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Abstract
We present a framework of dynamic programming combinators
that provides a high-level environment to describe the recursions
typical of dynamic programming over sequence data in a style
very similar to algebraic dynamic programming (ADP). Using a
combination of type-level programming and stream fusion leads to
a substantial increase in performance, without sacrificing much of
the convenience and theoretical underpinnings of ADP.

We draw examples from the field of computational biology,
more specifically RNA secondary structure prediction, to demon-
strate how to use these combinators and what differences exist be-
tween this library, ADP, and other approaches.

The final version of the combinator library allows writing algo-
rithms with performance close to hand-optimized C code.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.4 [Program-
ming Languages]: Optimization

General Terms Algorithms, Dynamic Programming

Keywords algebraic dynamic programming, program fusion,
functional programming

1. Introduction
Dynamic programming (DP) is a cornerstone of modern computer
science with many different applications (e.g. Cormen et al. [6,
Cha. 15] or Sedgewick [34, Cha. 37] for a generic treatment).
Durbin et al. [8] solve a number of problems on bio-sequences with
DP and it is also used in parsing of formal grammars [15].

Despite the number of problems that have been solved using
dynamic programming since its inception by Bellman [1], little on
methodology has been available until recently. Algebraic dynamic
programming (ADP) [10, 12, 13] was introduced to provide a
formal, mathematical background as well as an implementation
strategy for dynamic programming on sequence data, making DP
algorithms less difficult and error-prone to write.

One reviewer of early ADP claimed [10] that the development
of successful dynamic programming recurrences is a matter of
experience, talent, and luck.

The rationale behind this sentence is that designing a dynamic
programming algorithm and successfully taking care of all corner
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cases is non-trivial and further complicated by the fact that most
implementations of such an algorithm tend to combine all devel-
opment steps into a single monolithic program. ADP on the other
hand separates three concerns: the construction of the search space,
evaluation of each candidate (or correct parse) available within this
search space, and efficiency via tabulation of parts of the search
space using annotation [13] of the grammar.

In this work we target the same set of dynamic programming
problems as ADP: dynamic programming over sequence data. In
particular, we are mostly concerned with problems from the realm
of computational biology, namely RNA bioinformatics, but the
general idea we wish to convey, and the library based on this idea, is
independent of any specific branch of dynamic programming over
sequence data.

In particular, our introductory example uses the CYK algorithm
[15, Cha. 4.2] to determine if the input forms part of its context-free
language. In other words: our library can be used to write generic
high-performance parsers.

The idea of expressing parsers for a formal language using high-
level and higher-order functions has a long standing in the func-
tional programming community. Hutton [20] designed a library
for combinator parsing around 20 years ago. Combining simple
parsers for terminal symbols using symbolic operators is now wide-
spread. The parsec (see [30, Cha 16] for a tutorial) library for
Haskell might be the most well-known. Combinators can be used to
build complex parsers in a modular way and it is possible to design
new combinators quite easily.

The crucial difference in our work is that the combinators in
the ADPfusion library provide efficient code, comparable to hand-
written C, directly in the functional programming language Haskell
[19]. The work of Giegerich et al. [13] already provided an imple-
mentation of combinators in Haskell, albeit with large constants,
for both space and time requirements. Translation to C [11], and
recently a completely new language (GAP-L) [33] and compiler
(GAP-C) based on the ideas of ADP were introduced as a remedy.
Another recent, even more specific, approach is the Tornado lan-
guage [32] for stochastic context-free grammars designed solely to
parse RNA sequences.

Most of the work on domain-specific languages (DSL) for dy-
namic programming points out that using a DSL has a number of
benefits [11], either in terms of better parser error handling, higher
performance, or encapsulation from features not regarded as part of
the DSL.

Designing a DSL written as part of the host language, provides a
number of benefits as well, and strangely, one such benefit is being
able to use features not provided by the DSL. Designing a language
with a restricted set of features always poses the danger of having a
potential user requiring exactly that feature which has not yet been
made available. A direct embedding, on the other hand, simply does



not have this problem. If something can be expressed in the host
language, it is possible to use it in the DSL.

Another point in favor of staying within an established language
framework is that optimization work done on the backend is auto-
matically available as well. One of the points made by our work
is that it is not required to move to a specialized DSL compiler
to achieve good performance. Furthermore, certain features of the
Haskell host language yield performance-increasing code genera-
tion (almost) for free.

What we can not provide is simplified error handling, but this
becomes a non-issue for us as we specifically aim for Haskell-savvy
users or those interested in learning the language.

We can also determine the appropriateness of embedding the
ADPfusion DSL by looking at the guidelines given by Mernik et al.
[27, Sec. 2.5.2] on “When and How to Develop Domain-Specific
Languages”. Most advantages of the embedded approach (develop-
ment effort, more powerful language, reuse of infrastructure) are
ours while some disadvantages of embedding (sub-optimal syntax,
operator overloading) are easily dealt with using the very flexible
Haskell syntax and standards set by ADP.

Our main contributions to dynamic programming on sequence
data are:

• a generic framework separating grammatical structure, seman-
tics of parses, and automatic generation of high-performance
code using stream fusion;

• removal of the need for explicit index calculations: the combi-
nator library takes care of corner cases and allows for linked
index spaces;

• performance close to C with real-world examples from the area
of computational biology;

• the possibility to use the library for more general parsing prob-
lems (beyond DP algorithms) involving production rules.

“Sneaking around concatMap” is a play on one of the ways
how to write the Cartesian product of two sets. (Non-) terminals in
production rules of grammars yield sets of parses. Efficient, generic
treatment of production rules in an embedded DSL requires some
work as we will explain in this work.

The outline of the paper is as follows: in the next section we
introduce a simple parsing problem. Using this problem as an
example, we rewrite it using ADP in Sec. 3, thereby showing the
benefits of an embedded DSL. A short introduction to stream fusion
follows (Sec. 4).

Armed with knowledge of both ADP and stream fusion, we
write DP combinators that are compiled into efficient code in Sec.
5. We expand on ADPfusion with nested productions for more
efficient code (Sec. 6).

Runtime performance of ADPfusion is given for two examples
from RNA bioinformatics in Sec. 7 with comparisons to C pro-
grams.

Sections 8 and 9 are on specialized topics and we conclude with
remarks on further work and open questions in Sec. 10.

2. Sum of digits
To introduce the problem we want to solve, consider a string of
matched brackets and digits like ((1)(3)). We are interested in the
sum of all digits, which can simply be calculated by

sumD = sum ◦ map readD ◦ filter isDigit
readD x = read [x] :: Int.

The above algorithm works, because the structure of the nesting
and digits plays no role in determining the semantics (sum of digits)
of the input. For the sake of a simple introductory example, we

S → 1 | 2 | ... | 0 -- single digit
| ( S ) -- ’(’ substring ’)’
| S S -- split into substrings

S

S( )

S S

)S( ( S )

1 3

Figure 1. top: A context-free grammar for the nested-digits prob-
lem of Sec. 2. CFGs describe the structure of the search space. The
semantics of a parse are completely separate.
bottom: Successful parse of the string ((1)(3)). The semantics of
this parse are 4 using the sum of digits semantics.

now assume that we have to solve this problem using a parser that
implements the following three rules:

1. a digit may be read only if the string is of size 1, and the single
character is a digit;

2. an outermost pair of brackets may be removed, these rules are
then applied recursively to the remaining string;

3. the string may be split into two non-empty substrings to which
these rules are applied recursively.

