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Boolean networks are discrete dynamical systems for modeling regulation and signaling in living
cells. We investigate a particular class of Boolean functions with inhibiting inputs exerting a veto
(forced zero) on the output. We give analytical expressions for the sensitivity of these functions and
provide evidence for their role in natural systems. In an intracellular signal transduction network
[Helikar et al., PNAS (2008)], the functions with veto are over-represented by a factor exceeding
the over-representation of threshold functions and canalyzing functions in the same system. In
Boolean networks for control of the yeast cell cycle [Fangting Li et al., PNAS (2004), Davidich et
al., PLoS One (2009)], none or minimal changes to the wiring diagrams are necessary to formulate
their dynamics in terms of the veto functions introduced here.

PACS numbers: 89.75.Fb, 87.16.Yc, 05.45.-a, 45.05.+x

I. INTRODUCTION

Networks of chemical interactions are responsible for
the signalling and control in all living systems, from
the unicellular bacteria to large multicellular organisms
[1]. We are witnessing a rapid increase of biochemi-
cal measurements. These results need to be comple-
mented by appropriate models in order to elucidate com-
mon principles of such systems and generate predictions
testable by further experiments. A variety of modeling
approaches exist, ranging from the chemical master equa-
tion or stochastic simulation of reactions for a few types
of molecules to purely qualitative wiring diagrams that
summarize existing interactions [2].

A particularly successful approach of simplification for
control networks of up to hundreds of nodes is the dis-
cretization of chemical signals into on/off states evolving
in discrete time [3, 4]. These kinds of models, called
Boolean networks, are formally equivalent to circuits of
digital electronics with logical gates.

For more and more control systems, the essential time
course and response to perturbations are accurately re-
produced by a dedicated Boolean network [5–8]. Such
system-specific Boolean models are obtained from known
interactions in the literature [9], by discretizing existing
models of differential equations [10] or by direct inference
from high-throughput experimental data [11, 12].

Long before the data-driven definition and refinement
of system-specific networks, however, statistical ensem-
bles of Boolean networks were studied, seeking generic
properties of these discrete dynamical systems [3, 13].
There the Boolean functions are assigned to the nodes
randomly over the set of all functions with a given num-
ber of inputs. When increasing the average number of
interactions, such random Boolean networks display a
transition from ordered behaviour dominated by fixed
points to “chaotic” dynamics with transients and peri-
odic attractors of length exponential in system size [14].

Random Boolean networks may now serve as null mod-
els in comparison to system-specific models. One way of
refinement of these null models is by restricting the set
of Boolean functions to realistic ones. Though the reper-
toire of combinatorial biochemical interactions, e.g. be-
tween transcription factors and binding sites [15], enables
construction of complicated logical functions, relatively
simple truth tables abound in real systems. One class
of naturally occurring input-output relations are cana-
lyzing [16]: a certain truth value at one argument fully
determines the output of the Boolean function. Using
nested canalyzing functions, where the residual function
after removal of one canalyzing input is again canalyzing,
the dynamics of the Boolean networks is ensured to be
non-chaotic [17].

Beyond making null models more realistic, the usage
of a specifically restricted set of Boolean functions also
offers advantages in the numerical treatment of Boolean
dynamics and, in particular, the evolution of the net-
works [18]. Such simulation scenarios frequently use
threshold functions [19], whose output is active only if
a weighted sum of the inputs exceeds a certain value.
Similar to ±J-spin glasses [20] but keeping couplings
asymmetric in general, these threshold functions employ
binary weights taking values +1 (activation), -1 (inhibi-
tion), and an entry 0 representing absence of a coupling
in the interaction matrix. For a function with k inputs,

this choice reduces the set of available functions from 22
k

to at most 3k. Threshold functions, however, are not the
only practical choice of Boolean functions where inputs
are assigned binary labels in this manner.

Here we investigate a class of functions with strong in-
hibition, which we call veto functions. As is the case with
threshold functions, inputs have binary labels, activating
or inhibiting. However, the output is shut off by a single
inhibitory signal regardless of other inputs. We calcu-
late the sensitivity of these functions and provide two
instances of relevance for biological systems. First, veto
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functions preferentially occur in a large Boolean network
of inter-cellular signalling. Second, known wiring dia-
grams for control of yeast cell cycles generate the correct
trajectories under veto functions.

