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Abstract

Background: A classical problem in metabolic design is to maximize the production of desired compound in a
given chemical reaction network by appropriately directing the mass flow through the network. Computationally,
this problem is addressed as a linear optimization problem over the “flux cone”. The prior construction of the
flux cone is computationally expensive and no polynomial-time algorithms are known.
Results: Here we show that the output maximization problem in chemical reaction networks is NP-complete.
This statement remains true even if all reactions are monomolecular or bimolecular and if only a single molecular
species is used as influx. As a corollary we show, furthermore, that the detection of autocatalytic species, i.e.,
types that can only be produced from the influx material when they are present in the initial reaction mixture, is
an NP-complete computational problem.
Conclusions: Hardness results on combinatorial problems and optimization problems are important to guide the
development of computational tools for the analysis of metabolic networks in particular and chemical reaction
networks in general. Our results indicate that efficient heuristics and approximate algorithms need to be employed
for the analysis of large chemical networks since even conceptually simple flow problems are provably intractable.

Background

Networks of chemical reactions lie at the heart of
“systems approaches” in chemistry and biology. Af-
ter all, metabolic networks are merely collections of
chemical reactions entrenched by enzymes that fa-
vor some possible reactions over physiologically un-

desirable side reactions. A detailed understanding of
their aggregate properties thus is a prerequisite to
efficiently manipulating them in technical applica-
tions such as metabolic engineering and at the same
time form the basis for deeper explorations into their
evolution. Due to the size of reaction networks of
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Figure 1: Flow optimization in the pentose-phosphate reaction network. Only a small part of the chemical
space is shown. We allow influx of water H2O and ribulose-5-phosphate to generate glucose-6-phosphate as
output. Phosphate is produced as waste product. An optimal solution is shown in black, using 6 ribulose-
5-phosphate molecules to produce 5 glucose-6-phosphate molecules. The values of the flow f( . ) is indicated
for each hyperedge (black square), e.g., f(a) = 1, f(b) = 1, f(c) = 2, f(d) = 2, f(e) = 2. At each node
(except the unlabelled input and output nodes) the influx and outflux is balanced. For example, at node x
(glycerol-3-phosphate), we have f(d) + f(e) = 4 = f(a) + f(b) + f(c).

practical interest, efficient algorithms are required
for their investigation.

Chemical reaction networks cannot be modeled
appropriately as graphs despite the many attempts
in this direction [1]. Instead, they are canoni-
cally specified by their stoichiometric matrix S, aug-
mented by information on catalysts. Equivalently,
a collection of chemical reactions on a given set of
compounds forms a directed (multi)-hypergraph [2].
As a consequence, most of computational problems
associated with chemical reaction networks cannot
be reformulated as well-studied graph problems and
hence require the development of a dedicated theory
and corresponding algorithmic approaches. Math-
ematical structures similar to the directed hyper-
graphs arising in chemistry were also explored in a
theoretical economics setting [3, 4].

Two complementary approaches to analyzing
chemical reaction networks have been developed

mostly in the context of analyzing and manipulat-
ing metabolisms. Flux Balance Analysis (FBA) is
concerned with the distribution of steady-state re-
action fluxes that optimize a biological objective
function such as biomass or ATP production [5].
The objective of metabolic design is to manipulate
fluxes through a metabolic networks so as to maxi-
mize the production of a (commercially important)
substance [6]. More details on the structure of a
(metabolic) reaction network, on the other hand, is
obtained my means of elementary mode analysis [7].
Both approaches are concerned with stationary mass
flows through the network, mathematically given as
solution of S~v, subject to the condition that flux
vi through every reaction is non-negative. The ele-
mentary flux modes (EFMs) are the extremal rays
of this convex cone C and can be interpreted as a
formalization of the concept of a “biochemical path-
way” [8, 9]. FBA adds a (typically linear) objective
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function to be optimized over C. A major drawback
of EFM-based approaches is the combinatorial ex-
plosion of EFMs in large networks [10] and the fact
that the knowledge of EFMs does not directly eluci-
date the metabolic capabilities of the given network.
An interesting recent approach thus combines FBA
with the computation of a subset of EFMs using a
greedy-like procedure [11].

