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Abstract

RNA has become an integral building material in synthetic biology. Dominated by their secondary structures, which

can be computed efficiently, RNA molecules are amenable not only to in vitro and in vivo selection, but also to rational,

computation-based design. While the inverse folding problem of constructing an RNA sequence with a prescribed

ground-state structure has received considerable attention for nearly two decades, there have been few efforts to design

RNAs that can switch between distinct prescribed conformations.

We introduce a user-friendly tool for designing RNA sequences that fold into multiple target structures. The un-

derlying algorithm makes use of a combination of graph coloring and heuristic local optimization to find sequences

whose energy landscapes are dominated by the prescribed conformations. A flexible interface allows the specification

of a wide range of design goals. We demonstrate that bi- and tri-stable “switches” can be designed easily with moder-

ate computational effort for the vast majority of compatible combinations of desired target structures. RNAdesign is

freely available under the GPL-v3 license.

Keywords: RNA sequence design; inverse folding; multi-stable structures; graph coloring

∗Corresponding authors

Preprint submitted to Manuscript July 19, 2013



1. Introduction

A wide variety of RNA elements requires transi-

tions between two or more different spatial conforma-

tions. A prime example are riboswitches. These regula-

tory elements, which are abundant in prokaryotes, regu-

late mRNA transcription or translation in response to

metabolite concentrations, reviewed by Serganov and

Nudler (2013). Substrate binding or unbinding at the

aptamer component of the riboswitch triggers a con-

formational change of the molecule that is propagated

to the effector location, where it causes the formation

or destruction of a terminator hairpin, or the expo-

sure or sequestration of the Shine-Dalgarno sequence.

RNA thermometers are a variation of this theme (Kort-

mann and Narberhaus, 2012). Similar mechanisms have

been reported in eukaryotic genome regulation for ele-

ments in untranslated parts of mRNAs that respond to

protein binding (Ray et al., 2009). Major conforma-

tional changes also play a crucial role in viroid pro-

cessing (Baumstark et al., 1997), in the replication cy-

cle of self-replicating RNA synthesized by Qβ-replicase

(Biebricher et al., 1992), the folding of rRNA after exci-

sion of self-splicing introns (Cao and Woodson, 2000),

and the functioning of the hok/sok host-killing system

(Gultyaev et al., 1997).

Regulatory RNA elements that respond to external

triggers are attractive components in synthetic biol-

ogy (Wieland et al., 2009; Win et al., 2009; Topp

and Gallivan, 2010), making the design of novel RNA

components an interesting task of practical importance

(Isaacs et al., 2006). Recent success in designing a

synthetic riboswitch acting on transcription emphasizes

the feasibility and usefulness of rational design ap-

proaches for RNAs with distinct, prescribed confor-

mations (Wachsmuth et al., 2013). Similar principles

have been used to construct a riboswitch based on IRES

structures (Ogawa, 2011).

The task of designing an RNA sequence with a pre-

scribed secondary structure as its ground state is known

as the “inverse folding problem”. Although this com-

binatorial problem is hard in general (Schnall-Levin

et al., 2008), most instances of practical interest can

be solved by simple hill-climbing heuristics: An ini-

tial random seed is progressively “mutated” to approach

the desired folding properties. This simple idea is

the basis of RNAinverse (Hofacker et al., 1994) and

later, more efficient approaches such as RNA-SSD (An-

dronescu et al., 2004; Aguirre-Hernández et al., 2007),

as well as the very efficient optimization algorithm

(Zadeh et al., 2011b) implemented in NUPACK (Zadeh

et al., 2011a). INFO-RNA (Busch and Backofen, 2006)

uses a dynamic programming approach to compute the

most stable sequence for the prescribed secondary struc-

ture as a starting point for a local search heuristic. A

multi-objective optimization approach considering the

trade-off between thermodynamic stability and struc-

tural similarity is used in MODENA (Taneda, 2011). In-

verse folding problems can also be solved by an exact

branch and bound algorithm (Burghardt and Hartmann,

2007). An alternative, essentially enumerative approach

that covers certain classes of pseudoknots is described

in (Gao et al., 2010). RNAexinv (Avihoo et al., 2011)

includes some additional attributes and also the muta-

tional robustness and the minimum free energy. As an

alternative to iterative improvement, a global sampling

approach was proposed in Levin et al. (2012).

Much less is known about the design problem for

multi-stable RNAs. In this case, the design goals in-

volve more complex properties of the energy landscape

such as prescribed local optima and energy barriers. A

web tool for this type of design problem is ARDesigner

(Shu et al., 2010), which implements many of the ideas

discussed in Flamm et al. (2001). The most salient dif-

ference between the inverse folding problem for single

and multiple structural constraints is that a solution need

not exist in the latter case (Flamm et al., 2001). Thus,

computing feasible solutions as starting points for sub-

sequent optimization steps, and —in particular— sam-

pling these starting points so that biases can be avoided,

becomes a non-trivial problem. Flamm et al. (2001) de-

scribe a uniform sampling procedure for two prescribed

secondary structures. In this case, a non-empty set of

feasible solutions always exists (Reidys et al., 1997).

The general case has been discussed by Abfalter

et al. (2003), but no corresponding software has become

available. Lyngsø et al. (2012) implemented a much

simpler, approximate sampling of initial conditions to-

gether with a genetic algorithm in their Frnakenstein

tool. Similar ideas have been used by (Ramlan and

Zauner, 2011). In the present contribution, we con-

solidate and expand on our earlier computational ap-

proaches to designing RNA sequences with multiple

prescribed conformations that satisfy additional, com-

plex constraints and provide with RNAdesign an imple-

mentation for a wide variety of RNA design tasks.

