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Abstract

Reliable structure prediction is a prerequisite for most types of bioinformatical analysis of RNA. Since the accuracy
of structure prediction from single sequences is limited, one often resorts to computing theconsensus structurefor
a set of related RNA sequences. Since functionally important RNA structures are expected to evolve much more
slowly than the underlying sequences, the pattern of sequence (co-)variation can be exploited to dramatically improve
structure prediction. Since a conserved common structure is only expected when the RNA structure is under selective
pressure, consensus structure prediction also provides anideal starting point for thede novodetection of structured
non-coding RNAs.

Here we review different strategies for the prediction of consensus secondarystructures, and show how these
approaches can be used to predict non-coding RNA genes.
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Figure 1: Stockholm format seed alignment of the ROSE – Repression of heat shock gene expression element (taken from Rfam9.1 [7], id
RF00435). The first stem is present in only 5/13 sequences, but still part of the Rfam consensus structure.

1. Introduction

In the last decade or so, the important roles that RNA has in all known organisms has been brought to the attention
of life scientists. The identification of new classes of RNA molecules, such as miRNAs or piRNAs, has lead to the
question of how to identify other non-coding RNAs that may benot as abundant as these RNA families. Basically,
there are two possibilities to tackle that problem. The experimental approach, aided by the advent of next generation
sequencing [1–3], aims to sequence the whole RNome of an organism. A limitation of this approach is however,
that RNAs that are expressed only in specific tissues, developmental stages, or stress conditions, are likely to be
missed. The bioinformatical approach usually depends on comparative genomics. Here, evolutionary conservation
of secondary structure (or its absence) is used to decide whether a part of the genome is a non-coding RNA or not.
When candidates for RNA genes have been found either experimentally or with computational means, the next task
is to characterize them. A comparatively fast way to get information on a RNA molecule is its secondary structure. If
one can find related sequences (mostly in related species), aconsensus structure prediction is the best way to predict a
secondary structure with computational means. In this contribution, we want to show the extensive parallels between
in silico non coding RNA gene finding and RNA consensus structure prediction.

2. Consensus structure prediction

Correctly predicting the secondary (pseudo-knot free) structure of a single RNA molecule is a difficult task. While
the basic algorithms used for these predictions have been around for a long time [4, 5], they suffer both from the
simplifications of the underlying models as well as from the uncertainty concerning the exact values of the energy
parameters. These problems lead to typical prediction accuracies (measured as the fraction of correctly predicted
base pairs) of between 45% and 70% [6]. Luckily, in these daysof next generation sequencing and ubiquitous
genome projects, we can use another source of information besides the nucleotide sequence of a single RNA molecule.
Evolutionary constraints on the function, and thus on the form of a molecule, can be used to find out more about its
functional structure. The reasoning is simple: related RNAmolecules with identical functions are thought to have
identical or related structures. With this information, wetry to find the best structure that the whole set of related
molecules share. As an example, many tRNA sequences will notshow the ”traditional” clover leaf shape when folded
as a single molecule. A consensus structure prediction froma few sequences suffices to correctly identify the clover
leaf structure. One should note however, that the notion of consensus structure is not entirely well defined. It is unclear
if, e.g., structural insertions in some molecules should beconsidered to be part of the consensus structure or not, see
Fig. 1. In particular, this makes it difficult to compare the quality of the different programs.

A benchmark comparing several prediction methods was published in 2004 [8], and the accompanying BRAliBase
database has been widely used since. In fact, the availability of good reference data may have facilitated recent
improvement of tools. An objective comparison of prediction accuracy is, however, complicated by the fact that in
many cases program parameters have been optimized using thesame data.

2.0.1. Covariance and covariance scores
Structural conservation means that while the sequence is changed, the ability to form a base pair is retained. For

example, a conserved base pair may be realized as anAU pair in one sequence, and as aGC in another. This is known



as acompensatorymutation, and regarded as one of the hallmarks of conserved structures. Mutations where only one
side of a base pair changes (such asGU to GC) are calledconsistentmutations and provide a much weaker signal.
Many of the “classical” RNA structures, e.g. for tRNAs and ribosomal RNAs, were derived manually and purely on
the basis of such co-variation signals.

