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ABSTRACT human acgucg aacuaga
Motivation: RNA family models group nucleotide sequences that gow accugg aacuaga
share a common biological function. These models can be used to g acuugg aag uca
find new sequences belonging to the same family. To succeed in cat acguggaaacuaga

* * * ok <k k >k
this task, a model needs to exhibit high sensitivity as well as high structure »<<x>>. SHx>
specificity. As model construction is guided by a manual process,
a number of problems can occur, such as the introduction of more
than one model for the same farT1in or poorly constructed models. We Fig. 1. Multiple alignment of sequences from several species and the
explore the Rfam database to discover such problems. consensus structure. Brackets> denote nucleotide pairings, a stara
Results:  Our main contribution is in the definition of the consensus unpaired nucleotide, and a datucleotide not in the consensus.

discriminatory power of RNA family models, together with a first
algorithm for its computation. In addition, we present calculations
across the whole Rfam database that show several families lacking
high specificity when compared to other families. We give a list of
these clusters of families and provide a tentative explanation. Our
program can be used to: (i) make sure that new models are not
equivalent to any model already present in the database (ii) new
models are not simply submodels of existing families.

Availability: www. t bi . uni vi e. ac. at/ sof t war e/ cntonpar e/
The code is licensed under the GPLv3.

Contact: choener@tbi.univie.ac.at

Supplementary Information: Results for the whole Rfam database
and supporting scripts are available together with the software.

mathematically convenient solution was found, around which the
algorithms could be built. Unfortunately, the same solution proved
inadequate (Durbiret al, 1998, Chapter 10.3) for non-coding
RNAs.

The task of building a model that describes a new family is
still a mostly manual process. Finding new members of existing
families, on the other hand, can be performed using software. The
problem we are discussing in this paper applies equally well to other
algorithms to search for homologue sequences, but as our algorithm
is specific toward an existing software package, namely Infernal
(Nawrockiet al,, 2009a), we will perform our analysis with respect
to this software and the corresponding Rfam (Griffiths-Jaries.,
2003) database.

1 INTRODUCTION In order to model families of non-coding RNAs in a way that
Structured non-coding RNAs are nucleotide sequences that are nptovides both sensitivity and specificity, the consensus secondary
translated into protein but have, in the folded state, their own specifigtructure of the set of sequences has to be included in the
functions (Mattick and Makunin, 2006). This function is very much mathematical model from which the algorithm is created. Stochastic
dependent on the secondary and tertiary structure (the folded statepntext-free grammars provide access to such models, just as
while on the other hand, the primary structure or sequence sees moseochastic regular grammars (in the form of profile HMMSs) can be
change (Mattick and Makunin, 2006) in the form of mutation. used to model protein families.

One can define relationships between non-coding RNAs in We begin with a succinct introduction to the process of first
different species. A set of related sequences is called an RNA familydesigning an Infernal RNA family model and then searching for
Each set is defined by its members performing the same function inew family members. Building on those algorithms, we can define
different species. When genomes are sequenced, one is interestg@ specificity of a given model compared to other known models in
in finding members of known families in the new data, as well asa natural way using the already established Infernal language of bit
finding new families if previously unknown non-coding RNAs are scores.
discovered.

The problem — finding homologues — exists for proteins, too.

Software to perform the same kind of searches exists in the forninfernal Model Design

of HMMer (Eddy, 1998) and the Pfam (Bateman al, 2002) |nfernal is based ogovariance model¢Eddy and Durbin, 1994).
database. Using profile hidden Markov models (profile HMMs), awe assume that a structure-annotated multiple alignment of the
family sequences like the one in Fig. 1 is at hand. Intuitively,
*to whom correspondence should be addressed new family members should (i) align well and (ii) show the same
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Sear ching with Covariance Models

