
RNAblueprint: Flexible and universal multiple target nucleic

acid sequence design

Stefan Hammer 1,2,∗, Birgit Tschiatschek 2,
Christoph Flamm 1,3, Ivo L. Hofacker 1,2,4,∗ and Sven Findeiß 1,2,∗

August 2016

1University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry, 1090 Vi-
enna, Austria,
2University of Vienna, Faculty of Computer Science, Research Group Bioinformatics and Compu-
tational Biology, 1090 Vienna, Austria,
3University of Vienna, Research Network Chemistry Meets Microbiology, 1090 Vienna, Austria
and
4University of Copenhagen, Center for Non-coding RNA in Technology and Health, Copenhagen,
DK-1870, Denmark.

Abstract

Motivation: Realizing the value of synthetic biology in biotechnology and medicine re-
quires the design of molecules with specialized functions. Due to its close structure to function
relationship, and the availability of good structure prediction methods and energy models,
RNA is perfectly suited to be synthetically engineered with predefined properties. However,
currently available RNA design tools cannot be easily adapted to accommodate new design
specifications. Furthermore, complicated sampling and optimization methods are often de-
veloped to suit a specific RNA design goal, adding to their inflexibility.
Results: We developed a C++ library implementing a graph coloring approach to uniformly
sample sequences compatible with structural and sequence constraints from the typically very
large solution space. Uniform sampling from the solution space not only makes optimization
runs much more performant, but also raises the probability of finding better solutions for long
optimization runs. We show that our software can be combined with any other software pack-
age to allow diverse RNA design applications. Scripting interfaces allow the easy adaption of
existing code to accommodate new scenarios, making the whole design process universal and
flexible. We implemented example design approaches written in Python to demonstrate the
advantages of a scripting language in conjunction with the RNAblueprint library for sequence
sampling.
Availability: RNAblueprint, Python implementations and benchmark data sets are available
at github: https://github.com/ribonets/

Contact: s.hammer@univie.ac.at
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA molecules are omnipresent in all domains of life. They execute diverse functions in-
cluding small molecule sensing, signal transduction and gene regulation. RNA is a molecule
well-suited for designing with predefined functionality. This is mainly due to its close structure
to function relationship and the physio-chemically grounded energy models for straightforward
in silico calculations at the level of secondary structure. In recent years, due to the advent of
synthetic biology, more researchers are focusing on the design of synthetic RNAs. There has
been increasing success in modifying existing systems and incorporating novel functionality

1

in RNAs within a cellular context (Chappell et al., 2015; Espah-Borujeni et al., 2015; Green
et al., 2014; Rodrigo et al., 2012)

To produce an RNA molecule with a prescribed function, the close structure to function
relationship must be incorporated into the design process, along with a rationally defined
specification of the structure that performs that function. A solution can then be obtained by
generating an RNA sequence that complies with the structural constraints, i.e., is able to fold
into the defined structure. This is known as the ”inverse folding problem” (Hofacker et al.,
1994). Biologically active RNA molecules such as aptamers or ribozymes frequently require
specific nucleotide patterns in binding or catalytic domains. Therefore the designed RNA
must also comply with certain sequence constraints. Several computational tools capable of
solving this hard combinatorial optimization problem have been published. These tools differ
mainly in how the initial sequence is selected and which search strategy, e.g. stochastic local
or global search, is applied. Both algorithmic characteristics have a big impact on the success
of the optimization (see Supplementary Table 1)).

A variety of RNA molecules, natural as well as artificial, have been described, which
exploit structural change as their functional mechanism. Usually, the structural switching
of these RNAs between an inactive and the active conformation is induced by an external
trigger, which can be as diverse as temperature, small organic molecules, or other small
RNAs (Berens and Suess, 2015). The design of such RNA devices requires finding a sequence
compatible with two or more structural inputs. Designing a bi-stable RNA was first solved
by Flamm et al. (Flamm et al., 2001) using a graph coloring approach. Recent tools can now
also design multi-state (three or more) RNA molecules (Höner zu Siederdissen et al., 2013;
Lyngso et al., 2012; Taneda, 2015; Wolfe and Pierce, 2015). If the trigger is another RNA
molecule, this requires algorithms that can handle multi-sequence folding and/or multi-state
as well as pseudoknotted structures. Such capabilities are for instance implemented in the
NUPACK design and analysis framework (Zadeh et al., 2011b).

Sampling sequences, compatible with multiple structural constraints can be achieved using
a complex graph coloring algorithm (Höner zu Siederdissen et al., 2013), which guarantees that
each solution is drawn statistically fairly with equal probability. In contrast, other approaches
use ad hoc sampling heuristics that introduce biases. Thus, good solutions may be missed
because the solution space is not fully explored. Furthermore, frequent re-evaluation of already
discovered solutions due to biased sampling leads to inefficient optimization, especially if the
calculation of the objective involves demanding calculations such as pseudoknot structure
prediction.

A review of the literature revealed that published RNA designs were either achieved by
manual ad hoc approaches or very specific software implementations, which can handle only
restricted design problems on a case-by-case basis (Isaacs et al., 2004; Neupert et al., 2008; Qi
et al., 2012; Rodrigo and Jaramillo, 2014; Wachsmuth et al., 2013). Very recent publications
focus on the flexibility of the design approach and provide methods and interfaces to allow
the specification of broader objectives (Höner zu Siederdissen et al., 2013; Taneda, 2015).
However, the diversity of the objectives is still limited and introducing a new feature in the
objective function requires changes in the program code (some of which are closed source).
Furthermore, the mechanisms of optimization in existing tools are always predefined and very
rigid.

To address these limitations, we developed RNAblueprintwhich enables the fair sampling
of RNA sequences compatible with multiple structural and sequence constraints. The library
can be easily integrated into existing tools. It is therefore now possible to focus on the
formulation of the objective function as the most crucial part of the design process. Until
now this aspect was largely neglected, even though the objective describes best how the design
should function. The actual optimization process is swapped into the scripting interface, where
we offer predefined solutions but also give the user the opportunity to easily implement new
ideas without having to change the source code of the core library. This flexibility is a major
advantage of our approach.

With our framework, in addition to predicting RNA structure and RNA-RNA interactions,
and allowing for pseudoknot incorporation (Janssen and Giegerich, 2015; Lorenz et al., 2011;
Zadeh et al., 2011b,a) recent methods for the calculation of RNA-ligand interactions can also
be incorporated (Lorenz et al., 2016). Using RNAblueprint and its scripting interface we
here implemented a classic multi-state design, which we used to analyze and benchmark our

2

software. The developed software allows us to effectively solve problems including the design
of translational and transcriptional on/off switches, triggered by diverse inputs such as small
RNAs, ligands, temperature, salt concentration or proteins. RNAblueprint can also be used to
specify the design of RNA or DNA scaffolds in synthetic biology, and to construct RNA/DNA
origami.

2 Approach

An RNA sequence x = {x1, x2, x3, . . . , xn} is constructed from a set of monomers xi ∈
A = {A,U,G,C} that can interact by forming base pairs (i, j), 1 ≤ i < j ≤ n where
i and j are positions separated by at least three bases and (xi, xj) ∈ B ⊂ A × A =
{AU,UA,GC,CG,GU,UG} the set of allowed base pairs. A set of base pairs of a sequence x
is called secondary structure Θ.

RNAblueprint implements a method to sample RNA sequences compatible with all struc-
tures of a given set {Θ1,Θ2, . . . ,ΘM} and a sequence constraint y = {y1, y2, y3, . . . , yn} where
yi ⊆ A is the set of allowed nucleotides at position i. To be able to uniformly sample from
the entire solution space C (which is the set of all x compatible to all Θi, 1 ≤ i ≤M , given the
sequence constraint y), we implemented the graph-theoretical coloring approach developed
in (Höner zu Siederdissen et al., 2013) which is depicted in Figure 1. The goal is to generate
sequences that are compatible with a sequence constraint and a set of target structures. Such
a design problem is represented as a dependency graph G = (V,E) constructed as the union of
the circle plot representations of the structural constraints (Supplementary Figure 1). Each

713 14

129 8

11

10

19 1

3

18

2165

15

6 17

4

1 3 5 7 9 1 3 5 7 9
(((((.((..))..)))))
.((((((......))))))
.(.(.[(.....).))]..

Connected Components

19 1

3

18

2165

15

6 17

4

713 14

12

8

11

9

10

Biconnected Components

3

18

2165

15

6 17

4 19 12

7

12

14713 7

Ear Decomposition

5 16

415

3

18

216

17

15

6

4

17

4

16

Paths 415

5 16

15

4

17

15

6 17

3

18

17

2

216

Figure 1: A dependency graph is hierarchically decomposed starting from the top and moving
down through four levels to generate a decomposition tree. The dot-bracket strings (top left)
denote three structural input constraints which are converted into a dependency graph (top right)
by intersecting their circle representations, see Supplementary Figure 1. Gray boxed subgraphs
are not decomposed further as their number of possible colorings can be obtained with the path
coloring approach. nodes represent special vertices.

3

vertex vi ∈ V of the graph corresponds to a position 1 ≤ i ≤ n in the sequence to be designed,
and the edges E represent base pairs (i, j) that are formed between them. Each base pair
occurs in at least one of the input structures. The resulting graph needs to be bipartite to
allow for a solution for the given structural constraints and C = ∅ (Höner zu Siederdissen
et al., 2013). A coloring or base assignment on a vertex vi is a single nucleotide xi ∈ A
assigned to the position i. Note that a sequence constraint yi restricts the number of possible
assignments of the corresponding vertex and can result in an unsolvable design problem if
it contradicts the base pairing pattern enforced by the structural constraints. This might
happen even if the dependency graph is bipartite but it can already be detected during the
graph construction process.

Flamm et al. (2001) showed that paths and circles can be colored fairly with respect to the
RNA alphabet A and the set of possible base pairs B. To strip down the coloring problem,
it is therefore desirable to split the dependency graph at vertices with degrees greater than
two, denoted as a set of special vertices S. These are usually called cut points for biconnected
components or attachment points during the ear decomposition. An ear decomposition of
graph G starting with a path P0 is a decomposition of its edge set E = P0 ∪ P1 ∪ · · · ∪ Pk
where Pi+1 is a simple path or ear whose endpoints belong to P0 ∪ · · · ∪ Pi, but its internal
vertices do not (Maon et al., 1986). For a guaranteed uniform sampling from C, the remaining
problem is the correct sampling of all vertices in S, followed by the sampling of the adjacent
paths. To solve this, we used a dynamic programming approach where we enumerate all
possible combinations of colorings {yi ∀ Vi ∈ S} of S and calculate the number of solutions
for each combination. Using stochastic sampling we can draw from this set weighted by the
amount of solutions. As this approach is very memory and CPU demanding, it is important
to follow a specific order of how to calculate and later sample base assignments for special
vertices. We therefore decomposed the dependency graph step-wise into paths, see Figure 1.
Complex connected components containing special vertices are decomposed into biconnected
components and blocks, further following the ear decomposition described in (Maon et al.,
1986). As soon as the maximal degree of a subgraph H is two, either a path or a circle is
reached and its decomposition is terminated. Using this decomposition approach, a tree of
subgraphs is generated where the complete dependence graph sits at the root and each step
of decomposition leads to a fixed order of subgraphs. This results in a decomposition tree
with a maximum depth of four, where the different subgraphs of the decomposition populate
specific levels of the tree (see Figure 1). For implementation purposes we check that each
circle has at least two special vertices, and if not, introduce them at random. As a last step,
all paths and circles are once more split at special vertices to ensure that only specials occur
at path-ends.

Graph decomposition is done in a deterministic way, except for the ear decomposition (Maon
et al., 1986) step. This algorithm follows one of the many possible spanning trees of the cor-
responding graph. The memory and CPU requirements of the decomposition scale as Oα and
Oβ , respectively. As investigated in (Höner zu Siederdissen et al., 2013), the values of α and
β depend strongly on the spanning tree chosen. Since the exact analytic relationship between
the shape of the spanning tree and these parameters is unknown, we generate a set of random
instances of spanning trees and select the one with lowest α and β values.

Finding a compatible sequence proceeds in reverse order of the dependency graph decom-
position, by step wise assembly of colored paths, i.e. paths where specific nucleotides have
been assigned to the corresponding sequence positions, at special vertices into larger graphs
until the dependency graph (the starting point of the original decomposition) is reached. In
order to sample sequence assignments during the assembly process in a fair manner, we would
need to memorize the number of possible colorings for every partially assembled intermediate
graph. The number of colorings of unbranched paths of length l can easily be looked up in
the l-th power of the pairing matrix P. Since this information can be easily computed from
the coloring of the end points and the path length, there is no need to exhaustively memorize
path colorings, a source of combinatorial explosion, explicitly.