To find out whether a substitution pattern is due to structural conservation, diverse measures can be used. The
“classical” measure is the mutual information between two columnsi and j of an alignment:

Mi j =
∑

a,b∈A

fi, j(ab) ln2
fi, j(ab)

fi(a) f j(b)
,

Here, fi, j(ab) is the frequency of co-occurrence of basesa andb in the two alignment columns, andfi(a) (resp.f j(b))
the frequency of occurrence of basea (b) in the columni ( j), andA = {A,C,G,U}. Because mutual information
makes no use of RNA base pairing rules, it can be used to detecttertiary interactions just as well as canonical base
pairs. For the same reason, the measure tends to be very noisyunless a large number (tens or hundreds) of sequences
is available. To some extend this can be mediated by performing the sum over canonical base pairs only.

Another popular measure, that is more suitable for small sequence sets, is thead hocscore of RNAalifold [9]. The
alifold score simply counts the number of compensatory and consistent mutations between pairs of sequences, as well
as the number of sequences that cannot form a base pair. More precisely it computes:

γ(i, j) = γ′(i, j) − δ
∑

α∈A



















0 if (αiα j) ∈ B
0.25 if αi ∧ α j are gaps
1 otherwise

γ′(i, j) =
1
2

∑

α,β∈A,α,β

{

h(αi, βi)+h(α j, β j) if (αi , α j) ∈ B ∧ (βi , β j) ∈ B
0 otherwise

,

whereα, β are lines of the alignmentA, the hamming distanceh(a, b) equals 0 ifa = b and 1 otherwise, andB =
{AU, UA, CG, GC, GU, UG} contains the canonical base pairs. The parameterδ weights the importance of counter
examples, RNAalifold sets the default value toδ = 1. The alifold score, as well as extensions that includes stacking
of consecutive base pairs performed especially well in a survey by Lindgreen et al. [10].

In their RNA homology search tool RSEARCH [11], Klein and Eddy introduced the so called RIBOSUM pair
substitution matrices, derived from structural alignments of SSU ribosomal RNAs. The substitution of nucleotidesa
andb in one sequences byc andd in another is scored by

R(ab, cd) = log
(

f (ab; cd)
/

g(a)g(c)g(b)g(d)
)

.

Thus, the RIBOSUM score is a log-odds ratio log(P/Q) for pairs of columns. The numeratorf (ab; cd) is the frequency
with whichabpairs aligned withcd pairs are observed in paired columns of the SSU alignments, and the denominator
Q is the probability of seeing the four nucleotides{a, b, c, d} independently anywhere in the SSU sequences. It thus
represents a statistical comparison between two models, conserved base pairs and independently evolving sites. Note
that there are several other possibilities to defineQ, such as probabilities to see unaligned base pairs (ab, cd) or
alignment columnsacbd. As with standard substitution scores, different matrices are needed for closely related and
highly divergent sequences. Alternatively, a continuum ofscore matrices can be derived from a single instantaneous
rate matrix, which can be estimated e.g. using XRATE [12]. The latter approach is in particular favoured by methods
that make use of phylogenetic trees.

2.0.2. Approaches on consensus structure prediction
In general the problem of (structural) alignment and consensus structure prediction are closely related. Gardner

and Giegerich [8] therefore defined three approaches to the problem of consensus structure prediction.

i Align first, then predict structure for the alignment

ii predict the structure for single sequences, then align these structures

iii align and predict the structure at the same time
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However, subsequent work from the same group introduced a consensus shape prediction that does not fit into this
scheme [13]. We therefore have grouped methods in the following into:

1 Stucture prediction from a fixed alignment

2 Methods that simultaneously compute alignment and structure

3 Alignment free methods

Furthermore, programs can be split into those that work globally and those that can also predict local structure.
Note that almost all programs mentioned below consider onlypseudo-knot free structures, i.e. structure without

crossing base pairs. Standard standard dynamic programming algorithms for RNA secondary structure prediction can-
not deal with such structures, making pseudo-knot prediction a computationally hard problem. For the few programs
that do support pseudo-knots, this is explicitly mentionedbelow.

