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Abstract

Lattice models are a common abstraction used in the study of protein struc-
ture, folding, and refinement. They are advantageous because the discretisation
of space can make extensive protein evaluations computationally feasible. Vari-
ous approaches to the protein chain lattice fitting problem have been suggested
but only a single backbone-only tool is available currently.

We introduce LatFit, a new tool to produce high-accuracy lattice protein
models. It generates both backbone-only and backbone-side-chain models in
any user defined lattice. LatFit implements a new distance RMSD-optimisation
fitting procedure in addition to the known coordinate RMSD method. The
program is freely available for academic download and as a web-server: http:
//cpsp.informatik.uni-freiburg.de/LatFit/

We tested LatFit’s accuracy and speed using a large non-redundant set of
high resolution proteins (SCOP database) on three commonly used lattices: 3D
cubic, face-centred cubic, and knight’s walk. Fitting speed compared favourably
to other methods, and both backbone-only and backbone-side-chain models
show low deviation from the original data (∼ 1.5Å RMSD in the FCC lattice).
To our knowledge this represents the first comprehensive study of lattice quality
for on-lattice protein models including side chains while LatFit is the only
available tool for such models.
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1 Introduction

It is not always computationally feasible to undertake protein structure studies using
full atom representations. The challenge is to reduce complexity while maintaining
detail [1–3]. Lattice protein models are often used to achieve this but in general
only the protein backbone or the amino acid centre of mass is represented [4–12].
A huge variety of lattices and energy functions have previously been developed and
applied [4, 13, 14].

In order to evaluate the applicability of different lattices and to enable the trans-
formation of real protein structures into lattice models, a representative lattice
protein structure has to be calculated. Maňuch and Gaur have shown the NP-
completeness of this problem for backbone-only models in the 3D-cubic lattice and
named it the protein chain lattice fitting (PCLF) problem [15].

The PCLF problem has been widely studied for backbone-only models [13, 16–
24]. The most important aspects in producing lattice protein models with a low
root mean squared deviation (RMSD) are the lattice co-ordination number and
the neighbourhood vector angles [18, 23]. Lattices with intermediate co-ordination
numbers, such as the face-centred cubic (FCC) lattice, can produce high resolution
backbone models [18] and have been used in many protein structure studies (e.g.
[3, 25, 26]). However, the use of backbone models is limited since they do not
account for the space required for side chain packing.

To overcome this restriction lattice protein models that include side chains have
been introduced [27–33]. Reva et al. [32] have, to our knowledge, developed the
only previous approach to solve the PCLF problem including side chains. They
apply dynamic programming to find an optimal solution according to their error
function. Unfortunately, the approach is shown to often yield no solution in the
3D cubic lattice. The CABS-tools by Kolinski and co-workers utilize a hybrid on-
lattice (backbone) and off-lattice (side chain) protein representation to study folding
dynamics but do not attempt to answer the PCLF problem [31, 34].

In this manuscript we use the side chain model definition of Bromberg and
Dill [28], where each amino acid is represented by two on-lattice monomers: one
represents the side chain and one the Cα atom. This explicit representation of side
chains prevents unnatural collapse during structural studies [35] and enables the
reconstruction of full atom protein data [36]. Full on-lattice protein models are
constrained in their possible side chain placement but enable exhaustive studies of
folding kinetics and structure space [11, 37, 38] not applicable within off-lattice side
chain models like the CABS approach.

To the best of our knowledge, there is only one other publicly available imple-
mented approach, namely LocalMove, to derive lattice protein models from real
proteins despite a large number of published methods. LocalMove is a web inter-
face introduced by Ponty et al. [22] for backbone-only models in 3D-cubic and FCC
lattice and applies a Monte-Carlo search in order to find lattice protein models.

3



Figure 1: The diagram depicts the fitting process of LatFit for side chain models.
a) Original full atom data is given. The five Cα atoms of the segment are highlighted
as balls while the backbone and side chain parts are given in light and dark green,
respectively. b) The coordinates for each amino acid to fit are extracted, i.e. for side
chain models the Cα position (light blue) and the centroid of the side chain (dark
blue). c) These positions are fitted to derive an according lattice protein model in
the underlying lattice (here 3D knight’s walk lattice).