The coloring problem therefore reduces to the determination of the possible colorings of
the special vertices (and vertices in Figure 2) of all partially assembled intermediate
graphs. This information can be efficiently calculated by a dynamic programming procedure
that traverses the decomposition tree from the bottom up. The possible colorings of a set
of special vertices of a subgraph SH are stored in a memorization table during the dynamic

4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

©

©
reduce

reduce

Figure 2: Algorithmic implementation of the decomposition (black arrows) and the reassembly
(gray arrows) of a biconnected component. nodes are ordinary nodes and nodes indicate
special vertices. nodes are internalized special vertices which can be converted to ordinary
nodes with the reduce function. The matrix concatenation operator ◦ calculates the number of
possible colorings of the combined subgraphs.

programming procedure. The dimension of such a table is determined by the number of
special vertices a graph possesses. Since this number differs during the recursive traversal
of the graphs in the decomposition tree (smaller graphs are connected at special vertices to
larger units) the dimension of the memorization tables also varies. A table dimension itself is
indexed by color (A,U,G,C), i.e. the elements of A.

The memorization table of a larger graph (parent node in the decomposition tree) is
calculated from the memorization tables of its two smaller constituting graphs (child nodes in
the decomposition tree) in a type of concatenation procedure. The corresponding entries of
the special vertices (table dimensions) are first multiplied component wise and then inserted
into the new table. The memorization tables are sparse objects and the above construction
procedure only increase dimensionality of the tables. The result would be a very large, sparse
memorization table at the root node of the decomposition tree.

To avoid this wasting of memory resources, we introduced a dimension reduction step
during the successive construction of the memorization tables. The reduction step rests on the
observation that whenever the vertex degree of a special vertex in a partially assembled graph
is equal to the vertex degree of the corresponding node in the intersection graph (root node
of the decomposition tree) no further subgraph will be ”attached” to this particular vertex in
subsequent memorization table concatenation operations. Hence the corresponding dimension
of the memorization table is collapsed via summing up the values over that particular special
vertex, which shrinks the memorization table and internalizes the special vertex.

This implies that memorization tables for connected components have dimension zero
since all special vertices have been internalized and removed via summation. In other words a
memorization table with zero dimensions stores the total number of possible colorings for the
respective subgraph. The memorization table for the root graph (i.e. the original intersection
graph) therefore stores the size of the solution space, |C|, which is equal to the total number
of sequences compatible with the design constraints. With the help of the total number
of sequences, the coloring count entries of the memorization tables can be re-interpreted as
probabilities, paving the way for fair sampling approaches.

The sampling procedure works exactly in the opposite order of the memorization table
calculation, as is usual in dynamic programming approaches. For each subgraph, special
vertices are colored by stochastic sampling from the probability matrix, which corresponds
to the re-interpreted memorization table, followed by the sampling of the graph itself, if it is

5

a path. Otherwise the next hierarchical level of subgraphs is processed. If a special vertex
has a base assigned already, this information is used during the stochastic sampling. Finally,
when the last child has been processed, all bases are assigned and a solution was fairly drawn
from the complete solution space.

Besides the complete sampling of a new sequence, there are two more procedures available
for how to mutate or resample parts of the sequence. Global sampling resets the base assign-
ments of all vertices of a random or specified connected component and draws new colors, i.e.
nucleotide assignments, for these vertices. Local sampling randomly selects one path at the
leaves of the decomposition tree and resamples only non-special vertices. This way we ensure
the compatibility within a connected component. For both global and local sampling it can be
useful to restrict the random selection of subgraphs by minimal and maximal size constraints.
The possibility to resample a specific position in the sequence also exists. This either involves
a local sampling of the path containing the position or, in cases where the selected position
corresponds to a special vertex, a global sampling of the corresponding connected component.
In this way, the ranges of positions to be sampled can be specified. A history of previous
sampled sequences is stored, making it convenient to revert to those previous sequences if
necessary.

The implementation was written in C++ using the boost graph library and other parts of
the boost library available at http://www.boost.org/. Using the SWIG framework, we offer
an easy to use Perl and Python scripting interface to the library. Additionally, we developed
a Python module so that code can be reused for many central components.

3 Methods

3.1 Objective function

The original objective function f(x) proposed by Flamm et al. (2001) for two target designs
was extended for multi-target case (Höner zu Siederdissen et al., 2013) and is

f(x) =
M∑

i

E(x,Θi)−G(x)

︸ ︷︷ ︸
dominate ensemble

+ξ
M∑

i<j

(E(x,Θi)− E(x,Θj))
2

︸ ︷︷ ︸
minimize energy difference

(1)

where G(x) is the ensemble free energy, E(x,Θi) is the free energy of the sequence x folded
into structure Θi and ξ is a weighting factor typically set to 1. The first term is to maximize
the frequency of each target structure in the ensemble to achieve dominance whereas the
second term is to minimize the energy difference of target structures to get them to the same
energy level. In (Taneda, 2015) the latter was changed to

∑M
i<j |E(x,Θi) − E(x,Θj)| which

brings most of the target structure energies are close to the minimum free energy (MFE) and
outliers are possible. In contrast the original version attempts to minimize the number of
outliers and therefore the distance to the MFE of all states might be higher. Either way,
weighting of the two terms is essential in single objective approaches. Although objective
function (1) showed good performance on two-target designs, the straight-forward extension
to three or more structures neglects the varying number of target structures. We therefore
corrected the objective function to

f(x) =
1

M

M∑

i

E(x,Θi)−G(x)

+ξ
2

M(M − 1)

M∑

i<j

|E(x,Θi)− E(x,Θj)| (2)

as we sum up M elements in the first term and build
(
M
2

)
differences in the latter. With

this new objective function, the ratio between the two terms is independent of the number of
structures M . To resemble the good performance for the two-target structure case and keep
the 1:1 ratio between the two two terms in the objective we set ξ to 0.5.

6

3.2 Benchmark Data sets

The number of target structures is only a rough estimate of the complexity of a given design
problem. If the given structural constraints have no conflicting base pairs, the complexity
of the connected components are just single vertices or paths of length two. If more over-
lap between the structural constraints exists, paths get longer, and complex subgraphs such
as cycles and blocks occur. Based on a published tri-stable switch (Höner zu Siederdissen
et al., 2013), which contains only two cycles and eight paths of length two, we generated
more complex examples by adding a fourth and fifth structural constraint, see Supplementary
Figure 2 A-C. These three example inputs of increasing complexity were used to evaluate the
implemented sampling procedures of RNAblueprint. The effect of fair sampling is tested on
an extreme example that contains one large and complex connected component and a base
pair as well as an unpaired position. To further reduce the solution space size, two sequence
constraints were introduced, see Supplementary Figure 2 D.
Comparison with existing approaches was performed on the published data sets containing
two-, three- and four-target designs as well as pseudoknotted two-target structure exam-
ples (Taneda, 2015). The applied optimization is described in section 3.3.

3.3 Classic Multi-State Design

To be able to benchmark against existing design software, we implemented an optimization
approach consisting of RNAblueprint for fair sampling, the weighted objective function (2),
and an adaptive walk. The latter works as follows: Consecutive sequence candidates are
generated by randomly applying one of the three sampling methods, i.e. local, global or
complete, and calculating the score of the objective function. The new sequence is only kept
if the score is better than the current best solution. Depending on the chosen method, one
randomly selected subgraph (local and global sampling) or all subgraphs (complete sampling)
are redrawn. An exit value of 1000, being the maximum number of optimization trails with
no score improvement, was used. To compare this approach to existing multi-target design
tools we created 100 solutions for each member of the two-, three- and four-target design data
sets described in (Taneda, 2015). Energy calculations for these data sets were made using
the scripting bindings of the ViennaRNA package v2.2.5 (Lorenz et al., 2011). As we are not
restricted to nested base pairs in the structural input, the pseudoknotted two-target data
sets described in (Taneda, 2015) were also used with exit value 100. This exit value is set to
be much smaller because the runtime dramatically increases when using the Nupack package

v3.0.4 (Zadeh et al., 2011a) for pseudoknotted structure prediction. Furthermore, only 30
solutions were generated for each of the latter benchmark tasks.

4 Results and Discussion

Effect of fair sampling
A simplified version of the graph decomposition was implemented in MODENA (Taneda, 2015).
Therein a näıve nucleotide assignment algorithm is used that is able to generate solutions of
a design problem but not uniform sampling of the solution space. Furthermore, during the
assignment of paired nucleotides without a sequence constraint, the G-U base pair is neglected.
This generates a biased initial population of sequences that are subsequently optimized by
applying a genetic algorithm. Although the Haskell prototype implementation in (Höner zu
Siederdissen et al., 2013) used lazy enumeration of all solutions and therefore allowed fair
sampling, this was only for sufficiently small problems. Implementing the complete graph
coloring algorithm (Höner zu Siederdissen et al., 2013) and assigning all possible base pairs,
RNAblueprint guarantees to fairly sample the complete solution space. Unfortunately, MODENA
is available as binary only, of which the maximum population size is restricted to 1000 and
at least one iteration of the genetic algorithm optimization is enforced. Therefore, we could
not compare the effect of the implemented nucleotide assignment algorithm alone. However,
to compare fair and unfair sampling we customized RNAblueprint by replacing the actual
number of possible solutions stored in the probability matrix of each subgraph by one. While
sampling with the fair approach led to an extreme value distributed frequency of uniquely
found solutions, sampling the unfair way distorted the distribution and a few solutions were

7

A
Fr

e
q
u
e
n
cy

Frequency of the solution foundB

Sample size relative to size of solution space [%]

U
n
iq

u
e
 s

o
lu

ti
o
n
s

[%
]

Figure 3: Differences in fair and unfair stochastic sampling shown on a small example with a
rather complex dependency graph, see Supplementary Figure 2 D. (A) The histogram shows how
frequent unique solutions were found when sampling completely new sequences using fair and
unfair sampling. In total 9.6 · 109 solutions were sampled from 4.1 · 107 possible unique sequences
(size of solution space). While fair sampling led to an extreme value distribution with the mean
(2.57) count being slightly above the relative sample size and the maximum number of times a
solution is rediscovered being 15, unfair sampling led to a distorted distribution where a solution
is found 4.78 times on average and 227 times maximal. (B) When the sample size was chosen to
be much bigger than the solution space (∼ 230%), only about 50% of all possible solutions with
unfair sampling was obtained for this example, while the fair method sampled about 90%. The
performance of the fair sampling is independent of the underlying problem whereas the curve of
the unfair approach heavily depends on the properties of the dependency graph.

generated with high frequency, Figure 3A. It followed that the solution space, by means of
unique solutions generated, was explored much faster when applying the fair sample approach,
Figure 3B. We expect that the näıve sampling approach of MODENA performs similarly to the
shown unfair sampling method. It is worth noting that for small sample sizes, i.e. a few
percentage of the complete solution space, both fair and unfair approaches performed equally.
Our method capable of uniform sequence generation, implemented in RNAblueprint, could
be used in any multi-state design software such as MODENA in order to explore the complete
solution space of complex multi-state design problems in an unbiased way.
Sequence sampling
In a typical RNA design scenario, sequences compatible to the structural constraints are scored
using an objective function. Thereby the sequence space is transformed into a landscape of
complex and typically unknown structure that needs to be explored. Sampling completely
new sequences generates solutions distributed over the complete landscape. This way, for an
infinite sampling time the global optimum is always found. However, the optimization is rather
slow because in each sampling step the reachable neighborhood is the complete solution space.
The solution space of small examples is already of size 4.1 · 107 to 1.4 · 1014 (Supplementary
Figure 2) and therefore only a small fraction of all solutions is evaluated during a typical
optimization run. The other sampling methods described in section 2 dramatically reduced
the size of the reachable neighborhood. An adaptive walk using these move steps led to
the solution ending up in local minima. The quality of these minima and how fast they
were reached depended on the number of nucleotides changed in each step, Supplementary
Figure 3.

8

number of sampled sequences

re
la

tiv
e

m
ea

n
sc

or
e

globallocal complete random

Figure 4: Score change during the optimization procedure using different move steps and depen-
dency graphs. The x-axis shows the number of sampled sequences while the y-axis resembles the
mean score from 100 optimization runs, normalized to the mean score of the initial randomly
chosen sequences. Three different move steps (local, global and complete) and an additional run,
where one of these moves was randomly picked at every step (random), are compared. At the most
left plot a very simple dependency graph was generated, only consisting of paths and two circles,
in the middle plot the graph already contains a block and on the right hand side many vertices
are captured in one big connected component. The slope of the score change mainly results from
two aspects, the rejection rate and the quality of the newly found solutions. Both are heavily
dependent on the size of the move step, therefore we see a change from the left to the right plot,
as the move steps of global, complete and random become bigger, Supplementary Figure 3.