2.1. Stucture prediction from a fixed alignment

Because multiple sequence alignments tend to be readily available, and because of the speed and convenience
of the methods, structure prediction from a fixed alignment is still the most commonly used approach. The obvious
drawback is that accuracy of the predicted consensus structure will be dependent on the quality of the alignment. In
practice, popular sequence alignment methods like ClustalW [14] yield sufficiently good alignments for sequences
with a similarity of 70% and above [15]. And for high quality,hand crafted alignments, such as Rfam alignments,
most of the programs below give very good results.

In the following we have picked two programs, RNAalifold andPfold, to be discussed in more detail, since they
are widely used and form the basis for prominent ncRNA gene finders. The two programs also serve as representatives
for the two prominent approaches to RNA structure prediction, namely energy directed folding and SCFGs. As this
field is growing rapidly, we can not give a full list of all programs for consensus structure prediction, but present
examples covering the different techniques.

2.1.1. Pfold
The use of stochastic context free grammars (SCFGs) for structure prediction is exemplified by the Pfold [16]

program. Given an alignmentA, Pfold first computes a phylogenetic treeT from the alignment. In conjunction with
a sequence evolution model consisting of two rate matrices,a 4x4 matrix for the evolution of unpaired sites, and a
16x16 matrix for paired sites, the maximum likelihood approach of Felsenstein [17] allows to compute the probability
P(A|T, σ,M) of observing the alignment given the treeT, the secondary structureσ, and the rate modelM. In order
to obtain an optimal structure one also needs the prior probability of a secondary structureP(σ), which is computed
using a small SCFG. For reference the grammar with its production probabilities is given below:

S → LS (86.9%) | L (13.1%)

F → dFd(78.8%) | LS (21.2%)

L → s(89.5%) | dFd(10.5%)

Here, theL→ s rule produces an unpaired position, while the right hand sidedFd produces two paired positions.
Note that the Pfold SCFG is one of the smallest SCFGs that takes stacking of base pairs into account: A helix
is initiated viaL → dFd with a low probability of about 10%, while the probability toextend an existing helix
(via F → dFd) is close to 80%. By multiplying production probabilities of the SCFG with column probabilities,
one obtains an extended SCFG that emits alignment columns, sometimes called a phylo-SCFG. The standard CYK
algorithm can now be used to obtain the structureσ that maximizesP(A|T, σ,M)P(σ), and thereforeP(σ|A,T,M).
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2.1.2. RNAalifold
RNAalifold [9] faithfully implements the idea of “folding an alignment”. In other words it is a generalization of

the standard dynamic programming (DP) RNA folding algorithm as introduced by Zuker et al. [4] to alignments. To
score the energy of a structural motif, the energy contributions of the single sequences are averaged, and a co-variation
score is added to every base pair. This generalization to an alignment can also be done for McCaskill’s [18] partition
function variant of DP RNA folding. In a recent contribution[19], the prediction accuracy of RNAalifold has been
improved by introducing a better treatment of gaps and RIBOSUM based co-variation scores.

Both Pfold and RNAalifold can be used to predict not only a single optimal structure, but also pair probabilities
which provide a measure of confidence.

2.1.3. Other programs
ILM [20], iterative loop based matching, uses a Nussinov style loop matching algorithm. For alignments, scores

for the base pairs within the algorithm are computed using mutual information scores. The best helix of the secondary
structure is found, cut out of the alignment and the remaining parts of the alignment are iteratively folded again. This
procedure makes it possible to predict pseudo knots in a comparatively fast way.