These rules can be written as a context-free grammar (CFG)
and such a grammar is shown in Fig. 1 together with the successful
parse of the string ((1)(3)). As can be seen, the grammar describes
the structure of parses, but make no mention of any kind of seman-
tics. We simply know that a string is a word in the grammar but
there is no meaning or semantics attached to it. This, of course,
conforms to parsing of formal languages in general [15].

One way of parsing an input string is to use the CYK parser,
which is a bottom-up parser using dynamic programming [15, Cha.
4.2].

We have chosen the example grammar of Fig. 1 for two reasons.
First, it covers a lot of different parsing cases. The first production
rule describes parsing with a single terminal on the right-hand side.
The second rule includes a non-terminal bracketed by two terminal
characters. The third rule requires parsing with two non-terminals.
In addition, there are up to n − 1 different successful parses for
the n − 1 different ways to split the string into two non-empty
substrings. The third rule makes use of Bellman’s principle of
optimality. Parses of substrings are re-used in subsequent parses
and optimal parses of substrings can be combined to form the
optimal parse of the current string. This requires memoization.

Second, these seemingly arbitrary rules are actually very close
to those used in RNA secondary structure prediction, being de-
scribed in Sec. 7, conforming to hairpin structures, basepairing, and
parallel structures. Furthermore, important aspects of dynamic pro-
gramming (DP) and context-free grammars (CFGs) are included.

In the next section, we introduce algebraic dynamic program-
ming (ADP), a domain-specific language (DSL) for dynamic pro-
gramming over sequence data embedded in Haskell. Using the ex-
ample from above, we will be able to separate structure and seman-
tics of the algorithm.



-- signature
readDigit :: Char → S
bracket :: Char → S → Char → S
split :: S → S → S
h :: [S] → [S]

-- structure or grammar
sd = (
readDigit <<< char ‘with‘ isDigit |||
(bracket <<< char ‘cThenS‘ sd ‘sThenC‘ char)

‘with‘ brackets |||
split <<< sd ‘nonEmpty‘ sd ... h)

-- additional structure encoding
isDigit (i,j) = j-i≡1 && Data.Char.isDigit (inp!j)
brackets (i,j) = inp!(i+1)≡’(’ && inp!j≡’)’
-- (!) is the array indexing operator: array ! index

-- semantics or algebra
readDigit c = read [c] :: Int
bracket l s r = s
split l r = l+r
h xs = if null xs then [] else [maximum xs]

Figure 2. Signature, structure (grammar), and semantics (alge-
bra) of the sum-of-digits example (Sec. 2). The functions cThenS,
sThenC, and nonEmpty chain arguments of terminals like char
and non-terminals like sd. A special case is with that filters can-
didate parses based on a predicate. The symbolic functions (<<<),
(|||), and (...) apply a function, allow different parses, and se-
lect a parse as optimal, respectively.

3. Algebraic dynamic programming
In this section we briefly recall the basic premises of algebraic dy-
namic programming (ADP) as described in Giegerich et al. [13].
We need to consider four aspects. The signature, defining an inter-
face between a grammar and algebra, the grammar which defines
the structure of the problem, its algebras each giving specific se-
mantics, and memoization.

ADP makes use of subwords. A subword is a pair (Int,Int)
which indexes a substring of the input. Combinators, terminals, and
non-terminals all carry a subword as the last argument, typically as
(i,j) with the understanding that 0 ≤ i ≤ j ≤ n with n being
the length of the input.

3.1 Signature
We have a finite alphabet A of symbols over which finite strings,
including the empty string ε can be formed. In addition, we have a
sort symbol denoted S. A signature Σ in ADP is a set of functions,
with each function fi ∈ Σ having a specific type fi :: ti1 →
· · · → tin → S where tik ∈ {A+, S}. In other words, each
function within the signature has one or more arguments, and each
argument is a non-empty string over the alphabet or of the sort type
which in turn is also the return type of each function. It is possible
to use arguments which are derivative of these types, for instance
providing the length of a string instead of the string itself. Such
more specific cases are optimizations which do not concern us here.

The signature Σ includes an objective function h : {S} → {S}.
The objective function selects from a set of possible answers those
which optimize a certain criterion like minimization or maximiza-
tion.

3.2 Grammar
Grammars in ADP vaguely resemble grammatical descriptions as
used in text books [15] or formal methods like the Backus-Naur
form. They define the structure of the search space or the set of all
parses of an input. In Fig. 2 we have the grammar for the sum of
digits example of Fig. 1. The grammar has one non-terminal sd,
which is equivalent to S of the context-free grammar. Furthermore,
we have the three rules again. There are, however, major differences
in how one encodes such a rule. Consider the third rule (S → S S)
which now reads (split <<<sd ‘nonEmpty‘ sd) minus the left-
hand side. From left to right, we recognize one of the function
symbols of the signature (split), a combinator function (<<<)
that applies the function to its left to the argument on its right, the
non-terminal (sd), a second combinator function (‘nonEmpty‘)
in infix notation, and finally the non-terminal again.

What these combinators do is best explained by showing their
source, which also leads us back to why we want to “sneak around
concatMap”.

infix 8 <<<
(<<<) :: (a→b) → (Subword→[a]) → Subword → [b]
(<<<) f xs (i,j) = map f (xs (i,j))

infixl 7 ‘nonEmpty‘
nonEmpty :: (Subword → [y→z])

→ (Subword → [y]) → Subword → [z]
nonEmpty fs ys (i,j) = [ f y

| k ← [i+1..j-1]
, f ← fs (i,k)
, y ← ys (k,j) ]

or equivalently

nonEmpty fs ys (i,j) = concatMap idx [i+1..j-1]
where
idx k = concatMap (λf → map f (ys (k,j))) (fs (i,k))

Each combinator takes a left and a right argument and builds a
list from the Cartesian product of the two inputs, with (<<<) taking
care of the scalar nature of the function to be mapped over all in-
puts. Importantly, all first arguments are partially applied functions
which has a performance impact and hinders optimization.

The third argument of each combinator is the subword index
that is threaded through all arguments. (Non-) terminals are func-
tions from a subword to a list of values. For example char returns
a singleton list with the i’th character of the input when given the
subword (i, i+ 1) and an empty list otherwise.

char :: Subword → [Char]
char (i,j) = [inp!i | i+1≡j]

Similarly, the non-terminal sd is a function

sd :: Subword → [S]
sd = ... -- grammar as above

which can be memoized as required.
As a side note, in GHC Haskell, concatMap is not used in the

implementation of list comprehensions, but the message stays the
same: as we will see later in runtime measurements concatMap
and list comprehensions are hard to optimize.

We complete the argument combinators with cThenS and
sThenC (having the same type as nonEmpty):

infixl 7 ‘cThenS‘ ‘sThenC‘

cThenS fs ys (i,j) = [ f y | i<j, f ← fs (i,i+1)
, y ← ys (i+1,j) ]



sThenC fs ys (i,j) = [ f y | i<j, f ← fs (i,j-1)
, y ← ys (j-1,j) ]

We are still missing two combinators, (|||) and (...). Both
are simple, as ADP deals solely with lists, we just need to take care
of the subword index in each case.

infixr 6 |||
(|||) :: (Subword→[a])→(Subword→[a])→Subword→[a]
(|||) xs ys (i,j) = xs (i,j) ++ ys (i,j)
infix 5 . . .
(...) :: (Subword→[a])→([a]→[a])→Subword→[a]
(...) xs h (i,j) = h (xs (i,j))

There is an actual difference in the grammars of Fig. 1 and Fig.
2. In Fig. 1 the terminal symbols are explicit characters like ‘1‘ or
‘(‘, while in Fig. 2 char matches all single characters. We use this
to introduce another useful combinator (with) that allows us to
filter parses based on a predicate:

with :: (Subword→[a])→(Subword→Bool)→Subword→[a]
with xs p (i,j) = if p (i,j) then xs (i,j) else []

3.3 Algebra
We now have the grammar describing the structure of the algo-
rithm. The function symbols of the signature are included and can
be “filled” using one of several algebras describing the seman-
tics we are interested in. Apart from the objective function h, all
functions describe the semantics of production rules of the gram-
mar. In our example above (Fig. 2) we either read a single digit
(readDigit), keep just the sum of digits of the bracketed substring
(bracket), or add sums from a split operation.

