Towards an Optimal DNA-Templated Molecular Assembler

Jakob L. Andersen !, Christoph Flamm 2, Martin M. Hanczyc 3, Daniel Merkle !
! Department of Mathematics and Computer Science, University of Southern Denmark, Denmark
2 Institute for Theoretical Chemistry, University of Vienna, Austria
3 Centre for Integrative Biology CIBIO, University of Trento, Italy

daniel@imada.sdu.dk, jlandersen@imada.sdu.dk
mhanczyc@gmail.com, xtof@tbi.univie.ac.at

Abstract

In DNA-templated synthesis, reactants are attached to DNA
strands and complementary DNA strands are used to control
the reaction towards a goal compound. This very general,
simple, and still efficient approach has proven to be success-
ful for the design of complex one-pot synthesis for a large
variety of compounds. For a given goal compound many dif-
ferent synthesis plans may exist, and all of them can poten-
tially be implemented with many different DNA-templated
programs. This raises the issue of how to automatically infer
optimal low-level programs based on a high-level synthesis
plan or a goal compound only. In this paper we will intro-
duce a computational approach for DNA-templated synthe-
sis based on graph rewriting approaches and the systematic
exploration of chemical spaces. We will use them for veri-
fication of correctness of real-world synthesis plans as well
as to illustrate the non-triviality of finding an optimal DNA
assembler program.

Introduction

The “ideal synthesis”, according to Wender (Wender
and Miller, 1993), may be defined as a simple, safe,
environmentally-acceptable, resource-efficient one-step op-
eration, that quantitatively yields the desired complex tar-
get molecule from the readily available starting materials.
Of course, such an idealized synthesis does not exist for
the majority of the synthetically interesting target molecules,
however multi-step one-pot reactions approximate Wender’s
ideal synthesis quite closely.

Therefore considerable effort has been put into the de-
sign, development and execution of such one-pot, multi-
step chemical and biochemical synthesis strategies (Broad-
water et al., 2005; Wang et al., 2007; Lundberg et al., 2008;
B.Ramachary and Jain, 2011; Denard et al., 2013). This re-
action architecture restricts all chemical transformations in
the same one-pot space often with sequential addition of re-
actants or catalysts. Without having to perform multiple dis-
crete purification steps as per normal in synthesis protocols,
time is saved as well as resources. If designed properly the
one-pot multi step protocol will produce the products of in-
terest while minimizing the undesirable side products com-
mon in traditional synthesis.

A design strategy for one-pot synthesis is to covalently at-
tach a short oligomer of DNA to each reactant (Winssinger
and Gorska, 2013). In one design, an additional DNA
strand is then added to the system as a sequence specific
polymeric support that is complementary to both reactant
strands, bringing both reactants physically close to one an-
other, see the framed box in the top left of Figure 7. This
structured chemical environment increases the effective con-
centration of the reactants and has been demonstrated to ef-
fectively enhance the rate of the reaction towards the desired
specific product (e.g., McKee et al. (2010)). Several impor-
tant and distinct chemical reactions can be supported by this
design strategy including heteropolymerization, photoliga-
tion, click chemistry, condensation, cycloaddition, and many
others (see Gorska and Winssinger (2013)).

Recently we described a computational generative chem-
istry approach based on graph grammar to explore previ-
ously intractable complex chemical spaces (Andersen et al.,
2013a). As a result we can propose potentially interest-
ing chemical pathways such as synthesis pathways or auto-
catalytic loops that may be present in the complex mix-
ture. To further define the tools needed to navigate complex
chemical spaces, here we present a design strategy based on
both one-pot multi-step synthesis and reactions templated
by nucleic acid complementarity. We explore how specific
chemical pathways may be designed in sequential and par-
allel steps when reactants are tagged with short oligomeric
DNA. We take a computer science perspective on the design
of the entire system, by compiling a list of instructions that
when implemented in wet chemistry will produce desired
outcomes as reaction products.

In the next two sections we will introduce to DNA-
templated synthesis and necessary definitions for its formal-
ization. A framework based on the combination of graph
rewriting approaches and a strategy framework for chemical
space exploration will be presented. In the results section we
use the framework in order to verify correctness of a DNA-
templated synthesis as presented in (McKee et al., 2010) and
we analyze two further syntheses with a focus on optimality.
In the last section we conclude and give future directions.