In Figure 4, the published three state design example (Höner zu Siederdissen et al., 2013)
was extended to four and five input structures. The extension was made in a way that the
complexity of the dependency graph from short paths and circles in the three state exam-
ple was increased to larger connected components, Supplementary Figure 2. We compared
the performance of different sampling methods that differ in the size of their largest move
step. One method, called complete, always generates a completely new sequence. When
sample global is applied, the assignments of a randomly selected connected component are
redrawn. The random selection is weighted by the number of possible solutions associated to
the connected components. In contrast, sample local resamples only non special vertices of a
randomly selected path.

If the dependency graph contained only short paths and circles (three state example), the
global sampling approach was similar to the local sampling, i.e. reached a local minimum
relatively fast and the score converged. The relative mean score difference between local and
global sampling minima results from the fact that special vertices were redrawn by the latter
only. This allowed a maximum step size of up to six nucleotides (complete circle) compared
to three nucleotides (longest path), Supplementary Figure 3. The more complex the depen-
dency graph, i.e. the more special nodes and larger connected components exist, the more
pronounced this difference between local and global sampling, Supplementary Figure 3. If
one large connected component contained most of the bases (five state example), performing
a global sampling where all assignments of the large component are most likely reassigned
(Supplementary Figure 3), was similar to a completely new sampled sequence, i.e. the slope of
the corresponding curves in Figure 4 are similar. However, the hamming distance to reachable
neighbors was different for global and complete sampling, Supplementary Figure 3. Reaching
a local minimum indicates that most likely no further score improvement can be made using
the same sampling method. Changing the method and thereby changing the move step allows
other local minima with better solutions to be reached. Interestingly, our analyses showed
that randomly changing the sampling method in each step, random in Figure 4, gave signif-
icantly better results faster in most cases. We investigated the reachable neighborhood of
selected time points during optimization of the four state design example in more detail, Sup-
plementary Figure 4. After 1000 sampling steps, the mean score of sequences optimized with
the random approach was significantly lower than the score reached with complete sampling
(student’s t-test p-value: 10−55). Furthermore, the number of neighbors with a score below

9

the current best solution was similar, Supplementary Figure 4. At the end point of the trend
curves (after 500,000 sampling trails), global and random sampling reached the same mean
scores and within their analyzed neighborhood of size 350,600 no better solution was found,
Supplementary Figure 4. Interestingly, the sequences optimized with complete sampling did
not reach the same mean score and the likelihood of generating a better solution was very
low, Supplementary Figure 4. We stress again that these observations are highly dependent
on the design problem, e.g. the complexity of the dependency graph and the length of the
sequence to be designed. However, we show in the following that applying the random sam-
pling method to a diverse benchmark data set of nested and pseudoknotted structural input
gives reasonably good results.
Impact of normalization and weighting
To analyze the effect of the corrected objective function (2) and the applied optimization
procedure we used the recently published benchmark data set (Taneda, 2015), which consists
of two-, three- and four-target design problems as well as three pseudoknotted two-target
sets. These examples were either taken from naturally occurring RNAs that are able to
switch between structural states or were generated in a way that reachable, sub-optimal
structures are taken as input constraints for the design process. RNAblueprint itself does no
optimization on fairly sampled sequences. We implemented an adaptive walk that, given a
start sequence, randomly selects one of the three sampling methods and applies it to generate
the next sequence candidate. The generated sequence is retained if its score is better than
the best prior solution. On the small examples evaluated in Figure 4, this approach adapted
best to the varying complexity of the underlying dependency graphs. To score sequences, we
applied an objective function that ensures on the one hand that the target structures of a
good solution dominate the ensemble while on the other hand the energy difference between
the target structures is minimized. In its original version (1), proposed for the two state
design case in (Flamm et al., 2001), the corresponding two terms were summed up without
any weighting. Designs for two states gave reasonable results compared to other approaches,
see Table 1. However, a systematic extension to three or even more states needs individual
normalization of both terms. Therefore, we proposed a corrected objective function (2),
which is adjusted to the good performing original two state objective. Especially for the four
structure designs this yielded a significant improvement over the original one, see Table 1.
Note, when using a multi-objective approach it is assumed that the weighting is implicitly
found during optimization (Taneda, 2015).

Comparing the results of our näıve optimization procedure with multi-objective approaches
that implement complex genetic algorithms to optimize sequences we performed similar or
even better on the benchmark data set as measured by δe1, i.e. the difference of the lowest
energy target structure to the ground state and δe2, i.e. the difference between the ground
state and the highest energy target structure, on the benchmark data set. Furthermore, we
also compared how often the desired target structures are energetically equal to the predicted
MFE structure, see Supplementary Table 2-7. These values are termed ni, i being the number
of target structures with equal energy to the MFE. Given this benchmark measure, MODENA and
RNAblueprint performed similarly. A notable difference between our approach and MODENA is
that the latter uses a genetic algorithm to optimize a population of 500 individuals of which
the best 100 are taken, while we performed 100 independent optimizations. We expect to get
similar sequences from a population-based approach while the solutions generated with our
approach are extremely diverse.

Although δe1, δe2 and ni together are a good measure of the solution quality of this specific
design problem, they do not describe the actual functionality of the switch in vitro or in vivo.
An objective function describing every aspect necessary to create a functional switch might
contain many more features, some of which cannot easily be calculated. Furthermore, it is
questionable whether the creation of 100 solutions is even useful. It might be better to run
the optimization longer and retrieve 10-20 heterogeneous solutions, as this is a more realistic
number of solutions for verification in the laboratory.
Flexibility matters
Three example objective functions were proposed by Flamm and coworkers to design two-state
temperature and structural switches (Flamm et al., 2001). Those objectives have been adapted
to multi-state design and are still used to benchmark new software (Höner zu Siederdissen
et al., 2013; Taneda, 2015). MODENA enables the user for the first time to choose from a catalog

10

T
ab

le
1:

C
om

p
ar

is
on

of
cu

rr
en

tl
y

av
ai

la
b

le
ap

p
ro

a
ch

es
to

so
lv

e
m

u
lt

i-
ta

rg
et

d
es

ig
n

s.
R

es
u

lt
s

o
f

tw
o
-,

th
re

e-
a
n

d
fo

u
r-

ta
rg

et
d

es
ig

n
s

a
re

sh
ow

n
.

F
o
r

R
N
A
b
l
u
e
p
r
i
n
t

an
d
M
O
D
E
N
A

tw
o-

ta
rg

et
d

es
ig

n
s

of
p

se
u

d
ok

n
ot

te
d

st
ru

ct
u

re
s

a
re

a
ls

o
p

re
se

n
te

d
.

F
o
r

ea
ch

re
su

lt
in

g
se

q
u

en
ce

,
w

e
ev

a
lu

a
te

d
th

e
d

iff
er

en
ce

b
et

w
ee

n
th

e
m

os
t

st
ab

le
ta

rg
et

st
ru

ct
u

re
to

th
e

gr
ou

n
d

st
at

e
(δ
e 1

)
a
n

d
th

e
h

ig
h

es
t

en
er

g
y

ta
rg

et
st

ru
ct

u
re

to
th

e
g
ro

u
n

d
st

a
te

(δ
e 2

).
T

h
e

m
ea

n
(µ

)
an

d
m

ed
ia

n
(x̃

)
en

er
gy

d
iff

er
en

ce
fo

r
1
00

an
d

3
0

ge
n

er
at

ed
se

q
u

en
ce

s
is

p
re

se
n
te

d
fo

r
th

e
n

es
te

d
a
n

d
p

se
u

d
o
k
n

o
tt

ed
st

ru
ct

u
re

in
p

u
t,

re
sp

ec
ti

ve
ly

.
P

er
fo

rm
an

ce
of

th
e

in
d

iv
id

u
al

se
q
u

en
ce

s
is

li
st

ed
in

S
u

p
p

le
m

en
ta

ry
T

a
b

le
2
-7

.
B

o
ld

fa
ce

va
lu

es
h
ig

h
li

g
h
t

th
e

b
es

t
p

er
fo

rm
in

g
a
p

p
ro

a
ch

o
n

a
sp

ec
ifi

c
d

at
a

se
t.

F
or

R
N
A
b
l
u
e
p
r
i
n
t

th
e

va
lu

es
fo

r
th

e
o
ri
gi
n
a
l

(1
)

a
n

d
co
rr
ec
te
d

(2
)

o
b

je
ct

iv
e

fu
n

ct
io

n
s

a
re

li
st

ed
.

N
es

te
d

S
tr

u
ct

u
re

In
p

u
t

P
se

u
d

o
k
n

o
tt

ed
S

tr
u

ct
u

re
In

p
u

t
R
N
A
b
l
u
e
p
r
i
n
t

M
O
D
E
N
A
a

F
r
n
a
k
e
n
s
t
e
i
n
a

R
N
A
b
l
u
e
p
r
i
n
t

M
O
D
E
N
A
a

o
ri
gi
n
a
l

co
rr
ec
te
d

2s
tr

3s
tr

4s
tr

2s
tr

3s
tr

4
st

r
2
st

r
3
st

r
4
st

r
2
st

r
3
st

r
4
st

r
L

E
8
0

P
K

6
0

P
K

8
0

L
E

8
0

P
K

6
0

P
K

8
0

µ
(δ
e 1

)
0
.2
8

0.
22

1.
46

0.
31

0
.1
0

0
.4
8

0
.3

8
0
.2

7
0
.8

4
0
.3

5
0
.3

9
0
.9

2
0
.8
2

0
.0
3

0
.1
5

0
.8

9
0
.1

2
0
.2

9
x̃

(δ
e 1

)
0
.0
0

0
.0
0

0.
70

0
.0
0

0
.0
0

0
.0
5

0
.1

0
0
.0
0

0
.3

9
0
.1

0
0
.1

0
0
.5

5
0
.3

0
0
.0
0

0
.0
0

0
.2
0

0
.0
0

0
.0
0

µ
(δ
e 2

)
0
.3
4

0.
43

1.
96

0.
36

0
.2
6

1
.2
1

0
.7

6
0
.5

4
1
.7

8
1
.0

9
0
.9

6
1
.8

9
1
.0
9

0
.0
8

0
.1
7

1
.2

2
0
.3

2
0
.5

6
x̃

(δ
e 2

)
0
.0
0

0.
20

1.
30

0
.0
0

0
.1
0

0
.8
0

0
.5

0
0
.3

0
1
.4

0
0
.6

0
0
.8

0
1
.6

0
0
.5
5

0
.0
0

0
.0
0

0
.5
5

0
.0
0

0
.0

5

a
V

a
lu

es
ta

ke
n

fr
om

th
e

or
ig

in
al

p
u

b
li

ca
ti

on
(T

a
n

ed
a,

20
15

).

11

of different structure prediction methods to calculate features of a given sequence and derive
new objectives. However, this catalog is fixed and therefore the complete functionality of the
applied software might not be available. This is especially true for recent developments, such
as the soft constraint framework implemented in the ViennaRNA package (Lorenz et al., 2016)
and the test tube ensemble defect available in NUPACK (Wolfe and Pierce, 2015). Furthermore,
the methods to optimize sequences, in the case of MODENA by applying a genetic algorithm,
cannot be changed. Therefore, we implemented RNAblueprint as a library and equipped this
sequence generator with a flexible scripting interface where the user can easily implement its
own optimization procedures and come up with new objective functions.

5 Conclusion

We have developed a software solution which makes it possible to uniformly sample RNA
sequences compatible with structural and sequence constraints. This enables efficient sam-
pling from the entire solution space and avoides heavy re-evaluation of repeatedly generated
solutions. Therefore, it is possible to review many more solutions, which leads to better re-
sults. Scripting interfaces make it easy to freely combine different optimization algorithms
and to incorporate evaluations of different software packages into the objective function. We
used the NUPACK and the ViennaRNA package to design multi-stable RNA structures with and
without pseudoknots, respectively. With the scripting interface, any software such as the
recently published RNA shapes studio (Janssen and Giegerich, 2015) and the approach by
Wolfe and Pierce to reduce the amount of unwanted complexes when designing interacting
molecules (Wolfe and Pierce, 2015), can be easily integrated. As the correct sequence gen-
eration problem is now efficiently solved, further research can focus on the challenging task
of finding objective functions that better describe the goals and functions of RNA molecules.
Using RNAblueprint it is now feasible to explore a much broader range of objectives and it
is easy to adapt and recombine existing software and optimization techniques to generate an
RNA molecule that perfectly suits the specific needs and goals of the task.

We illustrated the usefulness of our approach with typical but small sample applications.
A general solution for solving all the diverse RNA design problems does not exist and there
is also no universal way how to benchmark existing tools or novel approaches against each
other. Applied measurements heavily depend on the goal and the objective of the design and
therefore user knowledge is always necessary to choose an appropriate optimization method,
move set and objective function.