Over the last years, there has been increasing
interest in the computational complexity of ques-
tions related to EFMs. For example, an elementary
flux mode can be found and counted in polynomial
time [12]. In contrast, the question whether there
is a “futile cycle”, i.e., an EFM without input or
output (equivalently, a sub-hypergraph in which in-
degree and out-degree balance for all vertices [2]),
is NP-complete [13]. Similarly, finding EMFs that
contain two prescribed reactions is NP-hard [14]. A
collection of reactions is a reaction cut set for a given
reaction if, after removing the cut set, the network
contains no longer an EFM containing the target
reaction [15, 16]. The problem of finding minimum
cardinality reaction cut sets is also NP-complete [12].
The complexity of enumerating all EFMs is still un-
known [14]. In [17], the problem of finding a short-
est metabolic pathway connecting a set of source
metabolites with a desired product is shown to be
NP-hard even if stoichiometric coefficients are ne-
glected.

An alternative approach to analyzing the struc-
ture of chemical reaction networks is to decompose
them into a hierarchy of algebraically closed and self-
maintaining sub-networks, called chemical organiza-
tions [18–21]. As shown in [19], it is also an NP-hard
problem to determine whether there is a a given re-
action network contains a non-trivial organization.

In this contribution we focus on a class of compu-
tational problems in chemical network analysis that
involve questions relating to both pathways and or-
ganizational aspects. The problem of of maximizing
production of a desired collection of output species
(rather minimizing cardinality of reaction sets) is
central to metabolic engineering [22], see Figure 1
for an example. In contrast to flow problems on sim-
ple graphs [23], we show here that hypergraph ver-
sions describing fluxes in chemical reaction networks
are computationally hard. As a computational prob-
lem, this flow maximization problem is closely re-
lated to the issue of finding autocatalytic intermedi-
ates in a reaction network. The latter problem has
received considerable attention in recent years since

such “metabolic replicators” are universally found in
present-day metabolic networks and and likely repre-
sent their ancient ancestral cores [24]. We show here
that detection of autocatalysts is NP-hard in its gen-
eral version, although a related problem in the set-
ting of replicator-like networks admits a polynomial-
time solution [25].

Result: NP-hardness
Definitions
In the following paragraphs we formally introduce
chemical reaction networks. We emphasize that our
setup is the same as in the literature on flux analy-
sis; we have opted, however, for a somewhat different
notation that is closer to the conventions commonly
used in graph theory as this makes the subsequent
discussion more concise.

A chemical reaction network (CRN) is repre-
sented a directed multi-hypergraph G(V,E) consist-
ing of a vertex set V , the compounds, and a set E
of directed hyper-edges encoding the reactions [2].
Each reaction e ∈ E is a pair (e−, e+) of multi-
sets e−, e+ ⊆ V of compounds, denoting the educts
and products of the reaction e. The stoichiometric
coefficients sx,e− and sx,e+ are represented by the
multiplicity of the compounds in the multisets. For
instance, the hyperedge encoding

C2H2 + 2H2O → (CH2OH)2

reads

({C2H2, H2O,H2O}, {(CH2OH)2})
Reversible reactions are encoded by a pair of forward
and backward reaction. The entries of the stoichio-
metric matrix are recovered as Sx,e = sx,e+ − sx,e− .

In addition to the ordinary reactions like the one
above, CRNs also contain pseudo-reactions E′ repre-
senting influx and outflux of compounds of the form
ein(x) = ({xin}, {x}) and eout(x) = ({x}, {xout})
where xin and xout refer to external reservoirs.
These are additional vertices V ′ distinct from V .
These pseudoreactions feed the CRN and remove
“waste products” and extract a desired output. In
particular, the xin, yout ∈ V ′ do not take part in any
other reaction.

A flow on the directed hypergraph G is a func-
tion f : E ∪ E′ → N0 such that, for each compound
x ∈ V , the condition∑

e∈E∪E′
f(e)

(
sx,e− − sx,e+

)
= 0 (1)
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is satisfied. This condition enforce that the total pro-
duction and the total consumption of x is balanced,
i.e., the CRN is in a stationary state. The total con-
sumption of an input material x is therefore

f(ein(x)) =
∑
e∈E

f(e)(sx,e− − sx,e+) (2)

and the total outflux of a product is

f(eout(x)) =
∑
e∈E

f(e)(sx,e+ − sx,e−) (3)

We say that a species x is produced in a network if
f(eout(x)) > 0.