DNA Templated Synthesis
State-of-the-Art

While most of the experimental details and questions for
the DNA-templated organic synthesis have been worked
out over the last couple of years (for a recent review see
(Gorska and Winssinger, 2013)), computational questions
are largely open. However, several computational design
tasks in the realm of DNA computation and related areas
have been approached in the last decade: (1) the primer se-
lection problem (Pearson et al., 1996) which seeks a mini-
mal set of short DNA sequences which specifically bind to
a target DNA strand with minimal cross-reactivity, an A/P-
hard problem, (2) thermodynamic design of multi-stable nu-
cleic acid molecules (Honer zu Siederdissen et al., 2013),
(3) sequence design for ensembles of interacting nucleic
acid molecules (Zadeh et al., 2011), (4) pathway design for
the self-assembly of nucleic acid nano-objects (Yin et al.,
2008), (5) the design of DNA interaction networks with de-
fined temporal behavior (Baccouchea et al., 2014), (6) a pro-
gramming language for composable DNA circuits based on
strand displacement as the main computational mechanism
has been introduced (Phillips and Cardelli, 2009; Cardelli,
2010). However no theoretical efforts have been undertaken
so far to clarify how a synthesis plan (i.e., the instructions
how a target molecule is constructed from starting materi-
als) can be “compiled” into DNA-templated assembler pro-
grams. This leads to the question: does an optimal synthesis
plan translate also in an optimal DNA-templated assembler
program? This touches the problem of how many DNA tags
should be used to optimize a DNA-templated assembler pro-
gram, and if such a program does or does not create side
products. These issues will be investigated in the following
sections.

Definitions

Here we introduce necessary definitions for DNA-templated
synthesis, please refer to the framed box of Figure 7 for an
illustration. A DNA domain is a sequence of nucleotides
(Cardelli, 2010). DNA plus (resp. minus) strands with sin-
gle domains are denoted with lowercase variables a, b, . ..
(resp. over-lined lowercase variables @, b, ...). In Figure 7
plus (resp. minus) strands are illustrated as lines with half
arrows pointing to the right (resp. left). DNA strands com-
posed of several chemically linked domains are denoted as
a sequence of the corresponding DNA domain variables,
where the sequence of domains is always given from 5’-end
to the 3’-end, e.g., ab denotes a plus strand of the sequence
of the two DNA domains a and b (the blue-red strand in
Figure 7), while ba denotes a sequence of two domains on
the complementary minus strand. A sequence of domains
and its complement form a fully stacked helix, e.g., ab and
ba form a helix. Non-covalent sequences of domains are
indicated by a | sign between the domains (e.g., b|@). In
this paper an instruction strand as well as a release strand

is a sequence of two domains. Without loss of generality
instruction (resp. release) strands are always plus (resp. mi-
nus) strands. Compounds, i.e., reactants and products, are
denoted with uppercase variables A, B, . ... Compounds can
be attached to the 3’-end or 5’-end of a domain. Without loss
of generality only minus strands are modified (i.e., only mi-
nus strands are DNA adapters for compounds). A domain
(or DNA adapter, or DNA tag) modified with a compound
(or more specifically a reactant, resp. product) will be called
compound-DNA (or more specifically reactant-DNA, resp.
product-DNA). If a modification of a domain is at its 5°-end,
we will use a superscript prefix notation (e.g., “@ denotes
a DNA strand @ which has been modified at its 5’-end with
compound A). If a modification is at its 3’-end we will use a
superscript postfix notation (e.g., @ denotes a DNA strand
@ which has been modified at its 3” end with a compound A).
A complex of instruction strand and one or two
compound-DNAs is formally denoted as a pair, e.g., (ba,
@”|Pb) refers to an instruction strand ba which has the two
compound-DNAs @* and Zb bound to the instruction strand.
Note that in this example the compounds A and B are in
close vicinity. We conveniently use the special symbol e for
the empty strand or an empty molecule. L.e., the complex
(ba, EA|6) has an unbound domain b and the complex (ba,
@”|°b) has a domain b attached to b and b has no compound
attached. Note, that b refers to the same compound as b
An example of how we depict reactions and compound-
DNAs is given in the framed area of Figure 7: given the

two reactant-DNAs (EB and A%) and the instruction strand
ba, a complex (ba, 6A|B b) is formed via a reaction (i.e., a
hyperedge) which is illustrated as rectangle.

