M would also be ambiguous, in contradiction to point (1).
Altogether, if there was a trace that had two different derivations inG5MC , it would also have two

different derivations inG5M . This is impossible according to point (1). Hence, a model grammarG5MC

generated bygenCM is always non-ambiguous with respect to the trace semantics.
Q.E.D.

The correctness proof for the model generator here crucially depends on the non-ambiguity of the
prototype grammar. When a prototype grammarG is ambiguous, a sophisticated generator can still avoid
ambiguity in the generated models! However, in this case a proof might be difficult to achieve. If it fails,
we can still convert each generated modelGC into the correspondinĝGC , which can be submitted to
ambiguity checking. This is the situation we will encounterwhen turning towards the “real-world” models
in Rfam. There, we have an ambiguous prototype grammar and a sophisticated generation process, which
makes it hard to prove properties about. Therefore, we next equip ourselves with an automated pipeline
for ambiguity checking of Rfam models.

V. THE AMBIGUITY CHECKING PIPELINE

Our ambiguity checking pipeline consists of three successive stages, namedcm2adp, adp2cfg, andacla.
cm2adp: Upward compilation of Infernal generated covariance models:The upward compilercm2adp

accepts as input the table encoding a covariance model generated by Infernal. It translates it into the
constituents of a mathematically equivalent ADP algorithm– a tree grammar, a signature, and an imple-
mentation of the stochastic scoring algebra using the parameters generated byInfernal. Once available in
this form, additional evaluation algebras can be used in place of or jointly in products with the stochastic
scoring algebra. Such semantic enrichment was the main purpose of developingcm2adp, and its scope
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will be described in a forthcoming paper. One of these applications is the evaluation of the search space
under a canonical mapping algebra, as we do here.

adp2cfg: Partial evaluation of grammar and canonical mapping algebra: The adp2cfgprogram
is a simple utility implemented by Peter Steffen subsequentto [16]. It accepts a tree grammarG and
a canonical mapping algebraA, such that a call toG(A, x) for some queryx, would enumerate all
the members of the search space (i.e. all parses) under the canonical string mapping. Provided that the
algebraA is very simple and uses only string constants and concatenation, adp2cfgsucceeds with partial
evaluation to produce the context free (string) grammarĜ suitable for ambiguity checking according to
Theorem 1.

acla: Ambiguity checking by language approximations:The acla phase simply calls the ACLA
ambiguity checker for context free grammars, which is basedon the recent idea of ambiguity checking
via language approximations [3]. It has been used before, for example, on the grammar designed by Voss
for probabilistic shape analysis of RNA [21]. Accumulatingprobabilities from the Boltzmann distribution
of structures depends, just like stochastic scoring, critically on semantic non-ambiguity.

Due to the undecidability of the ambiguity problem, there isno guarantee that theacla phase will always
return a definite answer. It may be unable to decide ambiguityfor some covariance models. However,
since the covariance models are larger, but less sophisticated than the grammar by Voss, we are confident
that the formal undecidability of ambiguity will not be a practical obstacle in our context.

The overall pipeline:As all family model grammars derived from the same prototypegrammar use
the same signature, the evaluation algebra implementing the canonical mappings for the structural and
the alignment semantics,CANstruct andCANalign, is the same for all, as described above. LetM denote
a covariance model generated byInfernal from consensus structureC, given in Infernal’s tabular output
format.

Let (GC , PROB) = cm2adp(M) be the ADP program equivalent toM , generated by upward compi-
lation.

Let ĜC,S = adp2cfg(GC , CANS) be the context free grammar generated by partial evaluation, where
CANS is eitherCANstruct or CANalign.

Then,acla(ĜC,S) ∈ {Y ES, NO, MAY BE} demonstrates semantic ambiguity or non-ambiguity ofM

with respect to the semanticsS.
The trace semantics cannot be handled byadp2cfgbecause the recursive auxiliary function⊲ in CANtrace

can only be eliminated with an inductive argument. To demonstrate (non-)ambiguity with respect to the
trace semantics, one shows (non-)ambiguity with respect tothe alignment semantics plus (non-)observance
of a uniqueness constraint such as the insert-before-delete convention. We now proceed to apply this
pipeline.