The objective function (h) selects the optimal parse according
to the semantics we are interested in. In this case the maximum over
the parses.

Another possibility is to calculate some descriptive value over
the search space, say its total size. As an example, the Inside-
Outside algorithm [23],[8, Ch. 10] adds up all probabilities gen-
erated by productions in a stochastic CFG instead of selecting one.

The specialty of ADP grammars is that they form tree gram-
mars [10], [9, Sec. 2.2.1]. While they are analogous to context-free
grammars, the right-hand sides of productions form proper trees
with function symbols from the signature as inner nodes and termi-
nal and non-terminal symbols at the leaves. For the example parse
in Fig. 1 (bottom) this has the effect of replacing all non-terminal
symbols (S) with function symbols from the signature. This also
means that we can, at least in principle, completely decouple the
generation of each parse tree from its evaluation. While the size of
the search space might be prohibitive in practice, for small inputs,
an exhaustive enumeration of all parses is possible. In an imple-
mentation, data constructors can be used as functions, while the
objective function is simply the identity function. This allows us to
print all possible parse trees for an input.

Each such tree has at its leaf nodes a sequence of characters, a
word, from the alphabet:w ∈ A∗. And for each given wordw there
are zero or more trees representing this word. If no tree for a given
word exists, then the grammar can not parse that word and if more
than one tree exists then the grammar is syntactically ambiguous in
this regard. This kind of ambiguity is not problematic, typically
even wanted, as the objective function can be used to evaluate
different tree representations of a word w and return the optimal
one.

3.4 Memoization
As noted in Sec. 3.2, non-terminals in grammars can be memoized.
ADP introduces a function

tabulated :: Int →(Subword →[a]) →Subword →[a],
used as sd = tabulated (length input) ( productions ),
that stores the answers for each subword in an array. Depending on
the algorithm, other memoization schemes, or none at all, are pos-
sible. In general, memoization is required to make use of Bellman’s
principle of optimality and reduce the runtime of an algorithm from
exponential to polynomial.

3.5 ADP in short
To summarize, algebraic dynamic programming achieves a separa-
tion of concerns. Parsing of input strings for a given grammar is del-
egated to the construction of candidates which are correct parses.
Evaluation of candidates is done by specifying an evaluation alge-
bra, of which there can be more than one. Selection from all can-
didates based on their evaluation is done by an objective function
which is part of each evaluation algebra. Memoization makes the
parsing process asymptotically efficient. Giegerich et al. [13] pro-
vide a much more detailed description than given here.

As our objective is to perform parsing, evaluation and selection
more efficiently, we will, in the next sections, change our view of
dynamic programming over sequence data to describe our approach
starting with streams as a more efficient alternative to lists.

4. Stream fusion
We introduce the basics of stream fusion here. Considering that the
ADPfusion library is based around applications of map, flatten
(a variant of concatMap, more amenable to fusion), and fold,
these are the functions described. For advanced applications, the
whole range of fusible functions may be used, but those fall outside
the scope of both this introduction to stream fusion and the paper
in general. In addition, here and in the description of ADPfusion,
we omit that stream fusion and ADPfusion are parametrized over
Monads.

Stream fusion is a short-cut fusion system for lists [7], and more
recently arrays [25], that removes intermediate data structures from
complicated compositions of list-manipulating functions. Ideally,
the final, fused, algorithm is completely free of any temporary
allocations and performs all computations efficiently in registers,
apart from having to access static data structures containing data.
Stream fusion is notable for fusing a larger set of functions than was
previously possible, including zipping and concatenating of lists.

Stream fusion is built upon two data types, Stream captures
a function to calculate a single step in the stream and the seed
required to calculate said step. A Step can indicate if a stream is
terminated (Done). If not, the current step either Yields a value or
Skips, which can be used for filtering. One other use of Skip is
in concatenation of streams which becomes non-recursive due to
Skip as well. Unless a stream is Done, each new Step creates a
new seed, too.

data Stream a = ∃ s. Stream (s → Step a s) s
data Step a s = Done

| Yield a s
| Skip s

The point of representing lists as sequence co-structures is that
no function on streams is recursive (except final folds), permitting
easy fusion to generate efficient code.

We construct a new stream of a single element using the
singleton function. A singleton stream emits a single element
x and is Done thereafter. Notably, the step function defined here
is non-recursive.

singletonS x = Stream step True where
step True = Yield x False
step False = Done



Mapping a function over a stream is non-recursive as well, in
marked contrast to how one maps a function over a list.

mapS f (Stream step s) = Stream nstp s where
nstp s = case (step s) of
Yield x s’ → Yield (f x) s’
Skip s’ → Skip s’
Done → Done

As a warm-up to stream-flattening, and because we need to
concatenate two streams with (|||) anyway, we look at the stream
version of (++).

(Stream stp1 ss) ++S (Stream stp2 tt) =
Stream step (Left ss) where

step (Left s) = case s of
Yield x s’ → Yield x (Left s’)
Skip s’ → Skip (Left s’)
Done → Skip (Right tt)

step (Right t) = case t of
Yield x t’ → Yield x (Right t’)
Skip t’ → Skip (Right t’)
Done → Done

The Left and Right constructors encode which of the two
streams is being worked on, while the jump from the first to the
second stream is done via a (again non-recursive) Skip.

The flatten function takes three arguments: a function mk
which takes a value from the input stream and produces an initial
seed for the user-supplied step function. The user-supplied step
then produces zero or more elements of the resulting stream for
each such supplied value. Note the similarity to stream concatena-
tion. Left and Right are state switches to either initialize a new
substream or to create stream Steps based on this initial seed.

Again, it is important to notice that no function is recursive, the
hand-off between extracting a new value from the outer stream and
generating part of the new stream is done via Skip (Right (mk
a, t’)).

flattenS mk step (Stream ostp s) = Stream nstp (Left s)
where

nstp (Left t) = case (ostp s) of
Yield a t’ → Skip (Right (mk a, t’))
Skip t’ → Skip (Left t’)
Done → Done

nstp (Right (b,t)) = case (step b) of
Yield x s’ → Yield x (Right (s’,t))
Skip s’ → Skip (Right (s’,t))
Done → Left t

Finally, we present the only recursive part of the stream fusion,
folding a stream to produce a final value.

foldS f z (Stream step s) = loop f z where
loop f z = case (step s) of
Yield x s’ → loop (f z x) s’
Skip s’ → loop z s’
Done → z

If such code is used to build larger functions like

foldS (+) 0 (flattenS id f (singletonS 10)) where
f x = if (x > 0)

then Yield x (x-1)
else Done

call-pattern specialization [31] of the constructors (Yield,
Skip, Done) creates specialized functions for the different cases,
and inlining merges the newly created functions, producing an ef-
ficient, tight loop. A detailed explanation can be found in Coutts

et al. [7, Sec. 7] together with a worked example. The GHC com-
piler [36] performs all necessary optimizations.