Graph Grammars, Generative Chemistries,
and Strategies

While several methods for reasoning about chemistry (Dit-
trich et al., 2001) have been studied, we promote graph
grammar approaches (Benko et al., 2003; Rozenberg and
Ehrig, 1997) as the core formal framework to handle chem-
ical transformations. Graph grammars naturally capture
the algebraic nature of chemical reactions where molecu-
lar graphs operate upon each other to produce (potentially)
novel molecular graphs. Molecules are abstracted to edge
and vertex labeled graphs while reactions are expressed
as graph rewrite rules between input and output molecular
graphs. The so-called Double Pushout (DPO) (Rozenberg
and Ehrig, 1997) approach provides the most intuitive direct
encoding of chemical reactions and the closest connection
to the language of chemistry. A DPO transformation rule

p= (L A R) consists of three graphs L, R and K
known as the left, right and context graph, respectively, and
two graph morphisms [ and r that determine how the context
is embedded in the left and the right graph. The rule p can
be applied to a graph G if the left graph L can be found in



G and some additional consistency conditions are satisfied.

Graph grammars can be thought of as context-sensitive
grammars, with strings replaced by labeled graphs. Re-
peated application of a set of reaction rules to a set of chem-
ical units generates the “language” of all possible chemi-
cal units reachable from the initial setup. Chemical units
can refer to molecules, DNA strands, complexes of instruc-
tion strand and compound-DNA, or a combination of such
structures. The modeling of DNA strands and compound
DNAs as undirected node- and edge-labeled graphs and the
modeling of operations on these chemical units via DPO is
straightforward and will be shown based on an example. In
Figure 1(a) a graph grammar production rule p: (L — R)
is illustrated (for simplicity we omit the context graph K).
The diagram shows the labeled subgraphs L (two compo-
nents) and R (one component), the host graphs G and H,
the subgraph matching morphisms (downward arrows), and
the production morphism (right arrows) for a chemical op-
eration. In this case a graph grammar rule in order to bind
compound-DNA @ to an instruction strand ba is shown, de-
noted as G £ H. Note, that the production could be applied
to any other instruction strand, too, as long as L is found as
subgraph in the host graph G. Figure 1(b) shows the seman-
tically identical but prettified version, which will be used
throughout the paper.

The chemical units and their producing reactions are most
conveniently organized in a hypergraph, i.e., the chemical
space. While graph theoretical methods are well estab-
lished for prediction of chemo-physical properties of indi-
vidual molecules (Gramatica, 2007; Le et al., 2012), anal-
ysis of the underlying hypergraph, i.e., the chemical space
is, with a few exceptions, lacking. In (Andersen et al.,
2012), the NP-completeness of maximizing the production
of a desired compound in a given chemical reaction net-
work was proven. The mathematical definition of functional
sub-networks, such as a synthesis pathway as flow problems
on hypergraphs, allows to detect relevant chemical transfor-
mation motifs, e.g., potential synthesis plans in a chemical
space.

Recently a generic approach for composing graph gram-
mar rules to define chemically useful rule compositions was
introduced (Andersen et al., 2013b). The idea of rule com-
position has been utilized to define an efficient framework
for defining strategies to systematically explore chemical
spaces (Andersen et al., 2014). An analysis of the complex
chemistry of hydrogen cyanide was recently published in
(Andersen et al., 2013a), which uses this framework. Here,
we will define high-level constructs for DNA strand com-
puting based on this strategy framework, and we therefore
briefly describe a simplified version of it.

Exploration of a chemical space proceeds step-wise. The
state of an exploration is a set of molecular graphs (includ-
ing product-DNAs, complexes, and instruction strands in the
case of DNA-templated computing). Exploration strategies

h
>

e

ol —
v

=2
=]

\ 4
Q& — o —

Q

(a)

[®
[®

G H
(b)

Figure 1: Graph Grammar rule that illustrates a production rule p
for binding of a compound-DNA @* to an instruction strand that
is composed of the plus strand a and other strands. Applying the

production rule p to graph G produces H, denoted as G = H.

are functions from and to such states. A strategy is defined
by a set P of transformation rules in the DPO formalism.
The core strategy will apply all the rules to all combinations
of graphs in the input state. The resulting state consist of
all new graph derived and all graph which have not been an
educt in any rule application. Formally, for an input state F’
the resulting state F” is given by

