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ABSTRACT
Motivation: RNA family models group nucleotide sequences that
share a common biological function. These models can be used to
find new sequences belonging to the same family. To succeed in
this task, a model needs to exhibit high sensitivity as well as high
specificity. As model construction is guided by a manual process,
a number of problems can occur, such as the introduction of more
than one model for the same family or poorly constructed models. We
explore the Rfam database to discover such problems.
Results: Our main contribution is in the definition of the
discriminatory power of RNA family models, together with a first
algorithm for its computation. In addition, we present calculations
across the whole Rfam database that show several families lacking
high specificity when compared to other families. We give a list of
these clusters of families and provide a tentative explanation. Our
program can be used to: (i) make sure that new models are not
equivalent to any model already present in the database (ii) new
models are not simply submodels of existing families.
Availability: www.tbi.univie.ac.at/software/cmcompare/
The code is licensed under the GPLv3.
Contact: choener@tbi.univie.ac.at
Supplementary Information: Results for the whole Rfam database
and supporting scripts are available together with the software.

1 INTRODUCTION
Structured non-coding RNAs are nucleotide sequences that are not
translated into protein but have, in the folded state, their own specific
functions (Mattick and Makunin, 2006). This function is very much
dependent on the secondary and tertiary structure (the folded state)
while on the other hand, the primary structure or sequence sees more
change (Mattick and Makunin, 2006) in the form of mutation.

One can define relationships between non-coding RNAs in
different species. A set of related sequences is called an RNA family.
Each set is defined by its members performing the same function in
different species. When genomes are sequenced, one is interested
in finding members of known families in the new data, as well as
finding new families if previously unknown non-coding RNAs are
discovered.

The problem – finding homologues – exists for proteins, too.
Software to perform the same kind of searches exists in the form
of HMMer (Eddy, 1998) and the Pfam (Batemanet al., 2002)
database. Using profile hidden Markov models (profile HMMs), a

∗to whom correspondence should be addressed

human acgucg aacuaga
cow accugg aacuaga
dog acuugg aag uca
cat acgucgaaacuaga
structure *<<*>>.**<**>*

Fig. 1. Multiple alignment of sequences from several species and the
consensus structure. Brackets<> denote nucleotide pairings, a star∗ a
consensus unpaired nucleotide, and a dot. a nucleotide not in the consensus.

mathematically convenient solution was found, around which the
algorithms could be built. Unfortunately, the same solution proved
inadequate (Durbinet al., 1998, Chapter 10.3) for non-coding
RNAs.

The task of building a model that describes a new family is
still a mostly manual process. Finding new members of existing
families, on the other hand, can be performed using software. The
problem we are discussing in this paper applies equally well to other
algorithms to search for homologue sequences, but as our algorithm
is specific toward an existing software package, namely Infernal
(Nawrockiet al., 2009a), we will perform our analysis with respect
to this software and the corresponding Rfam (Griffiths-Joneset al.,
2003) database.

In order to model families of non-coding RNAs in a way that
provides both sensitivity and specificity, the consensus secondary
structure of the set of sequences has to be included in the
mathematical model from which the algorithm is created. Stochastic
context-free grammars provide access to such models, just as
stochastic regular grammars (in the form of profile HMMs) can be
used to model protein families.

We begin with a succinct introduction to the process of first
designing an Infernal RNA family model and then searching for
new family members. Building on those algorithms, we can define
the specificity of a given model compared to other known models in
a natural way using the already established Infernal language of bit
scores.

Infernal Model Design
Infernal is based oncovariance models(Eddy and Durbin, 1994).
We assume that a structure-annotated multiple alignment of the
family sequences like the one in Fig. 1 is at hand. Intuitively,
new family members should (i) align well and (ii) show the same
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Fig. 2. A covariance model, displaying the six types of nodes needed for
construction. The nucleotide annotation follows the human sequence of the
multiple alignment of Fig. 1.

secondary structure. The more a sequence deviates from these two
requirements the worse it should score.

