From consensus structure prediction to RNA gene finding

Stephan H Bernhaitlvo L Hofackef!

aDepartment of Theoretical Chemistry University of Viervahringerstral3e 17, A-1090 Wien, Austria

Abstract

Reliable structure prediction is a prerequisite for mopetyof bioinformatical analysis of RNA. Since the accuracy
of structure prediction from single sequences is limitatk often resorts to computing tleensensus structurer
a set of related RNA sequences. Since functionally impofA structures are expected to evolve much more
slowly than the underlying sequences, the pattern of segu@o-)variation can be exploited to dramatically improve
structure prediction. Since a conserved common strucsuraly expected when the RNA structure is under selective
pressure, consensus structure prediction also providateahstarting point for thele novodetection of structured
non-coding RNASs.

Here we review dterent strategies for the prediction of consensus secorsiargtures, and show how these
approaches can be used to predict non-coding RNA genes.
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Figure 1: Stockholm format seed alignment of the ROSE — Rsjye of heat shock gene expression element (taken from Rfarfi’], id
RF00435). The first stem is present in onfiL3 sequences, but still part of the Rfam consensus structure

1. Introduction

In the last decade or so, the important roles that RNA had kmalvn organisms has been brought to the attention
of life scientists. The identification of new classes of RNAlatules, such as miRNAs or piRNAs, has lead to the
guestion of how to identify other non-coding RNAs that maynio¢ as abundant as these RNA families. Basically,
there are two possibilities to tackle that problem. The expental approach, aided by the advent of next generation
sequencing [1-3], aims to sequence the whole RNome of amigrga A limitation of this approach is however,
that RNAs that are expressed only in specific tissues, dpuedatal stages, or stress conditions, are likely to be
missed. The bioinformatical approach usually depends ompeoative genomics. Here, evolutionary conservation
of secondary structure (or its absence) is used to decidéhethe part of the genome is a non-coding RNA or not.
When candidates for RNA genes have been found either expetaity or with computational means, the next task
is to characterize them. A comparatively fast way to getrimi@tion on a RNA molecule is its secondary structure. If
one can find related sequences (mostly in related specieshsensus structure prediction is the best way to predict a
secondary structure with computational means. In thisrdmrtton, we want to show the extensive parallels between
in silico non coding RNA gene finding and RNA consensus stmecprediction.

2. Consensus structure prediction

Correctly predicting the secondary (pseudo-knot freeicstire of a single RNA molecule is afficult task. While
the basic algorithms used for these predictions have bemamdrfor a long time [4, 5], they $ier both from the
simplifications of the underlying models as well as from timeeartainty concerning the exact values of the energy
parameters. These problems lead to typical predictionrac@s (measured as the fraction of correctly predicted
base pairs) of between 45% and 70% [6]. Luckily, in these ddysext generation sequencing and ubiquitous
genome projects, we can use another source of informatgiddsethe nucleotide sequence of a single RNA molecule.
Evolutionary constraints on the function, and thus on thienfof a molecule, can be used to find out more about its
functional structure. The reasoning is simple: related RiN@lecules with identical functions are thought to have
identical or related structures. With this information, g to find the best structure that the whole set of related
molecules share. As an example, many tRNA sequences wihwot the "traditional” clover leaf shape when folded
as a single molecule. A consensus structure prediction &denwv sequences fiices to correctly identify the clover
leaf structure. One should note however, that the notiomo$ensus structure is not entirely well defined. Itis urrclea
if, e.g., structural insertions in some molecules shoulddigsidered to be part of the consensus structure or not, see
Fig. 1. In particular, this makes itfiicult to compare the quality of theftiérent programs.

A benchmark comparing several prediction methods was shudadi in 2004 [8], and the accompanying BRAliBase
database has been widely used since. In fact, the avatjyabiligood reference data may have facilitated recent
improvement of tools. An objective comparison of predicteccuracy is, however, complicated by the fact that in
many cases program parameters have been optimized usisgrtteedata.