Note that this definition of f naturally gener-
alized the definition of an (integer) flow on a di-
rected graph with source xin and target yout, see
e.g. [23]. In [26], a generalization of equ.(1), al-
though restricted to hypergraphs with |e+| = 1,
is considered, where the flows add up to a vertex-
dependent demand term rather than to zero. In con-
trast to the usual setting of flow problems, we have
a non-trivial restriction on the capacity only for the
input edge(s), while the values of f are unrestricted
for all other hyperedges.

Formulation of the problems

MAX-CRN-Output Given a chemical reaction net-
work with n nodes, of which any subset may have
influx or outflux, find a flow f that maximizes the
outflow f(eout(y)) to a specified output node yout.
MAX-CRN(d)-Output Given a chemical reaction
network with n nodes reactions (hyperedges) with
in-degree and out-degree at most d, where any sub-
set of vertices may have influx or outflux, find a flow
f that maximizes the outflow f(eout(y)) to a specified
output node yout.
MAX-CRN(d)-Output-1 Given a chemical reaction
network with n nodes, reactions (hyperedges) with
in-degree and out-degree at most d, and a single ver-
tex with influx where any subset of vertices may have
outflux, find a flow f that maximizes the outflow
f(eout(y)) to a specified output node yout.
Autocata Given a chemical reaction network with
n nodes and one or more input sources, determine
whether there is a source node x such that:

1. x cannot be produced from all other source
molecules, i.e., for all flows f , f(ein(x)) = 0
implies f(eout(x)) = 0; and

2. x can be produced in a quantity that is larger
than its inflow, i.e., there is a flow f such that
f(eout(x)) > f(ein(x)) > 0.

Outline

Formally, NP-completeness is defined for decision
problems [?]. Optimization problems can be con-
verted into decision problems by asking whether they
admit a solution that is at least as good as some
value. By abuse of language, it therefore makes sense
to speak of an “NP-complete optimization problem”
instead of using the phrase “the decision problem
corresponding to our optimization problem is NP-
complete”.

The basic idea of proving that problem X is NP-
complete is to find a so-called reduction ρ from an-
other problem P that is already known to be NP-
complete. The reduction ρ is an algorithm with poly-
nomial runtime that converts any given instance of
P into an instance of X. An efficient (i.e., polynomial
time) algorithm to solve (all instances of) X, there-
fore would also provide an efficient solution for every
instance P ∈ P by simply reducing P to ρ(P ) ∈ X
then solving ρ(P ). Hence we can conclude that X is
a hard problem when a known hard problem P can
be reduced to it.

In this section we devise a procedure that reduces
every instance of the so-called 3-partition problem to
a CRN with a single output pseudo-reaction in such
a way that solving the output maximization prob-
lem for the CRN also solves the 3-partition problem.
Thus optimizing output in CRNs is at least as hard
as solving 3-partition. The same basic construction
is then modified to show that the CRN can be built
in such a way that all reactions are monomolecular
or bimolecular. We then employ the same construc-
tion to show that problem remains hard even if only
a single source is provided. A simple modification
finally establishes the hardness result for finding au-
tocatalytic compounds.

3-Partition

The 3-partition problem (3PART) consists in decid-
ing whether a given multiset of n = 3m integers si,
i = 1, . . . , 3m can be partitioned into triples that
all have the same sum. This problem is one of the
most famous strongly NP-complete problems, i.e., it
stays NP-complete even when the numbers in the
input instance are given in unary encoding [27], i.e.,

4



2
s

3
s

1
s

4
s

3m−1
s

3m
s

Q
3

Q
4

Q
3m−1

Q
3m

Q
2

Q
1

Z
1

Z
2

Z
3

Z
m−1

Z
m

waste material
O

w
a

ste m
a

te
ria

l
output

s/m s/m s/m s/m s/m

Zj

Qi

i
s copies

i
s copies

i
s copies

Wi

Vij

Xij

O

(A) (B)

Figure 2: Construction of a CRN from a given instance of 3PART. (A) In the first step, an intermediate
network consisting of input nodes, switch nodes (green diamonds), and waste nodes (open circles), and a
single output sink (hexagon) is constructed. The input is encoded as capacity constraint on the l.h.s. input
nodes (corresponding to the input numbers si of 3PART and on the m top nodes (corresponding to 1/m
of the sum of the inputs). A solution of 3PART corresponds to a flow through this network that transport∑

i si to the output sink. (B) In the second step, each switch node is replaced by reaction network that which
admits a non-zero flow only if si copies of Qi and Zj are available. The reaction then produces si copies of
the output molecule O. Note that the “drainage reactions” as not shown in panel (B). These channel the
Qj and Zj input material directly to the “waste material” sink whenever the reaction networks inside the
switch node receives insufficient input to produce both Wi and Vij .

their values grows not faster than a polynomial in
the problem size n. This remains true when the si
are distinct [28]. IfB denotes the desired sum of each
subset then 3PART remains strongly NP-complete
even if for every integer B/4 < si < B/2 holds.