5. Designing efficient combinators for dynamic
programming

Algebraic dynamic programming is already able to provide asymp-
totically optimal dynamic programming recursions. A dynamic
program written in ADP unfortunately comes with a rather high
overhead compared to more direct implementations. Two solutions
have been proposed to this problem. The first was translation of
ADP code into C using the ADP Compiler [35] and the second a
complete redesign providing a new language and compiler (GAP-L
and GAP-C) [33]. Both approaches have their merit but partially
different goals than ours. Here we want to show how to keep most
of the benefits of ADP while staying within Haskell instead of hav-
ing to resort to a different language.

We introduce combinators in a top-down manner, staying close
to our introductory example of Fig. 2. An important difference is
that functions now operate over stream fusion [7] streams instead
of lists. This change in internal representation lets the compiler
optimize grammar and algebra code much better than otherwise
possible.

We indicate the use of stream fusion functions like mapS with
a subscript S to differentiate between normal list-based functions
and stream fusion versions.

5.1 Combining and reducing streams
Two of the combinators, the choice between different productions
(|||) and the application of an objective function, stay essentially
the same, except that the type of h is now Stream a →b, instead
of [a] → [b]. The objective function returns an answer of a
scalar type, say Int, allowing for algorithms that work solely with
unboxed types, or a vector type (like lists, boxed, or unboxed
vectors). This gives greater flexibility in terms of what kind of
answers can be calculated and choosing the best encoding, in terms
of performance, for each algorithm.

infixl 7 |||
(|||) xs ys ij = xs ij ++S ys ij

infixl 6 . . .
(...) stream h ij = h (stream ij)

In addition, the index is not a tuple anymore, but rather a vari-
able ij of type DIM2. Instead of plain pairs (Int,Int) we use
the same indexing style as the Repa [22] library. Repa tuples are
inductively defined using two data types and constructors:

data Z = Z
data a :. b = a :. b
type DIM1 = Z :. Int
type DIM2 = DIM1 :. Int

The tuple constructor (:.) resembles the plain tuple construc-
tor (,), with Z as the base case when constructing a 1-tuple
(Z:.a). We can generalize the library to cover higher-dimensional
DP algorithms just like the Repa library does for matrix calcula-
tions. It allows for uniform handling of multiple running indices
which are represented as k-dimensional inductice tuples as well,
increasing k by one for each new (non-) terminal. Using plain tu-
ples would require nesting of pairs. Also, subwords are now of type
DIM2 instead of (Int,Int).

5.2 Creating streams from production rules
As of now, we can combine streams and reduce streams to a sin-
gle value or a set of values of interest. As streams expose many



optimization options to the compiler (cf. Sec. 4 and [7]), we can
expect good performance. What is still missing is how to create a
stream, given a production rule, in the first place. Rules such as
readDigit <<<char with a single terminal or non-terminal to the
right are the simplest to construct.

The combinator (<<<) applies a function to one or more argu-
ments and is defined as:

infixl 8 <<<
(<<<) f t ij =
mapS (λ(_,_,as) → apply f as) (streamGen t ij)

The streamGen function takes the argument arg on the right
of (f <<<arg), with arg of type DIM2 →α, and the current sub-
word index to create a stream of elements. If α is scalar (expressed
as DIM2 →Scalar β), the result is a singleton stream, containing
just β, but α can also be of a vector type say [β], in which case a
stream of β arguments is generated, containing as many elements
as are in the vector data structure.

We use a functional dependency to express1 that the type of
the stream r is completely determined by the type of the (non-)
terminal(s) t.

class StreamGen t r | t → r where
streamGen :: t → DIM2 → Stream r

The instance for a scalar argument (DIM2 →Scalar β) fol-
lows as:

instance StreamGen (DIM2 → Scalar β) (DIM2,Z:.Z,Z:.β)

delaying the actual implementation for now.
Streams generated by streamGen have as element type a triple

of inductively defined tuples we call “stacks”, whose stack-like
nature is only a type-level device, no stacks are present during
runtime.

The first element of the triple is the subword index, the second
gives an index into vector-like data structures, while the third el-
ement of the triple holds the actual values. We ignore the second
element for now, just noting that (non-) terminals of scalar type do
not need indexing, hence Z as type and value of the index. Argu-
ments are encoded using inductive tuples, and as we only have one
argument to the right of (<<<), the tuple is (Z:.α), as all such
tuples or stacks (e.g. subword indices, indices into data structures,
argument stacks) always terminate with Z.

The final ingredient of (<<<), apply, is now comparatively
simple to implement and takes an n-argument function f and ap-
plies it to n arguments (Z:.a1:.· · · :.an). We introduce a type
dependency between the arguments of the function to apply and
the arguments on the argument stack, using an associated type syn-
onym.

class Apply x where
type Fun x :: ∗
apply :: Fun x → x

instance Apply (Z:.a1:. · · · :.an → r) where
type Fun (Z:.a1:. · · · :.an → r)

= a1 → · · · → an → r
apply fun (Z:.a1:. · · · :.an) = fun a1 · · · an

5.3 Extracting values from (non-) terminals
As a prelude to our first stream generation instance (that we still
have to implement) we need to be able to extract values from ter-
minals and non-terminals. There are three classes of arguments
that act as (non-) terminals. We have already encountered the

1 Instead of type families for reasons explained in Sec. 9.

type (DIM2 →Scalar β) for functions returning a single (scalar)
value. A second class of functions yields multiple values of type β:
(DIM2 →Vector β). In this case we do not have vector-valued
arguments to but rather multiple choices from which to select.
Finally, we can have data structures. A data structure can again
store single (scalar) results or multiple results (vector-like) for each
subword. For data structures, it will be necessary to perform an
indexing operation (e.g. (!) is used for the default Haskell arrays)
to access values for a specific subword.

The ExtractValue type class presented below is generic
enough to allow many possible styles of retrieving values for a
subword and new instances can easily be written by the user of the
library.

We shall restrict ourselves to the instance (DIM2 →Scalar β).
Instances for other common data structures are available with the
library, including lazy and strict arrays of scalar and vector type.

The ExtractValue class itself has two associated types, Asor
denoting the accessor type for indexing individual values within
a vector-like argument and Elem for the type of the values being
retrieved.

For, say, (DIM2 →[β]), a possible Asor type is Int using the
list index operator (!!), while the Elem type is β.

For scalar types, the Asor will be Z as there is no need for an
index operation in that case.

The type class for value extraction is:

class ExtractValue cnt where
type Asor cnt :: ∗
type Elem cnt :: ∗
extractStream

:: cnt → Stream (Idx3 z,as,vs)
→ Stream (Idx3 z, as:.Asor cnt,vs:.Elem cnt)

extractStreamLast
:: cnt → Stream (Idx2 z,as,vs)
→ Stream (Idx2 z,as:.Asor cnt,vs:.Elem cnt)

type Idx3 z = z:.Int:.Int:.Int
type Idx2 z = z:.Int:.Int

extractStream and extractStreamLast are required to
correctly handle subword indices with multiple arguments in
productions. Their use is explained below, but note that
extractStream accesses the 2nd right-most subword (k, l), while
extractStreamLast accesses the rightmost (l, j) one. Consider
the production

S → x y z
i k l j

where y would be handled by extractStream and z by
extractStreamLast, and x has already been handled at this point,
its value is on the Elem stack.

Each function takes a stream and extends the accessor (Asor)
stack with its accessor and the value (Elem) stack is extended with
the value of the argument.