KNetFold [21] represents a machine learning approach to consensus structure prediction. It uses a k-nearest
neighbor net to classify pairs of alignment columns as either paired or unpaired, based on three descriptors: mutual
information, the fraction of compatible sequences, and average base pair probability. Several filters are employed to
get to the final prediction, including a minimum helix length, as well as discarding all but the highest ranked pair for
each base. The program can be used to predict structures withpseudo-knots.

BayesFold [22] uses Bayesian reasoning to combine information from different sources, in order select the best
structure from a list of candidate structures, as provided,e.g., by RNAsubopt [23]. An interesting aspect is that it
allows inclusion of chemical probing information in addition to thermodynamics and co-variation.

The McCaskillMEA approach [24] is closely related to RNAalifold, but does not use co-variation explicitly.
Instead, it first computes base pair probabilities for each sequence, and from this the average pair probability for each
pair of columns. A modified Nussinov algorithm is then used tocompute the structure of maximum expected accuracy
(in the simplest case the structure maximizing the sum of pair probabilities).

The same idea of superimposing base pair probability matrices has been used already early on in Alidot [25, 26]
and Construct [27, 28]. Newer versions of Construct offer a sophisticated GUI that allows the user not only to predict
and visualize consensus structures from a fixed alignment, but also to interactively edit and optimize the alignment.

All programs above have time and memory requirements that scale asO(n3) andO(n2), respectively, for alignments
of lengthn. In practice, most have comparable runtimes, with KNetFoldtypically being the slowest.

2.2. Simultaneously computing alignment and structure

From the point of view of structure prediction, sequences that are homologous but highly diverged are ideal,
since they should contain a maximum of covariance information. However, accurately aligning sequences becomes
harder, and sequence alignments diverge more and more from the structurally correct alignment. In practice, pure
sequence alignments become unsuitable for structure prediction at a pairwise sequence similarity of about 50%, at the
latest. There is, however, a number of structure based alignment programs that can improve the performance of these
alignments.

Today, the most popular approaches without a fixed alignmentare variants of the Sankoff algorithm [29]. Some of
these have been used as ncRNA gene finders (see below), they are however quite slow compared to methods on fixed
alignemtns and therefore usually restricted to two sequences.

2.2.1. Sankoff based approaches
When David Sankoff introduced his algorithm for simultaneous folding and aligning in 1985, it was seen as a

purely theoretical exercise since the cost in terms of CPUO(n6) and memoryO(n4), for two sequences of lengthn,
would make it impractical. Today, quite a number of implementations are available and becoming more widely used.
At the heart of these implementations are heuristics that reduce the search space by restricting possible consensus
structures, possible alignments, or both.
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The earliest such attempt was Foldalign [30], which originally allowed only unbranched stem-loop structures
(newer versions lift this restriction). Since Foldalign focuses onlocal alignments it also restricts the maximum length
of the final alignmentλ, as well as the length differenceδ between the aligned sequence pieces, leading to a time
complexity ofO(n2λ2δ2). The latest version [31] additionally introduces apruning technique which discards sub-
alignments whose score does not exceed a length-dependent threshold, removing them from the dynamic program-
ming matrix.

Another early program, Dynalign [32], is noteworthy for implementing the full Turner energy model, as used for
single sequence structure prediction. Thus, it tries to findthe alignment and consensus structure that yields the best
free energy averaged over the two sequences. Dynalign originally restricted alignments only by demanding that the
length of two aligned subsequences differ by no more than a constantM. This limits the alignment path to a band
close to the diagonal of the dynamic programming matrix.

In the SCFG based StemLoc program, Ian Holmes [33] replaces this fixed band by analignment envelopeand a
fold envelope, restricting possible alignments and structures, respectively. The envelopes are computed by performing
standard sequence alignments, and by folding the individual sequences. The envelopes are then constructed from the
na best sequence alignments and thenf best secondary structures, withna andnf user settable parameters.

A different approach to restricting possible alignments is takenby the SCFG using Consan [34]. Here, high scoring
local sequence alignments are pre-computed and used as “pins”, i.e. matches that the resulting structural alignments
must contain.

