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Abstract

The genome of most prokaryotes gives rise to surprisingly complex transcriptomes comprising not only protein-coding
mRNAs, often organized as operons, but also harbors dozens or even hundreds of highly structured small regulatory
RNAs and unexpectedly large levels of anti-sense transcripts. Comprehensive surveys of prokaryotic transcriptomes
and the need to characterize also its non-coding components is heavily dependent on computational methods and
workflows, many of which have been developed or at least adapted specifically for the use with eubacterial and ar-
chaeal data. This review provides on overview on the state of the art of RNA bioinformatics focussing on applications
to prokaryotes.

Keywords: RNA bioinformatics, TSS annotation, target prediction, gene finding, RNA–RNA interaction, secondary
structure prediction

1. Introduction

During the last decade thousands of small RNAs
(sRNAs) have been discovered in a widely diverse set of
prokaryotes. Beyond the evolutionary ancient “house-
keeping” RNA genes encoding tRNAs, rRNAs, RNAse
P RNA and SRP RNA (as well as tmRNA and 6S
RNA in Eubacteria), typical genomes harbour dozens or
even hundreds of sRNAs with predominantly regulatory
roles. Archaea in addition have small nucleolar RNAs
(snoRNAs) directing chemical modifications of rRNAs
and other RNA targets. Compared to protein-coding
genes, most of the prokaryotic RNAs are still rather
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poorly characterized in terms of their structure, func-
tion, and phylogenetic distribution. In particular, with
the advent of high throughput transcriptomics, large
numbers of sRNA candidates have been detected, but
so far have not received attention beyond a note of their
genomic coordinates.

Computational approaches have been very success-
ful in facilitating, extending, and complementing exper-
imental investigations. In this contribution we review
the state of the art and the limitations of RNA bioin-
formatics as applied to prokaryotes. Our presentation
emphasizes in particular methods and tools that were
developed or substantially improved within the Prior-
ity Program SPP 1258: Sensory and regulatory RNAs
in Prokaryotes funded by the Deutsche Forschungsge-
meinschaft from 2007-2013.
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2. Structure Prediction

The complex three-dimensional structures of single-
stranded nucleic acids are dominated by base pairing
both in terms of the energy of folding and in the sense
that much of the shape can be understood in terms of the
co-planar arrangement of the bases. At the same time,
the status of a nucleotide as either paired or unpaired can
be interrogated experimentally by means of chemical or
enzymatic probing. This makes secondary structures
an important level of description. At the same time, ar-
rangements of base pairs can be predicted with fair ac-
curacy from the sequence based on a few simple model
assumptions: (i) Every nucleotide pairs with at most
one other pairing partner, (ii) stacking of co-planar base
pairs stabilizes the structures while unpaired “loop” re-
gions primarily account for destabilizing effects, (iii)
stacking and loops contribute additively to the energy of
folding. Sequence-dependent energy parameters have
been derived from a plethora of thermodynamic mea-
surements1. Additional constraints, in particular the
exclusion of crossing base pairs, i.e., the suppression
of pseudoknots, leads to exact dynamic programming
algorithms that run in cubic time on quadratic mem-
ory2,3. Not only the groundstate “minimum free en-
ergy” (mfe) structures can be computed in this manner.
McCaskill’s algorithm4, for example, computes the par-
tition function of the Boltzmann ensemble and provides
access to all equilibrium base pairing probabilities; so-
called stochastic backtracing procedures can generate
large Boltzmann-weighted samples5,6. The most promi-
nent implementations of RNA folding algorithms are
mfold7 and the ViennaRNA Package8,9.

The non-crossing condition is not always satisfied in
particular in highly structured RNAs such as RNAse P
RNA. The paradigm of secondary structure folding can
be extended to pseudoknotted structures, albeit at the
expense of much higher computational costs. Differ-
ent classes of pseudoknot structures have been defined
and can be computed by a large number of tools10, see
also11,12,13,14,15,16.

The accuracy of secondary prediction from single se-
quences is far from perfect for a wide variety of rea-
sons. Some derive from limitations of the secondary
structure model, such as deviations from the additive
model, insufficient knowledge of energy parameters,
simplified parametrization of multi-loops, and the ex-
clusion of non-standard base pairs. Although some of
these shortcomings can be overcome by a more com-
plex model e.g. based on the Leontis-Westhof represen-
tation17 without sacrificing computational efficiency18,
the need to parametrize such an extended model be-

comes an obstacle in itself. A second set of limi-
tions is biological in nature: salt condition and phys-
iological temperature which the studied species favors
may differ substantially from the standard conditions at
which thermodynamic parameters have been measured.
Even more importantly, RNA is rarely ever “naked” but
bound to proteins that may affect the energetics of fold-
ing. In addition, the precise transcript might be known
only partially, or structure motifs are embedded into a
larger RNA. In these cases, one has to apply local struc-
ture prediction, which is an even harder problem19.

There are two remedies for these problems: (i) in-
stead of just a single sequence, evolutionary information
on patterns of sequence conservation may be taken into
account, or (ii) experimental evidence such as chemical
probing or FRET data may be incorporated into struc-
ture prediction.

When accurate sequence alignments can be obtained,
these may serve as basis for computing consensus struc-
tures. The simplest approach, implemented e.g. in
RNAalifold20,21 is to extend the RNA folding algo-
rithms to compute a secondary structure that minimizes
the average folding energy of the aligned sequences. A
more sophisticated phylogenetic model replacing sim-
ple averaging is implemented in PETfold22. At lower
levels of sequence conservation, folding and alignment
must be computed simultaneously at much higher com-
putational cost. Several practical approaches exist,
from full-flegded implementations of the Sankoff algo-
rithm23, e.g. in Foldalign24 and Dynalign25, to com-
putationally much more efficient approximations that
restrict themselves to base pairs that are thermodynam-
ically plausible for the individual sequences. Tools of
the latter type are LocaRNA and its variants26,27,28,29 and
SPARSE30. A conceptually different approach taken by
the RNAshapes package31 makes use of coarse-grained
structures. In all cases, the output consists of a sequence
alignment annotated by a consensus structure — exactly
the input required later on for homology search.

Experimental data can be integrated into structure
prediction either as hard constraints (enforcing or pro-
hibiting certain base pairs) or as soft constraints that
distort the ensemble of structure by adding bonus
energies or energy penalities to encouraged or dis-
couraged structural elements, resp. Measurement of
SHAPE32, PARS33, or other chemical or enzymatic
probing methods can be converted into pseudo-energies
added to paired or unpaired bases, leading to a distor-
tion of the Boltzmann ensemble towards the experimen-
tal signal34,35. Most recently, more sophisticated ap-
proaches have appeared towards reconciliating experi-
mental data with the thermodynamic folding approach.
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RNAassist36 formulates the problem in terms of simul-
taneously minimizing position-dependent energy penal-
ities and the deviation of observed and predicted proba-
bilities for unpaired nucleotides. SeqFold uses the ex-
perimental data to select locally stable secondary struc-
ture from the Boltzmann ensemble37. In ShapeKnots38

an interative procedures is used to include pseudoknots
and SHAPE information. It has been applied to e.g. in-
vestigate the structure of a SAM-I riboswitch.

