
Bcheck: a wrapper tool for detecting RNase P RNA genes

Dilmurat Yusuf1 , Manja Marz2,3, Peter F. Stadler3,4,5,1,6, Ivo L. Hofacker∗,1

1 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
2 Institut für Pharmazeutische Chemie, Philipps Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
3 Bioinformatics Group, Department of Computer Science University of Leipzig, Härtelstrasse 16-18, D-01407, Leipzig, Germany
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Abstract

Background: Effective bioinformatics solutions are needed to tackle challenges posed by industrial-scale genome
annotation. We present Bcheck, a wrapper tool for predicting RNase P RNA genes by combining the speed
of pattern matching and sensitivity of covariance models. The core of Bcheck is a library of subfamily specific
descriptor models and covariance models.

Results: Scanning all microbial genomes in GenBank identifies the RNase P RNA in 98% of 1024 microbial
chromosomal sequences within just 4 hours on single CPU. Comparing to existing annotations found in 387 of
the GenBank files, Bcheck predictions have more intact structure and are automatically classified by subfamily
membership. For eukaryotic chromosomes Bcheck could identify the known RNase P RNA gene in 84 out of
85 metazoan genomes, 19 out of 21 fungi genomes. Bcheck predicted 37 novel eukaryotic RNase P RNAs, 32
of which are from fungi organisms. Gene duplication events are observed in at least 20 metazoan organisms.
Scanning of meta-genomic data from the Global Ocean Sampling Expedition comprising over 10 million sample
sequences (18 Gigabases), predicted 2909 unique genes, 98% of which falls into ancestral bacteria A type of RNase
P RNA and 66% of which have no close homolog to known prokaryotic RNase P RNAs.

Conclusions: The combination of efficient filtering by means of a descriptor-based search and subsequent con-
struction of a high-quality gene model by means of a covariance model provides an efficient method for the
detection of RNase P RNAs in large-scale sequencing data.
Bcheck is implemented as webserver and can also be downloaded for local use from http://rna.tbi.univie.ac.at/
bcheck/index.html

1 Introduction

In recent years, biological sequence databases have
grown exponentially. These data include a rapidly

increasing number of completely sequenced genomes
as well as large-scale metagenomic data set that
await annotation. For instance, the Global Ocean
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Figure 1: Schematic
drawing of the con-
sensus structures of
RNase P RNA. Adapted
from [1–4]. The table
indicates the distribution
of structural elements. A
black circle in the table
represents the occurrence
of a particular element.
An ellipse shows two
elements merged and
cannot be separated
unambiguously.

Sampling Expedition (GOS) deposited more than
18G metagenomic sequences already [5]. The anal-
ysis of these data calls for new and more efficient
methods of data analysis [6].

Non-protein-coding RNA (ncRNA) genes are
abundant in genomic sequences, playing diverse im-
portant biological roles [7]. The genomic annota-
tion of ncRNA genes is attracting strong research
focus, in particular in the context of genome anno-
tation [8,9] and metagenomics [10,11]. Methods for
homology-based annotation have dramatically im-
proved over the last years. In particular, Infernal
1.0 [12] outperform the previous methods by orders
of magnitude in speed. Nevertheless, such general
purpose approaches do not reach the performance
levels of customized class-specific tools, in particular
tRNAscan-SE [13] in terms of both speed and qual-
ity. Manual strategies in some cases [14] reach su-
perior results, but are too time-consuming for larger
projects and in most cases are hard to generalize.

tRNAscan-SE is not a single algorithm but rather
a wrapper tool that combines a series of increasingly
complex and expensive filters. Similarly, the major
searching strategy of Rfam [15] is a combination of
a blast-based filter and followed by Infernal. The
pre-filtering at sequence level with blast, however,
is not ideal in particular in applications to distance
homologs [16]. Another common approach is to ap-

ply a descriptor of sequence and structural motif to
predict ncRNA homologs. The descriptor construc-
tion is a manual process, requiring expert knowl-
edge. Several descriptor languages have been de-
veloped, e.g., RNAmot [17], PatScan [18] HyPaL [19],
RNAMotif [20] and Sean Eddy’s rnabob [21], which
is also used here.