Basic Construction

Given an instance of 3PART we construct the asso-
ciated CRN in a step-wise fashion. The first step is
a lattice-like labeled graph, Figure 2(A), that con-
sists of one input node corresponding to each si, m
auxiliary nodes Zj , each of which has an influx of
(1/m)

∑
i si = s/m, an output sink node, 3m × m

switch nodes, 3m waste nodes at the right and m
waste nodes at the bottom. These switch nodes have
two inputs l from the left and u from above, and
three outputs r towards the right, d downwards, and
o into the output channel. Each of the switch nodes

can be in one of two distinct states: either it

off The node transmits all its left input to right
and all its input from above downwards, no
flow is then diverted towards the output, i.e.,
r = l, d = u, o = 0; or

on The node consumes its entire input from the
left (and thus transmits nothing to the right),
at the same time uses up a corresponding
amount of the input from above, and diverts
a corresponding amount towards the output,
i.e., r = 0, d = u− l, o = l.

All flux along the output channel is collected in the
output node, i.e., given a particular state of the
switch nodes, the flux into the output node is the
sum of the fluxes consumed from the left.

Lemma 1. An assignment of “on” and “off” to the
3m × m switch nodes is a solution of the original
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3PART problem if and only if the total flow in the
output node O equals the maximally possible value
s =

∑
i si.

Proof. Consider the CRN in Figure 2 with 3m×m
switch nodes. Each column corresponds to one of
the m desired subsets of the underlying instance of
3PART, each row corresponds to one the 3m integer
values sk. Note that any assignment of “on” and
“off” to switch nodes will split the overall horizontal
as well as the overall vertical inflow into two parts:
a part directed to waste material and an output part
directed to node O. Let wH (resp. wV ) be the overall
horizontally (resp. vertically) produced waste. For
any assignment of “on” and “off” states to switch
nodes s = f(eout(O)) + wH = f(eout(O)) + wV is
invariant. Obviously, if wH = wV = 0, then the out-
flow f(eout(O)) to node O is maximal. Furthermore
note that at most one switch can be in “on” state in
each row.

Consider an assignment of “on” and “off” to the
switch nodes that corresponds to a solution of the
original 3PART problem. Thus exactly 3m switch
nodes are in mode “on” (three per column and one
per row). As one switch node per row i is in mode
“on”, the outflux si of node Qi flows to output node
O and the waste produced horizontally in row i is
0. As this is true for all rows, wH = wV = 0 holds
and the total flow in the output node O is s which
is maximal.

Assume that the flow in the output node is the
maximal possible value s, and therefore wH = wV =
0 holds. This implies that exactly one switch node
per row needs to be in mode “on”. As we can assume
s/(4m) < si < s/(2m) exactly 3 switch nodes per
column need to be in state “on”. The overall assign-
ment is therefore a solution to the original 3PART
problem.

Of course, the intermediate network in Fig-
ure 2(A) is not (yet) an proper CRN. To achieve this
goal, we have to replace the switch nodes by hyper-
graphs that implement the high-level rule governing
their behavior.

Implementing switch-nodes

Suppose the molecules emitted from the 3m input
nodes are all of different types Qi, and distinguish
the m types of inputs from above as Zj . Then the
switch node (i, j) must implement a net reaction of

the form

siQi + siZj → siO (4)

where O is the type of the output molecule. This net
reaction can be split into four subsequent reactions:

siQi →Wi

siZj → Vij

Vij +Wi → Xij

Xij → siO

(5)

We see that the switch node (i, j) can be in the “on”-
state only if it received at least si copies of the in-
put from the left and a matching number of input
molecules from above. A graphical description of
this partial network is shown in Figure 2(B). Since
the input from the left is limited to si copies of Qi,
either none or a single molecule of the intermediate
Xij is produced, depending on whether (i, j) is on
or not. Clearly, for each i, only a single one of the
switches (i, j) can be “on”.