3. Gene Finding and Transcriptomics

3.1. Homology Search
The initial gene annotation of a newly sequenced

genome is created by comparison with known se-
quences of related organisms together with the appli-
cation of de novo prediction methods, in particular
the search of open reading frames of sufficient length.
Since non-coding RNAs (ncRNAs) do not offer a sim-
ilar generic sequence pattern, they are much harder to
predict from scratch39. As a consequence, only a few
well-known RNA genes such as tRNAs, RNAse P RNA,
SPR RNA, and the ribosomal RNA subunits are anno-
tated for most prokaryotic genomes.

The Rfam database, as the most extensive repository
of structured RNAs, lists in its current version 11.0 a
total of 605 RNA families with prokaryotic members
(527 bacterial and 107 archaeal)40. This number in-
cludes, however, a large number of CRISPR RNA re-
peats, many riboswitches, mRNA elements, as well as
ubiquitous RNA families such as tRNAs or RNAse P.
There is, at present, no comprehensive repository of
prokaryotic small RNAs. The overwhelming majority
of sRNAs discovered after the publication of a reference
genome are documented only in the main text of publi-
cations or in supplemental material. Despite community
efforts and incentives such as free open access publica-
tion of RNA family descriptions in this journal41, only a
very moderate number prokaryotic RNA families have
been described in detail and deposited to databases, see
e.g.42,43,44,45. As a consequence, the majority of sRNA
families remains in practise unavailable for genome an-
notation pipelines. For the same reason it is impossible
to give an accurate estimate on the total number of eu-
bacterial or archaeal sRNA families or to globally assess
their phylogenetic distributions with any degree of cer-
tainty.

The most widely used tool for homology search is
blast. For highly diverged sequences blast typically
reports several small fragments instead of the full length
match to the query sequence. Semi-global dynamic pro-
gramming algorithms such as Gotohscan46 are a viable

alternative given the small genome size of prokaryotes.
This program reports full length hits, makes subsequent
processing of the predicted homologs much easier and is
particularly well-suited for ncRNAs47, which — in con-
trast to protein-coding genes — are typically short and
evolve rapidly at the sequence level. These properties
generally limit the sensitivity of purely sequence-based
methods. The information content of the query can be
increased by making use of secondary structure conser-
vation as well. Covariance models (CMs), a generaliza-
tion of HMMs to tree-like structures provide a conve-
nient technical basis48. They have to be trained from
multiple sequence alignments annotated by a consensus
structure. In contrast to blast, which is content with a
single query sequence, CMs require a collection of evo-
lutionarily related and alignable homologs as a starting
point. With infernal 1.1 a highly efficient implemen-
tation of a search tool for CMs has become available that
is suitable for large-scale applications49. Most covari-
ance models, in particular the models of the Rfam fami-
lies, are dominated by sequence information. At least in
this regime, infernal is the most effective tool avail-
able. Phylogenetic distance, and hence decreasing se-
quence conservation, eventually limits applicability of
homology search. It is possible in principle to include
thermodynamic stability, either using the idea of ther-
modynamic matchers50 or employing structural align-
ments29. It remains unclear, however, whether such
techniques can substantially improve the sensitivity of
homology search for distantly related species.

3.2. Feature-Based Gene Prediction

sRNApredict51 uses typical features of prokaryotic
sRNAs: elevated sequence conservation, putative pro-
moter sequences, and Rho-independent terminator el-
ements. TranstermHP, for instance, is used to pre-
dict Rho-independent terminators52. Its scoring func-
tion favours G/C-rich stem loops followed by a poly-T
track. It is obviously extremely difficult to detect correct
terminator elements in species with a high G/C-content
and in those that use structural elements deviating from
the canonical terminator structure. In order to increase
sensitivity and specificity, sRNApredict focuses on in-
tergenic regions and analyzes the co-occurrence of sev-
eral of the above-mentioned features. While this strat-
egy works quite well for well-characterized eubacterial
clades, it is bound to fail in others. Xanthomonas and
Helicobacter, for example, lack typical promoter se-
quences and distinct terminator hairpins53,47.
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3.3. Transcriptomics

Bacterial (and archaeal) transcriptomics can almost
always be performed with a reference genome in place.
This simplifies the work flow, which is basically com-
posed of the following steps.
(1) Library preparation: Transcriptome analyses con-
sist of “wet-lab” experiments and “try-lab” data evalu-
ation. Both components greatly influence the final out-
come and it is therefore recommended to design the ex-
perimental setup in a cooperative way, such that practi-
cal and theoretical issues are discussed at the very be-
ginning. Selection of an appropriate sequencing plat-
form, e.g., 454 or Illumina, and the enrichment or de-
pletion of certain RNA classes are only two of many
design decisions that depend on the research question.
The actual experiments are performed and, depending
on the sequencing platform and sequencing depth, sev-
eral gigabytes of RNA transcript data are reported.
(2) Quality check: Sequencing machines typically out-
put FASTQ-formatted files. This extended version of
FASTA files is augmented by quality information for
each called nucleotide along the sequence. FastQC1 is
commonly used to initially check and visualize the qual-
ity of the raw sequencing data. Software suites such
as the FASTX-Toolkit2 provide several tools to pre-
process the raw sequencing reads by e.g. removal of the
adapter and bar code sequences that have been attached
during library preparation, or by filtering of low com-
plexity reads. These steps can have a drastic influence
on the mapping quality.
(3) Read mapping: A large number of software tools for
read mapping has become available that differ widely
in their algorithmic basis, memory consumption, speed,
and versatility. Mapping strategies furthermore differ
in their treatment of reads that map equally good to
multiple genomic locations and in their handling of in-
sertions and deletions54,55,56,57,58. It is therefore im-
portant to match the choice of mapping tool to the re-
search question59. Once the mapping step is completed,
mapping summary statistics help to verify whether all
prior steps have been successful. Transcriptome studies
that investigate prokaryotes usually assume that reads
map without interruption (“split-free”) and with near
perfect sequence identity to the genome. This is, in-
deed, the case for the overhelming majority of the reads.
There are, however, biological relevant exceptions that
usually end up in the “sequencing trash bin”. Ex-