Now to the actual instance for (DIM2 →Scalar β):

instance ExtractValue (DIM2 → Scalar β) where
type Asor (DIM2 → Scalar β) = Z
type Elem (DIM2 → Scalar β) = β
extractStream cnt s = mapS f s where
f (z:.k:.l:.j,as,vs) =
let Scalar v = cnt (Z:.k:.l)
in (z:.k:.l:.j,as:.Z,vs:.v)

extractStreamLast cnt s = mapS f s where
f (z:.l:.j,as,vs) =
let Scalar v = cnt (Z:.l:.j)
in (z:.l:.j,as:.Z,vs:.v)



5.4 Streams for productions with one (non-) terminal
We can finish the implementation for streams of
(DIM2 →Scalar β) arguments. The instance is quite simi-
lar to the singleton function presented in Sec. 4 but while
singleton creates a single-element stream unconditionally we
have to take care to only create a stream if the subword (Z:.i:.j)
is legal. An illegal subword i > j should lead to an empty stream.

instance
( ExtractValue (DIM2 → Scalar β)
) ⇒ StreamGen (DIM2 → Scalar β) (DIM2,Z:.Z,Z:.β)
where
streamGen x ij = extractStreamLast x

(unfoldrS step ij)
step (Z:.i:.j)
| i≤j = Just ((Z:.i:.j,Z,Z), (Z:.j+1:.j))
| otherwise = Nothing

In this case, we use the subword ij as seed. If the subword is
legal, a stream with this subword and empty (Z) Asor and Elem
stacks is created. The new seed is the illegal subword (j + 1, j)
which will terminate the stream after the first element.

We then immediately extend the stream elements using
extractStreamLast which creates the final stream of type
(DIM2,Z:.Z,Z:.β) by adding the corresponding accessor of type
Z and element of type β as top-most element to their stack. With
one argument, the only argument is necessarily the last one, hence
the use of extractStreamLast instead of extractStream.

Using the construction scheme of only creating streams if sub-
words are legal, we effectively take care of all corner cases. Illegal
streams (due to illegal subwords) are terminated before we ever try
to extract values from arguments. This means that ExtractValue
instances typically do not have to perform costly runtime checks of
subword arguments.

5.5 Handling multiple arguments
We implement a single combinator (nonEmpty) as this is already
enough to show how productions with any number (≥ 2) of argu-
ments can be handled. In addition, nonEmpty has to deal with the
corner case of empty subwords (i = j) on both sides. That is, its
left and right argument receive only subwords of at least size one.

Recall that in ADP the first argument to each combinator turns
out to be a partially applied function that is immediately given its
next argument with each additional combinator. Partially applied
functions, however, can reduce the performance of our code and
make it impossible (or at least hard) to change the subword index
space dependent on arguments to the left of the current combina-
tor as the function would already have been applied to those argu-
ments.

By letting nonEmpty have a higher binding strength than (<<<)
we can first collect all arguments and then apply the corresponding
algebra function. In addition, we need to handle inserting the cur-
rent running index, Asor indices of the arguments, and Elem values
for a later apply. Hence nonEmpty is implemented in a completely
different way than in ADP:

infixl 9 ‘nonEmpty‘
xs ‘nonEmpty‘ ys = Box mk step xs ys where
mk (z:.i:.j,vs,as) = (z:.i:.i+1:.j,vs,as)
step (z:.i:.k:.j,vs,as)
| k+1≤j = Yield (z:.i:.k :.j,vs,as)

(z:.i:.k+1:.j,vs,as)
| otherwise = Done

The nonEmpty combinator does, in fact, not combine the argu-
ments xs and ys at all but only prepares two functions mk and step.

1,2,4
xs1,2 xs1,2

ys12,4 ys22,4

1,3,4
xs1,3 xs1,3

ys13,4 ys23,4

extractStreamLast ys

streamGen (Box mk step xs ys) =

1,2,4
xs1,2

1,3,4
xs1,3

(extractStream xs

1,2,4 1,3,4 (flattenS mk step

1,4 (unfoldrS step ij)))

Figure 3. A stream from two arguments built step-wise bottom to
top. First, a running index is inserted between the original subword
(1, 4) indices using flatten. Then, elements are extracted from
the scalar argument xs. The vector-like argument ys yields two
elements for each subword (indices 1 and 2). (step as in Sec. 5.4)

These define the set of subwords (i, k) and (k, j) splitting the cur-
rent subword (i, j) between xs and ys. Again, we make sure that
any corner cases are caught. The first value for k is i + 1, after
which k only increases. Hence xs is nonEmpty. In step we also
stop creating new elements once k + 1 > j meaning ys is never
empty. Finally, should the initial subword (i, j) have size j−i < 2,
the whole stream terminates immediately.

Of course, we are not constructing a stream at all but rather
a Box. The implication is that two or more (non-) terminals in a
production lead to nested boxes where xs is either another Box or
an argument, while ys is always an argument. Furthermore mk and
step are the two functions required by flatten. The streamGen
function will receive such a nested Box data structure whenever
two or more arguments are involved. The compiler can deconstruct
even deeply nested boxes during compile time, enabling full stream
fusion optimization for the production rule, completely eliminating
all intermediate data structures just presented. We expose these
optimizations to the compiler with StreamGen instances that are
recursively applied during compilation.

5.6 Streams from productions with multiple arguments
Efficient stream generation requires deconstucting Boxes, correct
generation of subwords in streams, and extraction of values from
arguments. This can be achieved with a StreamGen instance for
Boxes and an additional type class PreStreamGen.

These instances will generate the code shown in Fig. 3 (right).
The StreamGen instance fo the outermost Box

instance
( ExtractValue ys, Asor ys ∼ a, Elem ys ∼ v
, PreStreamGen xs (idx:.Int,as,vs)
, Idx2 undef ∼ idx
) ⇒ StreamGen (Box mk step xs ys)

(idx:.Int,as:.a,vs:.v) where
streamGen (Box mk step xs ys) ij

= extractStreamLast ys
(preStreamGen (Box mk step xs ys) ij)

handles the last argument of a production, extracting values
using extractStreamLast. PreStreamGen instances handle the
creation of the stream excluding the last argument recursively em-
ploying preStreamGen.

And we finally make use of flatten. This function allows us to
create a stream and use each element as a seed of a substream when



adding an argument further to the right – basically on the way back
up from the recursion down of the nested Boxes.

The type class PreStreamGen follows StreamGen exactly:

class PreStreamGen s q | s → q where
preStreamGen :: s → DIM2 → Stream q

To handle a total of two arguments, including the last, this
PreStreamGen instance is sufficient2:

instance
( ExtractValue xs, Asor xs ∼ a, Elem xs ∼ v
, Idx2 undef ∼ idx
) ⇒ PreStreamGen (Box mk step xs ys)

(idx:.Int,as:.a,vs:.v) where
preStreamGen (Box mk step xs ys) ij

= extractStream xs
(flattenS mk step
(unfoldrS step ij))

step (Z:.i:.j)
| i≤j = Just ((Z:.i:.j,Z,Z), Z:.j+1:.j)
| otherwise = Nothing

For three or more arguments we need a final ingredient. Thanks
to overlapping instances (cf. Sec. 9.1 on overlapping instances) this
instance

instance
( PreStreamGen (Box mkI stepI xs ys) (idx,as,vs)
( ExtractValue ys, Asor ys ∼ a, Elem ys ∼ v
, Idx2 undef ∼ idx
) ⇒ PreStreamGen (Box mk step (Box mkI stepI xs ys) zs)

(idx:.Int,as:.a,vs:.v) where
preStreamGen (Box mk step box@(Box _ _ _ ys) zs) ij

= extractStream ys
(flattenS mk step Unknown
(preStreamGen box ij))

which matches two or more nested Boxes, will be used except
for the final, innermost Box. Then, the above (more general) in-
stance is chosen and recursion terminates.