2. Theory

2.1. Notation

Let A denote the alphabet of monomers and let B ⊂

A×A be the set of allowed base pairs. We assume that

B is symmetric. For RNA, we have A = {A,U,G,C}
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and B = {AU,UA,GC,CG,GU,UG}. We denote a

sequence consisting of n monomers xi ∈ A by x =

x1x2 . . . xn.

A secondary structure Θ on x is a set of pairs (i, j),

1 ≤ i < j ≤ n such that for all (i, j), (k, l) ∈ Θ holds

1. (xi, x j) ∈ B

2. (i, j) = (k, l) or {i, j} ∩ {k, l} = ∅, i.e., Θ is a match-

ing on {1, 2, . . . , n}

3. If i < k < j or i < l < j, then i < k < l < j, i.e.,

base pairs do not cross.

Given a secondary structure Θ, we write

C[Θ] =
{

x ∈ An
∣

∣(xi, x j) ∈ B for all (i, j) ∈ Θ
}

for the set of sequences that can form the structure Θ.

We say that a sequence x ∈ C[Θ] is compatible with Θ.

To every pair (x,Θ) of a sequence x and a secondary

structure Θ compatible with x, an energy f (x,Θ) can be

assigned. In practice, f (x,Θ) is computed as the sum

of energy contributions of stacked base pairs and loops,

which in turn are derived from a large body of accurate

thermodynamic measurements (Mathews et al., 2004).

The energy landscape for a fixed sequence x is de-

fined by the function fx : Θ 7→ f (x,Θ) together with an

adjacency relation ∼ defined between secondary struc-

tures. As usual, we regard two secondary structures as

adjacent if they differ by a single base pair. Later, we

will use properties of fx in the specification of the de-

sign goals. This energy landscape is a high-dimensional

combinatorial object that cannot be visualized in its en-

tirety.

Coarse-grained representations must thus be em-

ployed. Ding et al. (2005), proposed clustering of a

Boltzmann sample. Quarta et al. (2009) favoured a

scatter plot of folding energy versus base pair distance

from the ground state. RNA2Dfold (Lorenz et al., 2009)

considers an abstracted energy surface with two anchor

points. Throughout this presentation we will make use

of the barrier tree of the landscapes as a comprehen-

sive presentation (Flamm et al., 2000; Wolfinger et al.,

2004). The leaves of the barrier tree are the local min-

ima (metastable states) of the landscapes, which are

connected by the saddle points separating them. The

height of a node corresponds to the energy of the corre-

sponding secondary structure, so that both energy differ-

ences between (meta)stable states and their separating

barriers can be read off the tree immediately.

For the examples in this contribution we use ex-

haustive enumeration with the programs RNAsubopt
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Figure 1: The M = 6 secondary structures on the l.h.s. give rise to the

dependency graph G in which each edge corresponds to a base pair in

at least one of the input structures. Each edge is thus constrains the

set of possible sequences: the endpoints of each edge must be differ-

ent nucleotides that can pair with each other. To make the example

smaller, the minimum number of unpaired positions in a hairpin is

reduced to 2 here. (Adapted from (Abfalter et al., 2003))

(Wuchty et al., 1999) and barriers to construct ex-

act barrier trees. Approximations could be obtained

by folding algorithms that directly address metastable

structures (Waldispühl and Clote, 2007; Li and Zhang,

2011) and heuristics to estimate saddle points (Morgan

and Higgs, 1998). Using the barrier trees enables a wide

variety of design goals to be expressed in a concise man-

ner.

Now consider a collection {Θ1,Θ2, . . . ,ΘM} of M dis-

tinct secondary structure of the same length n. Is there a

sequence x that is simultaneously consistent with all the

Θi? If so, our task is to determine x such that all the pre-

scribed Θi features as prominently as possible among

the structures formed by x. We first address the exis-

tence question.

2.2. The Search Space C

Given {Θ1,Θ2, . . . ,ΘM}, the set of sequences simul-

taneously consistent with all these secondary structures

is

C = C[Θ1] ∩ C[Θ2] ∩ · · · ∩ C[ΘM] (1)

Hence, the design problem is solvable if C , ∅. This

question is addressed in Flamm et al. (2001).

The dependency graph G = G(Θ1,Θ2, . . . ,ΘM) has

n vertices corresponding to the sequence positions of x.

There is an edge connecting k ∈ V(G) with l ∈ V(G)

if and only if (k, l) is a base pair in at least one of the

secondary structures Θi, i.e.,

E(G) =

M
⋃

i=1

Θi (2)

see Fig. 1.

Generalized Intersection Theorem. (Flamm et al., 2001)

Suppose B ⊆ A × A contains at least one symmetric
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Figure 2: Statistics of the fraction of bipartite graphs versus sequence

length with different numbers M of prescribed structures generated

with uniform distribution for the set of all secondary structures of

fixed chain length. • M = 3, � M = 4, � M = 5, N M = 6, and

H M = 7.

base pair, and G is the dependency graph of a set of

secondary structures. Then:

1. C , ∅ if G is bipartite. For the RNA alphabet,

bipartiteness of G is also a necessary condition.

2. There are |C | =
∏

components ψ of G

F(ψ) sequences in

C , where F(ψ) is the number of sequences that are

compatible with a connected component ψ of G.

The proof of the intersection theorem makes use of

two ingredients. (1) Base-pairing in the natural alpha-

bet divides the letters into two subsets V1 = {G, A} and

V2 = {C,U} with base-pairs allowed only between the

subsets but not within them. (2) Since edges in the

dependency graph are base pairs and must have a nu-

cleotide from V1 at one end and a nucleotide from V2

on the other end, it must be possible to color the ver-

tices of the dependency graph with V1 and V2. A simple

breadth-first-search coloring algorithm can be used to

test whether G is bipartite.