Acknowledgments

Thanks to Christian Höner zu Siederdissen for assistance with the prototype Haskell imple-
mentation, Peter F. Stadler and Daniel Merkle for fruitful discussion and our private boost

help desk Jakob L. Andersen. We thank Life Science Editors for proofreading and editing.
Computational results have been achieved in part using the Vienna Scientific Cluster (VSC).

Funding

This work was supported by the European Commission under the Environment Theme of the
7th Framework Program for Research and Technological Development (GANr 323987), the
COST-Action CM1304 “Systems Chemistry”, the FWF projects SFB F43 “RNA regulation
of the transcriptome” and “Doktoratskolleg RNA Biology W1207-B09”.

References

Berens, C. and Suess, B. (2015). Riboswitch engineering — making the all-important second and third steps.

Current Opinion in Biotechnology, 31, 10–15.

Chappell, J., Takahashi, M. K., and Lucks, J. B. (2015). Creating small transcription activating RNAs. Nat

Chem Biol, 11(3), 214–220.

12

Espah-Borujeni, A., Mishler, D. M., Wang, J., Huso, W., and Salis, H. M. (2015). Automated physics-based

design of synthetic riboswitches from diverse RNA aptamers. Nucleic Acids Research, page gkv1289.

Flamm, C., Hofacker, I. L., Maurer-Stroh, S., Stadler, P. F., and Zehl, M. (2001). Design of multistable

RNA molecules. RNA, 7(2), 254–265.

Green, A. A., Silver, P. A., Collins, J. J., and Yin, P. (2014). Toehold Switches: De-Novo-Designed Regu-

lators of Gene Expression. Cell, 159(4), 925–939.

Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., and Schuster, P. (1994). Fast

folding and comparison of RNA secondary structures. Monatshefte für Chemie / Chemical Monthly,

125(2), 167–188.

Höner zu Siederdissen, C., Hammer, S., Abfalter, I., Hofacker, I. L., Flamm, C., and Stadler, P. F. (2013).

Computational design of RNAs with complex energy landscapes. Biopolymers, 99(12), 1124–1136.

Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., and Collins, J. J. (2004). Engineered

riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol, 22(7), 841–847.

Janssen, S. and Giegerich, R. (2015). The RNA shapes studio. Bioinformatics, 31(3), 423–425.

Lorenz, R., Bernhart, S. H., Siederdissen, C. H. z., Tafer, H., Flamm, C., Stadler, P. F., and Hofacker, I. L.

(2011). ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6(1), 26.

Lorenz, R., Hofacker, I. L., and Stadler, P. F. (2016). RNA folding with hard and soft constraints. Algorithms

for Molecular Biology, 11, 8.

Lyngso, R. B., Anderson, J. W., Sizikova, E., Badugu, A., Hyland, T., and Hein, J. (2012). Frnakenstein:

multiple target inverse RNA folding. BMC Bioinformatics, 13(1), 260.

Maon, Y., Schieber, B., and Vishkin, U. (1986). Parallel ear decomposition search (EDS) and ST-numbering

in graphs. Theor. Comp. Sci., 47, 277–298.

Neupert, J., Karcher, D., and Bock, R. (2008). Design of simple synthetic RNA thermometers for

temperature-controlled gene expression in Escherichia coli. Nucleic Acids Res, 36(19), e124.

Qi, L., Lucks, J. B., Liu, C. C., Mutalik, V. K., and Arkin, A. P. (2012). Engineering naturally occurring

trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res.

Rodrigo, G. and Jaramillo, A. (2014). RiboMaker: computational design of conformation-based riboregula-

tion. Bioinformatics, 30(17), 2508–2510.

Rodrigo, G., Landrain, T. E., and Jaramillo, A. (2012). De novo automated design of small RNA circuits

for engineering synthetic riboregulation in living cells. Proc Natl Acad Sci USA, 109(38), 15271–15276.

Taneda, A. (2015). Multi-objective optimization for RNA design with multiple target secondary structures.

BMC Bioinformatics, 16(1), 280.

Wachsmuth, M., Findeiß, S., Weissheimer, N., Stadler, P. F., and Mörl, M. (2013). De novo design of a

synthetic riboswitch that regulates transcription termination. Nucleic Acids Research, 41(4), 2541–2551.

Wolfe, B. R. and Pierce, N. A. (2015). Sequence Design for a Test Tube of Interacting Nucleic Acid Strands.

ACS Synthetic Biology, 4(10), 1086–1100.

Zadeh, J. N., Wolfe, B. R., and Pierce, N. A. (2011a). Nucleic acid sequence design via efficient ensemble

defect optimization. Journal of Computational Chemistry, 32(3), 439–452.

Zadeh, J. N., Steenberg, C. D., Bois, J. S., Wolfe, B. R., Pierce, M. B., Khan, A. R., Dirks, R. M., and

Pierce, N. A. (2011b). NUPACK: Analysis and design of nucleic acid systems. Journal of Computational

Chemistry, 32(1), 170–173.

13

Supplementary Material

RNAblueprint: Flexible and universal multiple target nucleic acid

sequence design

Stefan Hammer, Birgit Tschiatschek, Christoph Flamm, Ivo L. Hofacker and Sven Findeiß

1

Contents

1 Supplementary Text 3

1.1 Local neighborhood of various move steps . 3

2 Supplementary Figures 5

3 Supplementary Tables 9

2

1 Supplementary Text

1.1 Local neighborhood of various move steps

To get a better understanding of the solution landscape based on the introduced move steps, we analyzed
the local neighborhood of three small examples with dependency graphs of varying complexity shown in
Supplementary Figure 2. Using one of the introduced sampling methods (complete, global and local, see
section 2 in the main text), the local neighborhood was explored by stochastic sampling. The analysis
includes the actual hamming distance to the start sequence (Supplementary Figure 3), and the score
change (Supplementary Figure 4) for the two parts of the multi-state objective function (formula (2) in
the main text). Additionally the random move, where one of the four sampling methods is chosen ran-
domly at each step was investigated. For global, 85% of the reachable neighborhood, i.e. 3506 neighbors,
was generated for each of the 100 sequences. The same absolute number was used for the complete and
random approach. With the local move, only very few neighbors can be reached, therefore we sampled
as many solutions as possible using an exit condition.

The hamming distance describes the size of the move step in terms of actually changed nucleotides,
see Supplementary Figure 3. The distribution of these distances for any move step was very much
dependent on the structure of the dependency graph. For the four and five structure example the global
move always showed a flat distribution at smaller hamming distances and one defined peak at a certain
distance. This results from the fact that the corresponding dependency graphs consisted of one bigger
connected component in addition to several small ones (see Supplementary Figure 2). The connected
components could be divided into two disjoint sets due to the bipartite property of the base assignments.
If the coloring pattern of the disjoint sets of the bigger component was changed in a way that the coloring
switches, all nucleotides of this big connected component are changed, resulting in the defined peak with
a hamming distance of exactly the size of this component. If the sets maintained the coloring pattern, we
obtained a flat distribution of several smaller distances. Complete sampling of the full sequence resulted
in similar peaks, however with a shift towards higher distances, as all the smaller connected components
are also resampled at every move. The peaks at higher distances show a more even distribution for the
same reason. In the analyzed examples, no decomposed path was longer than three nucleotides, excluding
special vertices. Therefore, we only obtained hamming distances between 0 and 3 with the local approach.
Sampling with a randomly picked move step resulted in a very nice superimposition of all the hamming
distance distributions, see Supplementary Figure 3.

We further investigated the score change from a start sequence to its local neighborhood reachable by
applying the described sampling methods, Supplementary Figure 4. This is depicted in two-dimensional
density plots as score changes for the two parts of the multi state objective function (objective 1 and
objective 2) at the x- and y-axis. The weighted overall score change can be obtained by following the
inclined lines. The purple line indicates neighbors with a constant overall score, the scale of the actual
improvement or decline can be read from the x-axis. From left to right, plots with further optimized
sequences obtained from different time steps of Figure 4 were used as start sequences for the analysis.
The degree of optimization is therefore measured as “number of sampled sequences”.

In the most left plot (number of sampled sequences = 0), the local neighborhood showed a quite similar
distribution in terms of score improvements on objective 1 and objective 2 for any sampling method.
After 100 iterations of optimization, global showed the highest number of neighbors with better scores
(number in purple box), furthermore the score improvement possible for individual neighbors was highest
for the global approach. Both might result from the low quality of the optimized sequences compared to
the other approaches. When analyzing even more optimized sequences after 1000 steps, the global move
still showed highest number of better neighbors. However, the score improvement possible was quite
similar between the various methods. Only with the local approach, the score could not be substantially
improved as the local minimum had almost been reached. After 5 · 105 iterations no better solutions

3

could be obtained for the global and local approach as the optimization appeared to have reached a local
minimum. Overall, sample local behaved similar to sample global, but reached the local minimum of the
optimization much earlier due to the smaller size of the reachable neighborhood. In a local minimum no
better solution could be obtained with the same move step. Only the complete approach could not reach
a optimization minimum, as we sampled from the whole solution space with this move. However, better
solutions could only rarely be found (see Supplementary Figure 4).

4

2 Supplementary Figures

N
N

N

N

N

N

N
N

N N N
N

N

N

N

N

N
N

N

1

10

19

N
N

N

N

N

N

N
N

N N N
N

N

N

N

N

N
N

N

1

10

19

N
N

N

N

N

N

N
N

N N N
N

N

N

N

N

N
N

N

1

10

19

N
N

N

N

N

N

N
N

N N N
N

N

N

N

N

N
N

N

1

10

19

Supplementary Figure 1: The dependency graph G can be generated by the intersection of the circle plot
representations of the given structural constraints. The three input structures in dot-bracket notation
are first converted to the circle representation depicted on the left hand side and then the intersection
is formed as shown on the right hand side. Vertices represent bases in a given order along the backbone
of the molecule. Edges in different shades of gray represent the base pairs of the three input structures.
Colors on the vertices show the different connected components into which the graph can be decomposed.
The further decomposition and graph coloring approach of this example is shown in Figure 1 of the main
text. Layouting by VARNA[4]

5

A) B)

((((....))))....((((....))))........ ((((....))))....((((....))))........

........((((....((((....))))....))))((((....((((....))))....))))

((((((((....))))((((....))))....)))) ((((((((....))))((((....))))....))))

.((((....))))...((((....))))........

Size of solution space: 1.42658e+14 Size of solution space: 1.24018e+13

C) D)

((((....))))....((((....))))........ .((((((..((....)).....))))))............

........((((....((((....))))....))))((.(((....((......))...))).)).

((((((((....))))((((....))))....)))) ((((((..........(((((......)))))..))))))

.((((....))))...((((....))))........(.((((((.............)).)))).).

.((((....))))...((((((........))))))((((..(((....))).))))..............

.....(((..............)))...............

ANNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNN

Size of solution space: 7.08853e+10 Size of solution space: 4.14142e+07

Supplementary Figure 2: Example design inputs and the corresponding graph representations. The
depicted examples were used to evaluate different sampling methods provided in RNAblueprint (A-C) as
well as the fair and unfair sampling (D). The structure and sequence constraint input is shown at the top
and the corresponding dependency graph at the bottom in each example. Special vertices are highlighted
in red. Edges of circles and paths resulting from the ear decomposition of complex sub-graphs are colored
individually.

6

co
m

pl
e

te
gl

ob
al

lo
ca

l
ra

nd
o

m

3 structure example 4 structure example 5 structure example

hamming distance beween start sequence and local neighbors

Supplementary Figure 3: Size of different move steps measured as hamming distance between an initial
start sequence and most of the reachable neighbors. Rows depict the used sampling method/move steps
while columns show the three different small design examples with various complexity (see Supplementary
Figure 2A-C). For global, 85% of the reachable neighborhood was sampled, while for complete and random
the same absolute number was used (3str: 1.3 · 104, 4str: ≈ 3.5 · 105, 5str: ≈ 1.6 · 107 sequences). The
local approach had a much smaller neighborhood, which was sampled with an exit condition to reach
most of the neighbors (3str: 7108, 4str: 6076, 5str: 1.3 · 104 sequences).

7

0 100 1000 500000

gl
ob

al
lo

ca
l

co
m

pl
e

te
ra

nd
o

m
objective 2

objective 1

Supplementary Figure 4: Relative score change to local neighborhood with various move steps on the
4 structure example Supplementary Figure 2B. Each row corresponds to a different sampling method,
columns represent the neighborhood of differently optimized sequences obtained from Figure 4 in the main
text. The degree of optimization is measured in “number of sampled sequences” during the optimization
procedure. The density plots depict the score change to local neighbors reachable with the used move
step. The score difference is split into changes of the two parts objective 1 and objective 2 on the x-axis
and y-axis, respectively. The weighted overall score change to the start sequence can be obtained by the
inclined lines, the purple line indicating unchanged score. The size of the neighborhood varies, for global
we sampled 85% of unique neighbors and used the same absolute number for complete and random. For
the local move we sampled as many unique sequences as possible in a reasonable time using an exit
condition as this neighborhood is very small. The numbers in the boxes display the count of solutions in
this quadrant, the purple box the absolute number of neighbors with a score change smaller than zero,
meaning better solutions than the initial sequence.