As the recursion scheme is based on type class instances,
the compiler will instantiate during compilation, exposing each
flatten function to fusion. Each of those calculates subword sizes
and adds to the subword stack, while Asor and Elem stacks are
filled using extractStream and extractStreamLast, thereby
completing the ensemble of tools required to turn production rules
into efficient code.

5.7 Efficient streams from productions
Compared with ADP combinators (Sec. 3) we have traded a small
amount of additional user responsibilities with the potential for
enormous increases in performance.

The user needs to write an instance (of ExtractValue) for data
structures not covered by the library or wrap such structures with
(DIM2 →α) accordingly.

New combinators are slightly more complex as well, requiring
the mk and step function to be provided, but again several already
exist. Even here, the gains outweigh the cost as each combinator has
access to the partially constructed subword, Asor, and Elem stack
of its stream step. One such application is found in the RNAfold
algorithm (Sec. 7.2) reducing the runtime from O(n4) to O(n3) as
in the reference implementation.

2 for type inference purposes, additional type equivalence terms are required
for mk and step which are omitted here

6. Applying Bellman’s principle locally
All major pieces for efficient dynamic programming are now in
place. A first test with a complex real-world dynamic program un-
fortunately revealed disappointing results. Consider the following
production in grammar form:

S → char string S string char
i i+1 k l j-1 j

Two single characters (char) bracket three arguments of vari-
able size. A stream generated from those five arguments is quadratic
in size, due to two indices, k and l, with i + 1 ≤ k ≤ l ≤ j − 1
with k (l) to the left (right) of S. We would like to evaluate the outer
arguments (the char terminals) only once, but due to the construc-
tion of streams from left to right, the right-most argument between
(j − 1, j) will be evaluated a total of O(n2) times. Depending on
the argument, this can lead to a noticeable performance drain.

Two solutions present themselves: (i) a more complex evalua-
tion of (non-) terminals or (ii) making use of Bellman’s principle.
As option (i) requires complex type-level programming, basically
determining which argument to evaluate when, and option (ii) has
the general benefit of rewriting productions in terms of other pro-
ductions, let us consider the latter option.

If Bellman’s principle holds, a problem can be subdivided into
smaller problems that, when combined, yield the same result as
solving the original problem, and each subproblem is reused mul-
tiple times.

If the above production has the same semantics under an objec-
tive function, as the one below, we can rewrite it, and benefit from
not having to evaluate the right-most argument more than once.

S → char T char T → string S string
i i+1 j-1 j i+1 k l j-1

We want to introduce another non-terminal (T) only concep-
tually, but translation into ADPfusion is actually quite easy. Given
the original code

f <<< char ‘then‘ string ‘then‘ s ‘then‘ string
‘then‘ char ... h

the new nested version is

f <<< char ‘then‘
(g <<< string ‘then‘ s ‘then‘ string ... h)
‘then‘ char ... h

This version still yields efficient code and the final char ar-
gument is evaluated just once. In terms of ADPfusion, bracketing
and evaluation of subproductions (g <<< string ‘then‘ · · · ) is
completely acceptable, the inner production has type (DIM2 →α),
variants of which are available by default.

The availability of such an optimization will depend on the
specific problem at hand and will not always be obvious. As the
only changes are a pair of brackets and an inner objective function,
changes are easily applied and a test harness of different input
sequences can be used to determine equality of the productions
with high certainty – even without having to prove that Bellman’s
principle holds. One particularly good option is to automate testing
using QuickCheck [5] properties.

7. Two examples from RNA bioinformatics
In this section, we test the ADPfusion library using two algorithms
from the field of computational biology. The Nussinov78 [29]
grammar is one of the smallest RNA secondary structure prediction
grammars and structurally very similar to our introductory example
of Figs. 1 and 2. The second algorithm, RNAfold 2.0 [26] tries to
find an optimal RNA secondary structure as well.



Both algorithms can be seen as variants of the CYK algorithm
[15, Sec. 4.2]. The difference is that every word is part of the
language and parsing is inherently syntactically ambiguous: every
input allows many parses. By attaching semantics (say: a score or
an energy), similar to the sum of digits semantics, the optimal parse
is chosen.

We pit ADPfusion code against equivalent versions written in
C. The Nussinov78 grammar and algebra (Fig. 4) are very simple
and we will basically measure loop optimization. RNAfold 2.0
is part of an extensive set of tools in the ViennaRNA package [26].
The complicated structure and multiple energy tables lead to a good
“real-world” test.

All benchmarks are geared toward the comparison of C and
ADPfusion in Haskell. Legacy ADP runtimes are included to point
out how much of an improvement we get by using strict, unboxed
arrays and a modern fusion framework.

The legacy ADP version of RNAfold is not directly compatible
with RNAfold 2.0 (C and ADPfusion). It is based on an older
version of RNAfold (1.x) which is roughly 5% – 10% faster than
2.0.

We do not provide memory benchmarks. For C vs. ADPfusion
the requirements for the DP tables are essentially the same, while
legacy ADP uses boxed tables and always stores lists of results with
much overhead.

The Haskell versions of Nussinov78 and RNAfold 2.0 have
been compiled with GHC 7.2.2 and LLVM 2.8; compilation op-
tions: -fllvm -Odph -optlo-O3. The C version of Nussinov78
was compiled using GCC 4.6 with -O3. The ViennaRNA package
was compiled with default configuration, including -O2 using GCC
4.6. All tests were done on an Intel Core i7 860 (2.8 GHz) with 8
GByte of RAM.

7.1 Nussinov’s RNA folding algorithm
The algorithm by Nussinov et al. [29] is a very convenient example
algorithm that is both: simple, yet complex enough to make an
interesting test. A variant of the algorithm in ADP notation is
shown in Fig. 4 together with its CFG. The algorithm expects as
input a sequence of characters from the alphabet A = {ACGU}.
A canonical basepair is one of the six (out of 16 possible) in the
set {AU,UA,CG,GC,GU,UG}. The algorithm maximizes the
number of paired nucleotides with two additional rules.

Two nucleotides at the left and right end of a subword (i, j) can
pair only if they form one of the six canonical pairs. For all pairs
(k, l) it holds that neither i < k < j < l nor k < i < l < j and
if i == k then j == l. Any two pairs are juxtaposed or one is
embedded in the other.

The mathematical formulation of the recursion implied by the
grammar and pairmax semantics in Fig. 4 is

S[i, j] = max

8>>>>><>>>>>:

0 i == j

S[i+ 1, j] i < j

S[i, j − 1] i < j

S[i+ 1, j − 1] + 1 if (i,j) pairing
maxi<k<j S[i, k] + S[k + 1, j] .

As there is only one non-terminal S (respectively DP matrix s)
and no scoring or energy tables are involved, the algorithm mea-
sures mainly the performance for three nested loops and accessing
one array.

As Fig. 5 clearly shows, we reach a performance within ×2 of
C for moderate-sized input. The C version used here is part of the
Nussinov78 package available online3.