During the covariance model construction process a so-called
guide tree is derived from the structure annotation. The nodes of the
tree fall into six classes: 1. a pair-matching (P) node for a basepair;
2-3. two kinds of single nucleotide nodes, one left- (L) and one
right-matching (R); 4. a bifurcation (B) node to allow for multiple
external and internal loops; and two house-keeping nodes: 5. a start-
node (S) and 6. an end-node (E). Whenever possible, left-matching
nodes are used, e.g. in hairpin loops, delegating right-matching
nodes to be used only where necessary, such as the right side of the
last external loop. This removes ambiguity from the construction
process. The alignment from Fig. 1 leads to the model depicted in
Fig. 2.

Mutations in base pairs or single conserved nucleotides are
handled in the conventional stochastic RNA modeling approach by
keeping emission probabilities (or log-odd scores) for each possible
base or pair for the emitting nodes (P, L, R).

The way Infernal works, insertion of additional nucleotides, or
deletion of parts of the consensus sequence cannot be handled
by the matching nodes alone. For the final model, each node is
replaced by a number of states. One state acts as the main state,
that is, for example, each pair (P) node has a pair state matching
both a left and a right nucleotide. The deletion of one of the two
nucleotides is handled by adding two states, one only left- (L), one
only right-matching (R). A fourth state (D) handles the deletion of
both nucleotides while two inserting states (IL, IR) are used for
insertions relative to the consensus. Transitions from one state to
the next happen with some probability which is close to 1.0 for
the consensus state and far less likely for the other possible states.
The exact numbers are calculated by fitting probability distributions
using the multiple alignment data.

Nodes matching only a single nucleotide are extended with a
deletion state and either a left- or a right-inserting state, depending
on the main state. A bifurcation (B) leads directly to two new start
(S) nodes, effectively to two complete submodels. By arbitrary
selection, the right start node is extended with a left-inserting state
to allow for insertions between a bifurcation.

Mostly however, it is enough to keep the picture of the model
(Fig. 2), using only matching nodes, in mind.

With the additional states the model is completed. The fitting of
the probability distributions given the nucleotide consensus data is
outside of the scope of this text and we refer the reader to the book
on the subject matter by Durbinet al. (1998).

Searching with Covariance Models
The complete model is a graphical representation of the stochastic
context-free grammar that does the real work. A pair state (P), for
example leads to a total of sixteen productions of the formPk →
aQb, wherePk is thek’th node to be processed,Q abstracts over
the possible targets states, which depend on the nodek + 1 and
(a, b) are the sixteen possible nucleotide pairs. The whole process
leads to CFGs with a huge number of productions (in the order of the
number of nodes times a small constant), especially when compared
with single RNA folding grammars (Dowell and Eddy, 2004), that
have in the order of 10 – 100 productions.

The actual search process uses theCYK algorithm (newer
versions of Infernal use theInside algorithm to calculate the final
score) to find the best parse of an input string given the model. Input
strings are all substrings of a genome up to a given length. Using
dynamic programming, this approach is fast enough that whole
genomes can be processed in a matter of hours or days.

Our interest in this paper is not the search process of Infernal, but
how a parse is scored and the best alignment of string against model
is selected.

Notation. Given an alphabetA, A∗ denotes the set of all strings
overA. Let s ∈ A∗ be a, possibly empty, input string.

Notation. Let m, m1, m2 be covariance models in the form
of stochastic context-free grammars conforming to the Infernal
definition.

Given a modelm and an input strings, theCYK score can be
calculated over all parsesP of the strings by the modelm:

CYK(m, s) =

max{Score(P (m, s))|P (m, s) is successful}.
(1)

A successful parse is a parse that consumes the complete inputs

and finishes in terminal end states. During such a parse a score is
built up from the transition and emission scores that were calculated
for each model during its construction.

Several methods exist to perform the calculations. Arguably
closer to Eq. 1 is the use of tree grammars and algebras
in Giegerich and Ḧoner zu Siederdissen (2010), but Infernal
uses traditional dynamic programming to implement theCYK
algorithm. Whichever method is used, they are more efficient than
the enumeration of all possible parses. Finally, the alignment of the
input against the model can be retrieved using backtracking or other
methods.