Even for M = 3 different secondary structures, it is

simple to construct triples of structures with conflict-

ing base pairs that lead to a triangle in G(Θ1,Θ2,Θ3).

In order to estimate the probability of a non-empty C ,

we sampled secondary structures with uniform proba-

bility as described by Tacker et al. (1996) and checked

whether the dependency graph of M-tuples of structures

is bipartite. For M ≥ 3, we find an exponential decrease

with sequence length, see Fig. 2. However, the expo-

nent is very small for M = 3, indicating that tri-stable

switches in particular should not be uncommon.

The exponential decrease with length n can be ex-

plained as follows: The obstructions to bipartiteness can

be small, i.e., triangles corresponding to just three in-

compatible base pairs in three sequences. It appears

with some finite probability in a triple of positions.

Hence the chance to avoid such configurations in long

sequences decreases exponentially in the case of ran-

dom, unrelated input structures. If the mutual structure

distances are bounded, however, so is the chance to find

inconsistent configurations.

2.3. Sequence Design as Graph Coloring

In this section, we outline a dynamic programming

approach that can be used to enumerate and uniformly

sample from C . To this end, we consider sequences

as A-colorings of the dependency graph G, that is, as

maps c : V(G) → A which obey the pairing rules, i.e.,

(c(k), c(l)) ∈ B for all (k, l) ∈ E(G).

The important observation for our purposes is that

colorings can be obtained by combining partial color-

ings: Let H be a subgraph of G, and consider two vertex

sets U,W ⊆ V(H). A partial coloring of U in H is a map

cU : U → A such that (c(u), c(v)) ∈ B for all u, v ∈ U

with (u, v) ∈ E(H). Partial colorings cU and cW on U

and W, respectively, are compatible if (i) cU(y) = cW (y)

for all y ∈ U ∩W and (ii) (cU(u), cW (v)) ∈ B for u ∈ U

and v ∈ W with (u, v) ∈ E(H). Denote by ∂(U,W)

the set of vertices in which U and W overlap or are

adjacent. Denote by c(U, a) and c(W, b) the sets of all

those colorings on U and W that are fixed to some as-

signments a and b on ∂(U,W). Then the set of color-

ings in U ∪ W consists exactly of the combinations of

colorings on U and W for which a and b are consis-

tent, i.e., identical on U ∩ W and satisfying the color

constraints on adjacent vertices. For simplicity, write

c(U ∪W) =
⋃

a,b c(U) ◦ c(U ∪W)

The idea is to use this type of composition of the

set of all conflict-free colorings for the step wise con-

struction of c(G). Graph coloring is a well-known NP-

complete problem (Jensen and Toft, 1994). Of course,

our approach cannot overcome this in general. We can,

however, search for a decomposition of G that allows us

to concatenate partial colorings with as little resource

consumption as possible.

It is particularly easy to compose colorings at cut ver-

tices. In the first step, we therefore decompose (each

connected component of) G into its blocks, i.e., the two-

connected components and those edges that are not con-

tained in a cycle, Fig. 3. The blocks and cut-vertices,

i.e., the vertices common to two or more blocks, can be

determined in linear time. For each block B, we then

determine the sets of colorings c(B, q) with fixed colors
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Figure 3: Decomposition of the dependency graph of Fig. 1 into its

blocks. Colors need to be constrained only at the cut vertices x and y.

The number of colorings in this example is

|c(G)| =
∑

cy

|c(G′′2 , cy)| ·
∑

cx

|c(G′2, cxcy)| · |c(G1, cx)| · |c(G3, cx)| .

(Adapted from (Abfalter et al., 2003))

q assigned to cut vertices of G in B. The two-connected

components are arranged in a tree. Choosing an arbi-

trary root, we can compose the colorings recursively by

traversing from the leafs up.

Since two-connected components can be large, we

need to decompose them further. While it might seem

natural to use successive higher-order connectivities for

this purpose, we explore here an alternative approach.

Let G be a two-connected graph. An ear decomposi-

tion of G is a sequence E = (P0, P1, . . . ) of paths where

G0 = P0 is a single vertex,

Gk =

k
⋃

i=0

Pi (3)

and Gµ = G, with µ = |E|−|V |+1 being the dimension of

the cycle space of G. An ear decomposition is “open” if

Pi, i ≥ 1, has two distinct end points in G, see Fig. 4 for

an example. An open ear decomposition exists exactly

for two-connected graphs (Whitney, 1932). We use the

EDS algorithm by Maon et al. (1986) to produce the

decomposition. For details, see Sec. 3.1.

With the ear decomposition E of G we associate a

sequence of subgraphs of G for which we construct the

colorings:

Gk =

µ
⋃

i=k+1

Pi (4)

By definition G0 = G and Gµ = ∅, the empty graph.

Further, we have

Gk = Pk+1 ∪Gk+1 (5)

The intersection Ak := Gk ∩ Gk is completely discon-

nected for each k and by construction forms a cut in G.

We call these vertex sets the attachment points of Gk on

Gk.

Our task is now to construct and evaluate the sets

c(Gk, ak) of colorings of the graph Gk with colors ak

fixed on the set Ak of its attachment points. To this end,

we start from the outer-most path Gµ−1, for which the

colorings are easily constructed and counted, and pro-

ceed inwards until we reach G0 = G.

These sets c(Gk, ak) can be computed by combining,

in the above sense, colorings of the path Pk+1 with col-

orings of the subgraph Gk+1, again with prescribed as-

signments ak+1 at its attachment points Ak+1.

c(Gk, ak) = c(Pk+1, b) ◦ c(Gk+1, ak+1) (6)

Since Ak, Ak+1, and Pk+1 are not disjoint in general, the

colorings ak, b, and ak+1 at the sets of attachment points

must, of course, coincide at their intersections. How-

ever, as Pk+1 and Gk+1 are not connected by any other

edges in G, the concatenation ◦ of the coloring sets is

constrained only by the common vertices. In particular,

the end points of Pk are attachment points in Ak, and

the attachment points of Gk+1 are either contained in the

interior of Pk+1 (b and ak+1 coincide on Ak+1 \ Ak), or

they are attachment points of Gk+1, and thus ak = ak+1

on these vertices.