VI. SEMANTICS OF RFAM FAMILY MODELS

A. Model construction with Infernal

In this section, we look at covariance models as generated byInfernal. The difficulty here is that
the prototype grammar is ambiguous and we do not have a fully formal specification of the generation
algorithm. In order to create some suspense, we start with two quotations. The original publication [8] of
1994 states:

“. . . we make the Viterbi assumption that the probability of the model emitting the sequence is approximately
equal to the probability of the single best alignment of model to sequence, rather than the sum of all probabilities
of all possible alignments. The Viterbi assumption conveniently produces a single optimal solution rather than a
probability distribution over all possible alignments.”

This points at an alignment or a trace semantics. In a more recent update, theInfernal Manual [14] touches
on the issue of semantic ambiguity in the description of the model generation process, stating:

“This arrangement of transitions guarantees that (given the guide tree) there is unambiguously one and only
one parse tree for any given individual structure. This is important. The algorithm will find a maximum likelihood
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parse tree for a given sequence, and we wish to interpret thisresult as a maximum likelihood structure, so there
must be a one-to-one relationship between parse trees and structures.”

This seems to aim at a structure semantics, but since the samestructure can always be aligned to the
consensus (alias the “guide tree”) in many ways, theremustalways be several parses for it, the scores of
which should accumulate to obtain the likelihood of the structure.

Infernal starts from an initial multiple sequence alignment and generates models in an iteration of
consensus estimation, model generation, and parameter training. Here we are concerned with the middle
step, model generation from a given (current) consensus. The family consensus structureC is determined
with an ambiguous grammar, parsing the multiple alignment and maximizing a mutual information score,
and then one optimal parse (out of many) is fixed as the “guide tree”. (In our construction, whenC is
given, this is simply the unique parse ofC with tree grammarG5.) This guide tree is then used to generate
productions by specializing the following prototype grammar:

Grammar Ginfernal taken from theInfernal manual [14]:

State type Description Production Emission Transition
P (pair emitting) P → aY b ev(a, b) tv(Y )
L (left emitting) L → aY ev(a) tv(Y )
R (right emitting) R → Y a ev(a) tv(Y )
B (bifurcation) B → SS 1 1
D (delete) D → Y 1 tv(Y )
S (start) S → Y 1 tv(Y )
E (end) E → e 1 1

Here, Y is any state8 chosen from the nonterminal symbols (state types) in the leftmost column. One
recognizes the rules of the ambiguousG1 in the guise of{P → aY b, L → aY, R → Y a, B → SS, E →
ε}. The ambiguity inherent in a rule likeS → SS, parsingSSS both as(SS)S and S(SS) is not a
problem in model generation, because the specialized rulesSi → SjSk are always unambiguous. However,
insertions can be generated both fromL andR, possibly competing for the generation of the same unpaired
residues in the query.

Ginfernal is not really the complete prototype grammar in our sense, asrules for partial matches of
base pairs in the consensus need to be added in the generationprocess. Overall, the generation method
appears too complicated to strive for a formal proof of non-ambiguity of the generated models.

B. Checking Rfam models

We have checked 30 models from Rfam, the 15 smallest models with and without a bifurcation in their
consensus structure, respectively. Model names and their consensus structures are listed in the appendix.
Here, we give a resume of our findings:

Theorem 4 In general, Rfam models are ambiguous with respect to the structure semantics. They do
not assign a most likely structure to the query.

This can be seen from testing with our pipeline, but is also easily seen by inspecting the generated
models. Actually, alignments (1) and (2) in Section III-C are already an example of ambiguity with respect
to the structure semantics, though only in principle, as they are not Rfam models. The explanation is that
althoughInfernal takes care that the structural ambiguity of the prototype grammar does not enter the
model grammar, it does not compensate for the fact that the same structure (assigned to the query) is
aligned to the model in many ways. Hence, the score accounts for the structure associated with the optimal
alignment, which need not be the highest scoring structure.
Q.E.D.

8The description in [14] uses a mixture of SCFG and HMM terminology.
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Theorem 5 All tested Rfam models are non-ambiguous with respect to thealignment semantics. There
is no evidence that this result should not carry over to Rfam models in general.