2.0.1. Covariance and covariance scores
Structural conservation means that while the sequenceaisgdd, the ability to form a base pair is retained. For
example, a conserved base pair may be realized at/gair in one sequence, and a&@ in another. This is known



as acompensatorynutation, and regarded as one of the hallmarks of consetugatsres. Mutations where only one
side of a base pair changes (suchzs$to GC) are calledconsistenimutations and provide a much weaker signal.
Many of the “classical” RNA structures, e.g. for tRNAs anbdasomal RNAs, were derived manually and purely on
the basis of such co-variation signals.

To find out whether a substitution pattern is due to strutttwaservation, diverse measures can be used. The
“classical” measure is the mutual information between taloiminsi and j of an alignment:
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Here, f; j(ab) is the frequency of co-occurrence of baaemdb in the two alignment columns, arfg(a) (resp.f;(b))
the frequency of occurrence of baa€b) in the columni (j), andA = {A,C, G, U}. Because mutual information
makes no use of RNA base pairing rules, it can be used to detiary interactions just as well as canonical base
pairs. For the same reason, the measure tends to be veryumbésg a large number (tens or hundreds) of sequences
is available. To some extend this can be mediated by perfaythie sum over canonical base pairs only.

Another popular measure, that is more suitable for smalieece sets, is thad hocscore of RNAalifold [9]. The
alifold score simply counts the number of compensatory amsistent mutations between pairs of sequences, as well
as the number of sequences that cannot form a base pair. eaisqly it computes:
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whereq, B are lines of the alignment, the hamming distandea(a, b) equals 0 ifa = b and 1 otherwise, ang =
{AU, UA, CG, GC, GU, UG} contains the canonical base pairs. The parantetegights the importance of counter
examples, RNAalifold sets the default valueste: 1. The alifold score, as well as extensions that includeskstg
of consecutive base pairs performed especially well in gesuby Lindgreen et al. [10].

In their RNA homology search tool RSEARCH [11], Klein and Eddtroduced the so called RIBOSUM pair
substitution matrices, derived from structural alignnsesftSSU ribosomal RNAs. The substitution of nucleotides
andb in one sequences lyandd in another is scored by

R(ab, cd) = log (f(ab; cd)/g(a)g(c)g(b)g(d))-

Thus, the RIBOSUM score is a log-odds ratio IBQ) for pairs of columns. The numeratbfab; cd) is the frequency
with whichab pairs aligned witled pairs are observed in paired columns of the SSU alignmemdstjee denominator

Q is the probability of seeing the four nucleotid@sb, ¢, d} independently anywhere in the SSU sequences. It thus
represents a statistical comparison between two modeiseceed base pairs and independently evolving sites. Note
that there are several other possibilities to deffyesuch as probabilities to see unaligned base paiosc(l) or
alignment columnsicbd As with standard substitution scoresffdient matrices are needed for closely related and
highly divergent sequences. Alternatively, a continuursazire matrices can be derived from a single instantaneous
rate matrix, which can be estimated e.g. using XRATE [12]e Hiter approach is in particular favoured by methods
that make use of phylogenetic trees.

2.0.2. Approaches on consensus structure prediction
In general the problem of (structural) alignment and cosssrstructure prediction are closely related. Gardner
and Giegerich [8] therefore defined three approaches tortitdgm of consensus structure prediction.

i Align first, then predict structure for the alignment
ii predict the structure for single sequences, then aligselrstructures

iii align and predict the structure at the same time
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However, subsequent work from the same group introducedhsecsus shape prediction that does not fit into this
scheme [13]. We therefore have grouped methods in the fitpimto:

1 Stucture prediction from a fixed alignment
2 Methods that simultaneously compute alignment and strect
3 Alignment free methods

Furthermore, programs can be split into those that workajlpland those that can also predict local structure.

Note that almost all programs mentioned below consider pagudo-knot free structures, i.e. structure without
crossing base pairs. Standard standard dynamic progragatgiorithms for RNA secondary structure prediction can-
not deal with such structures, making pseudo-knot predicicomputationally hard problem. For the few programs
that do support pseudo-knots, this is explicitly mentiobelbw.