The complete model is a graphical representation of the stochastic
context-free grammar that does the real work. A pair state (P), for
example leads to a total of sixteen productions of the féim—
a@Qb, where Py, is the k'th node to be processed) abstracts over
the possible targets states, which depend on the koglel and
(a,b) are the sixteen possible nucleotide pairs. The whole process
leads to CFGs with a huge number of productions (in the order of the
number of nodes times a small constant), especially when compared
Fig. 2. A covariance model, displaying the six types of nodes needed f With single RNA folding grammars (Dowell and Eddy, 2004), that
construction. The nucleotide annotation follows the humequsnce of the  have in the order of 10 — 100 productions.
multiple alignment of Fig. 1. The actual search process uses tHh®¥K algorithm (newer
versions of Infernal use thimside algorithm to calculate the final
score) to find the best parse of an input string given the model. Input
) strings are all substrings of a genome up to a given length. Using
seco_ndary structure. Tht_e more a sequence deviates from these “H9namic programming, this approach is fast enough that whole
requirements the worse it should score. genomes can be processed in a matter of hours or days.
During the covariance model construction process a so-called gy interest in this paper is not the search process of Infernal, but

guide tree is derived from the structure annotation. The nodes of thgqy a parse is scored and the best alignment of string against model
tree fall into six classes: 1. a pair-matching (P) node for a basepailg sglected.

2-3. two kinds of single nucleotide nodes, one left- (L) and one
right-matching (R); 4. a bifurcation (B) node to allow for multiple Notation. Given an alphabetd, A* denotes the set of all strings
external and internal loops; and two house-keeping nodes: 5. a sta@ver A. Lets € A” be a, possibly empty, input string.
node (S) and 6. an end-node (E). Whenever possible, len'mamhinﬂotation Let m.m b . .
. ,m1, m2 be covariance models in the form

nodes are used, e.g. in hairpin loops, delegating rlght-matchln%f stochastic context-free grammars conforming to the Infernal

nodes to be used only where necessary, such as the right side of the,. ...
. 2 ~définition.
last external loop. This removes ambiguity from the construction
process. The alignment from Fig. 1 leads to the model depicted in Given a modeln and an input string, the CYK score can be
Fig. 2. calculated over all parsd? of the strings by the modein:
Mutations in base pairs or single conserved nucleotides are
handled in the conventional stochastic RNA modeling approach by
keeping emission probabilities (or log-odd scores) for each possible CYK(m, s) =
base or pair for the emitting nodes (P, L, R). max{Score(P(m, s))| P(m, s) is successfil
The way Infernal works, insertion of additional nucleotides, or
deletion of parts of the consensus sequence cannot be handleda successful parse is a parse that consumes the completesinput
by the matching nodes alone. For the final model, each node ignd finishes in terminal end states. During such a parse a score is
replaced by a number of states. One state acts as the main staggjiit up from the transition and emission scores that were calculated
that is, for example, each pair (P) node has a pair state matchingr each model during its construction.
both a left and a right nucleotide. The deletion of one of the two Several methods exist to perform the calculations. Arguably
nucleotides iS handled by add|ng two States, one Only |eft- (L), OnQ:loser to Eq 1 is the use of tree grammars and a|gebras
only right-matching (R). A fourth state (D) handles the deletion of iy Giegerich and Kner zu Siederdissen (2010), but Infernal
both nucleotides while two inserting states (IL, IR) are used foruses traditional dynamic programming to implement tH¥K
insertions relative to the consensus. Transitions from one state tggorithm. Whichever method is used, they are more efficient than
the next happen with some probability which is close to 1.0 forthe enumeration of all possible parses. Finally, the alignment of the
the consensus state and far less likely for the other possible statgfput against the model can be retrieved using backtracking or other
The exact numbers are calculated by fitting probability distributionsmethods.
using the multiple alignment data.
Nodes matching only a single nucleotide are extended with a
deletion state and either a left- or a right-inserting state, dependin% METHOD
on the main state. A bifurcation (B) leads directly to two new start
(S) nodes, effectively to two complete submodels. By arbitraryA covariance model with high specificity assigns low bit seote all
selection, the right start node is extended with a left-inserting stat§eduences that do not belong to the model family. Finding semsethat
to allow for insertions between a bifurcation. lead to false positives, that is having a high score whilebsbdnging to the