We present our tool LatFit to tackle this lack of available implementations.
LatFit solves the PCLF problem, i.e. transforms a protein from full atom co-
ordinate data to a lattice model, and is available as both a stand-alone tool for high-
throughput pipelines and a web interface for ad hoc usage. A new fitting procedure
that optimises distance RMSD enables rotation independent lattice model creation
of protein structures. The method is applicable to arbitrary lattices and handles
both backbone and side chain representations with equivalent accuracy. A depiction
of the workflow is given in Fig. 1.

Utilising LatFit we present the first comprehensive study of lattice quality for
protein models including side chains. In our test, LatFit fitted the majority of
models on an FCC lattice within 1.5Å RMSD.

2 Material and Methods

In order to enable a precise formulation of the method we introduce some prelimary
definitions. A lattice L is a set of 3D coordinates x defined by a set of neighboring
vectors v ∈ N . The neighboring vectors are of equal length (∀v,v′∈N : |v| = |v′|),
each with a reverse within the neighborhood (∀v∈N : −v ∈ N), such that each
coordinate in L can be expressed by a linear combination of the neighboring vectors,
i.e. L = { x | x =

∑
v∈N d · v ∧ d ∈ Z

+
0 }. |N | gives the coordinate number of the

lattice, e.g. 6 for 3D-cubic or 12 for the FCC lattice.
A lattice protein structure with side chains of length l is defined by a sequence of

lattice nodes M b = (M b
1 , . . . ,M

b
l ) ∈ Ll representing the backbone monomers of the

protein (one for each amino acid) and the according sequence M s = (M s
1 , . . . ,M

s
l ) ∈
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Ll for the side chain positions. A valid structure ensures backbone connectivity
(∀i<l : M b

i −M b
i+1 ∈ N), side chain connectivity (∀i : M b

i −M s
i ∈ N), as well as

self-avoidance (∀i 6=j : M b
i 6= M b

j ∧M s
i 6= M s

j and ∀i,j : M b
i 6= M s

j ). The two sets

together define the lattice protein structure M = (M b,M s).

Fitting Procedure

Given a protein structure of length l in Protein Database (PDB) format [39], LatFit
builds up the lattice protein sequentially, one amino acid at a time, starting from
the amino-terminus.

First, all neighboring vectors v ∈ N of the used lattice L are scaled to a length
of 3.8Å, which is the mean distance between consecutive Cα atoms and close to
the mean distance between a Cα atom and the associated side chain centroid. The
latter distance was found to be on average ≈ 3.6Å within available PDB structures
(data not shown). While this ignores the shorter CIS-PRO Cα linkage and the non-
existence of a side chain for Glycine, this scaling enables a reasonable mapping of
proteins into the lattice, where each amino acid will be represented by two monomers
and all covalent bonds are scaled to |v| = 3.8Å. Therefore, all resulting measures
will be directly interpretable in Å units.

The positions for each amino acid i to be fitted, i.e. the Cα position of the
backbone P bi , and the centroid P si (geometric center) of all non-hydrogen atom co-
ordinates of the side chain, are extracted from the PDB file. They form the data to
fit P = (P b, P s).

The lattice model is derived by one of the following procedures optimising either
a distance or coordinate RMSD. Both methods are introduced for lattice proteins
including side chains but can be used to derive backbone-only lattice models as well.
A sketch of the fitting workflow is given in Fig. 1.

dRMSD Optimisation

The fitting follows a greedy iterative chain-growth procedure. The initial lattice
model’s backbone and side chain position (M b

1 and M s
1 ) are placed arbitrarily but

adjacent (M b
1 −M s

1 ∈ N). For each iteration 1 < i ≤ l, all valid placements of
the next M b

i and M s
i on the lattice are calculated. A distance RMSD (dRMSD,

Eqn. 1) evaluation is used to identify the best nkeep structures of length i for the
next extension iteration. Since dRMSD is a rotation/reflection independent measure,
symmetric structures must be filtered.

To calculate the final fit of the initial protein P , a superpositioning of the
dRMSD-optimised structure M and a reflected version M ′ is done using the method
by Kabsch [40]. The superpositioning translates and rotates M/M ′ in order to
achieve the best mapping onto P . The superpositioning with lowest co-ordinate
RMSD (cRMSD, Eqn. 2) is selected and finally returned.
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dRMSD =

√∑
i<j(|Pi − Pj | − |Mi −Mj |)2

l · ((2 · l)− 1)
(1)

with P = P s ∪ P b, and M = M s ∪M b.

cRMSD =

√∑l
i=1(|P bi −M b

i |)2 + (|P si −M s
i |)2

2 · l
(2)

cRMSD Optimisation

A cRMSD evaluation according to Eq. 2 depends on the superpositioning of the
protein and its model. Thus the best relative lattice orientation has to be identified
in addition to the best model. Once the orientation is fixed, a cRMSD evaluation
allows for a fast, additive RMSD update along the chain extension.