2.1. Stucture prediction from a fixed alignment

Because multiple sequence alignments tend to be readillable and because of the speed and convenience
of the methods, structure prediction from a fixed alignmesrstill the most commonly used approach. The obvious
drawback is that accuracy of the predicted consensus steuatll be dependent on the quality of the alignment. In
practice, popular sequence alignment methods like Cly¥sfa#] yield suficiently good alignments for sequences
with a similarity of 70% and above [15]. And for high qualityand crafted alignments, such as Rfam alignments,
most of the programs below give very good results.

In the following we have picked two programs, RNAalifold afibld, to be discussed in more detail, since they
are widely used and form the basis for prominent ncRNA gemkefin The two programs also serve as representatives
for the two prominent approaches to RNA structure predictimmely energy directed folding and SCFGs. As this
field is growing rapidly, we can not give a full list of all progms for consensus structure prediction, but present
examples covering thefiiérent techniques.

2.1.1. Pfold

The use of stochastic context free grammars (SCFGs) foctates prediction is exemplified by the Pfold [16]
program. Given an alignme#t, Pfold first computes a phylogenetic trfédrom the alignment. In conjunction with
a sequence evolution model consisting of two rate matrizeks4 matrix for the evolution of unpaired sites, and a
16x16 matrix for paired sites, the maximum likelihood amioof Felsenstein [17] allows to compute the probability
P(AIT, o, M) of observing the alignment given the tréethe secondary structure and the rate modé\¥l. In order
to obtain an optimal structure one also needs the prior fibityaof a secondary structurié(o), which is computed
using a small SCFG. For reference the grammar with its pramluprobabilities is given below:

S — LS(86.9%)|L(13.1%)
F — dFd(788%)|LS(212%)
L — s(895%) dFd(10.5%)

Here, thel — srule produces an unpaired position, while the right hand @keld produces two paired positions.
Note that the Pfold SCFG is one of the smallest SCFGs thastateeking of base pairs into account: A helix
is initiated viaL — dFd with a low probability of about 10%, while the probability extend an existing helix
(via F — dFd) is close to 80%. By multiplying production probabilitiethe SCFG with column probabilities,
one obtains an extended SCFG that emits alignment coluran®tsnes called a phylo-SCFG. The standard CYK
algorithm can now be used to obtain the structatbat maximize(AT, o, M)P(c), and therefor®(a|A, T, M).



2.1.2. RNAalifold

RNAalifold [9] faithfully implements the idea of “foldingraalignment”. In other words it is a generalization of
the standard dynamic programming (DP) RNA folding algamths introduced by Zuker et al. [4] to alignments. To
score the energy of a structural motif, the energy contidimstof the single sequences are averaged, and a co-variatio
score is added to every base pair. This generalization tigama@ent can also be done for McCaskill’s [18] partition
function variant of DP RNA folding. In a recent contributifif], the prediction accuracy of RNAalifold has been
improved by introducing a better treatment of gaps and RIBM®ased co-variation scores.

Both Pfold and RNAalifold can be used to predict not only ggiroptimal structure, but also pair probabilities
which provide a measure of confidence.

2.1.3. Other programs

ILM [20], iterative loop based matching, uses a Nussinolesiiyop matching algorithm. For alignments, scores
for the base pairs within the algorithm are computed usingualinformation scores. The best helix of the secondary
structure is found, cut out of the alignment and the remaipiarts of the alignment are iteratively folded again. This
procedure makes it possible to predict pseudo knots in a atatipely fast way.

KNetFold [21] represents a machine learning approach teemsus structure prediction. It uses a k-nearest
neighbor net to classify pairs of alignment columns as eitfaéred or unpaired, based on three descriptors: mutual
information, the fraction of compatible sequences, andaebase pair probability. Several filters are employed to
get to the final prediction, including a minimum helix lengés well as discarding all but the highest ranked pair for
each base. The program can be used to predict structurepseitiuo-knots.