Note that equ.(5) already provides the neces-
sary device to complete the proof. If we insist that
the CRN may use at most bi-molecular reactions,
we have to find a way to implement the reactions
siQi → Wi and Xij → siO by more restricted el-
ementary reactions. This will the topic of the fol-
lowing section. According to equ.(5) each diamond
node is replaced by 3(si +1) vertices, so that the en-

tire network has 6m+ 2m+ 1 +m
∑3m

i=1 3(si + 1) =
8m + 3sm + 3m2 + 1 nodes. Thus, all instances of
3PART for which s = s(m) is polynomially bounded
in m can be reduced to a maximum output problem
on an equivalent CRN. We explicitly use the fact
that 3PART is strongly NP-complete: we need that
m is polynomially bounded by the network size n to
ensure that s, and thus the reduction to 3PART, re-
mains polynomial. We know the maximal outflux of
the CRN and can therefore use a simple guess-and-
check argument to show that MAX-CRN-Output is
in NP. Our discussion thus establishes

Theorem 1. MAX-CRN-Output is strongly NP-
complete when the number of inputs into the CRN
and number of educts in a chemical reaction is un-
restricted.

We remark the our CRNs need to have at least
two output nodes, one for the desired product and
one to collect all waste products.
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Restriction to bi-molecular reactions

In this section we show that the problem does not
become easier when the CRN has only a single input
and all reactions are bi-molecular. To this end we
further refine the reactions siQi → Wi, Xij → siO.
We will make use of two specialized types of edges
that can be implemented by bi-molecular reactions.

The first type of edge merges exactly k identical
molecules into 1 molecule (the corresponding edges
will be referred to as merge-edges). The second type
of edge expands one molecule to exactly k identi-
cal molecules (expansion-edges). We first focus on a
specific type of merge- and expansion-edges: merge-
edges of type (2u → 1) can easily be implemented
by u subsequent reactions f i, i = 1, . . . , u that itera-
tively create (double-sized) molecules out of 2 iden-
tical molecules. Formally, let I = X1 and O = Xu+1

then f i is defined by

2Xi → Xi+1, (6)

and the corresponding flow is chosen to be
f i({Xi, Xi+1}) := 2u−i. Symmetrically, expansion-
edges of type (1 → 2u) can be implemented by
u subsequent reactions that split molecules repeat-
edly into two equal molecules. These (2u → 1)-
merge-edges (resp. (1 → 2u)-expansion-edges) will
in the following be used to implement the general-
ized merge- and expansion-edges.

Let bm−1bm−2 . . . b0 be the binary representa-
tion of k > 0 with m = blog kc + 1, and let
B = {i1, i2, . . . , ir} be the indices of all non-zero
bits, i.e i ∈ B with bi = 1. The underlying idea for
the merging of k molecules of type I into 1 molecule
of type O is to split the outflow k of I into r indi-
vidual flows, i.e. k =

∑r
j=1 2ij−1. We remark that

this representation is unique. These flows of quan-
tity 2ij−1, j = 1 . . . r are then individually reduced
to flows of size 1. The resulting r flows of quan-
tity 1 are then all merged to a flow of one molecule
of quantity 1. The implementation of generalized
merge-edges is depicted in Figure 3(A). Expansion-
edges that expand the flow of one molecule of quan-
tity 1 to a flow of one molecule of quantity k can
be implemented analogously. First, a flow of quan-
tity 1 of one molecule is changed into r flows of
quantity 1, then these r flows are expanded to r
flows of quantity 2ij−1, j = 1, . . . r, and then these
flows are iteratively summed up. The details are de-
picted in Figure 3(B). Clearly, merge and expansion
edges can be employed for the refinement of reactions

siQi → Wi, Xij → siO in equ.(5). The number of
additional edges and nodes to implement a (k → 1)
merge-edge is O(log2 k), as there are O(log k) flows
after the split into individual flows, and each indi-
vidual flow employs O(log k) edges for the (k → 1)
merge (with k being a power of 2). Symmetrically a
(1 → k) expansion-edge uses O(log2 k) bi-molecular
edges and additional compounds. Based on this
polynomial extension and as all merge and expansion
reactions are bi-molecular, we have the following

Corollary 1. MAX-CRN(2)-Output is strongly
NP-complete.