1http://www.bioinformatics.babraham.ac.uk/

projects/fastqc
2http://hannonlab.cshl.edu/fastx_toolkit

amples include transcripts containing self-splicing in-
trons in Eubacteria, as well as enzymatically spliced
and circularized RNAs in Archaea. A recent study
showed that such “atypical” transcript structures may
be much more abundant than expected60. It remains,
however, unclear to what extent rare transcripts of this
type are biologically relevant, how many of them are
technical artefacts and to what extent one detects true
cellular RNAs that are nevertheless functionally irrel-
evant. Post-transcriptional modifications may further-
more lead to large local error rates61.
(4) Transcript annotation and classification: The tran-
scripts are then evaluated with respect to the genomic
loci they have been mapped to. This covers in general
a classification into protein-coding, non-coding and in-
tergenic regions. For a typical prokaryotic genome, the
non-coding portion is mainly comprised of reads that
originate from the highly abundant tRNAs and rRNAs
and from a few well-characterized house keeping genes
such as tmRNA and 6S RNA. In most prokaryotes,
only the open reading frames of protein-coding genes
are annotated, while regulatory regions of mRNA tran-
scripts, i.e., their UTRs (untranslated regions) are miss-
ing and the structure of polycistronic transcripts, i.e.,
transcripts that contain more than one gene, remains un-
certain. Thereby the number of reads mapping to in-
tergenic regions is overestimated due to this knowledge
gap. The detection of polycistronic transcripts can be
achieved by using a high sequencing depth close to sat-
uration. The exact determination of transcriptional units
is, however, challenging as gap-free expression cannot
be found even for well-characterized cases such as the
cag pathogenicity island of H. pylori53. Another dif-
ficult task is the precise mapping of the genomic posi-
tions where transcription is initiated. This challenge has
been addressed by specific sequencing library prepa-
ration steps; the evaluation of the resulting read pat-
terns is described in more detail in the next subsection
on transcription start site (TSS) annotation. The de-
termined TSS maps revealed an unexpected complex-
ity of the transcription unit organization. Transcrip-
tion is initiated as expected ahead of annotated genes
and polycistronic transcripts but also internally and anti-
sense to them and therefore almost everywhere along
the genome. Upstream of the determined TSS, promoter
sequence motifs are expected. Textbook knowledge de-
scribing two conserved elements, i.e., the -10 and -35
box, has been revised as these motifs are extremely
variable between species. In Xanthomonas and Heli-
cobacter, for instance, only traces of the -10 box are de-
tectable but no distinct -35 box has been reported53,47. It
seems to be a matter of fact that the current experimental
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setups enable the detection of TSS with species-specific
housekeeping promoters, but alternative σ binding mo-
tifs are still hidden. The sequence between an anno-
tated TSS and the start of a nearby downstream protein-
coding gene gives rise to its 5’ UTR. Again, surprising
results such as a large number of leaderless transcripts,
i.e., translation start and TSS are mapped to (almost) the
same position, and 5’ UTRs lacking Shine-Dalgarno se-
quence patterns have been reported53,47. Beside the pos-
sibility to gain new insights into protein-coding genes,
most prokaryotic transcriptome studies are set up to de-
tect novel non-coding RNA genes. These are typically
identified by the analysis of read accumulations in in-
tergenic regions or anti-sense to annotated genes. The
existence of transcription units that might correspond
to non-coding genes is verified by independent experi-
ments such as northern blotting and their exact size is
determined by RACE. A single study reveals dozens
of novel RNA genes that need to be further character-
ized. Common tasks are the detection of homologous
sequences, structural conservation analysis, evaluation
of their coding potential and target prediction. For a de-
tailed description of these evaluations, we refer to the
Sections 3.1, 3.4 and 4, respectively.

TSS Annotation
In contrast to translation start sites that can be identi-

fied by well-established gene annotation strategies62,63,
surprisingly little is known about transcription start sites
(TSS) in most bacteria. Even though a thorough TSS
annotation can serve as valuable source of information
to (i) understand the architecture of polycistronic tran-
scripts, (ii) use it as a paramount hallmark for ncRNA
gene annotation, and (iii) determine the extend of the
5’UTR, which often harbors regulatory elements such
as riboswitches, RNA thermometer, and sRNA binding
sites.

The first successfully applied methods to annotate
TSS were primer extension64 and RACE65. Both tech-
niques aim to find the 5’ end of partly characterized
genes, but suffer from two major drawbacks. Firstly,
with these techniques it is not possible to distinguish
between 5’ ends of an RNA formed by a transcrip-
tion initiation event or by an RNA cleavage event,
which often occurs in the course of RNA processing.
Secondly, both techniques are difficult to scale up to
a genome-wide high-throughput application. There-
fore, two RNA-seq based methods for reliable annota-
tion of TSS in bacterial genomes were developed re-
cently66,53. Both methods exploit the phosphorylation
pattern unique to primary TSS. Mono-nucleotides for
transcription are provided to the RNA polymerase in
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Figure 1: Comparison of automated TSS annotation from dRNA-
seq data with TTSpredator and TSSAR. The upper plot pair shows
the mapped read coverage in the treated (L+) and untreated (L−) li-
brary for an exemplary region from H. pylori dRNA-seq data 53. Blue
dashed lines indicate TSS annotated by TTSpredator (using default
parameter). The middle plot pair shows essentially the same data, but
only the read start coverage is plotted. This is how TSSAR looks at
the data. Dashed red lines indicate TSS annotated by TSSAR (p-value
cutoff of 10−4). The bottom part shows the positions of the annotated
genes in the considered region. The read coverage plots indicate that
the data produced by dRNA-seq is more complex than it might ap-
pear from the method description. A refined data analysis is needed
as simple global cut-off approches, whether for the difference or the
ratio between the two libraries, cannot cope with the dynamics along
different genomic regions.

the form of nucleotide triphosphates, which are broken
down in the process of transcription elongation and the
released energy is used to form a phosphodiester bond
between the newly conjoined nucleosides. As a con-
sequence, the first nucleotide still has a triphosphate at-
tached to its 5’ carbon atom. In contrast, if the phospho-
diester bond of two consecutive nucleosides is broken
by endonucleolytic cleavage, the remaining fragment is
a 5’-phosphomonoester.

In the method developed by Wurtzel et al.66, the to-
tal RNA is treated with Tobacco Acid Pyrophosphatase
(TAP), which removes the 5’-triphosphate and hence
makes the RNA susceptible for the subsequent 5’-
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sequencing-adapter ligation. The 3’-adapter is attached
by a random primer. In contrast to a library which is
not TAP-treated, reads associated with primary TSS are
enriched in the TAP-treated library.

An alternative method53 uses the Terminator-5’-
phosphate-dependent exonuclease (TEX) to deplete the
total RNA of fragments that are not protected from ex-
onuclease degradation by a 5’-triphosphate. As a con-
trol, total RNA from the same extraction is processed
the same way, but without the TEX treatment. There-
fore, in the final anlysis step the differences between the
treated (a.k.a. plus) library and the untreated (a.k.a. mi-
nus) library have to be screened position-wise for sites
with a compelling enrichment of RNA-seq read starts
in the plus versus the minus library. That is why this
method was named differential RNA-seq (dRNA-seq).

The first applications of dRNA-seq were manually
analysed by visualizing the reads and assessing the
enrichment. Since such a screening is very time-
consuming and tedious on genome-scale, and since it
involves the subjectiv assessment of the analyzer, the
results suffer from a certain lack of reproducibility and
consistency. Therefore, soon after, the first statistical
approaches to evaluate dRNA-seq data were proposed.
Schmidtke et al.47 modeled the density of read starts
within the genome locally by applying a sliding window
approach. Within each window, the distribution of read
start counts per position are assumed to follow a Pois-
son distribution. As a consequence, the differences be-
tween the two libraries can be modeled by the Skellam
distribution, which allows to calculate the probability to
encounter the observed enrichment by chance.