BayesFold [22] uses Bayesian reasoning to combine infeom&tom different sources, in order select the best
structure from a list of candidate structures, as provigegl, by RNAsubopt [23]. An interesting aspect is that it
allows inclusion of chemical probing information in additito thermodynamics and co-variation.

The McCaskillMEA approach [24] is closely related to RNAald, but does not use co-variation explicitly.
Instead, it first computes base pair probabilities for eacjuence, and from this the average pair probability for each
pair of columns. A modified Nussinov algorithm is then useddmpute the structure of maximum expected accuracy
(in the simplest case the structure maximizing the sum afgrababilities).

The same idea of superimposing base pair probability nestii@s been used already early on in Alidot [25, 26]
and Construct [27, 28]. Newer versions of Construttioa sophisticated GUI that allows the user not only to ptedic
and visualize consensus structures from a fixed alignmanglbo to interactively edit and optimize the alignment.

All programs above have time and memory requirements tiade: as0(n®) andO(n?), respectively, for alignments
of lengthn. In practice, most have comparable runtimes, with KNetfghically being the slowest.

2.2. Simultaneously computing alignment and structure

From the point of view of structure prediction, sequences #re homologous but highly diverged are ideal,
since they should contain a maximum of covariance inforomatHowever, accurately aligning sequences becomes
harder, and sequence alignments diverge more and more fi@mstriucturally correct alignment. In practice, pure
sequence alignments become unsuitable for structuregbi@tat a pairwise sequence similarity of about 50%, at the
latest. There is, however, a number of structure basedmaéghprograms that can improve the performance of these
alignments.

Today, the most popular approaches without a fixed alignawentariants of the Sankalgorithm [29]. Some of
these have been used as ncRNA gene finders (see below), ¢hegveever quite slow compared to methods on fixed
alignemtns and therefore usually restricted to two segegenc

2.2.1. Sankgbased approaches

When David Sankf introduced his algorithm for simultaneous folding and miligy in 1985, it was seen as a
purely theoretical exercise since the cost in terms of €RbF) and memonO(n*), for two sequences of length
would make it impractical. Today, quite a number of impleta¢ions are available and becoming more widely used.
At the heart of these implementations are heuristics thdae the search space by restricting possible consensus
structures, possible alignments, or both.



The earliest such attempt was Foldalign [30], which oritfijnallowed only unbranched stem-loop structures
(newer versions lift this restriction). Since Foldaligreéses oocal alignments it also restricts the maximum length
of the final alignmenfl, as well as the length flerences between the aligned sequence pieces, leading to a time
complexity of O(n?1%62). The latest version [31] additionally introducegaining technique which discards sub-
alignments whose score does not exceed a length-depehdestiold, removing them from the dynamic program-
ming matrix.

Another early program, Dynalign [32], is noteworthy for ilementing the full Turner energy model, as used for
single sequence structure prediction. Thus, it tries to tiredalignment and consensus structure that yields the best
free energy averaged over the two sequences. Dynaligmaltigirestricted alignments only by demanding that the
length of two aligned subsequenceffeli by no more than a constalt. This limits the alignment path to a band
close to the diagonal of the dynamic programming matrix.

In the SCFG based StemLoc program, lan Holmes [33] replduigs$ixed band by amalignment envelopand a
fold enveloperestricting possible alignments and structures, respygt The envelopes are computed by performing
standard sequence alignments, and by folding the indiVgRguences. The envelopes are then constructed from the
n, best sequence alignments and tlhhédest secondary structures, withandn; user settable parameters.

A different approach to restricting possible alignments is talgghe SCFG using Consan [34]. Here, high scoring
local sequence alignments are pre-computed and used &3,"p@ matches that the resulting structural alignments
must contain.