II. DEFINITIONS AND NOTATION

A Boolean function is a mapping

f : {0, 1}k → {0, 1} (1)

of k binary valued inputs with a single binary output.
The number of inputs k is called the arity of f . For
testing the dependence of f on small displacements in
input space, we define the negation (“flip”) of the i-th
component on a Boolean vector σ ∈ {0, 1}k as the vector
σli with

(σli)j 6= σj ⇔ i = j . (2)

In analogy to the usual partial derivative, ∂(i)f indi-
cates whether a change in the i-th input variable causes
a change of output. For an input vector σ ∈ {0, 1}k,

∂(i)f(σ) =

{
1 if f(σ) 6= f(σli)
0 otherwise

(3)

with i ∈ {1, . . . , k} and li indicating negation at the i-th
component (Eq. (2)).

A Boolean network is a time- and state-discrete dy-
namical system given by an iteration

σ(t+ 1) = φ(σ(t)) (4)

on a time-dependent binary state vector σ ∈ {0, 1}N .
The map

φ : {0, 1}N → {0, 1}N (5)

is a collection of N Boolean functions φ1, φ2, . . . , φN each
of arity N . In practical and realistic scenarios, the func-
tions depend only on a small subset of all N inputs, see
section VIII for a precise definition of input dependence.
These systems are then characterized by their sparse in-
teraction networks and hence the name Boolean network.
See section VII for examples.

III. CANALYZING AND THRESHOLD
FUNCTIONS

Canalyzing functions, sometimes called forcing func-
tions, have been studied widely in the context of Boolean
networks [5, 16]. Canalyzation means that a certain value
at one of the inputs determines the output, regardless of
the other inputs. For a Boolean function f , the input
with index j is canalyzing if there are b, c ∈ {0, 1} such
that for all σ ∈ {0, 1}k

σj = b⇒ f(σ) = c . (6)

Then b is the canalyzing value and c is the canalyzed
value. A Boolean function f is called canalyzing if f has
a canalyzing input.

A different widely used class of functions are those de-
fined by a weight vector and a threshold [7, 9, 21]. A
k-ary Boolean function f is a general threshold function
if there is a weight vector w = (w1, w2, . . . , wk) ∈ Rk and
a threshold θ ∈ R such that

f(σ) = H(

k∑
j=1

wjσj − θ) (7)

for all σ ∈ {0, 1}k, using the step function H : R→ {0, 1}
with H(x) = 1 if and only if x > 0.

Here we consider the restriction to the case of discrete
weights wj ∈ {−1, 0,+1} for all inputs j and a vanishing
threshold θ = 0. See the recent work by Rybarsch and
Bornholdt for a motivation of this choice in the context of
biochemical regulation. By threshold function, we denote
a member of this restricted set of functions.

IV. VETO FUNCTIONS

For veto functions, similar to threshold functions, the
set of inputs is divided into subsets of activating, in-
hibitory and irrelevant inputs. The output of a veto func-
tion is active if and only if all inhibitors are off and at
least one activator is on. Formally, a k-ary Boolean func-
tion f is a veto function, if there are A, I ⊆ {1, . . . , k}
with A ∩ I = ∅ such that for all σ ∈ {0, 1}k,

fv(σ) = 1⇔ ∀j ∈ I : σj = 0 and ∃l ∈ A : σl = 1 (8)

Equivalently, veto functions may be defined by restricting
the set of general threshold functions. Then f is a veto
function if there is a weight vector w ∈ {−k, 0,+1}k such
that Eq. (7) holds for all state vectors σ ∈ {0, 1}k and
threshold θ = 0. The choice of −k as the weight of an
inhibitor keeps the sum below the threshold irrespective
of activating inputs.

V. COUNTING FUNCTIONS THAT DEPEND
ON ALL THEIR INPUTS

For the data analysis in the following section, further
notation and considerations are required for the counting
of Boolean functions. With the aim of providing method-
ology also for similar future work, we introduce the no-
tions in detail now.

By B we denote the set of all Boolean functions on
finitely many inputs; for k ∈ N ∪ {0}, we call Bk the set
of all k-ary Boolean functions, so

B =

∞⋃
k=0

Bk . (9)
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We denote the restriction of B to functions with a given
property π as B(π), and the further restriction to k inputs

as B(π)k . Here we are concerned with the three properties
canalizing, threshold and veto, so π ∈ {can, thr, veto}
and the corresponding function sets Bcan, Bthr, Bveto.