RNase P RNA, possibly a remnant of the RNA
world [22], is an important ribozyme involved in the
processing of pre-tRNAs [23]. Its gene is usually
designated as rnpB in eubacteria. A variable num-
ber of protein components [24] facilitates substrate
binding [25]. RNase P RNA exists in almost all or-
ganisms. So far, there is compelling evidence for
the loss of RNase P RNA only in a single organ-
ism, the archaeon Nanoarchaeum equitans [22]. It
is not unlikely, however, that plants, red algae, and
heterokonts [26], some eubacteria (e.g. Aquifex aeoli-
cus) [27, 28]) and some additional archaea (e.g. Py-
robaculum aerophilum [27]) have lost their RNAse
P RNA. The archaeon Methanothermobacter ther-
moautotrophicus may be a transition towards the
loss of RNAse P RNA, which is catalytically inac-
tive in this organism but can be “repaired” by a few
substitutions [29].

The length of RNase P RNA ranges from 250 nt
to 550 nt. It is divided into two structural domain:
S-domain for binding and C-domain for catalysing
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[30], see Fig. 1. The secondary structure of RNase P
consists of up to 19 conserved stems, denoted P1 to
P19, of which P7 to P14 form the S-domain, which is
flanked by the C-domain [31]. There are five regions
with strong sequence conservation, designated CR-I
to CR-V, including the P4 pseudoknot composed by
CR-I and CR-V [32].

The RNase P RNA structures can be broadly as-
signed to five subfamilies: the eubacterial classes A
and B (bacA and bacB), the archaeal types A and
M (arcA and arcM), and a single eukaryote group
(nucA) [33]. In addition, two eukaryotic subtypes
in fungi (fugA & fugB) can be identified [34]. The
types arcA and bacA, which have been identified as
ancestral states [35], cover the majority of microbial
rnpB genes, forming diverse sets in terms of both
sequence and structure variation. In contrast, the
derived types arcM and bacB, in contrast have more
uniform members. The diversity is largest among
the eukaryotic RNase P RNAs.

In eukaryotes, RNase P RNA is transcribed by
polymerase III [36]. The human promoter elements
were described recently [3] to contain TATA-box,
PSE, Oct and SP1/SPH element within 100 nt up-
stream of transcription initiation site. A compari-
son of all eukaryotic promoter elements showed weak
similarities only in TATA box.

In the contribution we are concerned with the
detection of RNase P RNAs in genomic data from
all domains of life. In [32], a pattern matching
based pipeline for efficient rnpB gene prediction has
been proposed. It is not applicable to large-scale
database searches in practise, however. Here, we
present Bcheck, a wrapper, to perform efficient rnpB
gene prediction by combining the fast filtering with
rnabob [21] and sensitive validation of Infernal.
The construction of such a method entails two tasks:
the design of an efficient yet sensitive descriptor
model (DM) that acts as a filter, and the deriva-
tion of a sensitive statistics covariance model (CM).
Both components are based on a careful analysis of
published RNase P RNA sequences and structures.
The success of Bcheck depends on the efficiency and
predictive power of both models, as well as a sensible
wrapping algorithm that optimizes the interplay of
DM and CM.

2 Algorithm and models
The construction of effective models of RNase P
RNAs is a non-trivial task because of the lack of
strong family-specific conservation. Our strategy is
to first classify the training sequences into the seven
sub-families identified in the literature: arcA, arcM,
bacA, bacB, nucA, fugA and fugB. The training
set consists of sequences from the RNase P RNA
Database [37] with intact and complete secondary
structures and additional RNase P RNA sequences
from the Rfam and from two recent publications
[26, 38]. A set of randomized decoys as well as ran-
domized genomic sequences were constructed using
ushuffle [39] in order to determine the false posi-
tive rates.

The training of both DM and CM requires struc-
tural alignments, whose quality is crucial both for
the automatic learning procedures of the Infernal
CMs and the manual construction of the DMs. We
adopted a multi step strategy: The RNase P se-
quences were first divided into structural elements,
then folding regions were structure-aligned man-
ually, and loop regions were sequence-aligned by
means of MUSCLE [40]. Local alignments were then
recombined into a “raw” global alignment for each
subfamily. These alignments contain errors, mainly
caused by local foldings which are not fitting to
the conservation patterns shared by the majority
of members. We adopted two correction methods.
First, we applied RNAfold [41,42] to check the ther-
modynamic plausibility of local structure elements.
Construction of DMs starts with these alignments.
In the course of DM construction, outliers are tem-
porarily removed from the alignments, searched with
the preliminary DMs, which provided additional in-
formation to guide the re-insertion of the outlier into
the alignment.