Similar to the fold envelopes above, PMcomp [35] pre-computes a matrix of pair probabilities for each sequence,
and allows only pairs with a probability exceeding some threshold to be formed as part of the consensus structure.
For a fixed probability threshold this already reduces runtime fromO(n6) to O(n4), and the technique has since been
adopted by many other tools, such as the latest version of Dynalign [36]. PMcomp/PMmulti was also one of the first
tools to produce multiple alignments via progressive pairwise alignment. More efficient implementations of these
ideas are nowadays available in FoldalignM [37] and LocARNA[38]. LocARNA in particular uses the restriction
of possible pairs to not only speed up the algorithm, but alsoto reduce memory requirements fromO(n4) to O(n2).
In addition, LocARNA allows global and local alignments, aswell asstructure localalignments which allow for
insertion/deletion of whole substructures.

While LocARNA restricts only the fold space, the recent RAF program [39] adds a simultaneous restriction
of possible alignments: A pre-processing step uses sequence alignment algorithms to compute match probabilities
between any positions in the two sequences. The Sankoff phase then excludes low probability matches from the
search space leading to an expected runtime ofO(n2).

Sankoff based methods have improved rapidly both in terms of speed and accuracy, sometimes making benchmarks
obsolete within a year. An important distinction for the enduser is, however, that not all programs offer local alignment
modes and multiple alignments, see Table 1 below. With the exception of Dynalign, most programs focus more on
alignment quality than structure prediction quality. Eventhough they usually provide both alignment and consensus
structure as output, it can often be beneficial to recompute the consensus structure based on this structural alignment
using conventional tools such as RNAalifold.

2.2.2. Non-Sankoff approaches to structural alignment
Given the high computational cost of the Sankoff based methods, it is natural to consider heuristics that avoid this

type of algorithm altogether. A very early approach is usinga genetic algorithm to optimize the alignment and the
structure [40].

CARNAC [41] is a stem-based consensus structure predictiontool that is divided into three steps. In the first step,
a dynamic programming secondary structure prediction is used to identify all potential stems of all sequences. The
second step consists of pairwise comparisons of the sequences to select the best stems. Highly conserved anchor points
for the pairwise alignments restrict the number of possiblestem to stem alignments. Furthermore, co-variations are
required for stems to be aligned, which further reduces the number of possible stem matches. Using a DP algorithm,
the optimal secondary structure for every pair of sequencesis found. A final consensus structure is then computed by
greedily combining stems that are weighted according to a stem graph.

RNA Sampler [42] first computes the probabilities that two bases are aligned and the base pair probability of the
single sequences. It then aligns single stems, which are defined as at least three consecutive base pairs. After aligning
all pairs of stems, the best aligned stems are kept and compatible aligned stems (called blocks) are combined to create
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a secondary structure. After that, alignment probabilities and base pairing probabilities are updated, and the procedure
is iteratively repeated.

MASTR [43] iteratively improves the structure prediction as well as the sequence alignment of a set of RNA
sequences using simulated annealing with moves that changeeither sequence alignment or consensus structure. The
cost function being minimized is composed of sequence conservation, co-variation and base-pairing probabilities.

Simulfold [44] is similar in spirit, but more ambitious. Given sequence dataD it simultaneously optimizes consen-
sus structureS, alignmentA, and the phylogenetic treeT using a Markov chain Monte Carlo method, thus sampling
S,A,T from the posterior probabilityP(S,A,T |D). The move set consists of changes to branch lengths, tree topology,
or compound changes of structure and alignment. While the time for a single simulation step is linear in sequence
length and number of sequences, a large number of steps is needed until the simulation converges. To speed up con-
vergence of the procedure can be quite slow, it can be helpfulto include data like a known alignment, evolutionary
tree or secondary structure and restrict the algorithm to run on the unknown parts. Since the method is not based on
dynamic programming, it can include pseudo-knots in the prediction.