Mostly however, it is enough to keep the picture of the modelfamily, is a problem. We take a view that does not look at a singidel, but
(Fig. 2), using onl); matching nodes, in mind rather at two models at the same time. Then, we can say that:

) " . " A covariance model has low specificity with respect to anatiedel if
With the additional states the model is completed. The fitting ofyore exists a sequensec .A* that achieves a higlt YK score in both

the probability distributions given the nucleotide consensus data ifodels.
outside of the scope of this text and we refer the reader to the book we acknowledge that 'high score’ is not well-defined, butsider what
on the subject matter by Durbeét al. (1998). constitutes a high score in Infernal. Hits in Infernal comeaasiple, the

1)
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score itself and an e-value. One is typically interestedcioress of 20 bit We have abused notation to simplify the recursion a bit. Therdenation
or higher and e-values df.0 or less, depending on the model. The e-value of the type of the current state requires an additional datatsire to perform
is dependent on the genome size, but given such guidelineBmaisegood  the lookup for the indices. Instead of writingX,, , whereX is such a data
candidates. In light of this, the meaning of 'high score’ ees more clear.  structure, we just writé; = E to assess if state; happens to be an end (E)
As we use the same measure as Infernal, a string that achieye<Osbit state.

in two different models points to low specificity, as the griwould be Some of the cases found in the source code have been removéatifyr c
considered a good hit when searching for new family members bath Most cases deal with symmetric states. The last state to sjdiiri example
models separately. (E, E). This initializes theCYK score t0(0.0,0.0). The case (MP, MP)
Using the previous definition, we find an analog to Eg. 1 towdate (i) handles the emission of a pair of nucleotides. There are soses dike
the highest score achievable by (ii) a single input string: (S, z), wherez is any state except (S), that require special handling. &hes

special cases ((E, D) and (E, S) are given as an example) deonwthute

any information on how one goes about calculating the commore sbat
) simply make a large recursion more unwieldy.

argmax  {min{CYK(m1,s), CYK(mz2,s)}|s € A"} The algorithm is asymptotically fast. Given the number ofestat; and

no of the two models, each pair of states will be visited once attnios

Addition, the number of childreay,, andcy., per state is fixed by a constant.

Link(m1, m2) = MaxiMin(m1,ma) =

Herem andms are two different covariance modeldaxiMin returns
the highest scoring string. The highest score is definedeasthimum of . ’ T
the twoCYK scores. This guarantees that both models score high. \A';lriantIf h denotes the max2|mal number of children per state, the totaimerit
of the algorithm are possible, for exampldaxPlus which sums both bounded byO (n1n2h”).
scores before maximizing. HowevadaxiMin provides better results in A Restriction in the implementatiorConsider the structure annotation
case one of the two models contains many more nodes than the Mtrer of two different covariance modelsz,: <<>> andmy: * <>* . Modelm,
importantly, it provides a score which would actually be aekil during 2 has two nodes P— P} and modelm, three nodes: § — RS — P5. An
search using one of the two models, while the other would saeee higher.  input string likeccgg is likely to result in a good score for both models,
As the sequence “links” both models via their discriminative power, we especially if we assume that the family sequences are similac ¢gy. Eq.
shall use the term.ink from now on. 2 would return that result after some time. For a fast implemiemathose

The trivial implementation suggested by Eq. 2 is not wellaiifor  two models are rather inconvenient & Fas to be matched against both
implementation as it requires exponential runtime due to thenmemation LY and R, at the same time. By allowing to match only one state against
of all possible strings ipd*. one other state, our algorithm produces suboptimal scoresich cases.