2 METHOD
A covariance model with high specificity assigns low bit scores to all
sequences that do not belong to the model family. Finding sequences that
lead to false positives, that is having a high score while notbelonging to the
family, is a problem. We take a view that does not look at a singlemodel, but
rather at two models at the same time. Then, we can say that:

A covariance model has low specificity with respect to another model if
there exists a sequences ∈ A∗ that achieves a highCYK score in both
models.

We acknowledge that ’high score’ is not well-defined, but consider what
constitutes a high score in Infernal. Hits in Infernal come asa tuple, the
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score itself and an e-value. One is typically interested in scores of 20 bit
or higher and e-values of1.0 or less, depending on the model. The e-value
is dependent on the genome size, but given such guidelines onefinds good
candidates. In light of this, the meaning of ’high score’ becomes more clear.
As we use the same measure as Infernal, a string that achieves, say, 40 bit
in two different models points to low specificity, as the string would be
considered a good hit when searching for new family members withboth
models separately.

Using the previous definition, we find an analog to Eq. 1 to calculate (i)
the highest score achievable by (ii) a single input string:

Link(m1, m2) = MaxiMin(m1, m2) =

argmaxs{min{CYK(m1, s), CYK(m2, s)}|s ∈ A∗}.
(2)

Herem1 andm2 are two different covariance models.MaxiMin returns
the highest scoring string. The highest score is defined as the minimum of
the twoCYK scores. This guarantees that both models score high. Variants
of the algorithm are possible, for exampleMaxPlus which sums both
scores before maximizing. HoweverMaxiMin provides better results in
case one of the two models contains many more nodes than the other. More
importantly, it provides a score which would actually be achieved during a
search using one of the two models, while the other would scoreeven higher.
As the sequences “links” both models via their discriminative power, we
shall use the termLink from now on.

The trivial implementation suggested by Eq. 2 is not well-suited for
implementation as it requires exponential runtime due to the enumeration
of all possible strings inA∗.

In order to find the highest scoring string, we perform a kind of
tree alignment with additional sequence information. The tree alignment
part optimizes the structure of each model, while sequence alignment is
performed for nucleotide emitting states as well. Both alignments are tightly
coupled as is the case for covariance models themselves. A pairstate (P), for
example, leads to another structure than a left-emitting (L) state. This also
explains why we have to deal with a small restriction in our algorithm. The
tree alignment requires us to align each state with at most one other state,
but not two or more. After an explanation of the implementation,we discuss
this further.

Implementation We present a simplified version of our recursive
algorithm in Tab. 1. To set the field, we need two additional functions. Eq.
3 defines the minimum of a pair of values in a natural way. The function
maxmin (Eq. 4) is a small helper function selecting the maximal pair, where
the maximum of two pairs is defined by the maximum of individual minima,
hence the name max-min.

The recursion has to be performed simultaneously over both models. For
model m1 we have indexk1 and for modelm2, k2 will be used. Note
though, that by following just one of the elements of the tuples, theCYK

algorithm can be recovered. We are, in essence, performing two coupled
CYK calculations at the same time.

Internally, all states are kept in an array. The first index isguaranteed to
be a start state (S) and the last index to be an end state (E). The first state is
the root state of the whole model, too.

Three additional arrays are required.
The states that can be reached from a state are stored in an array named

c for children. Because indices from one model are never used inthe other
model, we can always writeck1

instead ofc1
k1

.
We use the same simplification for emission scores. The arraye holds

such scores. It is indexed with the nucleotides that are to beemitted. This
is to be written asek1,a,b for pairs and eithera or b are missing for single
nucleotide emitting states.

The third required array,t, stores transition scores. Whenever the
recursion descends from a statek1 into a possible child statek′

1
, a lookup

tk1→k′

1

is performed. Not all transitions incur a cost. A branch into the two
child states always happens with probability1.0.

We have abused notation to simplify the recursion a bit. The determination
of the type of the current state requires an additional data structure to perform
the lookup for the indicesk. Instead of writingXk1

, whereX is such a data
structure, we just writek1 = E to assess if statek1 happens to be an end (E)
state.