The path Pk+1 is subdivided by the interior attachment

points into |Ak+1 \ Ak | + 1 sub-paths. For any coloring

condition B, it is straightforward to compute the set of

colorings on a path of length ℓ with fixed colors at its

endpoints, see e.g. Flamm et al. (2001). From these,

colorings of longer paths with fixed colors at the attach-

ment points are easily obtained.

This decomposition of the sets of colorings forms

the basis for the recursive enumeration of colorings by

dynamic programming. In each decomposition step k,

we need to store the number of colorings |c(Gk, ak)| of

Gk given a fixed coloring of the attachment vertices,

i.e., |A||Ak | values. The maximum α = maxk |Ak | over

the steps of the ear decomposition thus determines the

memory requirements.

The CPU time required to compute one entry in this

matrix is determined by the set Ak+1 \ Ak of attachment

points of Gk+1 that are attached to the interior of Pk+1.

The total effort to count all colorings is therefore |A|β

with β = maxk(|Ak |+ |Ak+1 \Ak |). The exponents α and β

depend explicitly on the spanning tree of G used in the

construction of the ear decomposition. Fig. 5 shows that

α and β can vary dramatically, depending on the choice

of the the spanning tree. Note that α and β are strongly

correlated. The data suggest that |Ak+1 \ Ak | ∈ {0, 1, 2},

i.e., in each step at most two earlier attachment points

are consumed.

2.4. Generating Colorings

For small connected components of C it is possible

(and efficient) to explicitly enumerate all colorings. For

5



G0G6 G5 G4 G3 G2 G1

G6 G5 G4 G2 G1 G0G3

P6
P5

P4

P3
P2

P1 P0

Figure 4: Graphs associated with an ear-decomposition: (top) Ear-decomposition of a block: In each step from G6 to G0, a path (ear) is removed

until a central cycle is left. (bottom) The corresponding Gk of each step is shown. The attachment points of the ears are depicted by unfilled

vertices. For more compact illustration, a non-bipartite graph is shown. (Adapted from (Abfalter et al., 2003))
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Figure 5: Distribution of the exponents α (memory requirements) and

β (CPU runtime) for a fixed graph with µ = 13. 1000 spanning trees

were generated by replacing randomly selected tree edges with non-

tree-edges. Each vertex was used as root for the Maon/Schieber al-

gorithm to compute the ear decomposition. The (rare) best spanning

trees yield α = 4 and β = 5 in this example.

large components, however, this becomes inefficient,

and we must resort to a sampling technique. To this end,

we use the generic idea of stochastic backtracing in dy-

namic programming, which is used in a similar context,

for instance, to generate samples of secondary struc-

tures (Tacker et al., 1996; Ding and Lawrence, 2001;

Waldispühl and Clote, 2007). Here, we set for each k

from 1 to µ the colors ak for the attachment points with

probabilities proportional to |c(Gk, ak)|. In the second

step, we sample the colorings for the connecting paths,

whose end points now have fixed colors, as described

in Flamm et al. (2001). This simple procedure ensures

uniform sampling from C and hence unbiased gener-

ation of feasible solutions. Biased samples could, of

course, be generated with less effort, for example, by

depth first search search with a random vertex order. In

many cases, however, it is desirable to minimize a priori

sequence biases.

2.5. Local Moves and Optimization

All heuristics for RNA design use “local moves” to

navigate C in an attempt to further improve the se-

quence. The most obvious move, i.e., changing the

color of a single vertex of G, however, will typically

not be feasible as it destroys compatibility. Instead we

need to always replace all vertices belonging to one con-

nected component of the dependency graph. For de-

signs with a single target this reduces to mutating a

single unpaired base or replacing a base pair with an-

other one. This type of structure-dependent moves is

also used, for instance, to explore neutral networks of

sequences folding into the same secondary structures

(Schuster et al., 1994). As the number of target struc-

tures grows, the dependency graph will have larger but

fewer connected components. This means that the frac-

tion of the sequence changed in a single “local move”

becomes larger and larger.

In the context of sequence design with design goals

specified in terms of the energy landscape, locality in

terms of sequence is highly desirable. The RNA energy

model has the interesting property that the difference in

minimum free energy between two sequences that dif-

fer by a single nucleotide is bounded by a constant c

(Fontana et al., 1993). This is a consequence of the ad-

ditivity of the energy model, which limits the effect of

6



a mutation to the maximum energy difference between

two adjacent loops upon removing their separating base

pair, in practice twice the maximum stacking energy. As

an immediate consequence

| f (x,Θ) − f (x′,Θ)| ≤ cdH(x, x′) (7)

where dH( . , . ) denotes the Hamming distance. Small

changes in the sequence therefore cause only moderate

changes in the Boltzmann distribution of structures and

are thus less prone to destroying achievements of past

optimization steps.

The design goals are represented by an objective

function Ξ : C → R that assigns a “fitness” to each

sequence x, i.e., a feasible coloring of G. We use a sim-

ple, Simulated Annealing-like strategy to optimize Ξ. In

each step, a candidate x′ is generated by a local move in

one of the components of G. We accept x′ if

Ξ(x′) ≤ Ξ(x) + t, t ∼ exp(λ) (8)

The new candidate sequence x′ is always accepted if it

is better according to the optimization criterion Ξ than

its parent x. To avoid locally optimal traps, a candidate

sequence is also accepted if the energy difference is less

than an exponentially distributed random variate (drawn

new each time). The parameter λ controls the speed

with which local optima are left again.