Since efficiency is the major focus of DM train-
ing, we focus on selected features of local regions.
To gain consensus sequence information, each align-
ment column was summarized and assigned with
standard, “ambiguous” IUPAC nucleotides (taking
into account every nucleotide appearing in the col-
umn) or the gap character (whenever the column
contained at least one gap). The sequence was edited
to take established structural knowledge into ac-
count. The resulting consensus sequence was then
annotated in the alignment. The RALEE mode [43]
in the emacs editor was used for visually inspect-
ing alignments, consensus structures and conserva-
tion patterns. Regions with rich conservation in se-
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Figure 2: Bcheck wrapping algorithm follows local to global and selective to general strategy. See text for
details. arc – archaea descriptor, bac – bacterial descriptor, fungi – fungal descriptor, euk – eukaryotic
descriptor, DM – Descriptor Model, CM – Covariance Model.

quence and/or structure were selected for inclusion
in the descriptor. A simple example of construct-
ing DM from alignment is shown in Fig. 3. The
DM for RNase P RNAs mainly consists of the S-
domain and its flanking conserved sequences. Once
the feature selection was completed, we carried out
a interactive process between DM building and DM
testing to adjust the parameters of feature variables
balancing between false positive rate and efficiency.
Among several descriptor languages we chose rnabob
as search engine for our DMs because of its conve-
nient syntax and its speed.

For the subfamilies arcA, bacA, and nuc with
strong variation, we constructed two variants, “DM
selective” and “DM general”, with different param-
eter settings. The selective DMs miss a few aber-
rant RNase R RNAs, while the “DM general” models
have a larger false positive rate. For each subfamily,
only one CM is needed and automatically generated
based on global structural alignment using the tools
of the Infernal package.

The Bcheck wrapping algorithm takes the strat-
egy of local to global and selective to general, Fig. 2.
At first, subfamily-specific DMs locate candidate
genes. If no valid hit was produced by the “selective”
model, the corresponding “DM general” is applied.
Then the CM is applied in local alignment mode to
validate the candidate. Valid hits, i.e., those recog-
nized by the CM, are extended by 150 nt and 300 nt
at 5’ and 3’ ends, respectively, and fed to the CM
in global alignment to produce better estimates of
the ends. At both phases, an E-value threshold of
E ≤ 10−10 must be reached.

To distinguish functional copy and pseudogene

of eukaryotes, we analyzed their promoter regions.
For this purpose we aligned 100nt upstream of Poly-
merase III transcripts of the same organism and
compared the RNase P predictions. Pseudogenes
are marked as such within the Bcheck webserver,
see sect. 3.4.

3 Applications
3.1 Procaryote rnpB genes in GenBank

We used Bcheck to scan the genomic sequences
of 956 bacteria and 68 archaea organisms from
GenBank. The entire computation, which surveyed
3.1G of input sequence, took approximately 4 hours
to complete with single core of 2.4 GHz Intel(R)
Core(TM)2 CPU. Bcheck produced one hit per or-
ganism for 98% (1005) of organisms, see Tab. 1. The
default algorithm yielded no prediction in 29 organ-
isms, for 10 of which a direct CM search was suc-
cessful. Bcheck predictions for three members of the
phylum Chloroflex (Roseiflexus castenholzii, Rosei-
flexus RS-1, and Chloroflexus aggregans) are only
partial rnpB regions including partial-P11, P12 and
junctions between two stems.

After removing duplicate sequences from closely
related strains, we obtained 777 unique rnpB genes
of which 45 belong to arcA, 10 to arcM, 621 to bacA,
and 101 to bacB, see Tab. 3 below.

The GenBank files contained annotated rnpB
genes for 365 eubacteria and 22 archaea, all of which
were among the Bcheck predictions. We then com-
pared start-end positions of Bcheck predictions and
GenBank annotations. Only 25% of the annota-
tions agree within a discrepancy of 5 nt or less at
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Figure 3: Construction of a de-
scriptor model (DM). A sim-
ple example based on a partial
RNase P sequence is shown here.
The refined alignment columns
are annotated with consensus
structural and sequence infor-
mation. The DM is then con-
structed by manual inspection of
the best-conserved regions, tak-
ing into account both sequence
and structure variation observed
in the alignment.