This observation was proved for some of the smallest models via producing their grammar̂G and
submitting it to the ambiguity checker. For larger models, the ACLA checker ran out of resources. We
applied some surgery by reducing successive stretches of either unpaired or paired residues (in the model)
to stretches of at most three such residues. This is correct as it has already been tested that the rules
within such stretches do not lead to ambiguity. After such surgery, theACLA checker succeeded for all
models except Rf00161 and Rf00384.

For these two models, we resorted to a checking technique (rather than a proof) by use of a non-
ambiguous reference grammar, as suggested in [16]: if we have a reference grammarR which generates
non-ambiguously the alignments of a query to the given model, then we can compare thenumberof
alignments produced by both grammars for a given input length9. The enormous size of the search
space provides strong evidence that, if the number of alignments considered by either grammar co-
incides, the tested model grammar is also unambiguous. To apply this technique, we implemented a
secondG5-based model generator to generate family model grammars that are unambiguous for the
alignment semantics. Let us call them G5.Rf00161 and G5.Rf00384. We then checked, using an eval-
uation algebraCOUNT which simply counts the number of solutions generated, for sequencesx of
various lengths thatRf00161(COUNT, x) = G5.Rf00161(COUNT, x) and Rf00384(COUNT, x) =
G5.Rf00384(COUNT, x). For example, the value for|x| = 10 is 357,718,985,217,153 (Rf00161) and
261,351,290,279,573 (Rf00384). For|x| = 20, it is 774,380,024,914,343,603,750,401 (Rf00161) and
416,290,325,523,207,008,752,681 (Rf00384), computed independently by both models.
Q.E.D.10

The positive result that Rfam models correctly implement the alignment semantics is quite remarkable,
given the notorious ambiguity introduced by the rules ofG1, such asS → SS or S → aS|Sa. This is
achieved by details of theInfernal implementation. Applications ofS → SS are made unambiguous by
the use of the “guide tree”, effectively choosing one of the many possible derivations of the consensus
structure. Ambiguity effects ofS → aS|Sa are avoided by disabling one of the alternatives in certain
situations. Last not least, for searching with a model,Infernal has recently switched to using the Inside
rather than the CYK algorithm [15], which changes the scoring but bypasses eventual ambiguity problems.
However, for optimally aligning a sequence to the model, andhence also for model building, the CYK
algorithm is still required. We will return to the use of the Inside algorithm in the conclusion.

Theorem 6 In general, Rfam models are ambiguous with respect to the trace semantics.
This is implied by our previous observations, as a trace corresponds to many alignments.

Q.E.D.
We also wondered whether the Rfam models could be tweaked to compute the trace semantics rather

than the alignment semantics, simply by disabling some of the generated transitions (and re-training the
parameters). Our upward compilation allows us to to eliminate certain transitions. We have been able to
reduce the number of alignments considerably, but we have not found a way to reduce it to the number
of traces.

C. A synopsis on RF00163 and RF01380

To give an impression of the degree of ambiguity observed with respect to structure and trace semantics,
we compute some data for RF00163 and for RF01380, which are currently the smallest Rfam models

9Note that the number of alignments only depends on the lengthof model and query, but not on the concrete query sequence, and not on
the grammar which implements the model.

10Strictly, this is not proved but only tested for Rf00161 and Rf00384 , but note that by throwing more computational ressources at the
problem, we can prove the remaining candidates nonambiguous. For practical concerns, and with an eye on the other modelsnot explicitly
studied here, a quick check by the counting method is more appropriate.
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with and without a bifurcation11. When counting structures forn = 31, computational resources were
exhausted, as in contrast to traces and alignments, we have no polynomial time algorithm for counting
structures – for the same reasons as discussed with ambiguity compensation.

Model RF00163 RF01380
consensus <<<<<<******* <<<<****** >>>>*** <<<<>>>>* >>>>>> <<<<<<<**** >>>* >>>>

length (size) 45 (31) 19 (12)

|x| = 12

structures 8,958 2,048
traces 35,330,137,025 141,120,525

alignments 715,114,268,248,121 35,330,137,025

|x| = 31

structures n.a. n.a.
traces 1,916,865,700,889,408,588,480 30,405,943,383,200

alignments 1,862,835,338,733,448,037,194,650,687 208,217,738,981,165,823

The numbers of structures, traces and alignments are properties of the search space of a model/query
alignment, independent of which algorithm traverses this search space. They have been computed twice,
and they perfectly agree between the upward compiledInfernal models resulting fromcm2adpand the
models generated by our method fromG5M . This can be taken as a strong indication that the two
approaches are equivalent in terms of the search spaces theycreate. However, different grammars lead to
different numbers of parameters and will, in general, not beequivalent as stochastic models.