F'={hcH|VGCFpeP:G2 H}
U{ge FIVGCF,geG,peP:G# H}

As shorthand we write this as F’ = P(F).! To support
the dynamic addition of chemical units as needed in DNA-
templated synthesis, an addition strategy is used, which,
given a state F', adds a molecule graph g and yields the state
F'ie., F' = FU{g}. We write this as F' = add[g|(F).
The last strategy we will use for DNA strand computation
is the composition strategy, which corresponds to function
composition; given strategies ()1 and ()5 their composition
(Q20Q) is a new strategy. To increase left-to-right readability
for large composition chains we opt to write it as Q1 — Qs.
Instructions of a DNA program as defined in the next section
will be based on this formalism.

'In relation to (Andersen et al., 2014), this is an abstraction of
the strategy revive[parallel|P]].



Computational Framework for DNA
Templated Synthesis

In this section we will combine the graph grammar ap-
proaches for DNA-templated synthesis and the strategy
framework in order to define a computational framework for
artificial DNA-templated synthesis. The overall structure of
the framework is as follows. Based on graph rewriting ap-
proaches a chemical space is iteratively expanded (without
any DNA tagging), formally this leads to a hypergraph (also
called derivation graph D(). Note, that for the artificial
DNA-templated synthesis this derivation graph might also
be given beforehand. The nodes in DG correspond to chem-
ical compounds and the directed hyperedges correspond to
chemical reactions. Within the chemical space DG we infer
a pathway that corresponds to a synthesis plan that we are
aiming to realize based on DNA-templated synthesis.

To the best of our knowledge, graph rewriting approaches
for DNA-templated synthesis do not exist. We use the
same graph rewriting framework to augment the chemi-
cal compounds of a chemical space with DNA adapters
and iteratively infer compounds (now including DNA tag-
ging, cmp. previous section) controlled by a given DNA-
templated (synthesis) assembler program (or just DNA pro-
gram). Besides the derivation graph DG we implicitly as-
sume that the mapping of the tags for a DNA-templated re-
action is given, i.e., for each tagged version of a reaction
A+ B — C + D in DG the information is known, if the
DNA strand attached to A (resp. B) will be attached to C' or
D on the product side.

An advantage of using the same framework for expanding
the chemical space of compound-DNAs, DNA plus and mi-
nus strands, instruction strands, and the corresponding com-
plexes is that this allows for a straightforward and easy in-
tegration of our existing graph rewriting approaches. Con-
sequently this means that, e.g., an atom-to-atom mapping
is known for all reactions involved. Furthermore, identical
methods for pathway inference on the different or integrated
chemical spaces could be used. In order to “execute” a given
DNA-templated assembler program we will make heavy use
of a simplified version of our strategy framework as pre-
sented in (Andersen et al., 2014) and outlines in the pre-
vious section. If the products after termination of the DNA
program do not correspond to the products wished, then we
have an unwanted side-effect, i.e., side products we were not
aiming for.

Programs for DNA-templated synthesis

DNA programs will be defined in Python?, which is used
as an interface language to a C++ library in which all the
presented approaches are implemented. In our model a pro-
gram is an exploration strategy, and an empty program is the
identity strategy. Each operation in the program adds a spe-

2overlined strings will be used for convenience

cific strategy by composition. Let the current program be the
strategy (), then the following describes the valid operations.
® monomer (compound, DNA-tag, modific. end):
A compound-DNA corresponding to the arguments of the
operation is added to the exploration state, e.g.,

monomer ("A", tag="a", end="5")

Formally this corresponds to the strategy composition
Q := Q — add[*a].

® instruction(strandl, strand2):
Semantically this means, that an instruction strand is
added to the current state, e.g.,

instruction ("b", "a")

Formally this means ) := Q — add|[ba].
® release (strandl, strand2):
A release strand is added to the current state, e.g.,

release ("a", npn )

Formally this means ) := ) — add|ad]
These operations are grouped into sets of add operators, e.g.,

add (monomer ("A", tag="a", end="5"),
instruction ("b", "a"))

where each add operation implicitly ends with a reaction
strategy (Qreact- This strategy implements the details of
rule application for strand displacement, strand binding,
and reactions between monomers from the original chem-
istry. E.g., the add operation above means @) := @ —
add[“a) — add[ba] — Qycact. Running a DNA-program
corresponds to evaluating the strategy () on the empty state.
The resulting state will be used for DNA program verifica-
tion, i.e., if unwanted products are in the final state, then the
program is not side-effect free.