2.6. Design Goals

This fitness function Ξ can combine many features

of the energy landscape of x that can be expressed

in terms of the secondary structure model. Examples

of such building blocks are properties of the Boltz-

mann ensemble of secondary structures of x such as

its partition function Z(x), the ensemble free energy

g(x) = −RT ln Z(c), the minimum free energy f (x) =

minΘ f (x,Θ), the base-pairing probability matrix P(x),

and the energy of a given structure f (x,Θ). All these

properties are readily computed by RNA folding algo-

rithms as implemented, for instance, in the Vienna RNA

Package (Hofacker et al., 1994; Lorenz et al., 2011).

A basic design task, on which we focus here, is

to construct RNA sequences for which the prescribed

structures Θi have nearly the same folding energy and

which together dominate the Boltzmann ensemble. The

Θi will thus correspond to the ground state and the most

important metastable states in the fitness landscape. The

simplest fitness function for this task aims at simultane-

ously minimizing the energy of the Θi, for instance

Ξ(x) = max
i=1...M

f (x,Θi) (9)

Since optimization of equ.(9) forces an increase in the

fraction of the most under-represented target structure,

it leads to comparable abundances of all prescribed

structures. The advantage of this ansatz is that it can

be evaluated very efficiently, requiring only the deter-

mination of the energy of M individual secondary struc-

tures and avoids the use of the computationally demand-

ing RNA folding algorithm. The effort to evaluate Ξ(x)

is only O(Mn), compared to the cubic in n runtime of

RNA folding. A disadvantage, however, is the lack of

direct control over the ground state and hence over the

ensemble in which the Θi are embedded.

Zadeh et al. (2011b) argued that design fitness func-

tions should not only contain the positive design goals

but also encapsulate negative design goals, i.e., they

should explicitly penalize unwanted structures in the

Boltzmann ensemble. A good example is the ensem-

ble defect d(x,Θ), defined as the expected base pair dis-

tance of a random structure picked from the Boltzmann

ensemble of the target structure Θ. It can be computed

in quadratic time from P(x) (Zadeh et al., 2011b). The

sum of the ensemble defects is one of several conceiv-

able generalizations of the multi-target design problem.

Flamm et al. (2001) used a different form of the ob-

jective for bistable structures, aiming directly at mini-

mizing the difference between the energies of the indi-

vidual structures and the ensemble free energy. For M

structures, this approach yields

Ξ(x) =

(

K
∑

k=1

f (x,Θk) − g(x)

)

+ γ

(

∑

k<l

( f (x,Θk) − f (x,Θl))
2

) (10)

The first part of equ. 10 minimizes the difference be-

tween the energies of the target structures and the Gibbs

free energy of the ensemble, while the second part

yields targets that have approximately the same energy.

The weight γ allows us to favour one goal over the other.

Fitness functions based on RNA folding are expensive

to evaluate but promise better designs. An appealing

approach is thus to first find a sequence using equ. 9,

which is then used as the initial seed for further opti-

mization using equ. 10 or another scheme.

Additional design goals can easily be included in Ξ.

For instance, a prescribed sequence composition can

be approached by suitable penalty terms for sequence

bias. In particular, a log-multinomial function is avail-

able that allows penalizing mono-nucleotide distribu-

tions that deviate from a user-selected probability vec-

tor. More elaborate features of the fitness landscape,
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such as minimum heights of energy barriers, could also

be included as discussed in Flamm et al. (2001), albeit

at high computational cost.

2.7. Summary of the Design Algorithm

The complete design algorithm consists of the follow-

ing steps:

1. INPUT: a set of secondary structures {Θi|1 ≤ i ≤

M} and the objective function Ξ.

2. Construct the dependency graph G(Θ1, . . . ,ΘM).

3. If G is not bipartite, stop since the design problem

is unsolvable.

4. Decompose the graph first into its connected com-

ponents, then further into the biconnected compo-

nents, and finally construct an open ear decompo-

sition for each block.

5. Compute the numbers |c(H, a)| of colorings for

the various subgraphs in the decomposition with

fixed color assignments at their attachment and cut

points.

6. Using these tables, generate sequences with uni-

form distribution on the set of compatible se-

quences.

7. Optimize these start sequences by local search with

respect to the desired cost function Ξ for the design

problem at hand.

8. OUTPUT: Optimized nucleic acid sequence com-

patible with all predefined structures.

3. Results

3.1. Implementation

We opted to implement the algorithm described

above in the functional programming language Haskell

(The GHC Team, 1989–2013; Hudak et al., 2007).

Haskell promotes a high-level style of programming and

makes it easy to separate the logically distinct facets of

an algorithm. In terms of implementation, the func-

tional style of programming sometimes requires ex-

pressing an algorithm differently than known from the

imperative world (Okasaki, 1999; Bird, 2010). Here,

this concerns in particular the graph decomposition al-

gorithm and the evaluation of candidate sequences.

The ear decomposition algorithm of Maon et al.

(1986), which we use to handle complex components of

the dependency graph, is implemented using the func-

tional graph library (Erwig, 1997). The decomposition

algorithm by Maon et al. (1986) adapts well to a func-

tional description as it is not described in terms of an

explicit graph coloring, but rather as a decomposition of

the original graph into a spanning tree, tree edges, and

non-tree edges. The resulting ears are then colored by

legal assignments of base pairs. The laziness properties

of algorithms implemented in Haskell make it possible

to handle assignments with a large number of legal as-

signments without having to explicitly store them.