Alternatively, global thresholds are applied to dis-
criminate between significant read enrichment and
background noise70,71. To gain specificity, the TSS call-
ing is split into two steps. First, the relative read cover-
age increase in the treated library from position i − 1
to position i is evaluated. If this increase surpasses
a defined threshold, the position is further evaluated
whether the ratio of observed transcription initiation be-
tween treated and untreated library exceeds a defined
threshold. If both tests are passed, the position is anno-
tated as a TSS. The strenght of this method, as imple-
mented in the program TTSpredator, lies in the ability
to regard dRNA-seq data from different strains and/or
growth conditions and dynamically adjust the thresh-
olds if strong signals are observed in one sample. This
circumvents a strict a priori threshold definition, which
might be difficult to find for a new data set with differ-
ent sequencing depth, genome size and TEX treatment
efficiency.

The most recent development in automated TSS an-

notation from dRNA-seq data, TSSAR72, picks up the
idea from Schmidtke et al. to model the differences be-
tween the treated and untreated library with a Skellam
distribution. However, to deduce the parameters from
the underlying individual libraries, a zero-inflated Pois-
son distribution is used instead of a mere Poisson dis-
tribution. This allows to consider the region in focus as
a mixture of transcribed and not transcribed segments,
where the later are assumed to follow a Poisson distri-
bution and the former to follow a uniform zero distri-
bution. The parameters specifying the Skellam distribu-
tion are solely deduced from the read density in the tran-
scribed region. The main advantage of TSSAR is the sta-
tistical sound analysis resulting in a robust enrichment
p-value for each genomic position, which in turn leads
to little dependency to a priori defined parameters that
can greatly depend on the details of the experimental
design and execution. Furthermore, TSSAR is provided
as an easy-to-use web service, making its application
rather convenient.

Similar to the eukaryotic research community, the un-
derstanding of prokaryotic genomes can benefit from
shifting from the established protein-coding gene cen-
tered genome annotation to the incorporation of more
information on transcripts, with all their diversity in
function and architecture. With the recent developments
both in wet-lab experiments and computational analysis
that allow to characterize bacterial transcriptomes semi-
automated in a high-throughput manner, a comprehen-
sive transcript annotation becomes feasible. A compar-
ison of TSSpredator and TSSAR is shown in Fig. 1.

3.4. Comparative Genomics
Non-coding RNAs are in many cases detectable by

comparative genomics alone, i.e., without the benefit
of either known homologs or expression data. SIPHT73

makes use of invariant features of many bacterial genes.
It identifies candidate loci based on sequence conserva-
tion in intergenic regions combined with predicted Rho-
independent terminators (downstream) and predicted
transcription factor binding sites (upstream). The soft-
ware also evaluates homology with known sRNAs and
cis-regulatory RNA elements. The tool is not directly
applicable to some genera such as Helicobacter, which
has a A/T-rich genome and thereby lacks recognizable
terminator hairpins53.

Stabilizing selection acting to preserve secondary
structure elements imposes constraints on variations
that become fixed in a population and hence are ob-
servable as differences between orthologous sequences
from evolutionarily related organism. In particular, evo-
lutionarily conserved base pairs admit only 6 of 16 pos-

6



A
G A U

G
A

G
A

A
A

G
U G A C

A
A
C A U U AUA C G G

A
A C A U

G C U
G C G

G A
C

AA
UGU

CA
AUGU

C
CUGUUGAUG

A
A

G
AGUAAAAAAA_G

CAUGCGGCU
U

A
A A G C C G C A U G

_

C
U

U
U

U
UA

U
A U

A

G
C

AACG
C
C

UGU
C
G G

CA
G
_
AUCUCUCC

C
A_

U
C
C

C C U
G G A GCA G A U

C
_

_
UC G

G
A
G
C
G
G
A
G
A
C
U

C
C
U

C C
C
C

A
A
G
U
U
C
C
C
G
U
U
C
C

C

U

G G C C C C G C C
G A C C

U _
_
C
C

CCC
U
GGUCU

GCGGGGCUU
UU

UA

A
U

CG
CG
CA
UG
UA
GC

UU

*
AAAA

UGA
UGA
UGU
UGA
UGA
UAA
UAA
UAA
UAA
UAA
UGA

GG

E
AAGG

AAG
AAG
ACG
GAG
GAG
GAG
GAG
GAG
GAG
GAG
AAG

AA

M
UUGG

AUG
AUG
−UG
AUG
AUG
AUG
AUG
AUG
AUG
AUG
AUG

Frame +3 p =  7.3e−06 

GG

G
GGUU

GGC

GGC

GGU
GGU
GGU
GGU
GGA

GGU
GGU
GGU
GGC

AA

T
CCGG

ACG
ACG
ACA

ACA

ACA

ACG
ACG
ACG
ACG
ACG
ACG

AA

I
UUUU

AUC

AUC

non−coding or protein−coding ?