Some of the cases found in the source code have been removed for clarity.
Most cases deal with symmetric states. The last state to visit is, for example
(E, E). This initializes theCYK score to(0.0, 0.0). The case (MP, MP)
handles the emission of a pair of nucleotides. There are some cases like
(S,x), wherex is any state except (S), that require special handling. These
special cases ((E, D) and (E, S) are given as an example) do not contribute
any information on how one goes about calculating the common score, but
simply make a large recursion more unwieldy.

The algorithm is asymptotically fast. Given the number of statesn1 and
n2 of the two models, each pair of states will be visited once at most. In
Addition, the number of childrenck1

andck2
per state is fixed by a constant.

If h denotes the maximal number of children per state, the total runtime is
bounded byO(n1n2h2).

A Restriction in the implementationConsider the structure annotation
of two different covariance models:ma: <<>> andmb: *<>*. Modelma

has two nodes Pa
1

– Pa
2

and modelmb three nodes: Lb
1

– Rb
2

– Pb
3
. An

input string likeccgg is likely to result in a good score for both models,
especially if we assume that the family sequences are similar toccgg. Eq.
2 would return that result after some time. For a fast implementation, those
two models are rather inconvenient as Pa

2
has to be matched against both

Lb
1

and Rb
2

at the same time. By allowing to match only one state against
one other state, our algorithm produces suboptimal scores insuch cases.
Fortunately, this is a minor problem for real models. This can be explained
by the relative scarcity of such cases and the regularity of the covariance
model building process. If left-matching and right-matching nodes could be
used at will, e.g. in hairpin loops, our simplification would have more than
minor consequences.

Local and global scoring Infernal does not require that a sequence
matches the whole model. Instead, alocal search is performed. Each string
is aligned against the part of the model where it scores best. Should this
require the deletion of parts of the model, this does not invoke many delete
(D) states. One can simply do a transition into a local start orend state.
These transitions are possible only with small probability (typically around
0.05 divided by the number of nodes in the model) but this still giveshigher
scores than potentially having to descend into dozens of delete states.

Since Infernal scores locally with respect to the model, we dothe same
by default. Details of the implementation are omitted. Using the--global
switch, this behaviour can be changed. In that case, both models have to be
aligned and the resulting string will be optimal with respectto the whole
model, not just some submodel. Several other switches known from Infernal
are available, too.

Just one string? Of course if only a single string has a good score in
both models, the problem would be moot as the probability to encounter that
exact string is close to zero. But consider that from the pairwise score and
the corresponding string, suboptimal strings can be generated easily. Given
the lengthk of the strings, thenk points for substitutions give3k strings
that score almost as high. A further3

`

k

2

´

strings score less, and so forth with
3 and more substitutions. Furthermore, insertions and deletions are possible.

This means that whenever there is one high-scoring string, there will be
many more, we just present the worst case.

3 RESULTS
The Rfam 9.1 database contains 1372 different models. All pairwise
calculations lead to a total of 940,506 results. The time to calculate
the score and string for each pair is typically less than one second,
but of course depending on the size of the models in question. Of
all pairs, about 70,000 are noteworthy with scores of 20 bit or more.
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minP (a, b) =

(

a a < b

b otherwise
(3)

maxmin x = argmax{minP(s1, s2)|(s1, s2) ∈ x} (4)

MaxiMin (k1, k2) =
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:

(0, 0) k1 = E∧ k2 = E

maxmin{MaxiMin(k′

1, k
′

2) + (ek1,a,b, ek2,a,b) + (tk1→k′

1

, tk2→k′

2

)

| k′

1 ∈ ck1
, k′

2 ∈ ck2
, a ∈ A, b ∈ A} k1 = P∧ k2 = P

maxmin{MaxiMin(k′

1, k
′

2) + (ek1,a, ek2,a) + (tk1→k′

1
, tk2→k′

2
)

| k′

1 ∈ ck1
, k′

2 ∈ ck2
, a ∈ A} k1 ∈ {L,IL} ∧ k2 ∈ {L,IL}

maxmin{MaxiMin(k′

1, k
′

2) + (ek1,b, ek2,b) + (tk1→k′

1

, tk2→k′

2

)

| k′

1 ∈ ck1
, k′

2 ∈ ck2
, b ∈ A} k1 ∈ {R,IR} ∧ k2 ∈ {R,IR}

maxmin{MaxiMin(k1, k
′

2) + (0, tk2→k′

2

)