D. Ambiguity compensation, revisited

Can we, given the trained and upward-compiled Rfam models, which compute the log-likelihood score
according to the alignment semantics, use the same models with an accumulating scoring function to obtain
the trace or the structure semantics? Mathematically, yes.What was explained in Section II-D for the
simple stochastic context free grammars generally holds for all dynamic programming algorithms which
can be expressed in the ADP framework, and hence also for our model grammars: Given grammarG, a
scoring algebraS and an algebraCAN (i.e.CANstruct or CANtrace), just replace the maximizing objective
function of S by an accumulating function, yielding scoring algebraSacc. Then callG(CAN ∗ Sacc, x).
The product algebraCAN ∗ Sacc maps all candidates to their equivalence classes under the canonical
mapping, and performs accumulating scoring per class. Given the ADP machinery, which provides a
generic implementation of the algebra product, ambiguity compensation comes without reprogramming
efforts – but only in principle.

There are two obstacles to this elegant solution:
• In case of stochastic modeling, rather than multiplying probabilities which tend towards zero as the

structure gets larger, one prefers to add their logarithms.Due to the monotonicity of thelog function,
the maximal log score still indicates the answer with maximum probability. However, substituting
maximization by accumulation, one needs to compute and add the probabilities, potentially creating
numerical problems.

• Efficiency of computing withG(CAN ∗ Sacc, x) depends on the number of canonical objects con-
structed, and as this number (in the case of covariance models) is exponential in the length of the
query, this is practical only for very short sequences and small models. The implementation by a
product algebra will have efficiency ofO(αnn4), whereα may be close to 1, but probably not close
enough. Our counting results on the small models RF00163 andRF01380 indicate this.

11The number of structures without a bifurcation for|x| = n is bounded from above by2n−1. The bound is sharp whenn < 2(p + 1),
wherep is the number of base pairs in the model. For largern, the restriction that the query cannot be assigned more basepairs than the
consensus becomes effective. This is why we see a211 for n = 12 and still cannot compute the exact number forn = 31.



TCBB SUBMISSION 22

Semantics Direct computation in Computation by ambiguity
O(n4) with compensation inO(αn · n4)

with
alignment Gali(PROB, q) —
trace Gtrace(PROB, q) Gali(CANtrace∗ PROBacc, q)
structure — Gali(CANstruct∗ PROBacc, q)

Gtrace(CANstruct∗ PROBacc, q)
sequence Gali(PROBacc, q) Gali(CANseq∗ PROBacc, q)

Gtrace(PROBacc, q) Gtrace(CANseq∗ PROBacc, q)

TABLE I
THE SEMANTIC HIERARCHY. WE INDICATE GRAMMARS AND EVALUATION ALGEBRAS USED FOR EACH TASK. n IS THE LENGTH OF THE

QUERY q. α DENOTES THE BASE OF THE EXPONENTIAL FACTOR, WHICH IS INCURRED WITH AMBIGUITY COMPENSATION. α DECREASES

FROM TOP TO BOTTOM; FOR THE SEQUENCE SEMANTICS, α = 1, AND BOTH COLUMNS DESCRIBE THE COMPUTATION VIA THEINSIDE

ALGORITHM , USED WITH EITHER GRAMMAR.

VII. CONCLUSION

A. Summary of results

We have studied the problem of generating non-ambiguous family models from consensus structures.
We clarified the notion of a semantics for family model grammars, and found that there are three well
motivated, alternative definitions: the structure, the trace and the alignment semantics.

We developed the generation algorithm for the trace semantics, which, to our knowledge, has not been
studied before. Along the way, we found a nice explanation ofthe prototype grammar as a grammar that
allows for an infinite set of derivations, describing the alignment of the query toall possible models. The
generation process can then be described lucidly by an evaluation algebra (genCM), which allows, for
example, for a proof of non-ambiguity of the generated models.