3 Nussinov78 hackage library: http://hackage.haskell.org/
package/Nussinov78

-- signature
nil :: S
left :: Char → S → S
right :: S → Char → S
pair :: Char → S → Char → S
split :: S → S → S
h :: Stream S → S

-- structure or grammar
s = (

S → ε nil <<< empty |||
| bS left <<< base−∼∼s |||
| Sb right <<< s∼∼−base |||
| bSb pair <<< base−∼∼s∼∼−base
| S S ‘with‘ pairing |||

split <<< s+∼+s ... h)

-- semantics or algebra
nil = 0 pair a s b = s+1
left b s = s split l r = l+r
right s b = s h xs = maximumS xs

Figure 4. Top: The signature Σ for the Nussinov78 grammar. The
functions nil, left, right, pair, and split build larger an-
swers S out of smaller ones. The objective function h transforms a
stream of candidate answers, e.g. by selecting only the optimal can-
didate.
Center left: The context-free grammar Nussinov78. Character b
∈ A = {A,C,G,U}.
Center right:The Nussinov78 algorithm in ADPfusion nota-
tion with base :: DIM2 →Char. This example was taken from
[14]. Compared to the CFG notation, the evaluation functions are
now explicit as is the non-empty condition for the subwords of
split. The (−∼∼) combinator allows a size-one subword to its
left (cf. cThenS in Fig. 2). Its companion (∼∼−) to the right
(sThenC). The (+∼+) combinator enforces non-empty subwords
(nonEmpty).
Bottom: Pairmax algebra (semantics); maximizing the number of
basepairs. In pair, it is known that a and b form a valid pair due to
the pairing predicate of the grammar.
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Figure 5. Runtime in seconds for different versions of the
Nussinov78 algorithm. The Nussinov78 algorithm accesses only
one DP matrix and no “energy tables”. The comparatively high run-
time for the ADPfusion code for small input is an artifact partially
due to enabled backtracking.
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Figure 6. Runtime in seconds for different implementations of the
RNAfold 2.0 algorithm for random input of different length. The
highly optimized C code is used by the official ViennaRNA pack-
age. ADPfusion is the code generated by our library. For illustrative
purposes, ADP is the performance of the original Haskell imple-
mentation of the older RNAfold 1.x code.

An algorithm like Nussinov78 is, however, not a good repre-
sentative of recent developments in computational biology. Modern
algorithms, while still adhering to the basic principles formulated
by Nussinov et al. [29], use multiple DP matrices and typically ac-
cess a number of additional tables providing scores for of different
features. The RNAfold 2.0 algorithm, described next, is one such
algorithm.

7.2 RNAfold
The ViennaRNA package [16, 26] is a widely used state-of-the-
art software package for RNA secondary structure prediction. It’s
newest incarnation is among the top programs in terms of predic-
tion accuracy and one of the fastest. It provides an interesting target
as it has been optimized quite heavily toward faster prediction of
results. Compared to other programs, speed differences of ×10 to
×100 in favor of RNAfold 2.0 are not uncommon [26].

The complete ViennaRNA package provides many different
algorithms which makes it impractical to re-implement the whole
package in Haskell. We concentrate on the minimum-free energy
prediction part, which is the most basic of the offered algorithms.

We refrain from showing the ADPfusion version of the gram-
mar. A version of RNAfold using recursion and diagrams for visu-
alization is described in [2] and the ADPfusion grammar itself can
be examined online4.

We do, however, give some statistics. The grammar uses 4 non-
terminals, three of which are interdependent while the fourth is be-
ing used to calculate “exterior” structures and only O(n) matrix
cells are filled instead of O(n2) as for the other three tables. A to-
tal of 17 production rules are involved and 18 energy tables. One
production has an asymptotic runtime of O(n2) for each subword
yielding a total runtime of O(n4). By restricting the maximal size
for two linear-size subwords in the grammar to at most 30, the fi-
nal runtime of RNAfold is bounded by O(n3). This restriction is
present in both the C reference version and the ADPfusion gram-
mar where we make use of a combinator that restricts the maximal
subword size based on subword sizes calculated by another combi-
nator, thus giving us the required restriction.

4 RNAFold hackage library: http://hackage.haskell.org/package/
RNAFold

Given inputs of size 100 (nucleotides) or more, ADPfusion code
is efficient enough to get within ×2 – ×3 of the C implementation.
Fig. 6 shows runtimes for legacy ADP, ADPfusion, and C code.

8. Backtracking and algebra products
ADP introduced the concept of algebra products. A typical dy-
namic programming algorithm requires two steps: a forward step
to fill the dynamic programming matrices and a backward or back-
tracking step to determine the optimal path from the largest input
to the smallest sub-problems. For a CYK parser, the forward step
determines if a word is part of the language while the backward
step yields the parse(s) for this word.

This forces the designer of a DP algorithm to write the recur-
rences twice, and keep the code synchronized as otherwise subtle
bugs can occur. Algebra products “pull” the backward step into the
forward step. Considering the case of the optimal path and its back-
trace, one writes (opt ∗∗∗backtrace), where opt is the algebra
computing the score of the optimal answer, while backtrace is its
backtrace, and (∗∗∗) the algebra product operation. This yields a
new algebra that can be used as any other.

It has the effect of storing with each optimal result the descrip-
tion of how it was calculated or some information derived from this
description. This is conceptually similar to storing a pointer to the
cell(s) used for the calculation of the optimal result.

The algebra product is a very elegant device that allows for
simple extension of algorithms with proper separation of ideas.
A backtrace does not have to know about scoring schemes as
each answer for the first argument of (∗∗∗) is combined with
exactly one answer of the second argument. Adding, say, sub-
optimal results requires a change only to opt to capture more
than one result, while co-optimal results are automatically available
from the ADP definition of the algebra product.

The algebra product as used in ADP is, unfortunately, a prob-
lematic device to use in practice. While it allows for a simple de-
sign of algorithms and removes another source of potential bugs, it
comes with a high runtime cost.

Consider an algorithm that calculates a large number of co- or
sub-optimal results, like the Nussinov78 algorithm in backtrack-
ing.

Standard implementations calculate the DP matrices in the for-
ward step and then enumerate all possible backtraces within a cer-
tain range. The forward step does not change compared to just ask-
ing for the optimal result. The backward step, while tedious to get
right, only has to deal with one backtrace at a time – unless they
all have to be stored. ADP, on the other hand, stores all backtraces
within its DP matrices. The memory cost is much higher as all an-
swers – and all answers to sub-problems – that pass the objective
function are retained within the matrices.

In addition, we can not use strict, unboxed arrays of Ints (or
Floats or Doubles) if we store backtraces directly in the DP matri-
ces.

For ADPfusion we prefer to have an explicit backtrace step. As a
consequence, the programmer is faced with a slightly bigger task of
defining the forward algebra and the backward algebra separately
instead of just using the algebra product, but this is offset by the
gains in runtime and memory usage. One can even use a version
of the algebra product operation in the backward step to keep
most of its benefits. In this case, the use of the algebra product
becomes quite harmless as we no longer store each answer within
the matrices. In terms of absolute runtime, this approach works out
favorably as well. The costly forward phase (for RNAfold: O(n3))
is as efficient as possible, while the less costly backtracking (for
RNAfold: O(n2 ∗ k), with k the number of backtracked results)
uses the elegant algebra product device.



9. Technical details
9.1 Functional dependencies vs. type families
Type families [3] are a replacement for functional dependencies
[21]. As both approaches provide nearly the same functionality,
it is a good question why this library requires both: type families
and functional dependencies. The functions to extract values from
function arguments, collected in the type class ExtractValue, are
making use of associated type synonyms as this provides a (albeit
subjectively) clean interface.