| k′

2 ∈ ck2
} k1 = E∧ k2 ∈ {D,S}

maxmin{MaxiMin(k′

1, k2) + (tk1→k′

1

, 0)

| k′

1 ∈ ck1
} k1 ∈ {D,S} ∧ k2 = E

maxmin{{MaxiMin(k′

1,1, k
′

2,1) + MaxiMin(k′

1,2, k
′

2,2)

| {k′

1,1, k
′

1,2} = ck1
, {k′

2,1, k
′

2,2} = ck2
} ∪

{MaxiMin(k′

1,2, k
′

2,1) + MaxiMin(k′

1,1, E) + MaxiMin(E, k′

2,2)

| {k′

1,1, k
′

1,2} = ck1
, {k′

2,1, k
′

2,2} = ck2
} ∪

{MaxiMin(k′

1,1, k
′

2,2) + MaxiMin(k′

1,2, E) + MaxiMin(E, k′

2,1)

| {k′

1,1, k
′

1,2} = ck1
, {k′

2,1, k
′

2,2} = ck2
}} k1 = B ∧ k2 = B

maxmin{MaxiMin(k′

1,1, k2) + MaxiMin(k′

1,2, E)

| {k′

1,1, k
′

1,2} = ck1
} k1 = B ∧ k2 6= B

maxmin{MaxiMin(k′

1, k
′

2) + (tk1→k′

1

, tk2→k′

2

)

| k′

1 ∈ ck1
, k′

2 ∈ ck2
} (k1, k2) ∈ {(S,S),(D,D)}

(−∞,−∞) otherwise

(5)

Table 1. Recursive calculation of the maximal score achieved by an input string common to both modelm1 andm2. We abuse notation quite a bit to reduce
notational clutter. The state type of model 1 at indexk would betype1

k1
but we writek1 = E to determine if the state is an end state. Additional data structures

are simplified as well. The states into which a transition is possible (the children of statek) are writtenck1
instead ofc1

k1
. Emission scores for each model are

in the matrixe which is indexed by the statek and the nucleotide(s) of the emitting state. Transition scores for transition from statek to k′ are found in the
matrix t. The case wherek1 = E ∧k2 = E terminates the recursion, as each correctly built covariance model terminates (each submodel) with an end-state
(E) (cf. Fig. 2). Addition of pairs happens element-wise:(a, b) + (c, d) = (a + b, c + d).

m1 [] [][] [][][] [[][]] complex
m2 [] [][] [][][] [[][]] complex
found 19644 49289 1576 40 12 28

Table 2. Occurrence of shapes in results with at least 20 bit each.
Unstructured regions () and hairpins ([]) as the common region occur
most often. The other shapes show that complex substructures can form. The
high number of lone hairpin structures is a direct consequence of the huge
meta-family of snoRNAs which have a simple secondary structure. Under
“complex“, all structures that did not fit into the given shapes were collected.

Fig. 4 shows the distribution of scores among all pairs of family
models. Negative scores have been truncated towards zero as any
score lower than this certainly means that the two models in question
are separated very well.

Among the high-scoring pairs are several interesting examples,
some of which we will take a closer look at. Similar results for other
models can be extracted from the data available for download. It is
possible to generate, among others, model-centric views that show
the high-scoring neighborhood of a particular model and global
views that show high-scoring pairs. As Fig. 3 aptly demonstrates,
clusters of families form early (in this case, only the 20 highest
scoring edges are drawn).

In Table 2 we have gathered some results. The 70,000 pair scores
over 20 bit have been split according to the abstract shape of the
secondary structures of the hit. A shape (Reeder and Giegerich,
2005) is a representation of the secondary structure that abstracts
over stem and interior loop sizes. In this case, each pair of brackets
[] defines one stem. Intervening unpaired nucleotides do not lead
to the creation of a new stem. Hits such as/ are unstructured,
but similar, sequences. The shape[]/[] is just one hairpin, while
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00011
RNaseP_bact_b