CMfinder [45] is a tool for finding RNA motifs. Thus, rather than performing a global alignment of the sequences it
identifies structurally similar subsequences. It first predicts a list of local structures (motifs) by folding all substrings
of each sequence, and weights them by the energy divided by motif length. It then performs pairwise structure
comparisons between the motifs from all sequences, and picks the most “central” motif, i.e. the one with highest
similarity to motifs in other sequences. An initial alignment is built by aligning the central motif to its closest match
from each other sequence. The algorithm then iteratively improves the alignment by (i) computing a consensus
structure (ii) translating the alignment with consensus structure into a covariance model, CM [46] and (iii) aligning
each sequence against the CM to obtain a new alignment. The procedure can optionally be repeated with another
initial motif.

2.3. Alignment free methods
RNAcast [13] is special in the sense that it does not require or build an alignment. The approach is based on

predicting coarse grained structures, so calledabstract shapes. An example abstract shape would be the “cloverleaf”
shape, encompassing all structures with three hairpins andan enclosing multi-loop. For each sequence the RNAshapes
program is used to compute all shapes with energies within some interval of the optimum. Since the number of
shapes is so much smaller than the number of full structures,the same shapes are expected to occur in many of the
predictions. The consensus shape is then simply the highestranked shape common to all sequences. Once a consensus
shape has been determined one can ask for the best full structure of this shape for each sequence (the so-called shape
representative orshrep). If an alignment is desired, this can be computedpost factumby aligning the structures.

The web server WAR [47] provides an easy to use platform to simultaneously use many of the structural alignment
methods mentioned above. It makes it possible to compare many predictions and also to use a “majority vote” ap-
proach. Thus, it is very well suited for non experts to quickly generate alignments and consensus secondary structures.

3. RNA gene finding

As pointed out by Rivas & Eddy [48], secondary structure prediction on a single sequence is insufficient to reliably
predict ncRNA genes. Therefore, the reverse of the reasoning applied to the consensus structure prediction problem is
used for non-coding gene prediction in silico. If a structure is evolutionary conserved in spite of sequence variation,
then the structure must be subject to selection and thus be functional. Consensus structure prediction is therefore an
ideal starting point for ncRNA prediction, but has to be augmented by a suitable measure of significance.

For SCFG based methods, the natural approach is to do model comparison between a model for structured RNA
(which also yields the consensus structure prediction), and a null model describing the genomic background. Al-
ternatively, one can extract signals indicating functional structures from the prediction, which can then be used as
descriptors for a machine learning approach. A recent comparison of such signals is given in Gruber et al. [49] (see
also below for SCI).

Strictly speaking, all methods discussed below predict functional RNA structures, not ncRNAgenes. This means
that unstructured ncRNAs are generally undetectable for these methods. Moreover, the ends of the detected structures
need not coincide with transcript boundaries. Cis-regulatory structures, for example, can be identified even though
they are not independent transcripts.
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Furthermore, we discuss only theab initio prediction of novel ncRNA genes. In order to find new members of
already known ncRNA families, one would rather resort to (structure based) homology search methods, see the review
of Mosig et al. in this issue.

3.1. Alignment based methods

The first practical tool forde novoncRNA gene finding was QRNA [50]. The program takes as input a pairwise
sequence alignment that is then analyzed by three probabilistic models: A pair SCFG, i.e. an SCFG that emits columns
of a pairwise alignment, is used to compute the probability that the input data are due to an underlying secondary
structure, a hidden Markov model (HMM) emitting aligned codon pairs checks whether the input alignment might
represent a protein coding region, and another HMM represents the null model of independently evolving columns.
The model that yields the highest likelihood of the input data is then declared the winner. In practice, the biggest
shortcoming of QRNA is that it can be used only on pairwise alignments.