In order to find the highest scoring string, we perform a kirfd 0 Fortunately, this is a minor problem for real models. This carekplained
tree alignment with additional sequence information. The Egnment by the relative scarcity of such cases and the regularithefcovariance
part optimizes the structure of each model, while sequeng@raknt is  model building process. If left-matching and right-matchimgles could be

performed for nucleotide emitting states as well. Both aligntmare tightly used at will, e.g. in hairpin loops, our simplification wouldve more than
coupled as is the case for covariance models themselves. Atpar(P), for minor consequences.

example, leads to another structure than a left-emitting t&tes This also . )
explains why we have to deal with a small restriction in ouodtpm. The ~ Local and global scoring Infernal does not require that a sequence
tree alignment requires us to align each state with at most tez state, matches the whole model. Insteadpeal search is performed. Each string

but not two or more. After an explanation of the implementatioa discuss is aligned against the part of the model where it scores béstul8 this
this further. require the deletion of parts of the model, this does not iauolany delete

(D) states. One can simply do a transition into a local startrat state.
These transitions are possible only with small probabiliypically around
0.05 divided by the number of nodes in the model) but this still givigger
scores than potentially having to descend into dozens etelstates.

Since Infernal scores locally with respect to the model, wehdosame
by default. Details of the implementation are omitted. Usirey-thgl obal
switch, this behaviour can be changed. In that case, bothIsbdee to be
aligned and the resulting string will be optimal with resperthe whole
model, not just some submodel. Several other switches knowmlfrternal
are available, too.

Implementation We present a simplified version of our recursive
algorithm in Tab. 1. To set the field, we need two additionaltions. Eq.

3 defines the minimum of a pair of values in a natural way. Thetfanc
maxmin (Eq. 4) is a small helper function selecting the maximal paiergh
the maximum of two pairs is defined by the maximum of individual miaj
hence the name max-min.

The recursion has to be performed simultaneously over both Isdeer
modelm; we have indext; and for modelms, k2 will be used. Note
though, that by following just one of the elements of the taptaeCYK
algorithm can be recovered. We are, in essence, performingctwpled Just one string? Of course if only a single string has a good score in
CYK calculations at the same time. both models, the problem would be moot as the probability toenter that

Internally, all states are kept in an array. The first indeguaranteed to  exact string is close to zero. But consider that from thewia@ score and
be a start state (S) and the last index to be an end state (Efir$hstate is  the corresponding string, suboptimal strings can be gesetessily. Given

the root state of the whole model, too. the lengthk of the strings, thenk points for substitutions giv8k strings
Three additional arrays are required. that score almost as high. A furthie(’;) strings score less, and so forth with
The states that can be reached from a state are stored inagnnamed 3 and more substitutions. Furthermore, insertions and deketice possible.
c for children. Because indices from one model are never us#teiother This means that whenever there is one high-scoring strirge till be
model, we can always write,, instead ofc,lcl. many more, we just present the worst case.

We use the same simplification for emission scores. The arfagids
such scores. It is indexed with the nucleotides that are terbigted. This 3 RESULTS

is to be written agy,, ., for pairs and eithen or b are missing for single . . -
nucleotide emitting states. The Rfam 9.1 database contains 1372 different models. All pairwise