Not all k-ary functions actually depend on all k in-
puts. For instance, a k-ary function f is trivially obtained
from an l-ary function g with l < k as f(σ1, . . . , σk) =
g(σ1, . . . , σl), thus ignoring the last k− l inputs. We call
input j of function f spurious if f(σ) = f(σlj) for all
input vectors σ. Thus input j is spurious if f can be
computed without knowing the value at input j. Spu-
rious inputs are absent in empirical data of networks,
where each input of a node represents a real regulatory
interaction that does influence the output. In order to
assess if functions with a certain property are over- or
under-represented in real data, a reasonable null model
is to be based only on functions that depend on all in-
puts. By B∗ we denote the restriction of B to functions
without spurious inputs; applying the same restriction to

Bk and B(π)k , we use the symbols B∗k and B∗,(π)k .
We assume that property π is closed under permuta-

tions of inputs and removal / addition of spurious inputs,
an assumption fulfilled for unrestricted Boolean functions
as well as the three properties {can, thr, veto}. The num-
ber of functions with property π without spurious inputs,
is obtained recursively as

|B∗,(π)k | = |B(π)k | −
k−1∑
j=0

(
k

j

)
|B∗,(π)j | . (10)

For each k-ary function with exactly k − j spurious in-
puts, these may be removed to arrive at a unique j-ary
function. The multiplicity of such k-ary functions reduc-
ing to the same j-ary function in this way is given by
the binomial factor, counting the combinations in which
spurious and non-spurious inputs are assigned.

A Boolean function with k inputs takes 2k different in-
put vectors, to each of which an output value is assigned

independently. Thus there are |Bk| = 22
k

Boolean func-
tions of arity k. By inserting this result into Eq. (10), the
number of Boolean functions without spurious inputs is
obtained. For canalyzing functions, |B∗,cank | is calculated
by the same equation using the results |Bcank | from Just
and co-authors [22].

For a threshold function or a veto function, each zero
entry in a representing weight vector w is a spurious in-
put. So let us consider only functions with weight vec-
tors w ∈ {−1,+1}k (for threshold functions) or w ∈
{−k,+1}k (veto functions). For these, the weight vector
is unique and a single activating input (j with wj = +1)
renders all inputs non-spurious. Therefore, each com-
bination of admissible non-zero weights, except for the

all-negative weight vector, represents a function in B∗,thrk

and B∗,thrk , so we obtain

|B∗,vetok | = |B∗,thrk | = 2k − 1 . (11)

TABLE I: Counts in the data set. The column ak is for the
total count of k-ary functions, the following three columns
count veto, canalyzing and threshold functions. The last line
gives the summation over all arities.

k ak avetok acank athrk

1 27 27 27 27
2 23 12 21 12
3 21 5 18 2
4 29 4 15 2
5 11 1 4 1
6 10 0 5 0
7 8 0 3 0
8 10 0 4 0
9 5 0 3 0

10 5 0 5 0
11 1 0 1 0
12 1 0 0 0
13 0 0 0 0
14 1 0 1 0∑
k 152 49 107 44

TABLE II: Over-representation of the three types of functions

k rvetok rcank rthrk

1 0.3 0 0.3
2 0.25 0.07 0.25
3 0.87 0.33 0.47
4 2.78 1.04 2.48
5 6.30 3.25 6.30
6 7.94
7 17.40
8 36.63
9 75.28

10 152.52
11 306.61
14 2464.29

VI. OVER-REPRESENTATION OF FUNCTIONS
IN A SIGNALING NETWORK

In order to evaluate applicability of the veto function
in natural systems, we analyze the functions in a Boolean
network based on a real living system. The data set is
a collection of biological input-response of 152 nodes of
intracellular signal transduction network in the form of
Boolean truth tables each of which corresponds to the
update function of a node [8, 23]. We investigate the
over-representation of veto functions, threshold functions
and canalizing functions in this system.

For each property π, we count the k-ary functions in
the data set as:

a
(π)
k = |{i ∈ 152c : fi is k-ary with property π}| . (12)

Table I provides an overview of these counts.

Then a
(π)
k /ak is the fraction of these functions, ak be-

ing the total count of k-ary functions in the data set. In
order to quantify the preference of property π, we com-
pare this fraction to a null model of uniformly drawing
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Cln3 

SBF 

MBF 

Sic1 

Clb5,6 

Mcm1/SFF 

Swi5 Cdc20&Cdc14 

Clb1,2 

Cln1,2 

Cdh1 

FIG. 1: (Color online) Functional network using veto func-
tions for the budding yeast cell cycle. Solid arrows represent
activators, dashed arrows inhibtors. Departing from the wild
type network based on threshold functions [24], the depicted
network is obtained by deleting six interactions: the two
activations from Mcm1/SFF to Swi5 and to Cdc20&Cdc14;
and the four inhibitions from Clb5,6 to Cdh1, from Cdh1 to
Clb1,2, from Cdc20&Cdc14 to Clb1,2, and from Clb1,2 to
Swi5.