The limitation to pairwise alignments is lifted in EvoFold [51], which also serves as an illustrative example for
the close relation between the non-coding gene finding and consensus structure prediction. EvoFold implements
an SCFG based on the one in Pfold, but poses a slightly different question: Structure prediction asks for the most
likely structure given the alignment, while ncRNA detection asks for the likelihood of the alignment given a structural
evolution model. As in QRNA this is then compared to the likelihood of the alignment in a null model for uncorrelated
evolution, the final score being the log likelihood ratio between the two models. Besides the original scan in human,
EvoFold was, e.g., used to scan the genome of 12 drosophilidsfor ncRNA genes [52].

The RNA-decoder tool [53] is similar to EvoFold, but is intended to detect regions with functional structure within
a longer alignment. Rather than scoring the alignment usingtwo different models, it employs a high-level grammar
that switches between two sub-models for structured and un-structured parts of the alignment. It is noteworthy for be-
ing the only tool that explicitly models RNA structures thatoverlap protein-coding regions, as are frequently observed
in RNA viruses.

AlifoldZ [54] and RNAz [55] are directly based on consensus structure prediction from RNAalifold. In the case of
AlifoldZ the RNAalifold energyEAlif for the input alignment is compared to the energies of randomized alignments
produced by shuffling. This is done by computing az-scorez = (EAlif − < E >)/σ, where< E > andσ are the mean
and standard deviation over the randomized alignments.

RNAz uses a machine learning technique, a support vector machine (SVM), for the final decision whether or not
the input alignment harbors a structural RNA. From folding the individual sequences as well as consensus structure
prediction, it extracts two important descriptors: The “structure conservation index” (SCI) as a measure of structural
conservation, and the average energyz-score of the individual sequences as a measure of thermodynamic stability.
The SCI is computed as

SCI=
EAlif

1
N

∑

i Ei

Thus, if all sequences will fold into the same structure anyway, the SCI equals 1 (or slightly above if there is co-
variation), while it approaches zero if no common structurecan be formed. Rather than computing thez-score via
explicit shuffling (as in the case of AlifoldZ), RNAz uses a second SVM to estimate mean and standard deviation from
sequence length and composition. This makes RNAz much faster and better suited for large genome wide screens.
Small RNAz screens, e.g., on bacterial genomes can even be performed on-line at the RNAz web server [56]. RNAz
has been used in a number of ncRNA screens, including an initial screen in humans [57], but also nematodes [58],
plasmodium [59] and arabidopsis [60].

The z-score computations above crucially depend on a method to generate randomized sequences and align-
ments, and most ncRNA screens have used randomized alignments to estimate their false discovery rate. For sin-
gle sequences, it is generally recommended to use di-nucleotide shuffling, i.e. using randomized sequences with the
same di-nucleotide content. Alignments, however, can generally not be shuffled, while simultaneously preserving
di-nucleotide content, gap structure, and the local degreeof conservation. An alternative to shuffling, is to generate
randomized alignments by simulating sequence evolution along a phylogenetic tree. Two such frameworks were re-
cently introduced in [61], where it was shown that di-nucleotide corrected null data can improve AlifoldZ predictions,
and [62] who observe that less realistic null models generally lead to underestimating the false positive rates of gene
finders.
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Program web server source code model features/limitations

Pfold y on request SCFG
RNAalifold y y Turner
ILM y - Turner pseudoknots
KNetFold y register Turner pseudoknots
BayesFold IE only - Turner can include probing data
McCasklill MEA - y Turner
ConStruct - y Turner interactive, GUI

Foldalign y y Turner pairwise only, local
Dynalign - register Turner pairwise only
StemLoc - y SCFG local
Consan - y SCFG pairwise only
FoldalignM - y Turner
LocaRNA y y Turner local
RAF - y CLLM

CARNAC y y Turner
RNASampler - register Turner/CLLM pseudoknots
MASTR y y Turner
Simulfold - y Entropy based pseudoknots
CMfinder y y Turner local only
RNAcast y y Turner

Gene finders
QRNA y y SCFG pairwise only
EvoFold - y SCFG
RNA-Decoder - - SCFG for coding regions
RNAz y y Turner

Table 1: List of the programs, the availability of source code and web service, and the type pf model underlying structureprediction.
CLLM:conditional log-linear models (trained parameters), SCFG: Stochastic context free grammar, Turner: free energy.