Results

We present three different setups for DNA program verifi-
cation. The first example is based on an artificial chem-
ical space and an artificial synthesis plan with four reac-
tants. The second example is a real-world example that il-
lustrates the correctness of the wet-lab results presented in
(McKee et al., 2010). The third non-trivial example illus-
trates how even simple chemical spaces might lead to com-
plicated DNA programs if the program should fulfill a cer-
tain optimality criterion.

Synthesis 1: Four Reactants and Four Adapters

In this example we aim at synthesizing product X based
on four given reactants A, B, C, and D. A chemical
space as depicted in Figure 2 is assumed. In this case the
only possible synthesis plan to be implemented with DNA-
templated synthesis for compound X is based on the reac-
tions A+ B — E,C+D — F,E+F — X. This synthesis
plan is highlighted with bold lines in the chemical space in



Figure 2: Artificial Chemical Space / Derivation Graph; the syn-
thesis plan to be implemented based on DNA-templated synthesis
is highlighted (bold).

Figure 2. We assume that for each reaction in Figure 2 the
mapping of the strands from educts to products is given, i.e.,
(as in our case there is only one product for each reaction),
the information is given if for a reaction A + B — C, the
product-DNA of C' will be attached to the DNA strand that
was attached to A or C. Without loss of generality we as-
sume that the product-DNA of C will inherit the DNA strand
attached to A, for reaction C' + D — F the product-DNA
of I will inherit the DNA strand attached to C' and for re-
action £ + F' — X the product-DNA of X will inherit the
DNA strand attached to F'. Note, that the chemical space
augmented with DNA adapters is much larger; allowing 2
different adapters only leads to a space of 2928 nodes and
8324 reactions even for this toy example, due to the com-
binatorial explosion of how to build compound-DNAs and
complexes of them.

Using four DNA adapters a side-product free one-pot syn-
thesis is straightforward. The monomers A (resp. C') are at-
tached to the 3’-end of the DNA strand @ (resp. ¢) creating
the reactant-DNA a* (resp. ). The monomers B (resp.
D) are attached to the 5’-end of the DNA strands b (resp.
d) creating complexes b (resp. Pd). Using the instruc-
tion strand ba, the reactant-DNA @ and Bb will form the
complex (ba,a”*|®b). Reactants A and B are now in close
proximity and will react, and the complex (ba, @|£b) will be
formed. At the same when ba is added, the instruction strand
dc is added, which in parallel and without interference will
form the complex (dc, ¢ |°d). The next step will release the
product-DNAs from their instruction strand, which is done
by adding DNA-strands ab and cd. This will release b and
¢f" and also form the non-reactive complexes (ba, ab) and
(de, cd). Subsequently, a newly added instruction strand dc
will form the complex (dc, " |Pd), and E and F will re-
act to X, forming the complex (dc,eX |°d). After releasing
the reactant-DNA finally the goal product-DNA &% is avail-
able and could be easily extracted from this one-pot synthe-
sis plan via the unique tag. Note, that no side products were

S
NN EREWN OV R W —

Input: A Derivation Graph DG

Output: A Product Set

comp = DNAComputer (dg)

prog = comp.makeProgram ()

prog.add (monomer ("A", tag="a", end="3"),
monomer ("B", tag= "o , end="5"),
monomer ("C", tag="c", end="3"),
monomer ("D", tag="d", end="5"),

instruction("b",
instruction("d",

"an),
ey )
prog.add(release ("a", "E") b

release ("C", "a")
prog.add (instruction ("b", "c"))
prog.add (release ("c", "B") )
prog.run ()

return prog.products ()

Figure 3: DNA-templated program for the synthesis plan (four re-
actants) given in Fig. 2); four different DNA tags attached to the
educts are used.

formed (i.e., all atoms from the educts ended up in the sin-
gle goal compound X). The overall 4 step DNA program, is
shown in Figure 3.