00010
RNaseP_bact_a

1 0 1

00373
RNaseP_arch

100

00488
U1_yeas t

00943
MIR824

92

00882
MIR811

00885
MIR821

9 7
01058

MIR806

133

100

00926
MIR1151

89

01043
MIR1023

96

01062
MIR812

1 3 5

01086
LR-PK1

1 2 3

01238
snR70

01259
snR63

90

1 3 5

1 1 1

01295
snoU90

90

0 1 2 4 4
snR4

94

90

01249
snR190

90

8 7

01266
snR45

89
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Fig. 3. The 20 highest scoring edges between RNA families. Each edge represents a string that, between the connected nodes, results in a bit score at least as
high as the given value. The two connected family models have low discrimination in such a case. For each family model the Rfam index and name are shown.
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Fig. 4. Distribution of bit scores for all 940,506 pairs of covariance models.
About 70,000 pairs have scores of 20 bit or more, pointing towards weak
separation between the two models.

the two shapes[[][]]/[[][]] on the same string point to an
interesting pair score as the string apparently folds into complex
high-scoring structures that align well, too.

In principle, it is possible that the common sequence folds into
two different secondary structures. At abstract shape level 5 (the
most abstract) this did not happen for the current Rfam database.
Our algorithm, however, is capable to deal with such cases.

Let us now take a closer look at two examples that are particularly
interesting. The first was selected because RNaseP is a ubiquitous
endoribonuclease and the second to highlight how problematic
models can be discovered.

1st example The RNaseP families for bacteria (type a and b) and
archaea show weak separation as can be seen in Fig. 5. The three
involved models (Rfam id 10, 11, and 373) have different noise
cutoff scores. The noise cutoff is the highest score for a false hit
in the Rfam NR database, scores above this threshold are likely
homologues (cf. Nawrockiet al., 2009b). For the three different
RNaseP families, these scores are 43, 93 and 59 bit, respectively. A
look at Fig. 5 shows, that no random sequence could score high in
both model 373 and 11, one can, at most, find a hit that is remote at

00011
RNaseP_bact_b

NC:93

00010
RNaseP_bact_a

NC:43

1 0 1
(8)

00373
RNaseP_arch

NC:59

4 7
(-46)

100
(41)

Fig. 5. Link scores for different RNaseP models (with noise cutoff (NC))
with weak separation. Values in brackets are the differenceto the noise cutoff
thresholds. The difference is as at least as high as given. A negative value
means that in one or two of the models, the score was lower than the noise
cutoff. For example, theLink score of 101 bit betweenbact a andbact b
is 8 bit higher than the NC ofbact b.

best. The picture is entirely different for the high-scoring sequence
between RNaseP, type a and RNaseP in archaea. Here, we find
a sequence that is at least 41 bit higher than the noise cutoff. A
similar picture presents itself for the sequence found for the two
bacterial RNaseP models, though the score difference between the
noise cutoff and the highest score is only 8 bit.

The sequences and their scores show something else, too. In
Section 2 we described how to generate many similar strings from
the one returned string. In this case, where the gap between cutoff
and score is as wide as 41 bit, we could indeed create a very large
number of strings. Each of which with a score that makes it a likely
hit.

Additionally, the high scores between the three RNaseP models
are somehow expected, given that all three models describe variants
of RNaseP. Nuclear RNaseP (not shown), on the other hand, is well
separated from these three models with a maximal score of 24 bit.
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01086
LR-PK1
NC:150

00943
MIR824
NC:52

1 2 3
(-27)

01259
snR63
NC:59

1 1 1
(-39)

1 3 5
(76)

01266
snR45
NC:41

7 4
(-76)

89
(37)

95
(36)

Fig. 6. A high-scoring set of families, explicitly selected for the large
difference to the noise cutoff value. Models 1259 and 943 score 135 bit on
some input, which is at least 76 bit higher than the respectivenoise cutoff
value. Notice, too, that not all pairs show such a behavior. Models 1086 and
943 have a highLink score with 123 bit, but at least the noise cutoff value
is higher than this value (by 26 bit), making a hit less likely in one model.
Some of the models were built using very few seed sequences and this seems
to increase the chance of finding weak models.