The evaluation of candidate sequences is a poten-

tial performance bottleneck, as it requires evaluation

of the energy of sequence candidates given the struc-

ture constraints. We make use of fusion (Hinze et al.,

2011), a compiler optimization technique aimed at re-

moving intermediate data structures in functional pro-

grams, which often yields executables with a runtime

performance comparable to that of C implementations.

In particular, we use stream fusion (Coutts et al., 2007;

Leshchinskiy, 2009) during sequence sampling. Energy

evaluations are performed in a functional version of the

Vienna RNA folding algorithms (Lorenz et al., 2011),

which are also fused (Höner zu Siederdissen, 2012).

In order to facilitate the exploration of different ob-

jective functions, the user can supply Ξ on the command

line as a function of the primitive features outlined in

Sect. 2.6. It is easy to extend both, the design algorithm

and the command line parser to include additional terms

if necessary. The current implementation of RNAdesign

uses equ.(10) as the default objective function.

In many cases it is important to enforce sequence

constraints. For example, the Shine-Dalgarno sequence,

the start codon, and the sequence of the ligand-binding

aptamer are typically fixed in design problems for ri-

boswitches. We therefore provide an option to restrict

the set of nucleotides that may be varied during the de-

sign process. The current implementation allows the

user to specify, for each sequence position, the set of al-

lowed nucleotides. It is important to note that sequence

constraints further shrink C and may render a design

problem infeasible even if the prescribed target struc-

tures are consistent. RNAdesign of course detects such

cases.

In addition to the functional implementation, we are

developing a memory-efficient implementation in C++

to extend the range of applications to large complex

problems, i.e, very long sequences and M ≫ 3 inde-

pendent target structures.

3.2. Artificial SV11-like Bistable Riboswitches

SV11, a 115 nt long RNA, is a recombinant of the

plus and minus strands of the phage-derived MNV-

11 RNA. Both molecules are efficient substrates for
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Figure 6: A designed sequence for the SV11 riboswitch. (Dotplot) The upper triangular matrix plots the probability for each individual nucleotide

to be paired. The lower triangular plot shows the two structural constraints. (Structures) In red, the lower-energy structure that forms a Y-shaped

multi-branched loop and two additional exterior loops, and in blue the single long helix structure. The red structure is almost equivalent to the

minimum-free energy structure, which forms a single additional AU base pair, resulting in a three-nucleotide hairpin instead of a five-nucleotide

hairpin with an additional gain of 0.6 kcal/mol. Accordingly, the second structure in the suboptimal ensemble is the red structure, followed by

the blue structure at the third position in the ensemble with a difference of 0.9 kcal/mol. (Barrier tree (left bottom) and folding kinetics (right

bottom)) The red and blue curves correspond to the target structures and are dominant in the kinetics. The dashed lines are structures that are very

similar (base pair distance of five or less) to the target structures. As the energy distance to the open chain is too large to be included in the barrier

and kinetics calculations, we started from a structure (colored black) that is somewhat related to the red target.

Qβ replicase and arise consistently in artificial selec-

tion experiments (Biebricher et al., 1992). SV11 is

frequently used as an extreme example of an RNA

whose properties are determined by folding intermedi-

ates rather than its thermodynamic ground state alone.

Co-transcriptional folding results in a metastable con-

formation consisting of a Y-shaped multibranched struc-

ture and two additional exterior hairpin loops, which is

replicated by Qβ replicase. The ground state, in con-

trast, is a single long helix structure with a hairpin which

no longer serves as a template for the Qβ replicase. The

metastable structure can spontaneously rearrange to the

ground state. This transition is effectively irreversible

because of an energy difference exceeding 30 kcal/mol,

as computed by RNAeval (Lorenz et al., 2011). For the

same reason, the base pair probabilities in the equilib-

rium ensemble give no indication of important structural

alternatives.

Because of its extreme properties, the SV11 structure

pair has been used repeatedly as an example, includ-

ing for design tasks (Lyngsø et al., 2012) whose goal

is to find a sequence that realizes the two conforma-

tions with nearly equal energy. In Fig. 6, we show that

our software readily solves this computational problem.
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Figure 7: Example of a tri-stable switch molecule. (Dotplot) All structures have great statistical weight within the thermodynamic equilibrium.

Base pairs belonging to one structure are colored red, green, or blue, respectively. All structures share four base pairs, which are colored black.

(Structures) The three structures correspond to the three lowest energy structures of the RNA. The red (top-left) structure is the mfe structure, the

green and blue structures have free energies 0.1 and 0.3 kcal/mol above the ground state, respectively. (Barrier tree (left, bottom) and folding

kinetics (right, bottom)) The desired structures of the tri-stable switch form the most prominent local minima in the folding landscape. Kinetic

curves in brownish colors correspond to mixed conformations where compatible structural features of different local minima structures have been

blended into a single structure.

The sequence proposed by our algorithm using the de-

fault optimization criterion of equ. 10 is almost opti-

mal. Both structures differ by only 0.9 kcal/mol. The

minimum-free energy structure differs from the com-

plex (red) structure by a single AU base pair.

Using only the criterion in equ.(10), the algorithm re-

quired 120 seconds on an Intel Core i5-3570K. In

total, 50 candidates were created, with a thinning of 200

(i.e., only every 200th candidate is retained) with an ini-

tial burn-in period of 100 candidates. Of the 50 candi-

dates that are returned, only the top-most was selected.

Other, suboptimal, solutions are returned to provide al-

ternatives that can be evaluated before running the algo-

rithm again.

3.3. A Tri-stable Riboswitch

In Fig. 7 we present a small, artificial example of a

tri-stable system with three prescribed target structures

(red, green, and blue). The computational design prob-

lem is solved by our tool using the default fitness func-

tion equ.(10) within 10 000 optimization steps, amount-

ing to 45 seconds on standard PC hardware. The de-

signed sequence readily folds into exactly these three

structures. The red structure is the minimum-free en-

ergy structure, the green and the blue ones are the first

two sub-optimal local minima in the energy landscape.