The third required array, stores transition scores. Whenever the calculations lead to a total of 940,506 results. The time to calculate
recursion descends from a stdte into a possible child statk/, a lookup ~ the score and string er each pair_is typically less thz_an one §econd,
t),, k! is performed. Not all transitions incur a cost. A branch ifte two but of course depending on the size of the models in question. Of
child states always happens with probability. all pairs, about 70,000 are noteworthy with scores of 20 bit or more.
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minP  (a,b) = {a a<b . ©)
b otherwise
maxmin x = argmax{minP(s1, s2)|(s1, s2) € x} 4
(0,0) ki=EAk:=E
maxmin{MaxiMin(k{, k) + (€ky.a.bs €ko.ab) + (tkl—ﬂc’l , t,@ﬁké)
| kiECkl,kQGCkQ,aeA,bGA} ki =PAky=P
maxmin{MaxiMin(k1, k2) + (k1 ,a; €kz.a) + (try s thy k)
| K| € cry, kb € cry,a € A} ki€ {LL} Aks € {L,IL}
maxmin{MaxiMin(k}, k5) + (€ky b, €ks0) + (tkl—ﬂc{ , tkz_,ké)
| ki € cry, ks € ey, bE A} k1 € {R,IR} A ka2 € {R,IR}
maxmin{MaxiMin(k1, k5) + (0, thﬂk/z)
| Ky €y} ki =EAks € {D,S}
maxmin{MaxiMin(k1, k2) + (tx, ., 0)
MaxiMin (ki ko) =4 | K€l o F1 € {DS}Ak =E 5)
maxmin{{MaxiMin(kj 1, k5 1) + MaxiMin (k] 2, k3 2)
‘ {kll,ly kll2} = Ckla{ké,h kéz} = Ckg} U
{MaxiMin(kj o, k5 1) + MaxiMin(k} 1, E) + MaxiMin(E, k3 »)
‘ {kll,la kl1,2} = Cky, {ké,l, ké,z} =Cry} U
{MaxiMin(k} 1, k%,2) + MaxiMin(kj , E) + MaxiMin(E, k5 ;)
| {kia1,Kkio} = cry, {ko1, kbo} = cry}} ki =BAk:=B
maxmin{MaxiMin(k} ;, k2) + MaxiMin(kj o, E)
‘ {k'll’l, kll’g} = Ckl} ki=BAks#B
maxmin{MaxiMin(k1, k5) + (tky—h s try—ky)
| kY €cry, kb €cry} (k1,k2) € {(S,S),(D,D}
(—o0, —00) otherwise

Table 1. Recursive calculation of the maximal score achieved by antisping common to both modek; andms. We abuse notation quite a bit to reduce
notational clutter. The state type of model 1 at inéexould betype}Cl but we writek; = E to determine if the state is an end state. Additional datgsires

are simplified as well. The states into which a transition issiae (the children of state) are writtency,, instead ofc,lCl . Emission scores for each model are
in the matrixe which is indexed by the stateand the nucleotide(s) of the emitting state. Transitionesdor transition from statk to k£’ are found in the
matrix t. The case wherg; = E Ako = E terminates the recursion, as each correctly built coveeianodel terminates (each submodel) with an end-state
(E) (cf. Fig. 2). Addition of pairs happens element-wiée;b) + (¢, d) = (a + b, c + d).

my - (1 (101 (10101 [[1[I] complex Among the high-scoring pairs are several interesting examples,
ma - [1 (101 T[I[101 [[1[1] complex  some of whichwe will take a closer look at. Similar results for other
found 19644 49289 1576 40 12 28 models can be extracted from the data available for download. It is

Table 2. O‘(’jcum?”ce of Zhip‘?s_ in results t‘:"“h at least 20 bit eachpossiple to generate, among others, model-centric views that show
Unstructured regions.X and hairpins [(]) as the common region occur o high scoring neighborhood of a particular model and global
most often. The other shapes show that complex substruciamdemn. The . . . . .

views that show high-scoring pairs. As Fig. 3 aptly demonstrates,

high number of lone hairpin structures is a direct consequ@nthe huge . . . .
meta-family of snoRNAs which have a simple secondary structureler clusters of families form early (in this case, only the 20 highest

“complex®, all structures that did not fit into the given shapeere collected. ~ SCOring edges are drawn). '
In Table 2 we have gathered some results. The 70,000 pair scores

over 20 bit have been split according to the abstract shape of the
secondary structures of the hit. A shape (Reeder and Giegerich,
2005) is a representation of the secondary structure that abstracts
over stem and interior loop sizes. In this case, each pair of brackets

Fig. 4 shows the distribution of scores among all pairs of family def A Int . ired leotides d t lead
models. Negative scores have been truncated towards zero as a €lines one stem. Intervening unpaired nucieofides do not fea
the creation of a new stem. Hits such_as are unstructured,

score lower than this certainly means that the two models in questio ¢ simil The shdde [1 is iust hairpi hil
are separated very well. ut similar, sequences. The shdgdée [ ] is just one hairpin, while
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01043 01062
MIR1023 MIR812

00882
MIR811

00926
MIR1151

00011 00373
RNaseP_bact_b RNaseP_arch

00010 01249 01259
RNaseP_bact_a snR190 snR63

00488 01295 01086
U1_yeast snoU90 LR-PK1

00943
MIR824

00885
MIR821

Fig. 3. The 20 highest scoring edges between RNA families. Each egigesents a string that, between the connected nodedsriesalbit score at least as
high as the given value. The two connected family models haveliscrimination in such a case. For each family model the Rfatexrand name are shown.