k-ary functions without spurious inputs. Under this null
model, the expected fraction of functions with property
π is |B∗k, (π)|/|B∗k|. We call the over-representation of
property π at arity k, the logarithm of the ratio between
the observed fraction and that expected under the null
model, so

r
(π)
k = log

(
a
(π)
k

ak

)
− log

(
|B∗k, (π)|
|B∗k|

)
(13)

Table II lists these values. The over-representation of
veto functions is at least as large as that of threshold
functions and strictly larger than that of canalyzing func-

tions, considering the value of r
(π)
k for arities k ≤ 5 where

all these types of functions are present.

VII. CELL CYCLE NETWORKS

Cell division has been one of the first biological pro-
cesses to be described in terms of Boolean networks, us-
ing with few (around 10) nodes [7, 9, 21, 24, 25]. In
the Boolean discretization, the cell cycle is a sequence of
state vectors σ(0), σ(1), . . . , σ(T ) ∈ {0, 1}N where σj(t)
indicates the presence or absence of molecular species j at
time step t. A Boolean network onN nodes is called func-
tional if it generates the cell cycle sequence given σ(0) as
an initial condition. Most earlier approaches describe
functional networks using threshold functions. Here we
investigate functional networks using veto functions.

In a functional network, each node i independently ful-
fills the input-output mapping given by the sequence.

SK 

Rum1 

Cdc2/Cdc13 

Cdc25 

Wee1/Mik1 
Cdc2/Cdc13* 

Slp1 

PP 

Ste9 

FIG. 2: (Color online) Functional network using veto func-
tions for the fission yeast cell cycle. Solid arrows represent
activators, dashed arrows inhibtors. The wiring is identical
to the one given by Rybarsch and Bornholdt [24], bottom of
Figure 5 there.

Thus the problem of finding all functional networks is
fully solved by independently finding the set Sveto

i of
functions generating this mapping [21].

Sveto
i = {f ∈ BvetoN |∀t ∈ {1, . . . , T} : f(σ(t−1)) = σi(t)} .

(14)
with BvetoN denoting the set of allN -ary veto functions (cf.
section V). Since the solutions at each node i combine
independently, the number of functional networks based
on veto functions is

Hveto =

N∏
i=1

|Sveto
i |. (15)

For the cell cycle of the species S. cerevisiae (budding
yeast, N = 11) [7], we compute Hveto = 1.15×1028, to be
compared to Hthr = 1.6×1033 functional networks using
threshold functions. Fig. 1 shows one of the functional
networks with veto functions. It has been selected such
that the wiring is closest to the so-called wild type [7,
24] based on interactions with evidence in the literature.
Departing from the wiring of the wild-type, the network
in Fig. 1 is obtained by deleting six interactions, see the
caption for details.

For the cell cycle of the species S. pombe (fission yeast,
N = 10) [9], we compute Hveto = 2.97 × 1027, to be
compared to Hthr = 2.4×1027 functional networks using
threshold functions. Fig. 2 shows one of the functional
networks with veto functions. The wiring is identical to
the wild type network using threshold functions [24]. We
remark that node Cdc2/Cdc13 is treated different from
the other nodes. This node does not have an activating
connection in the wild type wiring. Here we use a varied
type of veto function making node is active in the absence
of inhibiting inputs (even though there is no activating
input). This is analogous to the treatment with thresh-
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old functions where a negative threshold is assigned to
Cdc2/Cdc13.

VIII. SENSITIVITY

The tendency of a Boolean function to change output
value in response to a changing input is quantified by the
activity [26], defined as

αl(f) = 2−k
∑

σ∈{0,1}k
∂(l)f(σ), (16)

with ∂ as defined in Eq. (3). Thus the activity is the
probability that a perturbation (negation of state) at in-
put l propagates to the output of the function when all
other inputs are kept fixed.