non−coding RNA 

features

RNAz

Evaluation of structural

features

RNAcode

Evaluation of 

protein−coding RNA 

Z−Score: − 5.37

SCI :         0.81

P−Value:   1.00

P−Value:   0.99 

Z−Score: − 3.81

SCI :         0.77

Score:    27.85

P−Value: 7.3e−0.6

Score:    53.91

P−Value: 4.8e−08

classified as 
structured RNA

Virulence related RNA − sX13 Dual function RNA − sR1

classified as classified as 
protein−coding RNA

Multiple Sequence Alignment

Uncertain RNA − C0343

structured and protein−coding RNA

AUU
AUU
AUU
AUU
AUU
AUU
AUU
AUU
AUC

GG

V
UUUU

GUU
GUU
AUU
GUU
GUU
GUU
GUU
GUU
GUU
GUU
GUU

UU

C
GGCC

UGU

UGU

UGU

UGC
UGC
UGC
UGU

UGC
UGC
UGC
UGU

CC

Q
AAAA

CAA
CAA
CAA
CAA
CAA
CAA
CAA
CAA
CAA
CAA
CAA

GG

D
AAUU

GAC

GAC

GAU
GAU
GAU
GAU
GAU
GAU
GAU
GAU
GAC

UU

C
GGCC

UGC
UGC
UGC
UGC
UGC
UGC
UGC
UGC
UGC
UGC
UGC

AA

N
AACC

AAU

AAU

AAU

AAC
AAC
AAC
AAC
AAC
AAC
AAC
AAU

GG

E
AAAA

GAA
GAA
GAG

GAA
GAA
GAA
GAA
GAA
GAA
GAA
GAA

GG

A
CCCC

ACC
ACC
ACC
GCC
GCC
GCC
GCC
GCC
GCC
GCC
ACC

AA

I
UUUU

AUU
AUU
AUU
AUU
AUU
AUU
AUU
AUU
AUU
AUU
AUU

CC

C
C
G
C
C
C
C
C
C
C
C

H
AAUU

AG
AG
AU
AU
AU
AU
AU
AU
AU
AU
AG

UU

Y
AACC

CAU
CAU
CAA
UAC
UAC
UAC
UAC
UAC
UAC
UAC
CAU

UU

F
UUUU

UUU
UUU
UUU
UUU
UUU
UUU
UUU
UUU
UUU
UUU
UUU

GG

E
AAAA

GAA
GAA
GAA
GAA
GAA
GAA
GAA
GAA
GAA
GAA
GAA

GG

D
AAUU

GAU
GAU
AAU
GAU
GAU
GAU
GAU
GAU
GAU
GAU
GAU

GG

E
AAGG

GAG
GAG
GAA

GAG
GAG
GAG
GAG
GAG
GAG
GAG
GAG

AA

K
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

GG

V
UUGG

GUG
GUG
GUG
GUG
GUG
GUG
GUG
GUG
GUG
GUG
GUG

AA

T
CCAA

ACG

ACG

ACA
ACU

ACU

ACA
ACA
ACA
ACA
ACA
ACG

AA

T
CCAA

AUA
AUA
ACA
ACA
ACA
ACA
ACG

ACA
ACA
ACA
AUU

UU

L
UUAA

CUU

CUU

CUA

UUA
UUA
UUA
UUA
UUA
UUA
UUA
CUU

UU

Y
AAUU

UAC

UAC

UAC

UAU
UAC

UAC

UAC

UAC

UAC

UAC

UAC

GG

G
GGAA

GGA
GGA
GGA
GGA
GGA
GGA
GGA
GGA
GGA
GGA
GGA

AA

T
CCUU

ACG

ACG

ACG

ACA

ACA

ACA

ACA

ACA

ACA

ACA

ACG

UU

C
GGCC

UGC
UGC
UGU

UGU

UGC
UGC
UGC
UGC
UGC
UGC
UGC

UU

C
GGCC

−−−
−−−
−−−
UGC
UGC
UGC
UGC
UGC
UGC
UGC
−−−

GG

G
GGAA

GGA
GGA
GGU

GGA
GGA
GGA
GGA
GGA
GGA
GGA
GGA

CC

Q
AAAA

CAG

CAG

CAC
CAA
CAA
CAA
CAA
CAA
CAA
CAA
CAG

UU

C
GGUU

UGC

UGC

UGU
UGU
UGU
UGU
UGC

UGU
UGU
UGU
UGC

Frame +2 p =  4.8e−08 

GG
V
UUUU
GUG
GUG
ACG
ACG
GUA
GUA
GUC
GUU
AUU
GUG
GUA

CC
P
CCAA
CCG
CCG
CCG
CCG
CCG
CCG
CCG
CCA
CCG
CCG
CCA

GG
V
UUGG
GUG
AUU
AUG
AUA
GUU
AUG
AUU
AUC
GUG
AUG
AUC

CC
P
CCCC
CCC
CCC
CCC
CCC
CCC
CCG
CCC
CCC
CCU
CCC
CCC

GG
D
AAUU
GAU
GAU
GAU
GAU
GAU
GAC
GAU
GAC
GAU
GAU
GAU

CC
P
CCGG
CCG
CCU
CCC
CCU
CCG
CCC
CCG
CCG
CCG
CCC
CCU

AA
I
UUCC
CGG
AUC
AUU
GUC
GUG
AUC
CGU
AUC
AUU
AUA
AUU

CC
P
CCUU
CCU
CCG
CCU
CCA
CCU
CCG
CCU
CCA
CCA
CCG
CCU

CC
R
GGCC
CGC
CGC
CGU
CGU
AGU
CGU
CAU
CGC
CGU
CGU
CGU

CC
P
CCGG
CCG
CCA
CCG
CCG
CCG
CCG
CCU
CCG
CCA
CCG
CCG

CC
Q
AAAA
CAC
CAA
CAG
CAG
CAG
CAA
CAA
CAA
CAG
CAG
CAA

CC
P
CCCC
CCG
CCU
CCU
CCG
CCA
CCG
CCG
CCA
CCA
CCG
CCC

AA
M
UUGG
CUU
AUG
AUG
AUG
AUG
AUG
AUG
AUG
AUG
AUG
AUG

CC
P
CCUU
CCC
CCA
CCC
CCG
CCG
CCC
CCC
CCG
CCG
CCC
CCG

GG
D
AACC
GAC
GAU
GAC
GAU
GAC
GAC
GAU
GAU
GAC
GAU
GAC

CC
P
CCAA
CCG
CCG
CCG
CCG
CCG
CCG
CCG
CCG
CCA
CCG
CCG

CC
P
CCAA
CCG
CCG
CCG
CCG
CCG
CCA
CCG
CCG
CCA
CCG
CCG

CC
P
CCCC
CCG
CCG
CCC
CCC
CCG
CCC
CCG
CCG
CCA
CCG
CCA

GG
D
AAUU
GAC
GAU
GAU
GAU
AAU
GAU
GAC
GAU
GAU
GAU
GAU

GG
E
AA
GA
GA
GA
GA
GA
GA
GA
GA
GA
GA
GA

AA
U
A
A
A
A
A
A
A
A
A
A

GG
E
AAAA
GAC
GAA
GAA
GAA
GAA
GAA
GAA
GAG
GAA
GAA
GAA

CC
P
CCGG
CCG
CCG
CCG
CCG
CCG
CCG
CCG
CCG
CCG
CCG
CCG

AA
I
UUUU
AUU
AUU
AUU
AUU
AUU
AUU
AUU
AUU
AUU
AUU
AUU

AA
K
AAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Figure 2: Evolutionary signals are used
to classify multiple sequence alignments
into non- or protein-coding. RNAz com-
bines structural and thermodynamic de-
scriptors and measures of sequence con-
servation to detect excess conservation of
secondary structure, while RNAcode identi-
fies increased conservation of putative ORFs
compared to the observed sequence con-
servation of the nucleic acid sequences.
Well-conserved structured RNAs such Xan-
thomonas sX13, which is involved in vir-
ulence specific gene expression and hfq
mRNA regulation, can easily be identified 67

with RNAz. The E. coli transcript C0343,
originally annotated as a small RNA, does
not exhibit typical features of a structured
RNA. Instead, RNAcode reveals a well-
conserved short coding sequence 68. Dual
transcripts such as B. subtilis sR1 69 are de-
tectable by both RNAz and RNAcode.

sible nucleotide pairs: GC, CG, AU, UA, GU, and UG. Com-
puter simulations have indicated that RNA sequences
still evolve in a drift-like manner even under very
strong selection on their secondary structure74,75 so that
sequence patterns reflecting the structural constraints
rapidly accumulate and become readily detectable al-
ready at 10% of sequence divergence.
qrna76 investigates pair-wise alignments. The al-

gorithm is based on stochastic context free grammars
and estimates the posterior probabilities for an input
alignment to be structured RNA, protein-coding, or nei-
ther. Its first application to E. coli77 resulted in the pre-
diction of several dozens of novel ncRNAs, many of
which have been validated. Multiple sequence align-
ments convey much more information on substitution
patterns than pairwise alignments but are also much
harder to simulate as a detailed stochastic model as
in evofold78. In RNAz79, Fig. 2, we have therefore
taken a different approach. Two lines of evidence in-
form about conservation of RNA structures: (i) struc-
tural similarity above the level expected from placing
the differences at random positions80, (ii) a lower free
energy of folding than expected for the same sequence
composition. Instead of an explicit stochastic model,
RNAz uses machine learning to distinguish between true
ncRNAs and decoys with the same dinucleotide content
and the same gap pattern as the input alignments. The
software is primarily designed for the large genomes of
higher eukaryotes but has been employed successfully
also for many prokaryotes81,82,83,84. It detects all types
of conserved secondary structure elements, including
bona fide sRNAs, riboswitches and RNA thermometers,
as well as terminator hairpins. Since its initial publi-

cation several improvements have been introduced. In
particular, RNAz 2.085 makes use of improved consen-
sus structure prediction for assessing structural conser-
vation21, it explicitly accounts for dinucleotide distribu-
tion, and it has been retrained on a much larger training
set including many prokaroytic RNAs. Nevertheless,
RNAz still suffers from relatively large false discovery
rates (FDR) and a limited accuracy in particular of the
boundaries of its predicted structures. Reevaluating the
RNAz predictions with structure-based alignment relia-
bility scores computed by LocARNA-P28 not only im-
proves the boundary prediction by more than a factor of
three but also halves the FDR.