We implement a cRMSD optimising method following [6, 18] as an alternative
fitting strategy. In general a user defined number of rotation intervals r are per-
formed for each of the XYZ rotation axes. For each rotation, we transform P b and
P s into P̂ b and P̂ s, respectively, to obtain the rotated current target structure.

The fitting procedure follows a chain-growth approach: P b1 is placed onto an
arbitrary lattice node M b

1 . The according side chain monomer M b
1 is placed to the

adjacent node closest to the position P s1 to be represented. Now, all valid placements
of the next M b

i and M s
i on the lattice are calculated. Using the co-ordinate RMSD

(cRMSD, Eqn. 2) we evaluate all derived models and keep the best nkeep for the
next extension following [18] until all amino acids have been placed.

By applying the above cRMSD based fitting procedure we obtain the best fit
for the current rotation. An iterative application of this procedure then results in
the overall best fit for all screened rotations. Since our screen of XYZ rotations was
discretised, the current rotation might be refineable. Therefore, another rotational
refinement can be applied that investigates rref small rotation intervals around the
best rotation from the first screen [6].

The run time of the cRMSD-method scales with respect to the lattice co-ordination
number, nkeep, and most importantly the number of rotation intervals r and rref

considered.

Futher Features

Coordinate data in the PDB is often incomplete. For example flexible loop structures
are hard to resolve by current methods [41]. This results in missing coordinate data
for certain substructures within PDB files. LatFit enables a structural fitting of
even such fragmented PDB structures and produces a lattice protein fragment for
each fragment of the original protein.

Currently, LatFit supports the 2D-square, 3D-cubic (CUB, 100), 3D face cen-
tered cubic (FCC, 110) and 3D knights walk (210) lattice. The modular software
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design of our open source program enables an easy and straight forward implemen-
tation of other lattices via a specification of the according neighboring vectors N .

The implementation is open source and freely available for academic use at

http://www.bioinf.uni-freiburg.de/Software/LatPack/

Webserver

The web interface of LatFit, integrated into the CPSP-web-tools [42], enables ad hoc
usage of the tool. Either a protein structure in PDB format can be uploaded or a
valid identifier from the PDB database given. In the latter case, the full atom data
is automatically retrieved from the database.

Our default parameters enable a direct application of LatFit resulting in a
balanced tradeoff between runtime and fitting quality. The computations are done
remotely on a computation cluster while the user can trace the processing status via
the provided job identifier and according link. Results are available and stored for
30 days after production.

Supported output formats of LatFit are the PDB format, the Chemical Markup
Language (CML) format, as well as a simple XYZ coordinate output. The output
files are available for download. In addition, a highly compact string representation
of the lattice protein is also given in absolute move strings that encode the series of
neighboring vectors v ∈ N along the structure.

The generated absolute move string can be directly used to apply other lattice
protein tools onto the resulting structures, e.g. from the CPSP-package for HP-
type lattice protein models [10, 42] or from the LatPack tools for arbitrary lattice
models [11, 38].

Results are visualised using Jmol [43] for an interactive presentation of the final
protein structure. The final dRMSD and cRMSD values of the lattice protein com-
pared to the original protein are given as well as the absolute move string encoding
of the resulting structure. For an example of the LatFit web interface see Fig. 2.

Further details regarding the methods implemented, the output formats sup-
ported and the applicable parameterisation are located in the LatFit manual dis-
tributed with the source code. We provide an extensive help page and a frequently
asked questions (FAQ) section within the web interface. Note, the web server is
based on JavaServer Pages (JSP) technology and requires a connection via the JSP
standard port 8080. A web interface for ad hoc usage is available at

http://cpsp.informatik.uni-freiburg.de/LatFit/
http://cpsp.informatik.uni-freiburg.de:8080/