8

3 Supplementary Tables

Supplementary Table 1: Published software to solve the inverse folding problem with single-, two- and
multi-target structural input.
Name Initial Sequence Selec-

tion
Search Strategy Reference

single-target input
RNAinverse random stochastic local search [11]
RNA-SSD random stochastic local search [1]
INFO-RNA energy optimized stochastic local search [3]
RNAexinv from RNAinverse stochastic local search [2]
RNA-ensign random global sampling [16]
IncaRNAtion seedless local/global sampling [19]
RNAiFold seedless local or global sampling [8, 9, 10]
DSS-Opt seedless Newtonian dynamics simulation

and simulated annealing
[18]

EteRNABot random stochastic local search [15]
NUPACK:Design random stochastic local search [5, 25, 24]
ERD RNA sub-sequences of dif-

ferent structural elements
are sampled from natural
occurring RNA sequences

evolutionary algorithm [6]

antaRNA a graph that represents all
possible paths to gener-
ate compatible sequences
is used

ant colony based optimization [13, 14]

two-target input
switch.pl random stochastic local search [7]
RiboMaker random stochastic local search [20]
multi-target input
ARDesigner random stochastic local search [21]
Frnakenstein random or from

RNAinverse

genetic algorithm [17]

MODENA random multi objective genetic algorithm [22, 23]
RNAdesign random stochastic local search [12]

The following tables show the benchmark results summarized in Table 1 in the manuscript. The bench-
marks were adapted from Taneda [23] and calculated using the classic multi-stable design optimization
approach and the weighted objective function. For the two-, three- and four-structure inputs (see Meth-
ods section in main text) we generated 100 independent solutions using the ViennaRNA with exit value
set to 1000. For the pseudoknotted structure data sets only 30 solutions were generated using the NUPACK

package with the exit value 100.
We used the same measures as in [23] and expanded the table by a probability value. δe1 and δe2 are
the minimal and maximal energy difference between the evaluated energies of the target structures and
the minimum free energy. The values shown in each row of the table are for the solution with the lowest
δe2 and, if multiple solutions existed, also with the the lowest δe1. Furthermore, n1, n2, n3, ...nM are the
number of solutions such that 1, 2, 3, ...M of the target structures have the lowest free energy. We also
introduced a new measure called “sum prob”, which is the sum of the probabilities of all target structures
in the Boltzmann ensemble for the solution picked using the δe1 and δe2 values.

Supplementary Table 2: Detailed results of [23] two-target design inputs (SV11 & RNAtabupath
dataset)

9

RNA l n1 n2 d1 d2 µ d1 x̃ d1 µ d2 x̃ d2 µ nom x̃ nom sum prob

alpha operon 130 73 2 0.00 0.00 0.16 0.00 0.37 0.20 5759.73 5794.00 0.46
amv 145 0 0 0.30 0.40 1.10 0.80 1.31 1.00 6615.67 6256.50 0.22
attenuator 73 78 65 0.00 0.00 0.08 0.00 0.10 0.00 4217.42 4121.00 0.33
dsrA 85 0 0 0.10 0.40 2.06 2.00 2.10 2.00 3779.06 3594.50 0.12
hdv 153 64 51 0.00 0.00 0.24 0.00 0.28 0.00 6324.78 6052.00 0.12
hiv 280 10 5 0.00 0.00 1.30 1.15 1.36 1.20 17882.20 17524.00 0.01
ms2 73 53 33 0.00 0.00 0.37 0.00 0.43 0.10 3610.93 3567.00 0.12
rb1 148 81 70 0.00 0.00 0.10 0.00 0.12 0.00 7073.28 6760.50 0.07
rb2 113 24 19 0.00 0.00 0.77 0.70 0.79 0.70 5041.69 5004.00 0.12
rb3 141 61 45 0.00 0.00 0.19 0.00 0.22 0.10 7202.14 6925.00 0.07
rb4 146 0 0 2.70 2.70 5.30 5.30 5.41 5.50 7668.44 7207.50 0.00
rb5 201 67 56 0.00 0.00 0.20 0.00 0.24 0.00 10246.07 10093.00 0.12
ribD 304 0 0 1.10 1.10 2.79 2.85 2.83 2.85 15578.16 15223.50 0.04
s15 74 41 33 0.00 0.00 0.45 0.30 0.49 0.30 3760.65 3732.50 0.18
sbox 247 0 0 0.80 0.90 1.55 1.20 1.59 1.20 10602.62 10138.50 0.26
spliced 56 1 0 0.10 0.40 1.14 1.20 1.22 1.30 2548.00 2278.00 0.07
sv11 115 5 5 0.00 0.00 1.63 1.60 1.66 1.65 4195.06 4210.00 0.02
thim 165 0 0 0.50 0.60 2.13 1.95 2.18 2.00 8238.90 8046.50 0.02

µ 0.31 0.36 0.13
x̃ 0.00 0.00 0.12

Supplementary Table 3: Detailed results of the three-target design inputs (RNAdesign dataset
[3str]).

RNA l n1 n2 n3 d1 d2 µ d1 x̃ d1 µ d2 x̃ d2 µ nom x̃ nom sum prob

sq1 100 99 4 0 0.00 0.20 0.00 0.00 0.57 0.30 4273.57 4182.50 0.40
sq2 100 3 0 0 0.90 1.00 3.18 3.00 3.89 3.55 5388.68 5343.50 0.01
sq3 100 25 5 2 0.00 0.00 0.58 0.60 0.99 0.90 5626.87 5299.50 0.14
sq4 100 88 15 4 0.00 0.00 0.07 0.00 0.49 0.40 5046.61 4929.00 0.41
sq5 100 98 31 14 0.00 0.00 0.00 0.00 0.40 0.30 4222.47 4117.50 0.67
sq6 100 37 3 0 0.00 0.20 0.45 0.30 1.56 1.30 6197.26 5751.00 0.11
sq7 100 20 6 0 0.00 0.10 1.02 0.70 1.33 1.15 6176.17 5838.00 0.20
sq8 100 55 10 4 0.00 0.00 0.30 0.00 0.69 0.60 5055.05 4799.00 0.24
sq9 100 84 29 13 0.00 0.00 0.05 0.00 0.31 0.20 4662.04 4517.00 0.48
sq10 100 26 3 1 0.00 0.00 0.63 0.50 1.07 1.00 4737.67 4537.50 0.22
sq11 100 63 3 0 0.00 0.10 0.17 0.00 0.62 0.50 5250.60 5119.50 0.29
sq12 100 93 13 0 0.00 0.10 0.02 0.00 0.47 0.30 4683.74 4630.50 0.16
sq13 100 9 0 0 0.20 0.20 1.40 1.40 2.10 1.90 5890.70 5594.50 0.18
sq14 100 27 0 0 0.00 0.20 0.91 0.60 1.82 1.65 5956.64 5615.00 0.04
sq15 100 2 0 0 0.00 1.20 2.99 2.90 3.90 3.75 6830.74 6464.50 0.07
sq16 100 62 20 7 0.00 0.00 0.14 0.00 0.42 0.40 5479.82 5331.50 0.26
sq17 100 15 0 0 0.00 0.80 0.75 0.70 1.82 1.70 5418.19 5177.00 0.09
sq18 100 46 4 1 0.00 0.00 0.49 0.15 1.33 1.15 5303.81 4982.50 0.25
sq19 100 5 0 0 0.40 0.50 0.89 0.80 1.35 1.30 5099.27 5102.50 0.07
sq20 100 54 12 2 0.00 0.00 0.29 0.00 0.61 0.45 5031.58 4930.00 0.16
sq21 100 37 4 0 0.00 0.10 0.66 0.30 1.67 1.60 5862.30 5632.50 0.06
sq22 100 8 0 0 0.10 0.10 1.00 1.00 1.31 1.30 7393.43 7211.50 0.15
sq23 100 0 0 0 1.00 1.60 3.33 3.20 4.56 4.50 6832.19 6520.50 0.01
sq24 100 36 9 1 0.00 0.00 0.41 0.30 0.74 0.60 5401.19 5415.00 0.18
sq25 100 98 35 15 0.00 0.00 0.00 0.00 0.29 0.20 4286.62 4164.50 0.62
sq26 100 3 0 0 0.10 0.30 0.93 0.90 1.64 1.50 4320.00 4173.00 0.10
sq27 100 3 0 0 0.00 0.30 1.20 1.00 1.56 1.45 6695.16 6579.50 0.09
sq28 100 100 0 0 0.00 0.60 0.00 0.00 0.89 0.80 5375.78 5326.50 0.29
sq29 100 19 4 0 0.00 0.20 0.78 0.75 1.22 1.20 4736.90 4452.00 0.08
sq30 100 31 6 1 0.00 0.00 0.53 0.40 0.85 0.70 5877.83 5473.50 0.08
sq31 100 24 5 2 0.00 0.00 0.54 0.40 1.11 1.00 4747.35 4483.00 0.11
sq32 100 57 12 7 0.00 0.00 0.35 0.00 0.76 0.60 5585.37 5378.50 0.05
sq33 100 79 27 16 0.00 0.00 0.06 0.00 0.30 0.30 4467.61 4247.50 0.37
sq34 100 0 0 0 1.40 1.70 3.72 3.50 4.47 4.30 6378.13 6175.50 0.00
sq35 100 33 4 0 0.00 0.10 0.62 0.35 1.10 1.00 6327.89 6326.50 0.06
sq36 100 91 4 0 0.00 0.20 0.03 0.00 0.87 0.70 5083.06 4925.50 0.29
sq37 100 70 15 4 0.00 0.00 0.12 0.00 0.50 0.40 5409.80 4857.00 0.19
sq38 100 95 9 1 0.00 0.00 0.01 0.00 0.69 0.70 5543.16 5301.50 0.48
sq39 100 11 1 0 0.00 0.10 1.49 1.45 2.21 2.15 5843.19 5736.00 0.06
sq40 100 77 1 0 0.00 1.60 0.11 0.00 1.81 1.70 5184.63 4827.50 0.12
sq41 100 23 6 1 0.00 0.00 0.65 0.60 1.09 1.05 4780.51 4789.50 0.21
sq42 100 11 0 0 0.10 1.10 1.01 0.90 2.01 1.70 5824.38 5596.50 0.18
sq43 100 73 2 0 0.00 0.10 0.15 0.00 1.23 1.20 5224.71 4969.50 0.34
sq44 100 7 3 1 0.00 0.00 1.10 1.10 1.59 1.50 5762.74 5563.00 0.11
sq45 100 65 17 2 0.00 0.00 0.22 0.00 0.57 0.40 4865.60 4726.00 0.35
sq46 100 5 2 0 0.00 0.10 0.97 0.90 1.33 1.30 5104.81 4920.50 0.11
sq47 100 98 1 0 0.00 0.70 0.01 0.00 1.80 1.70 5334.45 5198.00 0.49
sq48 100 43 2 0 0.00 0.20 0.44 0.20 1.58 1.40 5584.79 5310.00 0.17
sq49 100 42 0 0 0.00 0.20 0.36 0.10 1.00 0.90 4986.80 4666.50 0.14
sq50 100 37 0 0 0.00 0.20 0.24 0.10 1.01 0.85 5530.41 5439.00 0.35
sq51 100 3 0 0 0.00 0.60 1.86 1.70 2.51 2.30 6996.33 6806.00 0.12
sq52 100 11 4 1 0.00 0.00 1.48 1.30 2.05 1.95 6403.56 5964.50 0.21
sq53 100 95 22 14 0.00 0.00 0.00 0.00 0.22 0.20 4610.51 4421.00 0.12
sq54 100 4 0 0 0.10 0.20 1.30 1.20 1.76 1.60 7710.90 7420.00 0.11
sq55 100 2 0 0 0.20 0.50 0.96 0.90 1.60 1.50 5135.46 5055.50 0.07
sq56 100 2 1 0 0.20 0.40 1.34 1.25 1.73 1.70 5395.15 5214.50 0.11
sq57 100 100 1 0 0.00 0.20 0.00 0.00 0.57 0.40 5486.52 5293.50 0.76
sq58 100 51 6 0 0.00 0.10 0.29 0.00 1.03 0.90 5603.86 5507.00 0.28
sq59 100 10 1 1 0.00 0.00 1.07 1.10 1.43 1.40 6267.48 5950.00 0.14
sq60 100 25 5 0 0.00 0.10 0.90 0.80 1.38 1.25 6707.52 6497.50 0.04
sq61 100 11 2 0 0.10 0.30 0.49 0.40 0.98 0.85 5828.87 5593.00 0.17
sq62 100 1 0 0 0.30 0.60 2.42 2.20 3.14 3.05 7265.67 7120.00 0.04
sq63 100 100 18 9 0.00 0.00 0.00 0.00 0.31 0.30 5038.84 4908.50 0.49
sq64 100 36 10 2 0.00 0.00 0.61 0.45 1.06 0.90 5973.93 5830.00 0.10
sq65 100 11 2 0 0.00 0.10 1.48 1.25 2.13 1.80 5958.74 5797.00 0.12
sq66 100 35 6 1 0.00 0.00 0.59 0.45 1.30 1.30 5412.14 5253.00 0.22
sq67 100 0 0 0 2.70 2.80 5.82 5.75 6.71 6.60 5062.83 4907.50 0.00
sq68 100 6 0 0 0.10 0.20 1.24 1.15 1.78 1.70 5165.09 4780.50 0.03
sq69 100 0 0 0 0.40 0.70 2.17 2.15 2.76 2.70 5312.29 5054.50 0.02
sq70 100 92 4 0 0.00 0.40 0.03 0.00 0.95 0.60 5617.99 5561.50 0.44
sq71 100 31 0 0 0.80 1.30 0.50 0.40 2.90 2.80 5121.06 4929.50 0.04
sq72 100 96 32 22 0.00 0.00 0.02 0.00 0.21 0.10 4811.61 4764.00 0.23