00010
RNaseP_bact_a
NC:43

100

00373
RNaseP_arch
NC:59

101
(8)

number of CM pairs

00011
RNaseP_bact_b
NC:93

mdHllllnmm {h n n n
0 20 40 60 80 100 120 140
common bit score (negative scores truncated torward zero)

Fig. 4. Distribution of bit scores for all 940,506 pairs of covagarmodels.
About 70,000 pairs have scores of 20 bit or more, pointing tde/aveak
separation between the two models.

Fig. 5. Link scores for different RNaseP models (with noise cutoff (NC))
with weak separation. Values in brackets are the differémtee noise cutoff
thresholds. The difference is as at least as high as giveregative value
means that in one or two of the models, the score was lower tleandise
. . cutoff. For example, theink score of 101 bit betwedmact _a andbact _b
the two shape$[][]]/[[][]] on the same string point to an s g it higher than the NC dfact _b.
interesting pair score as the string apparently folds into complex
high-scoring structures that align well, too.
In principle, it is possible that the common sequence folds into
two different secondary structures. At abstract shape level 5 (the
most abstract) this did not happen for the current Rfam databas®est. The picture is entirely different for the high-scoring sequence
Our algorithm, however, is capable to deal with such cases. between RNaseP, type a and RNaseP in archaea. Here, we find
Let us now take a closer look at two examples that are particularlya sequence that is at least 41 bit higher than the noise cutoff. A
interesting. The first was selected because RNaseP is a ubiquitoggnilar picture presents itself for the sequence found for the two
endoribonuclease and the second to highlight how problemati®acterial RNaseP models, though the score difference between the
models can be discovered. noise cutoff and the highest score is only 8 bit.

The sequences and their scores show something else, too. In
1st example The RNaseP families for bacteria (type a and b) andSection 2 we described how to generate many similar strings from
archaea show weak separation as can be seen in Fig. 5. The thré one returned string. In this case, where the gap between cutoff
involved models (Rfam id 10, 11, and 373) have different noiseand score is as wide as 41 bit, we could indeed create a very large
cutoff scores. The noise cutoff is the highest score for a false hiftimber of strings. Each of which with a score that makes it a likely
in the Rfam NR database, scores above this threshold are likelfit-
homologues (cf. Nawrockét al, 2009b). For the three different Additionally, the high scores between the three RNaseP models
RNaseP families, these scores are 43, 93 and 59 bit, respectively. &€ somehow expected, given that all three models describe variants
look at Fig. 5 shows, that no random sequence could score high if RNaseP. Nuclear RNaseP (not shown), on the other hand, is well
both model 373 and 11, one can, at most, find a hit that is remote &eparated from these three models with a maximal score of 24 bit.
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Second, if a model shows overlap with another, it can be
determined which regions of the model do actually show this
behaviour. This is possible, as we not only return a score value,
but other information, too. This includes the offending string, the
respective secondary structures and a detailed score account.

Third, the algorithm is extendable. Borrowing ideas from
Algebraic Dynamic Programming (Giegerich and Meyer, 2002),
an optimization algebra can be anything that follows the dynamic
programming constraints. Included are tG& K scoring algebra
and the different information functions as well as an algebra product
operation. Additional algebras require roughly a dozen lines of
code.

Fourth, theMaxiMin, or Link score lends itself as a natural
similarity score for RNA families. Closely related families, in terms
of primary and secondary structure — not necessarily biological
Fig. 6. A high-scoring set of families, explicitly selected for therde ~ CloSeness, show a highérink score than others. This requires
difference to the noise cutoff value. Models 1259 and 943es¢85 bit on  further investigation to determine how much biological information
some input, which is at least 76 bit higher than the respeaiiise cutoff ~ can be extracted. Pure mathematics cannot answer which biological
value. Notice, too, that not all pairs show such a behaviadéls 1086 and  relation does actually exist.