The stream generation system, using the StreamGen and
PreStreamGen type classes, is based on functional dependencies.
The reasons are two-fold: (i) the replacement using type families
does not optimize well, and (ii) functional dependencies allow for
overlapping instances.

The type family-based version5 of the ADPfusion library does
not optimize well. Once a third argument, and hence nested Boxes
come into play, the resulting code is only partially optimized ef-
fecting performance by a large factor. This seems to be due to in-
sufficient compile-time elimination of Box data constructors. This
problem is currently under investigation.

Using a fixed number of instances, say up to 10, would at best
be a stop-gap measure since this restricts the user of the library to
productions of at most that many arguments and leads to highly
repetitive code.

As functional dependencies allow unlimited arguments, require
only overlapping instances, and consistently produce good code,
they are the better solution for now even though they are, in general,
not well received6.

9.2 Efficient memoization
The ADPfusion library is concerned with optimizing production
rules independent of underlying data structures, lazyness, and
boxed or unboxed data types. The author of a DP algorithm may
choose the data structure most suitable for the problem and by
giving an ExtractValue instance makes it compatible with ADP-
fusion. If priority is placed on performance, calculations can be
performed in the ST or IO monad. The PrimitiveArray7 library
provides a set of unboxed array data structures that have been used
for the algorithms in Sec. 7 as boxed data structures cost perfor-
mance.

When first writing a new DP algorithm, lazy data structures can
be used as this frees the programmer from having to specify the
order in which DP tables (or other data structures) need to be filled.
Once a proof-of-concept has been written, only small changes are
required to create an algorithm working on unboxed data structures.

10. Conclusion and further work
High-level, yet high-performance, code is slowly becoming a possi-
bility in Haskell. Projects like DPH [4] and Repa [22] show that one
does not have to resort to unsightly low-level (and/or imperative-
looking) algorithms anymore to design efficient algorithms. Fur-
thermore, we can reap the benefits of staying within a language
and having access to libraries and modern compilers compared to
moving to a domain-specific language and its own compiler archi-
tecture.

The ability to write ADP code and enjoy the benefits of au-
tomatic fusion and compiler optimization are obvious as can be
shown by the improvements in runtime as described in Sec. 7. Fur-
thermore, one can design dynamic programming algorithms with

5 github: branch tf
6 cf. “cons” on overlap: http://hackage.haskell.org/trac/
haskell-prime/wiki/OverlappingInstances
7 http://hackage.haskell.org/package/PrimitiveArray

the ease provided by ADP [10] and seamlessly enable further op-
timizations like strict, unboxed data structures, without having to
rewrite the whole algorithm, or having to move away from Haskell.

With this new high-performance library at hand, we will re-
design several algorithms. Our Haskell prototype of RNAfold 2.0
allows us to compare performance with its optimized C counter-
part. RNAwolf [18] is an advanced folding algorithm with a partic-
ularly complicated grammar including nucleotide triplets for which
an implementation is only available in Haskell. CMCompare [17]
calculates similarity measures for a restricted class of stochastic
context-free grammars in the biological setting of RNA families.

Some rather advanced techniques that have become more appre-
ciated in recent years (stochastic sampling of RNA structures [28]
being one recent example) can now be expressed easily and with
generality.

The ADP homepage [14] contains further examples of dynamic
programming algorithms, as well as certain specializations and
optimizations which will drive further improvements of this library.
Of particular interest will be dynamic programming problems not
in the realm of computational biology in order to make sure that the
library is of sufficient generality to be of general usefulness.

The creation of efficient parsers for formal grammars, includ-
ing CYK for context-free languages, is one such area of interest.
Another are domain-specific languages that have rule sets akin to
production rules in CFGs but do not require dynamic programming.

The ability to employ monadic combinators, which are available
in the library, will be of help in many novel algorithmic ideas. We
ignored the monadic aspect, but the library is indeed completely
monadic. The non-monadic interface hides the monadic function
application combinator (#<<), nothing more. This design is in-
spired by the vector8 library.

Coming back to the title of “sneaking around concatMap”, we
can not claim complete success. While we have gained huge im-
provements in performance, the resulting library is rather heavy-
weight (requiring both, functional dependencies and type families,
and by extension, overlapping, flexible, and undecidable instances).
Unfortunately, we currently see no way around this. As already
pointed out in the stream fusion paper [7, section 9], optimizing for
concatMap is not trivial. Furthermore, we would need optimiza-
tions that deal well with partially applied functions to facilitate a
faithful translation of ADP into high-performance code.

Right now, results along these lines seem doubtful (considering
that the stream fusion paper is from 2007) to become available
soon. In addition, our view of partitioning a subword allows us to
employ certain specializations directly within our framework. We
know of no obvious, efficient way of implementing them within the
original ADP framework. The most important one is the ability to
observe the index stack to the left of the current combinator making
possible the immediate termination of a stream that fails definable
criteria like maximal sum of sub-partition sizes.

The code generated by this library does show that we have
achieved further separation of concerns. While algebraic dynamic
programming already provides separation of grammar (search
space) and algebra (evaluation of candidates and selection via ob-
jective function) as well as asymptotic optimization by partial tab-
ulation, we can add a further piece that is very important in practice
– optimization of constant overhead. While the application of Bell-
man’s principle still has to happen on the level of the grammar and
by proof, all code optimization is now moved into the ADPfusion
library.

The ADPfusion library itself depends on low-level stream op-
timization using the stream fusion work [7, 25] and further code
optimization via GHC [36] and LLVM [24]. Trying to expose cer-

8 http://hackage.haskell.org/package/vector



tain compile-time loop optimizations either within ADPfusion or
the stream fusion library seems very attractive at this point as does
the potential use of modern single-instruction multiple-data mech-
anisms. Any improvements in this area should allow us to breach
the final ×2 gap in runtime but we’d like to close this argument
by pointing out that it is now easy to come very close to hand-
optimized dynamic programming code.

Availability
The library is BSD3-licensed and available from hackage under
the package name ADPfusion: http://hackage.haskell.org/
package/ADPfusion. The git repository, including the type fam-
ilies (tf) branch, is available on github: https://github.com/
choener/ADPfusion.
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[18] C. Höner zu Siederdissen, S. H. Bernhart, P. F. Stadler, and I. L. Hofacker. A
folding algorithm for extended RNA secondary structures. Bioinformatics, 27(13):
129–136, 2011.

[19] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A History of Haskell: Being
Lazy with Class. In Proceedings of the third ACM SIGPLAN conference on History
of programming languages, HOPL III, pages 1–55. ACM, 2007.

[20] G. Hutton. Higher-order functions for parsing. Journal of Functional Program-
ming, 2(3):323–343, 1992.

[21] M. P. Jones. Type Classes with Functional Dependencies. Programming Lan-
guages and Systems, pages 230–244, 2000.

[22] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and B. Lipp-
meier. Regular, Shape-polymorphic, Parallel Arrays in Haskell. In Proceedings
of the 15th ACM SIGPLAN international conference on Functional programming,
ICFP’10, pages 261–272. ACM, 2010.

[23] K. Lari and S. J. Young. The estimation of stochastic context-free grammars
using the Inside-Outside algorithm. Computer Speech & Language, 4(1):35–56,
1990.

[24] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Code Generation and Optimization, 2004. CGO
2004. International Symposium on, pages 75–86. IEEE, 2004.

[25] R. Leshchinskiy. Recycle Your Arrays! Practical Aspects of Declarative Lan-
guages, pages 209–223, 2009.
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