Similar to the fold envelopes above, PMcomp [35] pre-corapat matrix of pair probabilities for each sequence,
and allows only pairs with a probability exceeding some ghodd to be formed as part of the consensus structure.
For a fixed probability threshold this already reduces matfromO(n®) to O(n*), and the technique has since been
adopted by many other tools, such as the latest version o&lizyn[36]. PMcompPMmulti was also one of the first
tools to produce multiple alignments via progressive p@ievalignment. More fiicient implementations of these
ideas are nowadays available in FoldalignM [37] and LocAR[S8]. LocARNA in particular uses the restriction
of possible pairs to not only speed up the algorithm, but tds@duce memory requirements fradin*) to O(n?).

In addition, LocARNA allows global and local alignments,wasll asstructure localalignments which allow for
insertiofdeletion of whole substructures.

While LocARNA restricts only the fold space, the recent RABgram [39] adds a simultaneous restriction
of possible alignments: A pre-processing step uses sequaignment algorithms to compute match probabilities
between any positions in the two sequences. The Shpkase then excludes low probability matches from the
search space leading to an expected runtin@(of).

Sankdf based methods have improved rapidly both in terms of sped@uracy, sometimes making benchmarks
obsolete within a year. An important distinction for the eser is, however, that not all prograntBas local alignment
modes and multiple alignments, see Table 1 below. With tleegtion of Dynalign, most programs focus more on
alignment quality than structure prediction quality. Exkaugh they usually provide both alignment and consensus
structure as output, it can often be beneficial to recomhgednsensus structure based on this structural alignment
using conventional tools such as RNAalifold.

2.2.2. Non-Sankpapproaches to structural alignment

Given the high computational cost of the Safikmsed methods, it is natural to consider heuristics thatldkics
type of algorithm altogether. A very early approach is usingenetic algorithm to optimize the alignment and the
structure [40].

CARNAC [41] is a stem-based consensus structure predittimrthat is divided into three steps. In the first step,
a dynamic programming secondary structure predictioneasl s identify all potential stems of all sequences. The
second step consists of pairwise comparisons of the segsiemselect the best stems. Highly conserved anchor points
for the pairwise alignments restrict the number of posssden to stem alignments. Furthermore, co-variations are
required for stems to be aligned, which further reduces thmelyer of possible stem matches. Using a DP algorithm,
the optimal secondary structure for every pair of sequeisdesind. A final consensus structure is then computed by
greedily combining stems that are weighted according tem gfraph.

RNA Sampler [42] first computes the probabilities that twsdmare aligned and the base pair probability of the
single sequences. It then aligns single stems, which aneatkéis at least three consecutive base pairs. After aligning
all pairs of stems, the best aligned stems are kept and cibtgpaligned stems (called blocks) are combined to create
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a secondary structure. After that, alignment probabditied base pairing probabilities are updated, and the puoeed
is iteratively repeated.

MASTR [43] iteratively improves the structure predictios well as the sequence alignment of a set of RNA
sequences using simulated annealing with moves that cleitinge sequence alignment or consensus structure. The
cost function being minimized is composed of sequence ceaen, co-variation and base-pairing probabilities.

Simulfold [44] is similar in spirit, but more ambitious. Gim sequence daEit simultaneously optimizes consen-
sus structuré, alignmentA, and the phylogenetic trée using a Markov chain Monte Carlo method, thus sampling
S, A, T from the posterior probabiliti?(S, A, T|D). The move set consists of changes to branch lengths, pe&oty,
or compound changes of structure and alignment. While the for a single simulation step is linear in sequence
length and number of sequences, a large number of stepsdsdheatil the simulation converges. To speed up con-
vergence of the procedure can be quite slow, it can be heipfulkclude data like a known alignment, evolutionary
tree or secondary structure and restrict the algorithmnooruthe unknown parts. Since the method is not based on
dynamic programming, it can include pseudo-knots in theigt®n.