Synthesis 2: Sequence-Controlled Oligomers

In this section we analyze a real-world one-pot multi-step
synthesis as presented in (McKee et al., 2010). Using two
different mechanisms for the synthesis of oligomers they
presented how i.) both mechanisms individually can be used
to synthesize specific 4-mers, and ii.) how a specific 6-mer
is created by coupling two 3-mers, which have been syn-
thesized in parallel by both mechanisms. In the alternating-
strand (resp. same-strand) mechanism the growing strand
of the synthesis is transferred (resp. not transferred) be-
tween DNA adapters in single steps. More specifically, i.)
the alternating-strand mechanism is initiated with a mono-
functional ylide monomer (FAM), for which at each step the
growing chain is transferred to the incoming monomer. This
reaction is stopped by a transfer to a mono-functional alde-
hyde monomer (BAL); ii.) the same-strand mechanism is
initiated with an aldehyde monomer and the growing chain
remains on the same DNA adapter throughout the synthesis.
The reaction in this case is terminated by addition of an ylide
monomer (FAM). For details on determining the tagging of
the monomers (all monomers are uniquely tagged), for de-
termining the instruction and release strands, and for the se-
quence of the addition of the strands we follow precisely the
description of (McKee et al., 2010), which we would classify
as a straightforward synthesis similar to the artificial exam-
ple as presented in the first example of the results section.
From (McKee et al., 2010) we verified the side-effect free
synthesis of the 6-mer as well as the side-effect free synthe-
sis of the 4-mers, due to space limitations we will focus on
the synthesis of a 4-mer.

Chemical Space: The derivation graph based on all possible
2-to-1 reactions of the four monomers has 27 nodes and 47
reactions. The goal compound for the synthesis plan is the




IR B R R S N S

Input: A Derivation Graph DG
Output: A Product Set

prog = comp.makeProgram ()

prog.add (monomer ("A", tag="a", end="3"),
monomer ("B", tag="b", end="5"),
instruction("b", "a"))

prog.add (monomer ("C", tag="a", end="3"),
monomer ("D", tag= "b", end="5"),
instruction("b", "a"))

prog.add (release("a", "B") )

prog.add (instruction ("b",

prog.add (release("a", "E") )

nany)

prog.run ()
return prog.products ()

Figure 4: DNA program for the synthesis plan given in Figure 2);
only two different DNA tags attached to the educts are used; the
program has unwanted side-effects.

the oligomer FAM-ALA-PHE-BAL (denoted as F-A-P-B).
There are 5 synthesis plans to produce the goal compound,
of which the four of them are linear. For the mapping of the
tags of educt-DNA to the product-DNA for DNA-templated
reactions we straightforwardly follow the descriptions from
(McKee et al., 2010).

DNA Program and verification: We omit the source code
of the DNA program due to space limitations. However, the
program can easily be inferred based on Figure 6, which de-
picts the automatically inferred sequence of states of the pro-
gram. The linear synthesis plan is implemented with a 6-step
DNA program for templated synthesis. After termination of
the program there exist several products. However, the only
product-DNA created is the goal compound, therefore the
linear synthesis plan is indeed side-effect free (in Figure 6
all products are highlighted with bold lines).

Synthesis 3: Four Reactants and Two Adapters

Both previous examples used unique DNA adapters for all
the educts, i.e., the number of educts was identical to the
number of different tags attached to the educts. In order
to reduce the number of tags (and therefore increase their
diversity) to an optimal amount, the DNA programs need a
significant rewrite. In the following example the goal is to
find a DNA program for the synthesis plan from Figure 2
with less than four different tags as used in the first example
of the results section. It is not hard to see, that it is not
possible to use one tag only. For the chemical space and
synthesis plan to be implemented, please refer to Figure 2.

Naive Approach: A DNA program using two tags only is
shown in Figure 4. It follows the same idea as the program
from Figure 3. However, when the four reactant-DNA a’,
By, a©, and Pb are added, the instruction strand ba would
lead to side-effect as, e.g., a* and Pb would form the com-
plex (ba,a?|”b), and A and D would react to the unwanted
compound Z. While this can be circumvented by sequen-
tially adding instruction strands, the program will still not
be side-effect free. After release (line 11) there will be

SOC®Uan LW —

Input: A Derivation Graph DG
Output: A Product Set

prog = comp.makeProgram ()

prog.add (monomer ("A", tag="a", end="H"),
monomer ("B", tag="b", end="T"),
instruction ("b", "a"))

prog.add(release ("b", "a"))

prog.add(instruction ("b", "c"),
instruction ("c", "a"))

prog.add (monomer ("C", tag="a", end="H"),
monomer ("D", tag= "b", end="T"),
instruction ("b", "a"))

prog.add(release ("b", "a"))

prog.add(instruction("c", "b"))

prog.add(release ("b", "c"))

prog.add(instruction ("b", "a"))

prog.add(release ("b", "a"))

prog.run ()

return prog.products ()