Table 1: Summary of predicted microbial rnpB for GenBank genome data set. “Known” refers to organisms
with annotated rnpB genes, whereas “unknown” refers to organisms with rnpB genes unannotated.

Domain known unknown total CM only
Eubacteria 365/365 581/591 946/956 7/946
Archaea 22/22 37/46 59/68 3/59
Total 387/387 618/637 1005/1024 —

Table 2: Evaluation of the five major discrepancies between GenBank annotation and Bcheck results. Rfam
scores are bit-scores for Infernal using Rfam’s CM models. The discrepancies column lists features missing
in the region annotated in GenBank.

Organism Rfam scores Discrepancy
GenBank Bcheck

M. acetivorans -63.35 167.88 P1, P7
A. cellulolyticus -132.16 221.11 all
E. coli(CFT073) -72.51 282.72 most
R. typhi wilmington -97.66 264.53 P1, P3, P9, P10
B. halodurans -110.59 300.87 P1, P9

both ends. Inspection of sequences and predicted
secondary structures shows that the published se-
quences are in general inaccurate: At the 5’ end,
66% known annotations miss flanking regions of P4,
ranging from 30 to 90 nucleotides. At the 3’ end,
56% known annotations miss flanking regions of P4’,
ranging from 10 to 20 nucleotides. A few of the

GenBank annotations, furthermore, have promoter
or terminator sequences included. Bcheck thus pro-
vides a substantial improvement also of the existing
annotations in most cases.

The published annotation is more accurate than
the Bcheck prediction only in a single case: Rosei-
flexusRS 1. In five cases, the published annotation
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and the Bcheck results differ dramatically. In order
to evaluate these cases further, we employed the CM
model of the Rfam, which supported the authenticity
of the Bcheck predictions, Tab 2.

3.2 RNase P RNAs in metagenomic sequences

The GOS metagenomic sequences were obtained
from the CAMERA project [44]. Due to the tax-
onomic uncertainty of the GOS data set, all models
of archaea, eubacteria, and eukaryotes were applied
to search over 10 million sequences comprising about
18G. No hit was produced by any of the eukaryotic
models.

In total, Bcheck predicted 4675 rnpB genes with
median E-valuse of 10−78. In 211 cases two models
overlapped. In these cases there was a clear differ-
ence in E-values, so that the assignment to domains
was unambiguous in all positive cases. After duplica-
tion removal, 2909 rnpB sequences are unique, 2857
of which belong to bacA, 49 to arcA, 3 to bacB, but
none for arcM, see Tab. 3.

The ancestral types arcA and bacA are clearly
predominant in both GenBank and GOS data set.
In the marine samples, the number of bacA rnpBs
exceeds 95%. We compared rnpB sequences from
two datasets w.r.t. their GC content, Fig. 4. Differ-
ences are particularly obvious in eubacteria, where
the majority of GOS bacA sequences have low GC-
content, while the median GC content of GenBank
rnpB is high, with ≈ 0.6.

We use the detected rnpB genes as a marker to
infer the taxonomic distribution of GOS samples.
We used blast to find the closest orthologs of 2909
unique GOS rnpB genes the among the 777 GenBank
sequences using an E-value cutoff of E < 10−50.
High scoring orthologs are found for 1003 GOS rnpB
genes, 914 of which have only one ortholog making
species assignment possible, and 39 of which have
multiple orthologs from a single genus. These species
assignments and genus assignments are shown in
Fig. 5. The identified organisms are mostly eubac-
teria belonging to the three phyla proteobacteria,
cyanobacteria and bacteroidetes. Only a single ar-
chaeon, Nitrosopumilus maritimus, was recognized.
Among eubacteria, most sequences belong to Pelag-
ibacter ubique (75%) and Prochlorococcus marinus
(13%). For 1906 GOS rnpBs (66%), no close ho-
mologs are known, suggesting that they derive from
unknown species. Of these 1859 (97.5%) belonging
to bacA subfamily, 44 (2.3%) to arcA subfamily, and

3 (0.1%) to bacB subfamily.