Let us consider a k-ary veto function f . As before, we
denote the activating inputs by A, inhibiting inputs by I.
Let m := |I| = m and assume absence of spurious inputs,
so |A| = k−m. Let us consider the set Xl of state vectors
where flipping the state of the l-th component causes f
to change output,

Xl = {σ ∈ {0, 1}k : f(σll) 6= f(σ)} (17)

so αl(f) = 2−k|Xl|.
An inhibiting input l switches the output if and only

if there is at least one activation and all other inhibitors
are off,

Xl = {σ ∈ {0, 1}k : (∀iI \ {l} : σi = 0)∧∃j ∈ A : σj = 1}
(18)

This comprises |Xl| = 2(2k−m − 1) state vectors, so the
activity of an inhibitor is

αl(f) =
2(2k−m − 1)

2k
. (19)

When switching the state at an activating input l ∈ A,
the output of f changes if and only if all other inputs are
off,

Xl = {σ ∈ {0, 1}k : ∀i ∈ {1, . . . , k} \ {l} : σi = 0} . (20)

Here we have |Xl| = 2 state vectors only. The activity of
an activator is

αl(f) =
2

2k
(21)

The sensitivity is the sum of activities of all inputs

s(f) =

k∑
i=1

αi . (22)

For the veto functions with m inhibitors and k−m acti-
vators, we obtain

s(f) =
m(2k−m − 2) + k

2k−1
. (23)

TABLE III: Characterization of veto functions by sensitivity
s. Depending on the total number of inputs k and the number
m of inhibitors among these, functions would lead to frozen
(s < 1), critical (s = 1), chaotic (s > 1) dynamics in the
annealed approximation. Only functions without irrelevant
(spurious) inputs are considered, so the number of activators
is k −m.

k m = 0 m = 1 m = 2 m = 3 m = 4 m > 4

1 critical frozen — — — —
2 critical critical frozen — — —
3 frozen chaotic chaotic frozen — —
4 frozen chaotic critical frozen frozen —
> 4 frozen chaotic chaotic frozen frozen frozen

The sensitivity is the crucial parameter in the annealed
approximation [13, 26]. It predicts a transition from or-
dered (convergent) to chaotic (divergent) dynamics at a
sensitivity value 1 in large networks. For networks homo-
geneously built with veto functions of m inhibitors and
k−m activators, the expected dynamic phase is obtained
by evaluating Eq. (23) and listed in Table III. Non-frozen
dynamics is rarely obtained. For k ≥ 4, only m = 1 or
m = 2 lead to s > 1, otherwise s < 1.

Now let us consider a statistical ensemble of veto func-
tions with k inputs where the number of inhibitors m is
distributed binomially with parameter γ. Thus in gen-
erating a function, we decide for each of the k inputs
independently, if it is taken as an inhibitor (with proba-
bility γ) or an activator (with probability 1 − γ). Then
the ensemble averaged sensitivity is

〈s〉 =

k∑
m=0

(
k

m

)
γm(1− γ)k−m

[
m(2k−m − 2) + k

2k−1

]
.

(24)
Using

γm(1−γ)k−m2k−m = (2−γ)k
(

γ

2− γ

)m(
1− γ

2− γ

)k−m
(25)

the m2k−m effectively sums as a binomimal distribution
with parameter γ/(2− γ). We arrive at:

〈s〉 =
1

2k−1
[(2− γ)k−1kγ − 2kγ + k] (26)

=
k

2k−1
[(2− γ)k−1γ − 2γ + 1] (27)

This ensemble averaged sensitivity is plotted in Fig. 3.
These values 〈s〉 never exceed 1. In contrast to concrete
choices (k,m), cf. Table III, the ensemble of independent
stochastic assignment of inhibitors and activators to veto
functions always gives ordered dynamics.

IX. CLOSING REMARKS AND OUTLOOK

The idea of strong inhibitory inputs of veto type has
been used in models of neurons before. It dates back
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FIG. 3: (Color online) Average sensitivity according to Equa-
tion (24) for an ensemble of veto functions with inhibitor prob-
ability γ. The number of inputs k is a fixed integer parameter
of the ensemble (no averaging over k).

at least to the work by McCulloch and Pitts [27] where
the veto of an inhibitor is made explicit as a rule of the
model: “The activity of any inhibitory synapse abso-
lutely prevents excitation of the neuron at that time.”
Strong inhibition is also used in studies of cell cycle net-
works in a model with graded (non-Boolean) response

by Burda, Zagorski and co-authors [28, 29]. Networks
with veto functions are obtained when discretizing the
response functions used in their model.

We identify two directions for immediate further work.
Simulations and analytical estimates of networks with
veto functions will give a clearer picture of their dynamics
in comparison to the other types of functions. Random
networks would be taken as a starting point. Similar
to recent work on threshold functions [24], the annealed
approximation for networks of veto functions would be
refined by a self-consistent calculation of the expected
intensity, i.e. the fraction of nodes in the on-state.

Classes of functions and their parametrizations are to
be explored further, under comparison with empirical
data sets. This will lead to more and refined null models
being able to separate global effects from network archi-
tecture from local ones given by the use of logical func-
tions with particular properties.
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