Figure 5: DNA program for the synthesis plan given in Figure 2);
again, two different DNA tags attached to the educts are used; the
program has no unwanted side-effects.

the compound-DNAs ©b and @ in the pot, but also minus
strands @ and b. These will bind to the instruction strand
added (line 12) and form, e.g., the complex (ba, a“|*b). The
release operation (line 13) will release the goal compound,
but in addition also the unwanted side products b and a*".
Correct Approach: A correct program is shown in Fig-
ure 5. An illustration of the correctness of the 9-step pro-
gram is given in the Figure 7. After execution, the only
compound-DNA with a non-empty compound attached is
the goal compound (step 9 in Figure 7). Similar to classical
synthesis this goal is reached by disabling DNA strands that
would otherwise indirectly lead to unwanted side products
as in the naive approach. In step 2 of Figure 7, the empty
DNA adapter (@ in the program, depicted red in the figure)
that was originally attached to A is disabled by attaching it
to an instruction strand (ca in the program, depicted orange-
red in the figure). Similar in step 5 the adapter originally
attached to D (b in the program, depicted in blue) is dis-
abled by an instruction strand (cb in the program, orange-
blue in the figure). Another important mechanism used is
the temporal protection of compound-DNA ©b by adding the
instruction strand bc (step 2 in Figure 7). This compound-
DNA is released again later (step 6 in Figure 7, line 16 in the
program) in order to further react.

Conclusion and Future Directions

We introduced an approach for DNA-templated synthesis
based on graph grammar approaches. We illustrated im-
portant steps towards an organic synthesis compiler which
translates the high-level description of an synthesis plan into
an executable DNA-templated assembler program. In partic-
ular we showed that even the verification of the correctness
of a given DNA assembler program is already a non trivial
problem. In particular the number of DNA tags has a huge




Figure 7: 9-step DNA-templated one-pot synthesis for compound X from Figure 2 using the DNA program from Figure 5; all the final
products are indicated with bold lines, no unwanted side-effect exist; dashed lines partition the molecules into the individual states of the

mixture between computation/synthesis steps.

impact on the length and complexity of the resulting DNA-
templated assembler program. Here an expansion of the in-
struction set via strands which can form hairpin structures
depending on the context with reactants hooked up to both
ends could probably lessen the number of needed DNA tags.
Furthermore, automatic inference of (optimal) DNA assem-
bly program for the synthesis of a specific compound is a
major line of our further research. A central question for the
future is how optimality in the synthesis plan translates to
optimality in the DNA assembler program. It is likely that
optimality in these two formulations are competing quali-
ties and therefore the problem must be attacked by a multi-
objective optimization approach. Here the fact that our ap-
proach is completely formulated in the language of graph
grammars is a clear advantage.

Acknowledgements

This work was supported in part by the EU-FET grants Ri-
boNets 323987 and EVOBLISS 611640,, the COST Action
CM1304 “Emergence and Evolution of Complex Chemi-
cal Systems”, and the Danish Council for Independent Re-
search, Natural Sciences.

References

Andersen, J. L., Andersen, T., Flamm, C., Hanczyc, M. M.,
Merkle, D., and Stadler, P. F. (2013a). Navigating the chem-
ical space of HCN polymerization and hydrolysis: Guid-
ing graph grammars by mass spectrometry data. Entropy,
15(10):4066—4083.

Andersen, J. L., Flamm, C., Merkle, D., and Stadler, P. F. (2012).
Maximizing Output and Recognizing Autocatalysis in Chem-
ical Reaction Networks is NP-Complete. Journal of Systems
Chemistry, 3(1).



Figure 6: 6-step DNA-templated one-pot synthesis for the oligomer
F-A-P-B (cmp. McKee et al. (2010)); all the final products are in-
dicated with bold lines, no unwanted side-effect exist.

Andersen, J. L., Flamm, C., Merkle, D., and Stadler, P. F. (2013b).
Inferring chemical reaction patterns using rule composition
in graph grammars. Journal of Systems Chemistry, 4(1):4.