CMfinder [45] is a tool for finding RNA motifs. Thus, rather thperforming a global alignment of the sequences it
identifies structurally similar subsequences. It first presca list of local structures (motifs) by folding all subsgs
of each sequence, and weights them by the energy divided Iy lexagth. It then performs pairwise structure
comparisons between the motifs from all sequences, and pliiekmost “central” motif, i.e. the one with highest
similarity to motifs in other sequences. An initial alignniés built by aligning the central motif to its closest match
from each other sequence. The algorithm then iterativelyraves the alignment by (i) computing a consensus
structure (i) translating the alignment with consensuscstire into a covariance model, CM [46] and (iii) aligning
each sequence against the CM to obtain a new alignment. Toedure can optionally be repeated with another
initial motif.

2.3. Alignment free methods

RNAcast [13] is special in the sense that it does not requireudd an alignment. The approach is based on
predicting coarse grained structures, so cadlbstract shapesAn example abstract shape would be the “cloverleaf”
shape, encompassing all structures with three hairpinaaedclosing multi-loop. For each sequence the RNAshapes
program is used to compute all shapes with energies withimesimterval of the optimum. Since the number of
shapes is so much smaller than the number of full structtilessame shapes are expected to occur in many of the
predictions. The consensus shape is then simply the highrdstd shape common to all sequences. Once a consensus
shape has been determined one can ask for the best fulls&witthis shape for each sequence (the so-called shape
representative ahrep. If an alignmentis desired, this can be compytedt factunby aligning the structures.

The web server WAR [47] provides an easy to use platform takaneously use many of the structural alignment
methods mentioned above. It makes it possible to comparg pradictions and also to use a “majority vote” ap-
proach. Thus, itis very well suited for non experts to quigdenerate alignments and consensus secondary structures.

3. RNA gene finding

As pointed out by Rivas & Eddy [48], secondary structure potiah on a single sequence is irfBaient to reliably
predict ncRNA genes. Therefore, the reverse of the reag@pplied to the consensus structure prediction problem is
used for non-coding gene prediction in silico. If a struetisr evolutionary conserved in spite of sequence variation,
then the structure must be subject to selection and thusrimidnal. Consensus structure prediction is therefore an
ideal starting point for ncRNA prediction, but has to be aegted by a suitable measure of significance.

For SCFG based methods, the natural approach is to do maaglacson between a model for structured RNA
(which also yields the consensus structure predictior), amull model describing the genomic background. Al-
ternatively, one can extract signals indicating functisteuctures from the prediction, which can then be used as
descriptors for a machine learning approach. A recent casgaof such signals is given in Gruber et al. [49] (see
also below for SCI).

Strictly speaking, all methods discussed below predictfional RNA structures, not ncRNgenes This means
that unstructured ncRNAs are generally undetectable &melmethods. Moreover, the ends of the detected structures
need not coincide with transcript boundaries. Cis-regujastructures, for example, can be identified even though
they are not independent transcripts.
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Furthermore, we discuss only tlaé initio prediction of novel ncRNA genes. In order to find new membérs o
already known ncRNA families, one would rather resort toure based) homology search methods, see the review
of Mosig et al. in this issue.

3.1. Alignment based methods

The first practical tool fode novoncRNA gene finding was QRNA [50]. The program takes as inpLdienpse
sequence alignment that is then analyzed by three prosi@bitiodels: A pair SCFG, i.e. an SCFG that emits columns
of a pairwise alignment, is used to compute the probabitigt the input data are due to an underlying secondary
structure, a hidden Markov model (HMM) emitting aligned oadpairs checks whether the input alignment might
represent a protein coding region, and another HMM reptegha null model of independently evolving columns.
The model that yields the highest likelihood of the inputadistthen declared the winner. In practice, the biggest
shortcoming of QRNA is that it can be used only on pairwisgratients.

The limitation to pairwise alignments is lifted in EvoFol8ll]], which also serves as an illustrative example for
the close relation between the non-coding gene finding andessus structure prediction. EvoFold implements
an SCFG based on the one in Pfold, but poses a slighfilgrdnt question: Structure prediction asks for the most
likely structure given the alignment, while ncRNA deteaotgsks for the likelihood of the alignment given a structural
evolution model. As in QRNA this is then compared to the likebd of the alignmentin a null model for uncorrelated
evolution, the final score being the log likelihood ratiovee¢n the two models. Besides the original scan in human,
EvoFold was, e.g., used to scan the genome of 12 drosopfalideRNA genes [52].