For a summary of the semantic hierarchy, let us introduce yetanother semantics. Thesequence semantics
assigns to each model/query alignment the same object of interest – the aligned query sequence itself. The
canonical mapping algebraCANseq is trivial and left to the reader. Ambiguity compensation with respect
to this mapping means summing up probabilities ofall model/query alignments – this is commonly known
as the Inside algorithm! According to this view, our intermediate semantic levels of trace and structure
semantics can, alternatively, be viewed as as intermediates between CYK and Inside scoring, governed
the equivalence relation induced by the canonical mapping.This view is summarized in Table 1. Note
the lack of a grammarGstruct, which would allow for the polynomial-time computation of the structure
semantics.

On the practical side, we have implemented the upward compilation of Infernal generated models to
ADP. Here this compilation was used for connecting the Rfam models to our ambiguity checking pipeline.
The upward compiled models, however, have other applications of interest, which will be described in a
forthcoming study. But still, upward compilation from automatically generated tables is an ad-hoc measure,
and in the long run, one might consider producing ADP code forthe models directly when generated.

Also on the practical side, we have observed that the models generated fromG5M are relatively small.
To extend the comparison, we have also implemented aG5-based generator for (provably) unambiguous
family model grammars and the alignment semantics. Applying both our generators to Rf00163 and
Rf01380, we can give concrete examples of the blow-up factork (cf. Section III-A). We evaluate the size
of the generated grammars.

Model Model Rfam G5 (alignment) G5 (trace)
length/size rules/nonterminals rules/nonterminals rules/nonterminals

Rf00163 45 / 31 617 / 139 151 / 46 182 / 77
Rf01380 19 / 12 282 / 59 66 / 20 78 / 32

The factor (number of rules/model length) affects the runtime as a constant factor. It is about 14 for the
Rfam models, 3.4 for the models derived fromG5 with alignment semantics, and 4.1 forG5M-derived
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models with the trace semantics. These factors cannot be directly compared, asInfernal implements
affine gap scoring and some other features not included in theG5-based models. The factor (number
of nonterminals/model size) measures the space requirements, as each nonterminal leads to a dynamic
programming table. Here, the respective factors are 4.6, 1.5, and 2.5, approximately.

B. Directions of future research

We shortly sketch some research questions which are raised by our findings.
Investigation of the trace semantics:The trace semantics is new; it can be efficiently computed,

and possibly, the performance of covariance models can be improved. Such an improvement is likely
especially with respect to remote family members. This is because, when model and query have about
the same length, one is likely to find a high-scoring alignment without adjacent deletions and insertions,
whose score is not falsely reduced by ambiguity. Remote family members may require more insertions
and deletions, some of them adjacent, and ambiguity strikeson a scale which is exponential in the number
of such situations. With an eye on the use of the alignment semantics with Rfam, this implies that good
scores can be taken as a strong indication of family membership, while low scores must be interpreted
with care, especially when model and query significantly differ in length.

Investigation of the structure semantics:The structure semantics has been used so far with simple
SCFGs, but not with family model grammars. The structure semantics seems appropriate when the goal
is to use the information in the family model to assign a concrete, most likely structure to the query. This
structure would have to be experimentally probed in order toverify that the query performs the same
function as other family members.

However, in contrast to simple SCFGs, we do not know an efficient method to compute this semantics for
family model grammars. Ambiguity compensation, as shown above, suffers from a runtime complexity
dependent on the number of structures, which in turn grows exponentially with the sequence length.
Efficient computation of the structure semantics is an interesting open challenge, where one must be
aware that a polynomial time, exact algorithm may not exist.An ideal modeling tool would allow the
user to specify the intended semantics, either at model generation time or when starting a search.

Smaller and faster models:The smaller size and better speed of models derived from a small grammar
such asG5 deserves further study. Its use may have been discouraged bythe diagnosis of the “abysmal”
performance ofG5 reported in [5]. Dowell and Eddy explain this performance bythe overloading of rules:

“The compact grammarG5, for instance, must invoke the same bifurcation ruleS → aSâS for every base
pair and for every structural bifurcation, which are quite different structural features that occur with very different
frequencies. The productions ofG5 are thus “semantically overloaded”: they collapse too manydifferent types of
information into the same parameters.”