2nd example For our second example (Fig. 6), we have chosen a
set of four family models. Each presents with not only aLink score
with regard to the others but the scores are over the noise cutoff
threshold by a large margin, too.

These models show that high noise cutoff values are not
necessarily enough. On the one hand there are indeed some 28500
edges between families where theLink score is higher than both
threshold values. In these cases one would reasonably argue to have
found a homologue, even though the chance for a false positive does
exist. One cannot, on the other hand, simply set the noise threshold
to safe levels. This is because interesting sequences in the form of
distant family members are likely to be found above the current
noise threshold values.

The examples chosen for Fig. 6 point out another problem with
some of the models in the Rfam database. Models like RF00943
were created using only 2 seed sequences and 5 sequences in total.
This is, of course, not a problem of Infernal but one of biological
origin. As long as more members of the class have not been
identified, the resulting models are a bit sketchy.

4 DISCUSSION
We have presented a polynomial-time algorithm that, for any two
covariance models, returns a string that scores high in both models.
Using this algorithm, several questions regarding RNA family
models can be answered.

First, it is possible to determine if a model has high discriminative
power against other models. This is important to avoid false
positive results when searching for previously unknown new family
members. The discriminative power can be quantified using the
same measure as used in Infernal itself, thereby giving answers in a
language, namely bit scores, that makes comparisons possible and
easy.

Second, if a model shows overlap with another, it can be
determined which regions of the model do actually show this
behaviour. This is possible, as we not only return a score value,
but other information, too. This includes the offending string, the
respective secondary structures and a detailed score account.

Third, the algorithm is extendable. Borrowing ideas from
Algebraic Dynamic Programming (Giegerich and Meyer, 2002),
an optimization algebra can be anything that follows the dynamic
programming constraints. Included are theCYK scoring algebra
and the different information functions as well as an algebra product
operation. Additional algebras require roughly a dozen lines of
code.

Fourth, theMaxiMin, or Link score lends itself as a natural
similarity score for RNA families. Closely related families, in terms
of primary and secondary structure – not necessarily biological
closeness, show a higherLink score than others. This requires
further investigation to determine how much biological information
can be extracted. Pure mathematics cannot answer which biological
relation does actually exist.

In the case of prospective meta-families, we have two open
research problems. One is to take a closer look at high-scoring
families to determine their biological relationship. Are high scores
an artifact of poorly designed families, or a case of an actual meta-
family? The other problem became evident in the 1st example,
where not all members of the RNaseP family scored high against
each other. This suggests that meta-families cannot be modeled in
Infernal directly, but how to adapt RNA family models in such a
case remains open.

Researchers designing new families will also find value in the
tool, as one can scan a new family model against existing ones to
be more confident that one has indeed identified a new family and
not an already existing one in disguise.

The Infernal Users Guide (Nawrockiet al., 2009b) mentions
homology between family models as a reason for the existence of
the different cutoff scores for noise, gathering, and trusted. We
think it is important to be able to determine, computationally, the
importance of the cutoff scores when assigning new hits to families.

Another fact is that cutoff scores, like the models themselves,
are set by the curators of the family. Our scoring scheme relies on
the Infernal scoring algorithm itself. As numbers of models were
created from very few seed sequences it is possible that the relevant
cutoff scores are set too high to capture remote members. A cutoff
score above the highest pair scores involving such a model could be
of help while scanning new genomes for remote family members.

Finally, we have to acknowledge that Infernal uses theInside-,
not theCYK-algorithm to determine final scores. This can pose
a problem in certain exceptional circumstances but these should
be rare. Mathematically (cf. Nawrockiet al., 2009b), CYK =
Prob(s, π|m), while Inside = Prob(s|m). TheCYK algorithm
gives the score for the single best alignmentπ of sequences and
model m while the Inside algorithm sums up over all possible
alignments. This just means that we underestimate the final score,
or said otherwise, theInside scores for theLink sequence given the
corresponding models will be even higher than theCYK scores.

Curated Thresholds and Infernal 1.0The version change to
Infernal 1.0 requires re-examination of all threshold values (cf.
infernal.janelia.org). The next release of the Rfam
database is expected to have done this, meaning that a comparison
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between (new) cutoff values and the scores calculated here is of
current interest.
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