The RNA-decoder tool [53] is similar to EvoFold, but is intkadl to detect regions with functional structure within
a longer alignment. Rather than scoring the alignment usuogdifferent models, it employs a high-level grammar
that switches between two sub-models for structured anstnuctured parts of the alignment. It is noteworthy for be-
ing the only tool that explicitly models RNA structures tloaerlap protein-coding regions, as are frequently obgkrve
in RNA viruses.

AlifoldZ [54] and RNAz [55] are directly based on consenstie&ure prediction from RNAalifold. In the case of
AlifoldZ the RNAalifold energyEais for the input alignment is compared to the energies of rangdednalignments
produced by shitling. This is done by computingascorez = (Eajii — < E >)/o, where< E > ando are the mean
and standard deviation over the randomized alignments.

RNAZz uses a machine learning technique, a support vectonimaSVM), for the final decision whether or not
the input alignment harbors a structural RNA. From foldihg individual sequences as well as consensus structure
prediction, it extracts two important descriptors: Theusture conservation index” (SCI) as a measure of strukctura
conservation, and the average enexggcore of the individual sequences as a measure of therraadgrstability.
The SCI is computed as

Eniit
1

N Zi Ei

Thus, if all sequences will fold into the same structure amywhe SCI equals 1 (or slightly above if there is co-
variation), while it approaches zero if no common strucitae be formed. Rather than computing thecore via
explicit shufling (as in the case of AlifoldZ), RNAz uses a second SVM toneate mean and standard deviation from
sequence length and composition. This makes RNAz muchrfastebetter suited for large genome wide screens.
Small RNAz screens, e.g., on bacterial genomes can evernrfmerped on-line at the RNAz web server [56]. RNAz
has been used in a number of ncRNA screens, including aalistreen in humans [57], but also nematodes [58],
plasmodium [59] and arabidopsis [60].

The zscore computations above crucially depend on a method riergee randomized sequences and align-
ments, and most ncRNA screens have used randomized alignhoeestimate their false discovery rate. For sin-
gle sequences, it is generally recommended to use di-nigdeshuffling, i.e. using randomized sequences with the
same di-nucleotide content. Alignments, however, can igdigenot be shifled, while simultaneously preserving
di-nucleotide content, gap structure, and the local degfeenservation. An alternative to sffiing, is to generate
randomized alignments by simulating sequence evolutiongad phylogenetic tree. Two such frameworks were re-
cently introduced in [61], where it was shown that di-nutid®corrected null data can improve AlifoldZ predictions,
and [62] who observe that less realistic null models geheledd to underestimating the false positive rates of gene
finders.

SCI =
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Program | web server source code  model | featuredimitations

Pfold y on request SCFG

RNAalifold y y Turner

ILM y - Turner pseudoknots
KNetFold y register Turner pseudoknots
BayesFold IE only - Turner can include probing data
McCasklill MEA - y Turner

ConStruct - y Turner interactive, GUI
Foldalign y y Turner pairwise only, local
Dynalign - register Turner pairwise only
StemLoc - y SCFG local
Consan - y SCFG pairwise only
FoldalignM - y Turner

LocaRNA y y Turner local

RAF - y CLLM

CARNAC y y Turner

RNASampler - register | TurneyCLLM pseudoknots
MASTR y y Turner

Simulfold - y Entropy based pseudoknots
CMfinder y y Turner local only
RNAcast y y Turner

Gene finders

QRNA y y SCFG pairwise only
EvoFold - y SCFG

RNA-Decoder - - SCFG for coding regions
RNAz y y Turner

Table 1: List of the programs, the availability of source ecahd web service, and the type pf model underlying strucpuegliction.
CLLM:conditional log-linear models (trained parameteLFG: Stochastic context free grammar, Turner: free gnerg