A completely different comparative approach is taken
by NAPP86. First it determines the phylogenetic distri-
bution of conserved sequence elements as well as an-
notated protein-coding genes. Coherent phylogenetic
distribution and co-occurrences with certain groups of
proteins then indicate that conserved, un-annotated se-
quences may harbour sRNAs. An advantage of this ap-
proach is that the association with known proteins at
least hints at potential functions of the candidate sRNA.
A comparison of different computation approaches to-
wards sRNA prediction can be found e.g. in ref.86.

Discrimination between coding and non-coding re-
gions poses technical as well as biological challenges
not addressed by standard gene finders87. Ironically,
authors working on non-coding RNAs repeatedly had
to implement ad hoc solutions to detect coding regions.
While longer protein-coding sequences are easily rec-
ognized by the absence of stop codons and characteris-
tic, often species-specific patterns of codon usage, it is
impossible to reliably detect short peptides of 20 amino
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acids or less in a single sequence. In complete anal-
ogy to RNA secondary structures, however, conserva-
tion of peptide sequences constrains the variation of the
underlying nucleic acid sequence in characteristic ways.
Most obviously, third codon positions are expected to
be much more variable. RNAcode68, Fig. 2, is based
on this idea and evaluates for all six possible reading
frames whether the amino acids obtained by translating
a putative codon is more conserved than expected by the
conservation at nucleic acid level. Translated into log-
odds scores these estimates form the basis of a dynamic
programming algorithm that identifies statistically sig-
nificant conserved peptides in the alignment of nucleic
acid sequences. The method was applied e.g. to identify
very small peptides as well as annotation errors in H.
phylori53,88.

A particular difficulty is posed by transcripts that
function both as sRNA by virtue of a conserved sec-
ondary structure and at the same time code for a con-
served peptide. Well-known examples from the realm
of prokaryotes is the Staphylococcus aureus RNAIII,
which regulates target genes as sRNA and encodes the
26 amino acid sequence of delta-haemolysin89, and
the Bacillus SR1 RNA involved in the regulation of
arginine catabolism69. The detection of such cases in
genome-wide surveys remains difficult although soft-
ware for similar tasks has become available. In partic-
ular RNAdecoder90 searches for conserved RNA struc-
ture within DNA regions known to be protein-coding;
it suffers from very high FDRs, however91. The inter-
section of RNAz and RNAcode predictions can provide
at least plausible candidates but is certainly not ideal ei-
ther. To the best of our knowledge no systematic survey
for dual RNAs has be conducted in prokaryotes so far.

3.5. Estimation of RNA Families and Classes

The Rfam database divides ncRNAs according to
inherent functional, structural, or compositional sim-
ilarities in more than 2200 different RNA families40.
At a higher level, an RNA class92 further groups to-
gether ncRNAs whose members have no clear homol-
ogy at the sequence level, and presumably do not derive
from a common ancestor, but still share common struc-
tural properties as a consequence of functional analogy.
Prominent examples are microRNAs (miRNAs) and the
two distinct classes of snoRNAs (box H/ACA and box
C/D).

Current methods for the de novo annotation of ncR-
NAs rely on unsupervised techniques, such as cluster-
ing, to group similar RNAs and subsequent computation
of the consensus structure. Using methods implemented

in tools like RNAz79 and EvoFold78, further character-
istics that are indicative of functional ncRNA genes are
evaluated.

In this framework, the initial clustering phase is a
crucial step and in order to be successful it requires
the specification of an appropriate distance or similar-
ity notion that can characterize the functional properties
of RNA sequences. The distance measures of course
depend on the level of information available and ulti-
mately on the representation used to encode the RNA
molecules. These representations can be based on (i) the
nucleotide sequence, (ii) the connectivity graph of base
pairing interactions, or (ii) the full three-dimensional
conformation. The third option is not yet viable as there
is a lack of both experimental techniques to determine
3D conformations of functional RNAs in a large scale
setting (i.e., for machine learning approaches), and of
efficient, and sufficiently accurate, modeling techniques
to compute these conformations.

Frequently only sequence information is used since
it is directly available from sequencing experiments, of
relatively low noise, and it can be manipulated effi-
ciently and with ease by computers93,94. By construc-
tion, any pure sequence-based approach is restricted to
RNA families and must fail to detect functional simi-
larity in case of low sequence identity. Indeed, fam-
ily assignments of structured RNAs obtained from se-
quence alignments are often wrong when pairwise se-
quence identities drops below 60%92. Much lower sim-
ilarity levels are quite common within a single RNA
class. There is therefore a pressing need for similarity
and distance notions that efficiently take into account
both sequence and structure.

One possible solution is to do structure prediction si-
multaneous with the construction of alignments27,24 as
described in Section 2. This approach was successfully
used to classify all known CRISPR repeats95. How-
ever, these alignment-based methods do not scale to ef-
ficiently cluster hundred of thousands of candidate ncR-
NAs predicted e.g. by RNAz screens.

With GraphClust96 a very different approach has
become available. It avoids the alignment phase and
the explicit computation of a distance matrix altogether.
At the same time it is not restricted to a single structural
hypothesis. In order to deal with structural alternatives,
abstract shape analysis97 is used to summarize the en-
semble of predicted structures. It provides an a priori
classification of structures and allows the efficient re-
trieval of a single representative secondary structure per
class, so that each sequence is represented by a small
set of sufficiently different secondary structures. Each
structure is then interpreted as a labeled graph from
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Figure 3: Features describing a secondary structure graph. Each graph
is described by the set of all neighborhood subgraphs up to a maximal
radius r around a certain nucleotide.

which structural features defined as small localized sub-
graphs are extracted as outlined in Fig. 3. The resulting
sparse feature vectors for each structure amount to a di-
rect generalization of the well-known k-mer similarity
from strings to labeled graphs98, which could be used
for clustering.

For large datasets (i.e., >104 sequences) one can-
not afford the quadratic complexity of clustering algo-
rithms that rely on a pairwise distance or similarity in-
formation. Instead, GraphClust formulates the clus-
tering problem in terms of approximate nearest neigh-
bor queries which can be answered with a sub-linear
complexity using locality sensitive hashing99. The sim-
ilarity of the k-nearest neighbors can then be used to
estimate how compact or dense each neighborhood is
within the set of feature vectors so that the most com-
pact non-overlapping neighborhoods can be selected as
candidate clusters.