3.3 RNase P RNAs in eukaryotic genomes

We investigated 237 eukaryotic genomes, Tab. 4. Of
the previously annotated genes, we recovered 84 of
85 metazoan and 19 of 21 fungal RNase P RNAs.
We miss the Otolemur garnetti sequence because
of a 3 nt insertion within the highly conserved P4,
which is used as a block in all descriptors. For the
two related fungi Coprinus cinereus and Laccaria
bicolor hypothetical RNase P RNAs have been re-
ported [26]. Both sequences, however, differ sub-
stantially from the CM and are not recognized by
Bcheck. On the other hand, Bcheck made novel pre-
dictions for 32 fungi and 4 metazoans (Meloidogyne
hapla, Aedes aegypti, Canis familiaris and Taeniopy-
gia guttata) and the choanoflagellate Monosiga bre-
vicollis.

Strong promoter signals were identified for
Meloidogyne hapla and Monosiga brevicollis, sup-
porting that these candidates are functional copies.
For 36 metazoan genomes, Bcheck made multiple
predictions. In at least 16 cases, the additional pre-
dictions seem to be due to assembly errors rather
than constituting true paralogs. In the other 20
cases differences in the flanking regions and the
RNase P RNA itself indicate that we see the re-
sults of gene duplications. In each of these cases, a
presumably functional RNase P RNA like promoter
structure was found for only one of the copies. Sim-
ilar duplication patterns are observed in closely re-
lated primate, fish and rodent. For instance, both
Homo sapiens and Pan troglodytes have functional
copies on chromosome 14 and a pseudogene on chro-
mosome 4. Among teleosts, both Danio rerio and
Gasterosteus aculeatus have their functional copies
and pseudogenes on the chromosome 2. In rodent
family, Rattus norvegicus and Mus musculus have
the pseudogenes spreading on at least 4 different
chromosomes.

Novel RNase P RNA genes were detected by
Bcheck in many fungi and several newly sequenced
genomes, which had not been analyzed in much de-
tail so far. Only eight sequences which were re-
ported before were not recognized by Bcheck. In
119 sequences Bcheck found 37 novel RNase P RNA
genes. The remaining 82 genomes are either unfin-
ished drafts, so that the RNase P RNA is not con-
tained in the data, or they belong to clades where
RNase P RNA may be absent. In plants, red al-
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Table 3: The subfamily distribution of microbial rnpB. No hit was obtained with any of the eukaryotic DMs.

Data set arcM arcA bacB bacA total
GenBank 10 45 101 621 777
GOS 0 49 3 2857 2909
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Figure 4: Comparison of GC con-
tents in the GOS and GenBank
data sets. The statistics were cal-
culated based on unique genes with
intact secondary structures. The
difference of GC-content is particu-
larly obvious in the eubacteria do-
main.

gae, and heterokonts RNase MRP RNA, an ancient
paralog of RNase P RNA, is well described [3, 26].
One may speculate that it substitutes for RNase P
RNA in these clades, in particular given that multi-
ple copies of RNase MRP RNA are present in plant
genomes. Incomplete genome assemblies explain e.g.
the deviant RNase P in the genome of the elephant
(Loxodonta africanus), which shows a canonical se-
quence interrupted by a run of Ns in the latest as-
sembly (Loxafr3.0). We suspect that we missed the
RNase P RNA in some fungi and some of the basal
eukaryotes due to highly divergent sequence and sec-
ondary structure.

3.4 Software, webserver, and database

Bcheck was written in Python (version 2.5.2). In-
put consists of DNA or RNA sequences in fasta
format, rnpB predictions are output with fasta for-
mat or with secondary structure annotated. Besides
the default searching algorithm, Bcheck also gives
the option for searching with CM only. However,
CM-only search is at least 100 times slower.

We set up a Bcheck webserver to facilitate online
RNase P RNA gene prediction. A searchable rnpB
database was developed, including genes for 1005 mi-
crobial organisms, 147 eukaryote organisms and 4756
GOS sample sequences. The predicted pseudogenes
for eukaryote organisms are also included.

The “rnpB database” uses a hierarchical tree
structure, consisting of 5 tables, implementing pre-
order tree traversal algorithm to process query effi-
ciently. blast is also offered in the server for ho-
mology search against the database compromising
777 unique rnpB genes. The sever can be accessed
at http://rna.tbi.univie.ac.at/bcheck/. The Bcheck-
pipeline can also be download from the same location
for the local usage in a Linux environment.