Andersen, J. L., Flamm, C., Merkle, D., and Stadler, P. F. (2014).
Generic strategies for chemical space exploration. Interna-
tional Journal of Computational Biology and Drug Design.
in press, TR: http://arxiv.org/abs/1302.4006.

Baccouchea, A., Montagnec, K., Padiraca, A., Fujiia, T., and Ron-
deleza, Y. (2014). Dynamic DNA-toolbox reaction circuits:
A walkthrough. Methods. doi: 10.1016/j.ymeth.2014.01.015.

Benkd, G., Flamm, C., and Stadler, P. F. (2003). A graph-based toy
model of chemistry. Journal of Chemical Information and
Computer Science, 43(4):1085 — 1093.

B.Ramachary, D. and Jain, S. (2011). Sequential one-pot combi-
nation of multi-component and multi-catalysis cascade reac-
tions: an emerging technology in organic synthesis. Organic
& biomolecular chemistry, 9(5):1277-1300.

Broadwater, S. J., Roth, S. L., Price, K. E., Kobaslija, M.,
and McQuade, D. T. (2005). One-pot multi-step synthe-
sis: a challenge spawning innovation. Org. Biomol. Chem.,
3(16):2899-2906.

Cardelli, L. (2010). Two-domain dna strand displacement. In
DCM, pages 47-61.

Denard, C. A., Hartwig, J. F., , and Zhao, H. (2013). Multistep one-
pot reactions combining biocatalysts and chemical catalysts
for asymmetric synthesis. ACS Catalysis, 12(3):2856-2864.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial
chemistries — a review. Artifical Life, 7:225 — 275.

Gorska, K. and Winssinger, N. (2013). Reactions templated by
nucleic acids: More ways to translate oligonucleotidebased
instructions into emerging function. Angewandte Chemie In-
ternational Edition, 52(27):6820-6843.

Gramatica, P. (2007). Principles of QSAR models validation: inter-
nal and external. QSAR & Combinatorial Science, 26(5):694—
770.

Honer zu Siederdissen, C., Hammer, S., Abfalter, 1., Hofacker,
I. L., Flamm, C., and Stadler, P. F. (2013). Computational
design of RNAs with complex energy landscapes. Biopoly-
meres, 99(12):1124-1136.

Le, T., Epa, V. C., Burden, F. R., and Winkler, D. A. (2012).
Quantitative structure-property relationship modeling of di-
verse materials properties. Chem. Rev., 112:2889-2919.

Lundberg, P, Hawker, C. J., Hult, A., and Malkoch, M. (2008).
Click assisted one-pot multi-step reactions in polymer sci-
ence : Accelerated synthetic protocols. Macromolecular
rapid communications, 29(12—-13):998-1015.

McKee, M., Milnes, P., Stulz, E., Turberfield, A., and O’Reilly, R.
(2010). Multi-step DNA templated reactions for the synthesis
of functional sequence controlled oligomers. Angew. Chem.
Int. Ed., 49:7948-7951.

Pearson, W. R., Robins, G., Wrege, D. E., and Zhang, T. (1996).
On the primer selection problem in polymerase chain reaction
experiments. Discr. Appl. Math., 71(1-3):231-246.

Phillips, A. and Cardelli, L. (2009). A programming language for
composable DNA circuits. J. R. Soc., 6(Suppl 4):S419-S436.

Rozenberg, G. and Ehrig, H. (1997). Handbook of graph grammars
and computing by graph transformation, volume 1. World
Scientific.

Wang, Y., Ye, X.-S., and Zhang, L.-H. (2007). Oligosaccharide
assembly by one-pot multi-step strategy. Org. Biomol. Chem.,
5(14):2189-2200.

Wender, P. A. and Miller, B. L. (1993). Towards the Ideal Synthe-
sis: Connectivity analysis and multibond-forming processes,
volume 2 of Organic Synthesis: Theory and Applications,
pages 27-66. JAI Press, Greenwich CT.

Yin, P, Choi, H. M. T., Calvert, C. R., and Pierce, N. A. (2008).
Programming biomolecular self-assembly pathways. Nature,
451:318-322.

Zadeh, J. N., Steenberg, C. D., Bois, J. S., Wolfe, B. R., Pierce,
M. B,, Khan, A. R., Dirks, R. M., and Pierce, N. A. (2011).
NUPACK: Analysis and design of nucleic acid systems. J.
Comput. Chem., 32(1):170-173.