943 have a high.ink score with 123 bit, but at least the noise cutoff value  In the case of prospective meta-families, we have two open
is higher than this value (by 26 bit), making a hit less likelyone model. research problems. One is to take a closer look at high-scoring
Some of the models were built using very few seed sequencebigriéems  famjjies to determine their biological relationship. Are high scores
toincrease the chance of finding weak models. an artifact of poorly designed families, or a case of an actual meta-
family? The other problem became evident in the 1st example,
where not all members of the RNaseP family scored high against
2nd example For our second example (Fig. 6), we have chosen aach other. This suggests that meta-families cannot be modeled in
set of four family models. Each presents with not onlyiak score  Infernal directly, but how to adapt RNA family models in such a
with regard to the others but the scores are over the noise cutoffase remains open.
threshold by a large margin, too. Researchers designing new families will also find value in the

These models show that high noise cutoff values are notool, as one can scan a new family model against existing ones to
necessarily enough. On the one hand there are indeed some 28506 more confident that one has indeed identified a new family and
edges between families where thénk score is higher than both not an already existing one in disguise.
threshold values. In these cases one would reasonably argue to haveThe Infernal Users Guide (Nawrockit al, 2009b) mentions
found a homologue, even though the chance for a false positive do¢®mology between family models as a reason for the existence of
exist. One cannot, on the other hand, simply set the noise threshotéle different cutoff scores for noise, gathering, and trusted. We
to safe levels. This is because interesting sequences in the form @fink it is important to be able to determine, computationally, the
distant family members are likely to be found above the currenimportance of the cutoff scores when assigning new hits to families.
noise threshold values. Another fact is that cutoff scores, like the models themselves,

The examples chosen for Fig. 6 point out another problem withare set by the curators of the family. Our scoring scheme relies on
some of the models in the Rfam database. Models like RFO094#e Infernal scoring algorithm itself. As numbers of models were
were created using only 2 seed sequences and 5 sequences in totabated from very few seed sequences it is possible that the relevant
This is, of course, not a problem of Infernal but one of biological cutoff scores are set too high to capture remote members. A cutoff
origin. As long as more members of the class have not beescore above the highest pair scores involving such a model could be
identified, the resulting models are a bit sketchy. of help while scanning new genomes for remote family members.

Finally, we have to acknowledge that Infernal usesTiféde-,

not the CYK-algorithm to determine final scores. This can pose

a problem in certain exceptional circumstances but these should
4 DISCUSSION be rare. Mathematically (cf. Nawrockit al., 2009b), CYK =
We have presented a polynomial-time algorithm that, for any twoProb(s, w|m), while Inside = Prob(s|m). The CYK algorithm
covariance models, returns a string that scores high in both modelgives the score for the single best alignmentdf sequences and
Using this algorithm, several questions regarding RNA family model m while the Inside algorithm sums up over all possible
models can be answered. alignments. This just means that we underestimate the final score,

First, it is possible to determine if a model has high discriminativeor said otherwise, thinside scores for thd.ink sequence given the
power against other models. This is important to avoid falsecorresponding models will be even higher than @K scores.
positive results when searching for previously unknown new family
members. The discriminative power can be quantified using th€urated Thresholds and Infernal 1.0The version change to
same measure as used in Infernal itself, thereby giving answers inlafernal 1.0 requires re-examination of all threshold values (cf.
language, namely bit scores, that makes comparisons possible andf er nal . j anel i a. org). The next release of the Rfam
easy. database is expected to have done this, meaning that a comparison
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between (new) cutoff values and the scores calculated here is @furbin, R., Eddy, S., Krogh, A. and Mitchison, G. (1988plogical sequence analysis

current interest. Cambridge Univ. Press.
Eddy, S. (1998) HMMER: profile HMMs for protein sequence analyBisinformatics
14, 755-763.
Eddy, S. and Durbin, R. (1994) RNA sequence analysis using covariance models
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