3 Results and Discussion

In the following, we evaluate the average fitting quality of our new LatFit tool to
results known from literature [6, 13, 18]. Furthermore, we investigate the perfor-
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Figure 2: A screenshot of the LatFit web interface result visualisation.
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a) Backbone-only models:
Park and Levitt [18] Reva et al. [14][22] Ponty et al. [22] LatFit

cRMSD dRMSD cRMSD∗ cRMSD∗ cRMSD dRMSD

CUB 2.84 2.34 2.84 (0.748 · 3.8) 3.46 (0.911 · 3.8) 2.97 2.08
FCC 1.78 1.46 - - 1.89 1.34
210 1.24 1.02 - - 1.29 0.92

b) Side chain models:
LatFit

cRMSD dRMSD
CUB 4.16 2.78
FCC 2.10 1.50
210 1.60 1.13

Table 1: Table (a) compares the RMSD mean values for backbone-only models for
approaches from literature to the results from our LatFit dRMSD-optimisation
method on three different lattices. Table (b) gives according results for side chain
including models. ∗ Some reported values had to be rescaled to Å.

mance of the new dRMSD-based fitting procedure implemented in LatFit. To this
end, we compare its results to the cRMSD-optimizing approach that follows [6, 18],
both implemented within LatFit.

We use LatFit to derive protein models on the commonly used 3D cubic, FCC,
and knights walk lattices [18] using the dRMSD-based approach, parameterised with
nkeep = 1000. Our test set was taken from the PISCES webserver [44]. We enforced
40% sequence identity cut-off, chain length 50-300, R-factor ≤ 0.3 and resolution
≤ 1.5Å to derive a high-quality set of proteins to model. Given our requirement
for side chains, Cα-only chains were ignored. The resulting benchmark set contains
1198 proteins exhibiting a mean length of 160 (σ = 64).

In accordance with previous studies [18], cRMSD and dRMSD are used to assess
model quality. cRMSD measures the similarity in according co-ordinate position of
two structures whereas dRMSD measures the similarity of intramolecular distances.
Due to the scaling of our lattice, RMSD results are in Å rather than the scaled
values provided by Ponty et al. [22].

Our backbone model RMSD values presented in Table 1 are competitive or su-
perior to known fitting results known from the literature [6, 13, 18]. Both the new
dRMSD- as well as the reimplemented cRMSD-optimisation method reproduce the
high quality previously achieved by other methods using the FCC and 210 lattices.
The slightly higher mean cRMSD values for the dRMSD method are due to the
non-optimisation of that measure. Note, LatFit outperforms the results reported
for LocalMove by Ponty et al. [22]. We found the LocalMove webserver currently
not working for the proteins tested. Therefore, only results reported in [22] for the
3D cubic lattice and no FCC results are available.
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LatFit is designed for side chain models and results here are strong (see Ta-
ble 1b). In general, side chain models produce slightly larger RMSD values than
the equivalent backbone-only model. This is due to the fact that the variation in
distance between consecutive Cα atoms (fitted in both models) is lower than that
between Cα atoms and their side chain centroid (fitted only in side chain models).
In lattice models every distance is fixed at 3.8Å which results in a higher mean
displacement of the side chain. Nevertheless, high accuracy fits are still attained.
Results in our test set have mean dRMSDs of about 1.2Å and 1.5Å in the 210 and
FCC lattice, resp., for both optimisation strategies. When comparing the dRMSD-
optimisation with the cRMSD-optimising version, we observe very similar results.
This is in accordance to our observations from the backbone-only models.

The strength of LatFit is its ability to produce both side chain and backbone-
only lattice protein models. High accuracy models can be produced on the FCC
lattice within seconds to minutes depending on the parameterisation. Fits on the
210 lattice take orders of magnitude longer for relatively little gain in model accuracy.
For this reason we recommend using the FCC lattice for detailed high-throughput
protein structure studies in both backbone-only and side chain representing lattice
models.

4 Concluding remarks

LatFit enables the automated high resolution fitting of both backbone and side
chain lattice protein models from full atomic data in PDB format. We demonstrate
its high accuracy on three widely used lattices using a large, non-redundant protein
data set of high resolution. Side chain fits show on average a higher deviation than
backbone models, but both produce high quality fits with results generally less than
1.5Å on the face-centred cubic lattice. To our knowledge, this is the first study
and publicly available implementation for side chain models in this field. Available
via web interface and as a stand-alone tool, LatFit addresses the lack of available
programs and is well placed to enable further, more detailed investigation of protein
structure in a reduced complexity environment. Even now the LatFit webserver is
in daily use worldwide (monitored via Google Analytics1), which shows the need for
efficient implementations such as LatFit.
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