10

sq73 100 90 9 2 0.00 0.00 0.06 0.00 0.57 0.50 4794.39 4528.00 0.44
sq74 100 2 0 0 0.20 0.70 1.43 1.40 2.12 1.90 4937.77 4915.50 0.07
sq75 100 15 5 0 0.00 0.10 1.02 0.90 1.38 1.35 5699.49 5654.50 0.04
sq76 100 10 4 1 0.00 0.00 1.30 1.00 1.74 1.50 5527.98 5082.00 0.07
sq77 100 8 0 0 0.20 0.30 1.24 1.00 1.87 1.60 5222.57 4755.50 0.09
sq78 100 37 0 0 0.00 0.50 0.53 0.30 2.29 2.25 5840.44 5586.50 0.13
sq79 100 6 1 0 0.00 0.10 1.33 1.20 1.77 1.60 5358.56 5199.00 0.09
sq80 100 97 7 6 0.00 0.00 0.01 0.00 0.47 0.50 5040.19 5078.50 0.41
sq81 100 72 13 6 0.00 0.00 0.09 0.00 0.53 0.40 5665.89 5465.00 0.13
sq82 100 99 29 17 0.00 0.00 0.00 0.00 0.28 0.30 4704.17 4574.00 0.37
sq83 100 49 13 0 0.00 0.10 0.26 0.10 0.80 0.60 5277.87 5093.00 0.47
sq84 100 11 2 0 0.10 0.10 0.49 0.50 0.76 0.70 4489.22 4219.00 0.20
sq85 100 85 28 16 0.00 0.00 0.05 0.00 0.26 0.20 4566.86 4433.50 0.15
sq86 100 39 12 2 0.00 0.00 0.59 0.20 1.05 1.00 5731.73 5579.50 0.16
sq87 100 13 3 0 0.50 0.70 0.57 0.50 1.89 1.80 5291.04 5183.50 0.15
sq88 100 88 16 3 0.00 0.00 0.03 0.00 0.42 0.40 5146.69 5061.00 0.37
sq89 100 96 37 9 0.00 0.00 0.02 0.00 0.30 0.20 4360.10 4162.00 0.44
sq90 100 86 23 0 0.00 0.10 0.04 0.00 0.41 0.30 5143.78 5037.50 0.40
sq91 100 61 17 3 0.00 0.00 0.22 0.00 0.57 0.50 4734.75 4702.00 0.15
sq92 100 9 0 0 0.10 0.30 0.75 0.80 1.25 1.30 5635.99 5417.50 0.06
sq93 100 60 9 3 0.00 0.00 0.16 0.00 0.50 0.40 5387.46 5207.00 0.19
sq94 100 7 0 0 0.00 0.20 1.06 0.95 1.50 1.40 5614.43 5522.50 0.15
sq95 100 10 1 1 0.00 0.00 1.49 1.40 2.13 2.05 6653.09 6352.00 0.25
sq96 100 11 0 0 0.00 0.10 0.57 0.60 1.07 1.05 5344.93 5185.50 0.35
sq97 100 23 4 0 0.00 0.10 0.73 0.60 1.24 1.10 5232.00 4990.50 0.24
sq98 100 91 0 0 0.00 0.20 0.02 0.00 0.84 0.80 5278.64 5337.50 0.36
sq99 100 29 5 4 0.00 0.00 0.39 0.40 0.65 0.70 6004.32 5776.00 0.19
sq100 100 11 3 0 0.00 0.30 1.08 1.00 1.71 1.65 5842.90 5535.50 0.07

µ 0.10 0.26 0.20
x̃ 0.00 0.10 0.15

Supplementary Table 4: Detailed results of the four-target design inputs (RNAdesign dataset
[4str]).

RNA l n1 n2 n3 n4 d1 d2 µ d1 x̃ d1 µ d2 x̃ d2 µ nom x̃ nom sum prob

sq1 100 100 6 0 0 0.00 0.20 0.00 0.00 1.41 1.35 4664.00 4645.50 0.32
sq2 100 0 0 0 0 3.50 4.10 6.47 6.40 8.27 8.25 5631.09 5349.50 0.00
sq3 100 5 0 0 0 0.00 1.00 2.36 2.25 4.33 4.30 8144.79 7797.00 0.03
sq4 100 47 12 3 1 0.00 0.00 0.34 0.10 1.17 1.10 5187.51 4873.00 0.38
sq5 100 90 7 0 0 0.00 0.20 0.03 0.00 0.84 0.90 4284.09 4131.00 0.61
sq6 100 25 0 0 0 0.00 0.40 0.59 0.50 1.49 1.30 5837.08 5439.00 0.02
sq7 100 33 7 1 0 0.00 0.10 0.83 0.50 1.59 1.20 6032.15 5602.00 0.21
sq8 100 3 0 0 0 0.10 1.00 2.12 1.80 3.58 3.50 5275.46 5194.50 0.02
sq9 100 87 7 1 1 0.00 0.00 0.06 0.00 0.70 0.60 5390.52 5133.00 0.16
sq10 100 14 1 0 0 0.00 0.60 1.11 1.10 2.51 2.40 5755.72 5612.50 0.13
sq11 100 13 1 0 0 0.00 0.30 0.97 1.00 1.76 1.65 5237.67 4830.50 0.28
sq12 100 90 0 0 0 0.00 0.50 0.04 0.00 1.74 1.80 4802.36 4512.00 0.11
sq13 100 1 0 0 0 1.90 2.60 4.70 4.50 6.52 6.50 4709.38 4604.00 0.00
sq14 100 19 1 0 0 0.10 2.80 1.95 1.80 5.87 5.75 6728.20 6255.00 0.03
sq15 100 0 0 0 0 0.80 2.00 5.05 5.05 6.87 6.85 6603.52 6285.00 0.01
sq16 100 76 6 0 0 0.00 0.20 0.07 0.00 0.85 0.70 5762.46 5637.50 0.23
sq17 100 4 0 0 0 0.50 1.90 1.97 1.90 4.06 4.00 6474.41 6308.50 0.01
sq18 100 11 0 0 0 0.30 0.90 1.46 1.30 3.39 3.35 6029.45 5881.50 0.04
sq19 100 2 0 0 0 0.60 3.20 3.44 3.60 6.39 6.40 6584.01 6045.00 0.00
sq20 100 10 1 0 0 0.20 0.40 1.41 1.30 2.55 2.50 6055.93 5739.50 0.03
sq21 100 0 0 0 0 2.40 4.20 5.06 4.85 7.55 6.95 6629.80 6202.00 0.00
sq22 100 5 0 0 0 0.00 1.10 1.25 1.10 2.89 2.80 6671.32 6656.00 0.16
sq23 100 0 0 0 0 0.10 1.10 2.50 2.50 4.11 4.05 7139.78 6899.00 0.02
sq24 100 30 3 1 0 0.00 0.30 0.51 0.45 1.53 1.40 6150.44 5871.00 0.11
sq25 100 83 13 3 0 0.00 0.10 0.07 0.00 0.88 0.80 4689.20 4550.50 0.39
sq26 100 29 4 0 0 0.00 0.60 0.29 0.20 1.98 1.70 4508.82 4349.00 0.06
sq27 100 10 0 0 0 0.00 0.40 1.04 0.90 1.86 1.65 6446.55 6113.00 0.15
sq28 100 77 1 0 0 0.00 0.90 0.13 0.00 3.02 3.10 5078.57 4956.50 0.06
sq29 100 58 1 1 0 0.20 0.50 0.29 0.00 2.35 2.40 4995.75 4773.00 0.02
sq30 100 30 5 0 0 0.10 0.80 0.71 0.40 2.77 2.60 6483.36 6471.00 0.03
sq31 100 3 0 0 0 0.50 0.80 1.40 1.20 3.04 2.95 6137.66 5859.50 0.06
sq32 100 50 1 0 0 0.00 0.30 0.35 0.05 1.41 1.35 5898.09 5703.50 0.11
sq33 100 42 0 0 0 0.00 0.20 0.37 0.20 1.44 1.35 5355.95 5207.00 0.34
sq34 100 0 0 0 0 2.00 2.50 4.29 4.20 6.00 6.15 6271.05 5960.00 0.00
sq35 100 12 0 0 0 0.00 1.40 1.30 1.15 3.79 3.55 8251.96 7816.50 0.13
sq36 100 95 1 0 0 0.00 0.30 0.02 0.00 1.62 1.70 5187.96 5114.50 0.20
sq37 100 1 0 0 0 1.60 3.30 3.69 3.60 6.41 5.95 5043.71 4973.00 0.00
sq38 100 65 0 0 0 0.10 2.20 0.13 0.00 2.84 2.65 5697.99 5505.00 0.24
sq39 100 15 1 0 0 0.00 0.50 1.28 1.30 2.99 2.90 5976.42 5625.00 0.07
sq40 100 57 12 0 0 0.00 1.60 0.22 0.00 2.19 2.00 5242.94 5032.00 0.50
sq41 100 35 2 0 0 0.00 1.00 0.50 0.30 3.57 3.30 5653.29 5480.00 0.08
sq42 100 7 0 0 0 0.00 1.60 2.03 1.75 4.62 4.50 8326.71 8098.00 0.03
sq43 100 27 1 0 0 0.00 0.80 0.76 0.60 3.09 2.90 6014.72 5888.00 0.08
sq44 100 9 0 0 0 0.40 0.70 1.26 1.25 2.60 2.60 5983.92 5747.00 0.05
sq45 100 21 2 0 0 0.00 0.20 0.71 0.70 1.62 1.55 4956.77 4721.00 0.41
sq46 100 0 0 0 0 0.80 1.40 2.09 2.00 3.32 3.25 5492.59 5190.50 0.01
sq47 100 75 1 0 0 0.00 0.70 0.10 0.00 2.34 2.50 5413.14 5245.50 0.28
sq48 100 3 0 0 0 0.10 2.20 2.45 2.35 5.59 5.40 7103.42 7001.00 0.02
sq49 100 58 15 0 0 0.00 0.30 0.19 0.00 1.11 0.80 5253.46 5004.50 0.23
sq50 100 31 0 0 0 0.00 0.60 0.52 0.40 2.51 2.50 5530.37 5439.50 0.13
sq51 100 0 0 0 0 4.00 5.40 6.57 6.30 10.69 10.35 5762.02 5631.00 0.00
sq52 100 4 0 0 0 0.80 2.50 1.80 1.60 5.84 5.75 5353.40 5154.50 0.01
sq53 100 76 8 0 0 0.10 0.10 0.09 0.00 1.10 1.00 6392.77 6288.00 0.09
sq54 100 1 0 0 0 0.50 1.90 3.07 3.10 4.86 4.60 6768.51 6372.00 0.02
sq55 100 2 0 0 0 0.70 1.40 1.15 1.10 2.63 2.50 7216.97 7093.00 0.07
sq56 100 1 0 0 0 1.90 2.10 2.90 3.05 4.19 4.20 5908.21 5732.50 0.00
sq57 100 57 1 0 0 0.20 0.80 0.25 0.00 2.22 2.30 5312.35 5193.00 0.27
sq58 100 6 1 0 0 0.00 0.60 1.69 1.45 2.83 2.60 6425.52 6195.00 0.05
sq59 100 7 0 0 0 1.00 1.50 2.39 2.30 4.12 3.95 7793.30 7376.00 0.02
sq60 100 1 0 0 0 0.60 1.50 3.51 3.30 4.89 4.70 7286.09 6800.50 0.03
sq61 100 8 0 0 0 0.50 0.70 1.30 1.20 2.39 2.30 5986.88 5832.50 0.03
sq62 100 9 0 0 0 0.90 1.80 1.68 1.50 4.18 4.10 6856.59 6591.50 0.01
sq63 100 91 10 1 0 0.00 0.10 0.03 0.00 0.98 0.80 7286.67 7182.50 0.27
sq64 100 1 0 0 0 0.10 0.50 2.80 2.50 4.17 4.00 5808.72 5467.00 0.06
sq65 100 18 1 0 0 0.10 1.20 1.27 1.20 3.36 3.30 6390.87 6213.50 0.11