Restriction to a single input

To show that MAX-CRN-Output is NP-complete
even if we have a single input only, we require an ad-
ditional edge type that is implemented by connecting
a (k → 1)-merge-edge and a (1→ k)-expansion edge
in series. Such an edge ensures that exactly k (or ex-
actly a multiplicity of k) input molecules react to the
same number of output molecules. We will refer to
these edges as (k)-force-flow-edges. Note, that such
edges do not change the quantity of a flow. The
number of additional edges and nodes required to
implement a (k)-force-flow edge is O(log2 k).

So far we assumed input nodes Qi with corre-
sponding influx si, i = 1 . . . , 3m, plus the m ad-
ditional input nodes Z1, . . . , Zm with influx s =
(1/m)

∑
i si each. In the following we will describe

how to extend the construction of the CRN based
on an instance of the 3PART problem (cmp. Figure
2) such that there is only a single input node. Note
that all si, m, and the influx to nodes Zi are defined
by the given 3PART instance.
Influx to nodes Qi: In the extended CRN the
nodes Qi will be internal nodes with influx si. In or-
der to achieve this we will add a single input node Q
with influx s′, where s′ is the integer representation
of the concatenation of the r-bit binary representa-
tion of all si, i.e.,

s′ =

3m∑
i=1

si×2r(i−1), with r = max{blog sic}+1 (7)

Attached to node Q will be a subnetwork that splits
the flux s′ into the fluxes s1, . . . , s3m by iteratively
using the last r bit of the remaining flux as influx to
a node Qi, and then divide the remaining flux by 2r.
The hypergraph structure to implement this with
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Figure 3: Consider the binary representation bm−1bm−2 . . . b0 of k > 0 with m = blog kc + 1. Let
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(k → 1) merge-edge. (B) Implementation of a (1 → k) expansion-edge. The red edges indicate (2i → 1)
merges and (1→ 2i) expansions, respectively.

bi-molecular reactions only is depicted in Figure 4.
All dashed lines with red rectangles indicate force-
flow-edges (the number in the rectangle indicates the
enforced flow), all red edges with open arrowheads
indicate merge- or expansion- edges. To enforce that
exactly (and not a multiplicity) of si molecules flow
towards node Qi, the flow downwards needs to be
maximized. This is done by introducing an addi-
tional outflux node: the flux of quantity s3m ≥ 1
towards O′ is multiplied by a factor c, such that the
additional overall non-waste outflux to O′ dominates
any other non-waste outflux. This can be ensured by
choosing the factor c as the maximal possible influx
to Q, i.e. c = 2r×3m − 1 (the binary representation
of c has r × 3m bit all set to 1). The number of
additional edges and nodes is polynomially bound
and the overall outflux of the extended network is
then s3m × c +

∑
i si. As all outflux can be easily

merged in a binary fashion as applied in the defini-
tion of expansion-edges, the resulting CRN has only
a single input node and a single non-waste output
node.

Influx to nodes Zi: In order to have nodes Zi

(cmp. Figure 2) as internal nodes, we split the out-
flux from node Q of quantity s′ in two fluxes of quan-
tity s′−1 and 1 (by employing force-flow-edges), that
will be directly merged again and be used as influx
of quantity s′ to node Q′. However, this simple split-
ting procedure gives a flux of quantity 1. This simple
flux is easily transformed into m fluxes of quantity 1,
which are then multiplied by s/m using expansion-
edges, and then used as the input towards the inter-
nal nodes Zi.

Recall, that the number of nodes and edges

needed for a force-flow-edge of quantity k is
O(log2 k). The number of bits for the maximal flux
on any force-flow-edge is O(r × 3m). As 3PART
is strongly NP-complete we can assume that all si
are polynomially bound in m, and therefore r ∈
O(logm). Therefore the maximal flux on any edge
is O(2m logm). The number of additional nodes and
edges is therefore O(m2 log2m) per force-flow-edge.
As the construction needs O(m) additional force-
flow-edges, the overall number of additional nodes
and edges is O(m3 log2m). Therefore the following
corollary easily follows:

Corollary 2. MAX-CRN(2)-Output-1 is NP-
complete.