Each of these candidate clusters is then refined us-
ing alignment techniques designed to discard incom-
patible RNA sequences. A corresponding covariance
model is employed to scan the original dataset for sim-
ilar sequences that were missed by graph-based pre-
clustering. The entire procedure is then iterated on the
remaining instances producing in each round a user-
defined number of clusters that can later be merged to
decrease the final cluster fragmentation.
GraphClust was successfully applied to cluster bac-

terial ncRNAs. Using a benchmark set of 363 ncRNAs,
GraphClust detected 43 high-quality clusters repre-
senting 38 families96. In this benchmark, additional
genomic context was added to simulate the application
scenario of unknown precise transcript boundaries. The
quality of clustering (measured with the F-measure or
with the Rand index) was higher then the state-of-the-
art clustering using LocARNA. Thus, GraphClust can
successfully determine RNA classes for bacterial ncR-

NAs, even when the precise transcript is unknown.

4. RNA-RNA Interactions

4.1. Models for Predicting sRNA–mRNA Interactions

The rise of high-throughput methods, first tiling ar-
rays and now RNA-seq, to characterize transcriptomes
had led to an explosion in the number of identified
sRNAs in prokaryotes; more than hundred sRNAs have
been reported in most species (e.g.100,101,102,103). Most
sRNAs studied to date form base pair interactions with
mRNAs to post-transcriptionally regulate their targets’
translation and stability104. The functional character-
isation of novel sRNAs thus involves identification of
their interaction partners together with the precise in-
teraction sites. A promising strategy to cope with the
steadily increasing number of discovered but uncharac-
terised sRNAs is computational prediction of candidate
sRNA targets, followed by experimental verification us-
ing transcriptomics and proteomics approaches.

Computational methods for predicting RNA–RNA
interactions fall into four main classes. The following
section gives an overview of the available methods and
tools with an emphasis on sRNA–mRNA interaction
prediction (previously also reviewed in refs.105,106). Ta-
ble 1 summarises web-based applications designed for
genome-wide sRNA target predictions.

The first class of methods evaluates the stability of the
duplex formed between two RNA molecules aiming to
find the loci in both partners that yield the energetically
most favourable hybridisation. Only base pairs between
the two RNAs are evaluated, while their intramolecu-
lar structure is ignored. The most popular tools of this
type are RNAhybrid114, RNAduplex and RNAplex115,
and DINAMelt116,117. Methods of this class are primar-
ily tailored for predicting potential binding sites of short
RNAs (like eukaryotic miRNAs) in large target RNAs as
they tend to maximise the hybridisation length. The pre-
diction is based on a modified version of the secondary
structure prediction algorithm of ref.3 that omits multi-
loops. A simplified loop energy model was introduced
by RNAplex. This tool also allows to favour shorter in-
teractions by per-nucleotide penalties. The web server
TargetRNA118,119 was specifically designed for the pre-
diction of bacterial sRNA targets; it provides two scor-
ing schemes: (i) scoring of individual base pairs by a lo-
cal alignment-like algorithm120 or (ii) duplex mfe simi-
lar to RNAhybrid. Recently, its successor TargetRNA2
was released (unpublished).

Methods of the second class determine a joint sec-
ondary structure of two RNAs, i.e., a common structure
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Name Features for target prediction Classi-
fier

Func-
tional
enrich-
ment

URL of web server References

Conser-
vation

Access-
ibility

Seed
region

CopraRNA X X X - X http://rna.informatik.uni-freiburg.de/CopraRNA
107

IntaRNA - X X - X http://rna.informatik.uni-freiburg.de/IntaRNA
108,109

RNApredator - X - - X http://rna.tbi.univie.ac.at/RNApredator
110,111

sRNATarget - - X X - http://ccb.bmi.ac.cn/srnatarget
112

sTarPicker - X X X - http://ccb.bmi.ac.cn/starpicker
113

TargetRNA2 X X X - - http://snowwhite.wellesley.edu/targetRNA

Table 1: Web server for genome-scale prediction of sRNA target genes. All web server are based on computational methods that score the sRNA–
target interaction by their hybridisation energy and by additional features as indicated in the table. Some server directly allow for functional
enrichment analysis of the highest-ranking target predictions.

including both intra- and intermolecular base pairs. The
two input RNA sequences are concatenated and then
folded by an RNA folding algorithm such as Zuker’s al-
gorithm3, which is extended to handle the loop contain-
ing the concatenation point energetically as an external
loop. Tools implementing this idea are, for example,
PairFold121 and RNAcofold122. The sRNATarget

web server112,123 computes the mfe structure of the con-
catenated sequence to derive interaction features such
as length-normalised free energy, seed match length
and A/U-content in single-stranded regions. A naive
Bayes classifier based on these features is then applied
to discriminate sRNA–mRNA interactions from non-
interacting sRNAs and mRNAs. The main disadvantage
of all concatenation-based approaches is their restriction
on the allowed interaction types. The underlying RNA
folding algorithm can only predict pseudoknot-free sec-
ondary structures, although many interaction sites are
actually located in loop regions124. Interactions be-
tween two stem loops (loop–loop interactions) repre-
sent a pseudoknot in the context of the concatenated
sequences and, therefore, cannot be predicted by these
approaches.

The third class comprises interaction prediction
methods that model the competition between formation
of duplex and intramolecular base pairs by the structural
accessibility of the interaction sites. This strategy is
supported by two systematic studies which showed that
functional interaction sites are typically well-accessible
in both sRNAs and their target mRNAs125,126. The tools
IntaRNA109 and RNAup127,128 calculate the thermody-
namics of RNA–RNA interactions as sum of two energy
contributions: (i) the energy required to make the sRNA
and target interaction sites accessible, which is calcu-
lated from the ensemble of all secondary structures, and
(ii) the hybridisation energy of the two interacting sub-
sequences. IntaRNA additionally incorporates seed re-

gions, i.e., regions of (nearly) perfect sequence comple-
mentarity, that are thought to initiate interaction forma-
tion. The IntaRNA web server108 allows for genome-
scale sRNA target predictions followed by functional
enrichment analysis of top target predictions and visu-
alization of putative interaction regions. RNAplex op-
tionally approximates interaction site accessibility by
position-specific per-nucleotide penalties111. An sRNA
target prediction web server on top of RNAplex is im-
plemented by the software RNApredator110. The web
server sTarPicker combines ideas from accessibility-
based and concatenation-based approaches113. Putative
seed interactions are extended by computing a joint sec-
ondary structure of sRNA and mRNA. The predictions
are then classified into true and false interaction pre-
dictions based on the interaction features A/U-content,
hybridisation energy, accessibility and seed length. All
methods represented by this class can predict complex
interactions like loop–loop interactions, but interactions
are restricted to one locus. For RNA–RNA interactions
involving two or more interaction sites as, e.g., OxyS–
fhlA129 and RNAIII–rot 89, only one of the interaction
sites can be predicted. Whether formation of interac-
tions at multiple loci is a common principle and fre-
quently required for regulation by sRNAs in vivo is still
an open question. The sRNA RNAIII, for example,
binds its target coa in Staphylococcus aureus both via
an imperfect duplex and a loop–loop interaction, but the
former interaction alone is sufficient for in vivo repres-
sion130.