4 Discussion and conclusions
The rapidly increasing size of sequence databases re-
quires efficient tools for data analysis. In particular,
homology annotation of small ncRNAs, with their
short and often poorly conserved sequences poses
a severe problem for large-scale annotation. Here,
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Figure 5: Phylogenetic
distribution of rnpB
genes detected in the
GOS data set. 99.5%
of the sequences are
of eubacterial origin,
with three quarters
deriving from Pelag-
ibacter ubique and
another 13% coming
from Prochlorococcus
marinus. Only 5 hits
are of Archaeal origins.

Table 4: Summary of predicted RNase P transcripts in eukaryotes. “Known” refers to organisms with
annotated rnpB genes, whereas “unknown” refers to organisms with unannotated rnpB genes.

known unknown Sum
Metazoans 84/85 4∗/13 88/98
Fungi 19/21 32/49 51/70
Heterokonts 0/0 0/6 0/6
Plants 0/0 0/30 0/30
Other Eukaryotes 7/12 1/21 8/33
Sum 110/118 37/119 147/237

∗ No common promoter signals observed: 3 out of 4.

we describe Bcheck, an efficient pipeline to deter-
mine RNase P RNAs across all three domains of
life. In order to deal with the high variability of the
RNase P RNA sequences and structures, we employ
descriptor-based models specific for sub-families in-
stead of a single pattern to construct more efficient
filters. In the second step, improved covariance mod-
els are used to validate the candidates from the DM
step and to determine nearly exact gene boundaries.

With Bcheck, we were able to determine the
RNase P RNA sequences of 59 out of 68 archaea, 946
out of 956 eubacteria, and 147 out of 237 eukaryotes.
61% of the prokaryotic sequences and 25% of eukary-
otic result were not annotated previously. The qual-
ity of the predicted rnpB gene is much better than a
large fraction of the – usually blast-based – annota-
tion available through GenBank. The size and diver-
sity of eukaryote genomes brings with it a particular

challenge in finding RNase P RNAs, because this di-
versity is reflected in many aberrant features of the
RNase P RNA itself. Using the fungi-specific DMs,
we uncovered 32 previously unannotated sequences.
As in previous studies, we did not find RNase P RNA
candidates in plants and Heterokonta.

Since Bcheck is more than 100 times faster than
the direct application of Infernal (version 1.0), it
is suitable in particular as tool to screen large high-
throughput sequencing data. With only a handful of
false negatives (10 out of 1005 prokaryotes), Bcheck
provides a highly efficient way to annotate newly se-
quences genomes. A particular strength of Bcheck
is its applicability to metagenomics data.

Among the 19 prokaryotic genomes for which
Bcheck failed to detect a candidate, 15 have a size
below 2.0 Mbp. One of them, Nanoarchaeum eq-
uitans, is among three organisms having extremely
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Figure 6: Correlation of the size of
RNase P RNA genes with genome
size. For bacA (ρ = 0.16) bacB (ρ =
0.66), and arcA (ρ = 0.47) there is
a weak but significant positive cor-
relation. The few sequences of type
arcM are significantly shorter and
are restricted to genomes in a very
narrow size range.

condensed genomes with length even below 0.5 Mbp.
Nanoarchaeum equitans appears to have lost its
RNase P RNA, whose function has been taken over
by the protein components [22].

In Fig. 6 we summarize the correlations between
genome size and the size of prokaryotic RNase P
RNA. Even though there is no strong correlation
indicated in arcA and bacA subfamilies, the evolu-
tionarily younger bacB and arcM seem to be more
strongly affected by changes in genome size.

At present, Bcheck models were built on the con-
served sequence and secondary structure features of
a large sample of RNase P RNAs. Conceivably, the
predictive power of the pipeline could be improved
further by include additional information. For in-
stance, promoter and terminator regions might be
utilized. A recent survey for 7SK RNAs capitalized
largely on the conserved features of the characteris-
tic pol-III promoter signals of this ncRNA class [45].
A similar strategy might allow a further relaxation of
the DM pattern in favour of a second filter utilizing
the promoter and terminator motifs.
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