Autocatalysis

The NP-completeness of detecting an autocatalytic
species can be shown by expanding the CRN used
for showing the NP-completeness of MAX-CRN(2)-
Output-1. Let O be the output node, where a out-
flux of s3m × c +

∑
i si can be detected iff the un-

derlying instance of 3PART is solved. We add a
merge-edge from O towards an additional node A′

to create an outflux of exactly 1 from A′. The CRN
is furthermore extended by the following two addi-
tional reactions, where compound A is an input and
an output node of the CRN.

A′ +A → 2B

B → A

The outflux of A′ is 1, if and only if

8
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s3m−1

∑3m
i=2 si2

r(i−1)

2r→1

s3ms3m

s3m−1

1→c

2r→1

2r→1

s′

s3m × 2r

∑3m
i=3 si2

r(i−2)

Figure 4: Splitting the single
influx s′ to node Q′ such that
the influxes to the internal nodes
Qi are si: the influx to node
Q is chosen to have the quan-
tity s′ =

∑3m
i=1 si × 2r(i−1) with

r = max{blog sic} + 1, i.e., s′

is determined by the concatena-
tion of binary representation of
the values si; force-flow edges
are depicted as dashed lines la-
beled with the enforced quan-
tity, merge- (resp. expansion-)
edges are depicted as red lines
with open arrowheads labeled
the quantification of merging
(resp., expansion); the constant
c for the expansion towards node
O is chosen such that the outflux
in node O dominates the outflux
of the original lattice CRN.

1. Compound A cannot be produced from all
other source molecules, i.e., for all flows
f(ein(A)) = 0 implies f(eout(A)) = 0, and

2. two A can be produced if their is an inflow
of one A, i.e., there is a flow f such that
f(eout(A)) > f(ein(A)) > 0.

The construction of our reduction highlights the dif-
ficult part in determining autocatalysts. This is not
so much finding the autocatalytic cycle itself but to
ensure that the building blocks are provided from

the “food source” through an in principle arbitrarily
complicated sub-network.

Concluding Remarks
We have shown that the flow maximization prob-
lem and the detection of autocatalytic species in
chemical reaction networks are NP-complete com-
putational problems. As a consequence , we cannot
expect to find devise exact algorithms for these prob-
lems that can be used efficiently on large chemical
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reaction networks (unless P=NP, which is unlikely at
best [29]). Our results match well with the observa-
tion that many classical computational problems are
hard on hypergraphs even though their analogs for
simple graphs admit efficient exact solutions. Illus-
trative examples are matching problems [30], or the
sparsest null space problem for integer matrices [31],
which can be seen as the natural generalization of
the minimum cycle basis problem. As graph models
of chemical networks tend to be oversimplifications
that are often of limited use [1], the hardness of the
computational task associated with the analysis of
large reaction networks cannot be avoided. As exact
algorithms appear out of reach, it will be necessary
to systematically explore efficient approximation al-
gorithms and heuristics for the combinatorial prob-
lems naturally arising from Systems Chemistry.
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13. Özturan C: On finding hypercycles in chemical re-
action networks. Appl. Math. Letters 2008, 21:881–
884.

14. Acuña V, Marchetti-Spaccamela A, Sagot MF, Stougie L:
A note on the complexity of finding and enumer-
ating elementary modes. Biosystems 2010, 99:210–
214.

15. Klamt S, Gilles ED: Minimal cut sets in biochemical
reaction networks. Bioinformatics 2004, 20:226–234.

16. Klamt S: Generalized concept of minimal cut sets
in biochemical networks. Biosystems 2006, 83:233–
247.

17. Pitkänen E, Rantanen A, Rousu J, Ukkonen E: Find-
ing Feasible Pathways in Metabolic Networks. In
Panhellenic Conference on Informatics, Volume 3746.
Edited by Bozanis P, Houstis EN, Heidelberg: Springer
2005:123–133.

18. Kaleta C, Centler F, Dittrich P: Analyzing molecu-
lar reaction networks: from pathways to chemical
organizations. Mol. Biotechnol. 2006, 34:117–123.

19. Centler F, Kaleta C, Speroni di Fenizio P, Dittrich P:
Computing chemical organizations in biological
networks. Bioinformatics 2008, 24:1611–1618.

20. Kaleta C, Richter S, Dittrich P: Using chemical orga-
nization theory for model checking. Bioinformatics
2009, 25:1915–1922.
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