Several tools of the third class have been successfully
applied to identify sRNA targets in various prokaryotic
species. IntaRNA, for example, aided in finding that the
cyanobacterial sRNA Yfr1 inhibits translation of two
outer membrane proteins131 and that the sRNA PhrS
stimulates translation of the quorum-sensing regulator
pqsR in Pseudomonas132. But sRNA–mRNA interac-
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tions are not restricted to the bacterial domain of life.
Jäger et al.133, for example, showed by a combination of
computational and experimental approaches that the ar-
chaeal sRNA162 targets both a cis- and a trans-encoded
mRNA via two distinct domains.

Methods of the final class can predict more complex
joint secondary structures and also allow for multiple
interaction sites. The IRIS tool134 introduced a model
that maximises the number of base pairs. Alkan et
al.135 then presented a more realistic energy model. The
type of joint structures considered in this study were
the basis for several subsequent approaches to predict
mfe structures136,137,138, to compute the partition func-
tion of joint secondary structures139,140 and to sample
joint secondary structures141. All these algorithms have
a high time and space complexity, in practise precluding
genome-wide application. Except for IRIS, all methods
of this class are also not able to handle pseudoknotted
structures or crossing interactions. Consequently, they
still cannot predict instances like the two loop–loop in-
teractions between RNAIII and rot in Staphylococcus
aureus as these constitute a crossing interaction89.

4.2. Comparative sRNA Target Prediction

Genome-scale prediction of sRNA target genes is a
computationally challenging task and all methods pre-
sented above suffer from a high false positive rate. Start-
ing from the observation that the target binding site
in the sRNA is marked by high sequence conservation
across related species125,126, comparative target predic-
tion for conserved sRNAs appears to be a promising
strategy to reduce the number of false positive predic-
tions.
PETcofold was the first comparative method for

the prediction of RNA–RNA interactions and joint sec-
ondary structures142,143,144. Using two multiple align-
ments of RNA sequences as input, PETcofold predicts
conserved RNA–RNA interactions and RNA structures
taking into account covariance information arising from
compensatory base pair exchanges. Such an alignment-
based strategy will predominantly report duplexes in
which the interaction base pairing is conserved across
species. Its applicability is, therefore, limited to a sub-
class of interactions that exhibit broad evolutionary con-
servation. The same constraint applies to other compar-
ative joint secondary structures prediction approaches
such as ripalign145.

Interactions with conserved base pairing pattern
cover only a subset of all observed interactions; con-
servation of target complementarity can range from
marginal to full conservation even for different targets

of the same sRNA126. This observation is particu-
larly challenging for alignment-based approaches as it
is not known a priori whether the interaction between
a specific sRNA and mRNA is well conserved or not.
CopraRNA introduced a very promising alternative strat-
egy overcoming fixed input sequence alignments107.

As for other comparative approaches, CopraRNA’s
main idea is to combine the target prediction in sev-
eral species. But in contrast to the above-mentioned
approaches, CopraRNA does neither enforce conserva-
tion of the interaction site nor of the interaction pattern.
Rather, it performs target prediction in each organism
independently and then combines the evidence for all
these predictions (see Fig. 4). The basic assumption is
that only the target regulation by the sRNA is required
to be conserved, but the specific base pairing pattern can
be variable and the interaction site might have even been
shifted, especially in the mRNA. For a functional inter-
action, it is often sufficient to have a binding in proxim-
ity to the ribosomal binding site without the necessity of
a fixed position.

In order to combine the single evidences of an inter-
action from each organism, one could naively use the
average of all calculated scores. This approach has,
however, two caveats: (i) the scores are not normalized
and depend, e.g., on the G/C-content of the organism,
and (ii) closely related species are likely to have similar
scores due to their similarity in sequence composition.
Concerning the first point, a way to normalize the score
is to use p-values instead of raw scores. Since each
sRNA has typically only few functional interactions (for
example a total of 21 direct targets has previously been
reported for the well-characterized sRNA GcvB146),
one can use the score distribution of all genome-wide
predicted interactions for a given sRNA in one organism
as background to calculate the p-values. For the second
point, one first has to determine how p-values from dif-
ferent organism can be combined. Albeit intuitively a
good solution, the product of p-values does not consti-
tute a p-value anymore as it is not uniform across the
background. For that purpose, one has to use a trans-
formation. In CopraRNA the inverse normal method
of Hartung147 was used since it additionally allows to
weight the p-values, thus correcting for the evolution-
ary distance of the species.

5. Open Questions

Many questions and computational problems remain
open. Although experimental and computational meth-
ods are now in place to identify transcription start sites,
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Figure 4: Comparative prediction of sRNA targets as implemented in the CopraRNA pipeline. For a given pair of sRNA and mRNA sequences,
the associated homologs are selected. In the next step, the best interaction in each species is determined and scored by its p-value. Finally, all
species-specific p-values are combined into a single joint p-value while taking the evolutionary distances into account.

the corresponding termination sites still cannot be deter-
mined reliably, in particular when they are not associ-
ated with Rho-independent terminator structures. Even
less is know about other forms of RNA processing such
as cleavage and editing: Where does it occur? How do
processing patterns look like in RNA-seq data?

Although it has become clear that sRNAs are abun-
dant in most prokaryotes, we still lack a clear picture of
their phylogenetic distribution. In particular distant ho-
mologies have remained largely unexplored. The abun-
dance of pseudoknots and complex interaction struc-
tures is still unknown, at least in part due to the high
computational cost but also the limited reliability of pre-
diction algorithms in particular when applied to single
sequences. The RNA chaperone Hfq facilitates pair-
ing of sRNA and target mRNA in diverse bacterial lin-
eages148. The still unknown rules governing the bind-
ing of Hfq to specific sRNAs in what appears to be a
highly dynamic molecular mechanism149 are likely to
provide a dramatic improvement for predicting func-
tional sRNA–mRNA interactions and thus for the func-
tional annotation of sRNAs. Eventually, the goal would
be to complete the whole bacterial gene regulatory net-
work. Due to their influence on RNA-RNA interaction,
this must also include the determination of proteins-
RNA interactions. Furthermore, not only the sRNA tar-
gets, but also the transcriptional regulation of the sRNA
itself has to be understood. This would allow to apply
the systems biological tool box and explore the dynam-
ics of the full gene regulatory network, which are most
likely to be altered by the introduction of sRNAs into
the network.

Recent time has seen the development of plethora of
high-throughput approaches like CLIP-seq to investi-
gate this network. It can also be seen that these new ex-
perimental techniques require also a constant develop-
ment of appropriate bioinformatics tools. The constant
mutual development of experimental techniques and as-
sociated bioinformatics method was well established in
the Priority Program SPP 1258, which thus can serve as
a blueprint for similar collaborative projects.
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