Alternative structures with non-negligible probability

have a small base pair distance from one of the targets.

As indicated by the partition function dotplot, the tar-

gets are very well represented in the structural ensem-

ble. Base pairs that are not part of one of the three

design goals are very rare. There are, however, some

“mixed” structures that facilitate the transition between

the three local optima. We use a barrier tree to visualize

the landscape of the designed sequence. Simulated fold-

ing kinetics, starting from the open chain, shows that the
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Figure 8: Performance of the sequence design algorithm on 100 ran-

domly generated instances. (Top) Tri-stable targets. Of the 300 struc-

tures, the 288 that appear within the 5 kcal/mol window are shown.

The remaining 12 structures have 1 ≤ dbp ≤ 14. The lowest-energy

structure (red) is typically very close (mean 0.93, median 0.4 kcal/mol

difference) to the mfe structure, the second (mean 1.17, median 0.7

kcal/mol; green) and the third (mean 1.41, median 0.9 kcal/mol; blue)

structure are more distant. (A small amount of jitter was added to

better separate data points). (Below) Four target structures. Only 24

of the 400 target structures lie outside the 5 kcal/mol window. The

energy differences to the ground state for the energy-sorted targets are

red (mean 1.85, median 1.6 kcal/mol), green (mean 2.17, median 1.9

kcal/mol), blue (mean 2.40, median 2.05 kcal/mol), and black (mean

2.62, median 2.3 kcal/mol).

three target structures are, again, the three most promi-

nent structures.

3.4. A Large-scale Set of Multi-stable Targets

The example above shows the effectiveness of our al-

gorithm in designing sequences for tri-stable targets. To

demonstrate that our method scales well to larger de-

sign problems, we generated an ensemble of 100 de-

sign problems, each produced from a random sequence

of length 100 as follows: We first used RNAshapes

(Reeder and Giegerich, 2005) to extract the three most

stable coarse-grained structures and their most stable

fine-grained representatives (“shreps”). The SV11 se-

quence, for example, has (at least) two shapes: the low-

energy rod-like structures with shape [] and the high-

energy complex structure [[][]][][] with a Y-shaped

multi-branched loop and two additional external stems.

This way we ensure that the design problem is feasible.

We solve the design problems using the fitness func-

tion equ.(10), perform a single optimization run for each

problem, and retain a single top-scoring sequence, as

output.

In order to evaluate the quality of the designed se-

quences we investigated their energy landscapes in more

detail. Using RNAsubopt (Lorenz et al., 2011) we pro-

duced all suboptimal structures within 5 kcal/mol of the

ground state, and determined the suboptimal structure

Θ′i within this energy band that is closest to the design

goal Θi. Ideally, the base-pairing distance dbp(Θi,Θ
′
i)

should vanish and f (Θi) should be very close to the

ground state for all three design targets. In 96% of the

design problems, all three target structures were indeed

contained within the 5 kcal/mol energy band, and even

in the remaining few cases, a very similar structure was

observed within this range. Fig. 8 shows the energy dif-

ferences for the 100 designs as a scatter plot. In most of

the designs, one of the three targets is the ground state.

The mean and median energy differences between the

ground state and the worst of the three target structures

are only 1.0 and 1.5 kcal/mol, respectively. Overall,

these data show that our approach produces close-to-

optimal tri-stable designs reliably and efficiently.

To assess the increase in difficulty of designing se-

quences for more than three target structures simultane-

ously, we repeated the large-scale experiment, but this

time using four target structures instead of three. The

results shown in the lower panel of Fig. 8 lead us to be-

lieve that our approach does indeed scale to very com-

plex multi-stable targets. As the quality of the generated

sequences also degenerated slightly with median differ-

ences from 1.6 to 2.3 kcal/mol, further investigation into

complex multi-structure targets will be required. Nev-

ertheless, these differences only amount to roughly 1 to

3 stacked base pairs. Again, we automatically selected

the top-scoring sequence for each target instead of try-

ing the, say, best five sequences for each structure.

4. Discussion and Conclusions

We have shown that multi-stable RNA sequences

with prescribed alternative secondary structures can be
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constructed efficiently by means of a generic computa-

tional approach. With RNAdesign we provide an effi-

cient implementation that combines an exact solution of

a graph coloring problem with the heuristic optimiza-

tion of feasible solutions by local search. When more

than two target structures are prescribed, a combinato-

rial consistency condition must be satisfied. For triples

of targets and moderate sequence length, the design

problem frequently has feasible solutions, although the

probability decreases exponentially with chain length.

Randomly generated sets of four or more target struc-

tures, however, typically cannot be realized by the same

sequence. Since very few multi-stable RNAs have been

described in the literature, we resorted to artificial test

cases to verify that our approach solves the computa-

tional problem at hand.

RNAdesign can accommodate a wide range of design

goals. Although our test cases focus on nearly equal en-

richment of target structures in the Boltzmann ensem-

ble, more complex features of the fitness landscapes can

easily be incorporated. As discussed by Flamm et al.

(2001) for the case of bi-stable structures, it is feasi-

ble (albeit computationally demanding) to estimate for

a candidate sequence x the energy barrier f ,(x,Θi,Θ j)

between target structures Θi and Θ j. For moderate se-

quence lengths, this can be computed exactly by using

RNAsubopt and barriers, and for longer sequences a

path-based heuristic provides at least an upper bound

(Morgan and Higgs, 1998; Flamm et al., 2001). On

this basis, it is even possible to estimate kinetic pa-

rameters such as first passage times to target structures

(Wolfinger et al., 2004). It will be easy to extend the

RNAdesign so that kinetic parameters of this type can

be included into the design fitness function Ξ.