3.2. Predictions based on structural alignments

Non-coding RNAs are often characterized by very fast rates of sequence evolution, making it difficult to obtain
reliable sequence based alignments. It is therefore tempting to base ncRNA screens on some type of structural align-
ment. Note, however that an initial (sequence based) alignment is needed to define syntenic regions that can then
be re-aligned. The first such attempt was a Foldalign based screen of human versus mouse [63]. Since Foldalign
performs local alignments in a scanning fashion, ncRNA candidates were identified by simply selecting those local
alignments with an exceptionally good score. At the time, the project was a tour de force, requiring about 5 months
on a cluster of 70 CPUs. Current implementations should be able to repeat the experiment in less than 1/10th of the
time. Nevertheless, it demonstrated that ncRNAs can be found in regions that are not alignable on the sequence level.

Similarly, Dynalign has been used for ncRNA screens in prokaryotes [64]. As in RNAz, a support vector machine
was trained to identify ncRNAs based on the Dynalign output.The SVM descriptors were the Dynalign folding energy,
the nucleotide composition, and length of the two sequences. As expected, the approach yields significantly better
predictions than RNAz for sequences with less than 50% sequence identity, albeit at significantly higher computational
cost.

More recently, CMfinder was used in a screen of the ENCODE regions of the human genome [65]. While
Foldalign and Dynalign are restricted to pairwise comparisons, CMfinder could make full use of the large number
of sequenced species for these regions. Candidates were selected primarily on the basis of an ad hoc score combining
global and local sequence similarity, fraction of paired bases in the motif, and number of sequences that can realize
the motif.
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Figure 2: Comparison of EvoFold and RNAz predictions for theENCODE regions of the human genome. The densities of the predictions with
high significance is shown as a function of GC content and conservation measured by the phastCons program. RNAz is best at detecting ncRNAs
with slightly elevated GC content and significant sequence variation. Evofold is most sensitive at low GC contents and high sequence conservation.
The intersections of the prediction results is therefore necessarily small (Venn diagram in upper right corner). Figure modified from [66].

4. Discussion

A variety of different approaches has been brought to bear on the problem of consensus structure prediction.
Given a high quality input alignment several of the available methods achieve prediction accuracies around 90%.
Benchmarks should however be taken with a grain of salt, since (i) different programs employ slightly different
notions about what constitutes a consensus structure, and (ii) reference structures have often been computed using
tools very similar to those being benchmarked. Since ease ofuse and availability can be important factors in the
choice of tool, a summary is provided in table 1.

Structural alignment methods have made remarkable progress over the last years. The Sankoff algorithm, long
thought to be computationally unfeasible, is now availablein several implementations that are fast enough for large
scale use.

All these encouraging results are however obtained for relatively homogeneous families of RNAs with little to
no structural variation within the family. For heterogeneous families with significant structural plasticity manual
construction of alignments and consensus structures is still the rule. None of the programs discussed here would, for
example, be much help in aligning 7SK sequences from mammalsand insects [67].

The situation is also different in the field of ncRNA gene finders. While there exist several approaches with broadly
similar performance, the overlap between predictions obtained in the same screens from different tools is surprisingly
small [65, 66]. In part this may be due to the significant falsepositive rate, however a closer comparison of RNAz and
Evofold predictions reveals that they are maximally sensitive in different and largely disjoint genomic regions (see
fig. 2). This suggests that the true complement of ncRNAs in the human genome might still be underestimated by
current gene-finders.
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5. Key points

• Non-coding RNA gene finding and RNA consensus structure prediction are key problems in modern bioinfor-
matics.

• For consensus structures, several different approaches lead to high accuracy predictions.

• Structural alignment tools improved a lot over the last few years.

• Today, gene finders are based on consensus structure prediction tools.

• Unstructured non-coding RNA genes can thus not be predicted.
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