3.2. Predictions based on structural alignments

Non-coding RNAs are often characterized by very fast rafesequence evolution, making itféicult to obtain
reliable sequence based alignments. It is therefore tegpdibase ncRNA screens on some type of structural align-
ment. Note, however that an initial (sequence based) akgiis needed to define syntenic regions that can then
be re-aligned. The first such attempt was a Foldalign basegis®f human versus mouse [63]. Since Foldalign
performs local alignments in a scanning fashion, ncRNA ahatds were identified by simply selecting those local
alignments with an exceptionally good score. At the time, fihoject was a tour de force, requiring about 5 months
on a cluster of 70 CPUs. Current implementations should keetabvepeat the experiment in less thamth of the
time. Nevertheless, it demonstrated that ncRNAs can beffouregions that are not alignable on the sequence level.

Similarly, Dynalign has been used for ncRNA screens in prpid@s [64]. As in RNAz, a support vector machine
was trained to identify ncRNAs based on the Dynalign outfphe SVM descriptors were the Dynalign folding energy,
the nucleotide composition, and length of the two sequenBssexpected, the approach yields significantly better
predictions than RNAz for sequences with less than 50% segudentity, albeit at significantly higher computational
cost.

More recently, CMfinder was used in a screen of the ENCODBEoreggdf the human genome [65]. While
Foldalign and Dynalign are restricted to pairwise compmarss CMfinder could make full use of the large number
of sequenced species for these regions. Candidates weoteskeprimarily on the basis of an ad hoc score combining
global and local sequence similarity, fraction of paireddsin the motif, and number of sequences that can realize
the motif.
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Figure 2: Comparison of EvoFold and RNAz predictions for BEiCODE regions of the human genome. The densities of thaqgui@ts with
high significance is shown as a function of GC content andervation measured by the phastCons program. RNAz is bestedtthg ncRNAs
with slightly elevated GC content and significant sequera@tion. Evofold is most sensitive at low GC contents argihlsiequence conservation.
The intersections of the prediction results is thereforeeasarily small (Venn diagram in upper right corner). Fegonodified from [66].

4. Discussion

A variety of different approaches has been brought to bear on the problermsértsus structure prediction.
Given a high quality input alignment several of the avaikalbiethods achieve prediction accuracies around 90%.
Benchmarks should however be taken with a grain of salt,es{fcdifferent programs employ slightly féirent
notions about what constitutes a consensus structure,iiameférence structures have often been computed using
tools very similar to those being benchmarked. Since eass®fand availability can be important factors in the
choice of tool, a summary is provided in table 1.

Structural alignment methods have made remarkable progres the last years. The Safikalgorithm, long
thought to be computationally unfeasible, is now availablseveral implementations that are fast enough for large
scale use.

All these encouraging results are however obtained fotivelg homogeneous families of RNAs with little to
no structural variation within the family. For heterogensdamilies with significant structural plasticity manual
construction of alignments and consensus structuredlithgtirule. None of the programs discussed here would, for
example, be much help in aligning 7SK sequences from mamanalénsects [67].

The situation is also €élierent in the field of n\cRNA gene finders. While there exist sgvapproaches with broadly
similar performance, the overlap between predictionsinbthin the same screens fronffdrent tools is surprisingly
small [65, 66]. In part this may be due to the significant faesitive rate, however a closer comparison of RNAz and
Evofold predictions reveals that they are maximally séresiin different and largely disjoint genomic regions (see
fig. 2). This suggests that the true complement of ncRNAs énhithman genome might still be underestimated by
current gene-finders.



5. Key points

e Non-coding RNA gene finding and RNA consensus structureigtied are key problems in modern bioinfor-
matics.

e For consensus structures, severfkdent approaches lead to high accuracy predictions.
e Structural alignment tools improved a lot over the last f@arns.
e Today, gene finders are based on consensus structure redacls.

e Unstructured non-coding RNA genes can thus not be predicted
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