The current version of RNAdesign already supports

inclusion of prescribed energy differences between the

target conformations. This is desirable, for instance,

for the rational design of riboswitches that are triggered

by ligand binding. In this case, the fitness landscape

is distorted by the binding energy of the ligand in cer-

tain structures. This causes a re-folding of the molecule

in which conformational changes in the ligand binding

domain are used to change adjacent structural domains.

Our recent construction of a transcriptional riboswitch

based on the theophylline aptamer domain (Wachsmuth

et al., 2013) shows that the RNA energy model is suffi-

ciently accurate to capture such effects.

We can, therefore, argue that the relative ease with

which multistable structures can be designed reflects the

evolutionary accessibility of such molecules. Our data

suggest, in particular, that RNA sequences with three

or four disparate local optima with energies close to the

ground state are abundant and can readily be optimized

by a local search in sequence space. A similar observa-

tion has been made by Ramlan and Zauner (2011). If

such structures provide a selective advantage, evolution

should therefore be able to evolve them de novo in dif-

ferent contexts. This immediately raises the question of

whether multi-stable RNAs have arisen in the history of

life and how abundant they are in nature.

For the case of two alternative structures the an-

swer is, of course, affirmative, as demonstrated by a

diverse set of riboswitches for a wide variety of lig-

ands (Serganov and Nudler, 2013) and several classes of

RNA thermometers (Kortmann and Narberhaus, 2012).

Self-induced conformational switches (Nagel and Pleij,

2002) act as a kind of timing device. Here, the molecule

is trapped in a metastable structure that either allows or

blocks the RNA’s function. Decay to the ground state

then flips the switch. Molecules undergoing such con-

formational changes have also been observed as the out-

comes of artificial selection experiments, for instance,

selecting for suitability as a template for Qβ replicase

(Biebricher and Luce, 1982; Biebricher et al., 1992).

For more than two structural alternatives, the sit-

uation is less obvious. No self-induced or small

metabolite-triggered RNA switch with three or more

structural alternatives has so far been characterized.

Complex conformational changes, however, play a role

in splicing and the action of ribozymes, including self-

splicing introns and other allosteric nucleic acid cata-

lysts (Jose et al., 2001; Soukup and Breaker, 2000). A

well-understood system that comes at least close to a

self-induced tri-stable RNA switch is the Hok/Sok sys-

tem of plasmid R1 in E. coli (Gultyaev et al., 1997;

Møller-Jensen et al., 2001). Allosteric nucleic acid cat-

alysts (Jose et al., 2001; Soukup and Breaker, 2000).

Here, the binding of one effector causes a change in the

structure of the ribozyme molecule, which in turn al-

lows the binding of a second effector necessary for the

final activation of the enzymatic function. An artificial

catalytic system consisting of two RNAs that catalyze

their ligation with the help of a transient hammerhead

ribozyme structure relies on several coordinated struc-

tural rearrangements (Gwiazda et al., 2012).

The possibility that multi-stable conformational

switches are a common element beyond simple

ON/OFF switches in RNA-based regulation leads to the

question of whether RNA-based circuits provide a com-

pact – and hard to disentangle – implementation of com-

plex regulatory programs. Beyond such intriguing per-

spectives on RNA biology, we encountered also several

non-trivial computational problems that provide inter-

esting avenues for future research on rational RNA de-
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sign.

Instead of a “fair” starting sequence sampled uni-

formly from C , one might want to “stack the deck”

as much as possible in favour of a successful design.

This invites the question of whether there are any ef-

ficient dynamic programming algorithms that compute

the sequence that minimizes the sum of free energies on

a prescribed set of structures. A promising way to ad-

dress this question is a generalization of the intaRNA

approach of Busch and Backofen (2006) to multiple

structures. Another obvious challenge is to improve the

coloring step using an explicit construction for ear de-

compositions that guarantee small values of α and β.

Since the design goals for more than two sequences

are not feasible in general, one may be interested in a

slight relaxation of the structure in {Θi}, i.e., in a set {Θ′i}

that is as close as possible to the original and for which

the design is feasible. A natural objective function for

this task is, for instance,
∑

i dG(Θ′i ,Θi) for some graph

edit distance dG( . , . ). A simpler, but maybe less natu-

ral, approach is to directly edit the dependency graph G,

i.e., by removing a minimal number of edges.

An alternative approach to relaxing the structural

constraints is to allow a small number of non-canonical

base pairs. The CONTRAfold algorithm by Do et al.

(2006) considers all 16 possible base pairings instead

of just the canonical six. Another solution is to use

the space of extended secondary structures (Höner zu

Siederdissen et al., 2011), which also considers all 16

possible base pairs, and, in addition, explicitly annotates

nucleotide pairings with the nucleotide edge engaged

in pairing. As both of these models have basically no

constraints, the space of candidate sequences is unre-

stricted. However, since canonical base pairs are more

likely than non-canonical base pairs, it makes sense to

always constrain the search space to those sequences for

which canonical pairings predominate. Formally, this

equates to allowing some –but not too many– color con-

flicts.

Finally, it is desirable to impose more sophisticated

conditions on sequence composition. We currently

allow penalizing candidate sequences according to a

mono-nucleotide model. It seems feasible to explore

di-nucleotide distributions instead of the current mono-

nucleotide model. Such models have already been

used in a gene prediction context (Gesell and Washietl,

2008), and their impact on sequence design will be in-

teresting to explore.

The RNAdesign tool opens the door to the largely un-

explored realm of tri-stable and even higher-level mul-

tistable structures, which is of utmost interest for syn-

thetic biology. With small modifications of the energy

model our approch can easily be extended to interacting

multistable RNA molecules, a topic that is of particular

interest for the design of small trans-acting and multi-

stable self-assembling RNAs.
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