11

sq66 100 21 1 0 0 0.00 0.60 0.65 0.60 1.99 1.80 6255.07 5895.00 0.07
sq67 100 4 0 0 0 1.30 2.60 3.81 3.30 6.20 6.00 5246.49 5200.00 0.00
sq68 100 4 0 0 0 1.00 1.90 2.54 2.20 5.89 5.80 6006.96 5795.00 0.00
sq69 100 0 0 0 0 1.60 3.70 6.31 6.25 8.99 8.80 4326.40 4039.50 0.00
sq70 100 84 28 1 0 0.00 0.40 0.08 0.00 1.31 1.00 5154.21 4981.50 0.24
sq71 100 83 9 0 0 0.00 1.20 0.07 0.00 3.16 3.20 4920.36 4618.50 0.22
sq72 100 16 2 0 0 0.00 0.20 0.82 0.60 1.62 1.50 5470.21 5229.50 0.13
sq73 100 14 0 0 0 0.30 1.10 1.24 0.90 2.91 2.65 7827.23 7487.50 0.05
sq74 100 5 0 0 0 0.60 1.20 1.26 1.10 3.17 3.10 7526.13 7286.50 0.10
sq75 100 27 0 0 0 0.00 0.20 0.63 0.50 2.20 2.20 6661.48 6398.00 0.09
sq76 100 2 0 0 0 0.70 1.60 2.78 2.55 4.45 4.45 6245.68 6120.50 0.04
sq77 100 2 0 0 0 0.00 0.80 2.42 2.35 3.85 3.90 5459.47 5428.00 0.03
sq78 100 6 0 0 0 2.30 3.90 2.88 2.90 7.39 7.20 5939.76 5733.00 0.00
sq79 100 9 0 0 0 1.10 2.30 1.51 1.45 5.31 5.00 5571.69 5455.50 0.00
sq80 100 99 1 0 0 0.00 0.10 0.00 0.00 0.93 0.80 4971.47 4749.00 0.29
sq81 100 4 0 0 0 1.10 2.70 2.51 2.25 6.86 6.65 6834.38 6613.50 0.01
sq82 100 82 20 5 1 0.00 0.00 0.07 0.00 0.88 0.80 5441.07 4977.00 0.38
sq83 100 29 4 0 0 0.00 0.30 0.52 0.40 1.49 1.30 5529.28 5313.50 0.37
sq84 100 17 2 0 0 0.00 0.30 0.81 0.75 1.87 1.90 5614.13 5365.50 0.17
sq85 100 0 0 0 0 1.90 2.60 4.12 3.80 6.68 6.45 5422.96 5032.00 0.00
sq86 100 11 1 0 0 0.40 0.60 1.44 1.30 2.54 2.40 6893.95 6882.50 0.06
sq87 100 44 2 0 0 0.40 1.20 0.37 0.15 3.07 3.05 5224.05 5011.00 0.08
sq88 100 25 4 0 0 0.10 1.50 0.67 0.45 3.25 3.10 5241.55 4913.00 0.13
sq89 100 61 6 2 0 0.00 0.10 0.19 0.00 1.22 1.15 4720.24 4575.00 0.08
sq90 100 78 5 0 0 0.00 0.50 0.08 0.00 2.49 2.50 5720.69 5516.50 0.16
sq91 100 51 3 1 0 0.00 0.20 0.26 0.00 1.54 1.40 5793.00 5592.00 0.11
sq92 100 0 0 0 0 1.90 2.50 4.22 3.75 7.45 7.25 6379.51 6355.50 0.00
sq93 100 4 0 0 0 0.00 1.20 1.70 1.60 4.54 4.40 7232.49 7114.00 0.04
sq94 100 38 5 0 0 0.00 0.20 0.33 0.20 1.18 1.10 5789.17 5573.00 0.23
sq95 100 1 0 0 0 3.30 3.90 6.13 5.70 8.34 8.10 5024.56 4885.00 0.00
sq96 100 9 1 0 0 0.40 0.80 0.81 0.70 2.28 2.10 5934.80 5825.00 0.08
sq97 100 56 0 0 0 0.00 0.90 0.32 0.00 2.47 2.50 5535.12 5305.50 0.14
sq98 100 92 0 0 0 0.00 0.50 0.03 0.00 2.11 2.10 5873.75 5611.50 0.08
sq99 100 24 11 1 1 0.00 0.00 0.43 0.40 0.71 0.70 5705.84 5430.50 0.25
sq100 100 1 0 0 0 2.20 2.60 2.62 2.45 5.43 5.20 6302.11 5966.00 0.00

µ 0 0 0.48 1.21 0.11
x̃ 0 0 0.05 0.80 0.07

Supplementary Table 5: Detailed results of two-target pseudknot design inputs (LE80 dataset).

RNA l n1 n2 d1 d2 µ d1 x̃ d1 µ d2 x̃ d2 µ nom x̃ nom sum prob

PKB00002 PKB00004 0 50 11 5 0.00 0.00 0.57 0.15 0.71 0.35 635.77 638.50 0.24
PKB00005 PKB00015 0 41 0 0 0.60 0.60 1.42 1.40 1.63 1.70 568.57 534.50 0.10
PKB00008 PKB00031 0 40 0 0 0.20 0.40 1.34 1.10 1.67 1.40 656.43 579.50 0.19
PKB00010 PKB00066 0 40 12 5 0.00 0.00 0.52 0.20 0.70 0.45 593.07 573.50 0.38
PKB00012 PKB00268 0 40 8 4 0.00 0.00 0.85 0.65 0.95 0.70 453.80 399.00 0.05
PKB00030 PKB00045 0 41 0 0 0.70 0.90 1.64 1.40 1.85 1.60 588.83 529.00 0.19
PKB00047 PKB00069 0 61 0 0 3.00 3.30 5.61 5.45 5.80 5.70 487.47 449.00 0.00
PKB00048 PKB00265 0 61 0 0 1.10 1.20 3.40 3.10 6670.27 3.65 517.87 452.00 0.01
PKB00050 PKB00128 0 59 10 4 0.00 0.00 0.65 0.40 0.93 0.75 518.03 481.50 0.15
PKB00052 PKB00107 0 52 4 1 0.00 0.00 6667.73 0.85 6667.99 1.15 437.93 385.50 0.25
PKB00057 PKB00072 0 67 0 0 1.30 2.10 5.41 5.30 5.69 5.50 495.33 436.00 0.00
PKB00068 PKB00129 0 68 0 0 2.60 3.30 5.34 5.10 5.65 5.45 681.17 640.50 0.00
PKB00070 PKB00244 0 55 2 0 0.00 0.10 1.91 1.75 2.32 1.90 481.70 394.50 0.17
PKB00078 PKB00106 0 62 4 0 0.00 0.10 1.17 1.00 2.25 1.90 525.20 466.50 0.24
PKB00080 PKB00132 0 49 10 4 0.00 0.00 0.50 0.40 0.70 0.60 407.60 407.50 0.07
PKB00088 PKB00127 0 62 10 1 0.00 0.00 0.74 0.55 1.54 1.15 676.53 658.00 0.25
PKB00098 PKB00232 0 62 1 0 0.00 0.40 2.53 2.65 2.80 2.80 609.90 580.00 0.04
PKB00131 PKB00205 0 48 0 0 1.70 2.20 3.02 3.00 4.16 3.90 570.73 567.50 0.01
PKB00139 PKB00141 0 70 0 0 1.50 1.60 3.17 3.00 3.27 3.20 745.73 662.00 0.01
PKB00142 PKB00231 0 71 1 0 0.00 0.80 2.86 2.55 3.33 2.90 498.97 468.50 0.05
PKB00143 PKB00233 0 71 0 0 1.40 1.50 13337.10 3.70 13337.27 3.75 603.03 577.00 0.01
PKB00148 PKB00218 0 72 0 0 3.30 3.60 5.52 4.95 5.77 5.10 642.50 571.00 0.00
PKB00175 PKB00259 0 57 0 0 0.30 0.50 1.69 1.65 1.98 1.90 648.77 643.00 0.08
PKB00179 PKB00280 0 68 0 0 0.60 0.60 2.61 2.70 2.90 2.90 565.13 587.50 0.01
PKB00180 PKB00212 0 64 0 0 0.30 0.40 6670.49 3.05 20003.69 3.65 448.53 402.50 0.13
PKB00190 PKB00266 0 47 21 7 0.00 0.00 0.18 0.00 0.34 0.20 534.43 530.00 0.29
PKB00207 PKB00213 0 45 7 1 0.00 0.00 13334.10 0.60 13334.26 0.85 364.37 339.50 0.26
PKB00211 PKB00239 0 80 0 0 0.80 1.10 4.15 3.75 4.62 4.50 486.80 464.00 0.02
PKB00222 PKB00305 0 80 0 0 0.50 0.90 6670.15 3.35 6670.54 3.85 595.60 592.00 0.02
PKB00224 PKB00281 0 43 9 3 0.00 0.00 0.70 0.55 1.01 0.75 513.63 485.00 0.19
PKB00230 PKB00273 0 48 0 0 2.00 2.50 4.11 4.10 6671.29 4.65 374.43 353.00 0.00
PKB00248 PKB00257 0 66 0 0 4.40 6.70 6675.06 8.55 33343.25 10.90 214.17 221.00 0.00
PKB00263 PKB00270 0 62 6 1 0.00 0.00 13334.31 0.95 13334.51 1.15 620.23 629.50 0.16
PKB00269 PKB00272 0 66 0 0 1.50 2.30 6670.63 3.80 20004.32 4.40 444.57 411.00 0.00

µ 0.82 1.09 0.11
x̃ 0.30 0.55 0.06

Supplementary Table 6: Detailed results of two-target pseudknot design inputs (PK60 dataset).

RNA l n1 n2 d1 d2 µ d1 x̃ d1 µ d2 x̃ d2 µ nom x̃ nom sum prob

no1 60 0 0 0.20 0.20 1.64 1.35 1.82 1.60 620.13 659.00 0.11
no2 60 2 0 0.20 0.30 1.48 1.55 1.87 1.70 1015.93 1008.50 0.06
no3 60 17 5 0.00 0.00 0.39 0.00 0.65 0.20 806.70 707.00 0.12
no4 60 11 5 0.00 0.00 0.58 0.20 0.70 0.30 810.63 769.00 0.14
no5 60 3 1 0.00 0.00 1.20 1.30 1.41 1.40 696.63 686.50 0.08
no6 60 2 0 0.00 0.30 1.16 0.95 1.40 1.30 787.03 736.00 0.15
no7 60 29 18 0.00 0.00 0.04 0.00 0.11 0.00 929.33 897.50 0.45
no8 60 0 0 0.30 0.30 2.50 2.30 2.72 2.60 647.67 651.00 0.06
no9 60 27 11 0.00 0.00 0.03 0.00 0.16 0.10 908.17 887.00 0.27
no10 60 21 9 0.00 0.00 0.15 0.00 0.31 0.10 944.97 917.00 0.39
no11 60 27 15 0.00 0.00 0.05 0.00 0.17 0.05 862.27 806.00 0.41
no12 60 17 3 0.00 0.00 0.38 0.00 0.61 0.55 779.47 779.00 0.33
no13 60 8 1 0.00 0.00 0.45 0.25 0.56 0.40 784.07 791.00 0.17
no14 60 28 14 0.00 0.00 0.03 0.00 0.11 0.10 852.70 798.50 0.28