This explanation, appropriate as it is for simple SCFGs, also points to a remedy for the case of family model
grammars. These grammars have position-specialized productions, and unless we tie parameters together
irrespective of their structural position in the model, we can still train different and adequate parameters
for different features. This requires careful engineeringand empirical testing, but small grammars are
still in the race. Note also that filtering techniques, whichhave been developed to speed up the present
Infernal-generated models, can also be adapted to models generated from a different prototype grammar.

Comparing the performance of different prototype grammars: Dowell and Eddy diagnosed superior
performance of another unambiguous SCFG (G6 which stems from Pfold [13]). However, this grammar
was not tested as the prototype for model grammar generation. Given our compact algorithm of model
generation – the generator fromG5 is but 164 lines of ADP code – it maybe a justifiable effort to extend the
Dowell and Eddy study to different model generators, training family models rather than simple SCFGs.
We conjecture that our proof of a correct implementation of the trace (or the alignment) semantics could
be adapted for a new family model generator, as long as an unambiguous prototype grammar is used. If
not, there is still our ambiguity checking pipeline, which can be used to show correctness of the individual
models after their generation.
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APPENDIX

Rfam models tested for non-ambiguity
15 smallest models from Rfam without a bifurcation:

RF00032.cm ***** <<<<<<**** >>>>>>*****
RF00037.cm <<<<<*** <<<<<****** >>>>>* >>>>>
RF00180.cm <<* <<<<****** >>>>>>******************
RF00390.cm ******** <<<<******* >>>>
RF00453.cm <<<<<<<*** <<<********** >>>>>>>>>>
RF00502.cm **** <<<<<<<<******** >>* >>>>>>*****
RF01072.cm <<<<********** >>>>*************
RF01080.cm ******* <<<<<<<*********** >>>>>>>
RF01081.cm <<<<<******** >>>>>*********
RF01082.cm ***** <<<<<<<******* >>>>>>>
RF01112.cm ***** <<<<<****** >>>>>
RF01115.cm <<<******* >>>*********
RF01380.cm <<<<<<<**** >>>* >>>>
RF01381.cm *** <<<<<**** >>>>>******
RF01382.cm ** <<<<<**** >>>>>****

15 smallest models from Rfam with a bifurcation:

RF00008.cm * <<<<<<* <<<<<*** >>>>>******* <<<<******** >>>>*** >>>>>>*
RF00057.cm ****** <<<<**** <<******* >>* >>** >>******** <<<<<<<****** >>>>>>>*******
RF00161.cm <<<<** <<<<<<<***** >>>>>>>*** <<<<* <<<<<<******** >>>>>>* >>>>** >>>>
RF00163.cm <<<<<<******* <<<<****** >>>>*** <<<<>>>>* >>>>>>
RF00184.cm ********* <<<<********* >>>>****** <<<<************** >>>>
RF00192.cm <<<<<<********* >>>>>>********* <<<<<<************* >>>>>>
RF00384.cm * <<<<<<<***** >>>>>>>*** <<<<<* <<* <<<***** >>>*** >>>>>>>*********
RF00454.cm ******** <<<<* <<**** >>** >>>>** <<<<<* <<<*** >>>* >* >>>>********
RF00517.cm ********** <<<<<<****** >>>>>>*** <<<<<<**** >>>>>>*****
RF00630.cm ************* <<<<<*** <<***** >>*** >>>>>** <<<<<<<<<< ****** >>>>>>>>>> *
RF00681.cm <<<<<** <<<<<<<<<<<< * <<<**** >>>* <<**** >>* >>>>>>>>>> ** >>*** >>>>>
RF01068.cm <<<<<<<<**** >>>>>>>>************** <<<<<**** >>>>>
RF01116.cm <<<<<<<<**** >>>>>>>>****************** <<<<<<<***** >>>>>>>**
RF01388.cm * <<***** <<<<**** >>>>**** >><<<<<<< ***** >>>>>>>******
RF01403.cm <<<** <<<<<<<********* >>>>>>>**** >>>**** <<<<<<<<***** >>>>>>>>*****
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