12

no15 60 3 1 0.00 0.00 1.31 1.25 1.57 1.50 615.13 595.00 0.18
no16 60 7 2 0.00 0.00 0.60 0.45 0.77 0.55 729.23 736.00 0.17
no17 60 0 0 0.20 0.50 1.98 1.90 2.17 2.15 657.07 619.00 0.06
no18 60 25 7 0.00 0.00 0.15 0.00 0.32 0.20 719.77 717.50 0.46
no19 60 14 3 0.00 0.00 0.62 0.10 0.89 0.55 784.93 683.50 0.27
no20 60 4 0 0.00 0.10 1.14 0.85 1.44 1.30 652.77 640.50 0.19
no21 60 3 1 0.00 0.00 1.71 1.70 1.94 1.85 592.00 576.50 0.09
no22 60 23 7 0.00 0.00 0.10 0.00 0.27 0.20 880.83 885.50 0.31
no23 60 30 15 0.00 0.00 0.00 0.00 0.11 0.05 881.77 860.50 0.75
no24 60 3 0 0.00 0.20 1.21 1.20 1.43 1.35 532.30 486.50 0.37
no25 60 20 15 0.00 0.00 0.13 0.00 0.18 0.05 841.13 822.00 0.27
no26 60 28 11 0.00 0.00 0.04 0.00 0.14 0.10 845.93 900.50 0.44
no27 60 7 1 0.00 0.00 1.44 1.30 1.92 1.45 633.67 625.00 0.16
no28 60 27 4 0.00 0.00 0.02 0.00 0.26 0.15 902.00 877.50 0.45
no29 60 17 5 0.00 0.00 0.36 0.00 0.50 0.30 639.13 604.50 0.06
no30 60 22 6 0.00 0.00 0.15 0.00 0.30 0.20 672.63 652.00 0.14
no31 60 1 0 0.00 0.20 1.84 1.25 2.06 1.55 696.03 704.00 0.07
no32 60 23 3 0.00 0.00 0.14 0.00 0.30 0.20 905.87 876.00 0.32
no33 60 12 4 0.00 0.00 0.47 0.40 0.63 0.55 652.57 589.00 0.41
no34 60 9 4 0.00 0.00 0.75 0.50 0.86 0.55 528.40 475.50 0.14
no35 60 21 8 0.00 0.00 0.21 0.00 0.39 0.40 844.40 802.00 0.46
no36 60 9 1 0.00 0.00 0.59 0.40 0.83 0.55 805.07 812.00 0.33
no37 60 0 0 0.60 1.00 1.88 1.80 2.16 2.00 937.03 1000.50 0.03
no38 60 1 1 0.00 0.00 1.55 1.25 1.79 1.55 647.67 640.00 0.24
no39 60 30 18 0.00 0.00 0.00 0.00 0.06 0.00 865.63 862.00 0.48
no40 60 24 15 0.00 0.00 0.13 0.00 0.27 0.05 1026.00 1072.00 0.27
no41 60 22 9 0.00 0.00 0.13 0.00 0.34 0.10 810.83 743.00 0.22
no42 60 26 7 0.00 0.00 0.09 0.00 0.22 0.10 885.23 835.00 0.45
no43 60 2 0 0.00 0.80 2.10 1.90 2.52 2.40 539.30 485.00 0.05
no44 60 29 9 0.00 0.00 0.01 0.00 0.15 0.10 1038.80 1084.00 0.46
no45 60 13 4 0.00 0.00 0.76 0.35 1.01 0.60 828.50 831.00 0.12
no46 60 4 1 0.00 0.00 1.51 1.10 1.78 1.60 437.30 422.50 0.05
no47 60 2 0 0.00 0.10 1.90 1.80 2.14 2.05 645.33 591.00 0.03
no48 60 0 0 0.10 0.10 1.52 1.30 1.72 1.60 695.47 681.00 0.12
no49 60 18 7 0.00 0.00 0.17 0.00 0.29 0.15 878.80 829.00 0.32
no50 60 18 7 0.00 0.00 0.35 0.00 0.53 0.25 666.67 657.50 0.10

µ 0.03 0.08 0.24
x̃ 0.00 0.00 0.21

Supplementary Table 7: Detailed results of two-target pseudknot design inputs (PK80 dataset).

RNA l n1 n2 d1 d2 µ d1 x̃ d1 µ d2 x̃ d2 µ nom x̃ nom sum prob

no1 80 3 2 0.00 0.00 1.13 1.00 1.31 1.30 871.63 915.00 0.09
no2 80 23 15 0.00 0.00 0.15 0.00 0.20 0.05 846.37 799.00 0.17
no3 80 28 4 0.00 0.00 0.05 0.00 0.19 0.10 1178.70 1119.50 0.22
no4 80 22 8 0.00 0.00 0.18 0.00 0.34 0.10 1007.97 940.00 0.17
no5 80 12 7 0.00 0.00 0.64 0.25 0.74 0.40 1079.90 1108.50 0.27
no6 80 25 18 0.00 0.00 0.20 0.00 0.25 0.00 971.53 933.50 0.10
no7 80 5 1 0.00 0.00 0.96 0.80 1.12 0.95 833.23 816.00 0.12
no8 80 1 0 0.00 0.20 1.80 1.45 2.00 1.70 847.50 803.00 0.14
no10 80 20 8 0.00 0.00 0.27 0.00 0.38 0.15 925.50 929.00 0.26
no11 80 29 10 0.00 0.00 0.01 0.00 0.15 0.10 1083.83 1006.00 0.21
no12 80 30 20 0.00 0.00 0.00 0.00 0.06 0.00 1006.93 959.00 0.42
no13 80 30 16 0.00 0.00 0.00 0.00 0.08 0.00 1114.80 1123.00 0.41
no14 80 10 3 0.00 0.00 0.59 0.55 0.77 0.65 1087.57 1057.00 0.22
no15 80 25 5 0.00 0.00 0.08 0.00 0.18 0.10 1098.63 1064.50 0.14
no16 80 27 9 0.00 0.00 0.02 0.00 0.18 0.10 971.37 941.50 0.31
no17 80 8 4 0.00 0.00 0.62 0.55 0.73 0.65 1064.17 1107.50 0.12
no18 80 18 8 0.00 0.00 0.29 0.00 0.39 0.20 842.50 760.50 0.10
no19 80 29 13 0.00 0.00 0.00 0.00 0.08 0.10 1164.00 1130.50 0.24
no20 80 17 7 0.00 0.00 0.31 0.00 0.40 0.20 1178.23 1212.50 0.24
no21 80 1 0 1.10 1.30 6671.48 4.45 6671.74 4.60 707.30 652.00 0.01
no22 80 7 1 0.00 0.00 0.85 0.60 1.09 0.85 1144.57 1137.50 0.25
no23 80 29 13 0.00 0.00 0.04 0.00 0.18 0.10 1181.20 1121.00 0.53
no24 80 7 2 0.00 0.00 0.98 0.60 1.16 0.75 835.43 815.00 0.29
no25 80 7 2 0.00 0.00 1.04 1.10 1.43 1.40 776.83 709.50 0.31
no26 80 0 0 3.30 3.40 5.81 5.55 6.51 5.95 531.07 508.50 0.00
no27 80 1 0 0.00 0.20 2.92 2.65 3.37 3.30 979.33 905.50 0.12
no28 80 24 12 0.00 0.00 0.15 0.00 0.34 0.10 1146.77 1176.50 0.10
no29 80 21 7 0.00 0.00 0.18 0.00 0.31 0.15 989.97 974.50 0.12
no30 80 14 3 0.00 0.00 0.30 0.10 0.58 0.35 965.67 980.00 0.22
np9 80 20 14 0.00 0.00 0.29 0.00 0.34 0.10 931.57 895.50 0.19

µ 0.15 0.17 0.20
x̃ 0.00 0.00 0.20

References

[1] Mirela Andronescu, Anthony P Fejes, Frank Hutter, Holger H Hoos, and Anne Condon. A new
algorithm for RNA secondary structure design. J Mol Biol, 336(3):607–624, Feb 2004.

[2] Assaf Avihoo, Alexander Churkin, and Danny Barash. RNAexinv: An extended inverse rna folding
from shape and physical attributes to sequences. BMC Bioinformatics, 12(1):319, 2011.

[3] Anke Busch and Rolf Backofen. INFO-RNA – a fast approach to inverse RNA folding. Bioinformatics,
22(15), August 2006.

13

[4] Kvin Darty, Alain Denise, and Yann Ponty. VARNA: Interactive drawing and editing of the RNA
secondary structure. Bioinformatics, 25(15):1974–1975, Aug 2009.

[5] Robert M Dirks, Milo Lin, Erik Winfree, and Niles A Pierce. Paradigms for computational nucleic
acid design. Nucleic Acids Res, 32(4):1392–1403, 2004.

[6] A. Esmaili-Taheri, M. Ganjtabesh, and M. Mohammad-Noori. Evolutionary solution for the RNA
design problem. Bioinformatics, 30(9):1250–1258, Jan 2014.

[7] Christoph Flamm, I. L. Hofacker, S. Maurer-Stroh, P. F. Stadler, and M. Zehl. Design of multistable
RNA molecules. RNA, 7(2):254–265, February 2001.

[8] Juan Antonio Garcia-Martin, Peter Clote, and Ivan Dotu. RNAiFOLD: a constraint programming
algorithm for rna inverse folding and molecular design. J Bioinform Comput Biol, 11(2):1350001,
Apr 2013.

[9] Juan Antonio Garcia-Martin, Peter Clote, and Ivan Dotu. RNAiFold: a web server for rna inverse
folding and molecular design. Nucleic Acids Res, 41(Web Server issue):W465–W470, Jul 2013.

[10] Juan Antonio Garcia-Martin, Ivan Dotu, Javier Fernandez-Chamorro, Gloria Lozano, Jorge Ramajo,
Encarnacion Martinez-Salas, and Peter Clote. RNAiFold2T: Constraint programming design of
thermo-IRES switches. Bioinformatics, 32(12):i360–i368, jun 2016.

[11] I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and P. Schuster. Fast
folding and comparison of RNA secondary structures. Monatshefte für Chemie / Chemical Monthly,
125(2):167–188, February 1994.

[12] Christian Höner zu Siederdissen, Stefan Hammer, Ingrid Abfalter, Ivo L. Hofacker, Christoph Flamm,
and Peter F. Stadler. Computational design of RNAs with complex energy landscapes. Biopolymers,
99(12):1124–1136, 2013.

[13] Robert Kleinkauf, Torsten Houwaart, Rolf Backofen, and Martin Mann. antaRNA – Multi-objective
inverse folding of pseudoknot RNA using ant-colony optimization. BMC Bioinformatics, 16, 2015.

[14] Robert Kleinkauf, Martin Mann, and Rolf Backofen. antaRNA: ant colony-based RNA sequence
design. Bioinformatics, 31(19):31143121, May 2015.

[15] Jeehyung Lee, Wipapat Kladwang, Minjae Lee, Daniel Cantu, Martin Azizyan, Hanjoo Kim, Alex
Limpaecher, Sungroh Yoon, Adrien Treuille, and Rhiju Das. RNA design rules from a massive open
laboratory. Proceedings of the National Academy of Sciences, pages 2122–2127, Jan 2014.

[16] Alex Levin, Mieszko Lis, Yann Ponty, Charles W. O’Donnell, Srinivas Devadas, Bonnie Berger, and
Jérôme Waldispühl. A global sampling approach to designing and reengineering RNA secondary
structures. Nucleic Acids Res, 40(20):10041–10052, Nov 2012.

[17] Rune B Lyngso, James WJ Anderson, Elena Sizikova, Amarendra Badugu, Tomas Hyland, and
Jotun Hein. Frnakenstein: multiple target inverse RNA folding. BMC Bioinformatics, 13(1):260,
2012.

[18] Marco C. Matthies, Stefan Bienert, and Andrew E. Torda. Dynamics in sequence space for RNA
secondary structure design. Journal of Chemical Theory and Computation, 8(10):3663–3670, Oct
2012.

[19] Vladimir Reinharz, Yann Ponty, and Jérôme Waldispühl. A weighted sampling algorithm for the
design of RNA sequences with targeted secondary structure and nucleotide distribution. Bioinfor-
matics, 29(13), Jul 2013.

[20] G. Rodrigo and A. Jaramillo. RiboMaker: computational design of conformation-based riboregula-
tion. Bioinformatics, 30(17):2508–2510, may 2014.

14

[21] Wenjie Shu, Ming Liu, Hebing Chen, Xiaochen Bo, and Shengqi Wang. ARDesigner: a web-based
system for allosteric RNA design. J Biotechnol, 150(4):466–473, Dec 2010.

[22] Akito Taneda. MODENA: a multi-objective RNA inverse folding. Adv Appl Bioinform Chem, 4:1–12,
2011.

[23] Akito Taneda. Multi-objective optimization for RNA design with multiple target secondary struc-
tures. BMC Bioinformatics, 16(1):280, September 2015.

[24] Brian R. Wolfe and Niles A. Pierce. Sequence Design for a Test Tube of Interacting Nucleic Acid
Strands. ACS Synthetic Biology, 4(10):1086–1100, October 2015.

[25] Joseph N. Zadeh, Brian R. Wolfe, and Niles A. Pierce. Nucleic acid sequence design via efficient
ensemble defect optimization. Journal of Computational Chemistry, 32(3):439–452, 2011.

15

