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Abstract
Noncoding RNAs (ncRNAs) function directly at the level of transcripts without ever being
translated into proteins. During the past few years it has become evident that ncRNAs are
key players in many cellular processes. The set of actions is versatile, including transcriptional
regulation, post-transcriptional regulation, chromatin modification or epigenetics. Genome-
wide annotation and computational analysis of ncRNAs have met increased attention over
the last years and RNA biology has become one of the primary research topics in modern
molecular biology. Unlike protein coding genes, ncRNAs lack common statistically significant
features, which makes the detection of novel ncRNAs a challenging task. In this thesis several
computational strategies for noncoding RNA detection ranging from de novo detection to
homology based methods are addressed. In particular, an improved version of the RNAz
algorithm, an updated version of the RNALfold algorithm, and two homology search studies
on the detection of new family members of 7SK RNA and sbRNAs are presented.

RNAz is a software package for the detection of conserved, thermodynamically stable RNA
secondary structures. In this thesis an updated version of RNAz is presented. The use of a
dinucleotide background model, a newly compiled training set, the ability to score structural
RNA alignments and the use of Shannon entropy as a measure of sequence variation lead to
an overall improved detection accuracy. When no or limited comparative genomics data is
available the set of de novo detection methods for functional RNA structures becomes very
sparse. For those cases, RNALfoldz an approach to quickly evaluate the set of local, ther-
modynamically stable structures in single genomic sequences has been developed. Efficient
evaluation of thermodynamic stability is achieved by a modified support vector regression
approach that significantly reduces execution time compared to former approaches.

Noncoding RNAs often evolve fast, retaining only a few sequence conserved elements. Conser-
vation is, however, found at the level of secondary structures. This poses extreme challenges
for RNA homology search methods. In this thesis, two studies on detection of new mem-
bers belonging to the RNA families of 7SK RNA and sbRNAs are presented. By means of
a computational ncRNA-specific promoter screen, 7SK genes are successfully identified in
arthropod species, where experimental and computational studies previously failed to recover
a candidate. The second study aims at the detailed characterization of the putative novel
RNA family of sbRNAs. Using a set of several methods 240 new sbRNA genes are identified in
nematode species. Detailed analysis of the structural features of sbRNAs shows that sbRNAs
are not a novel RNA family, but are homologs of vertebrate Y RNAs.
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Zusammenfassung

Noncoding RNAs (ncRNAs) sind RNA Moleküle, die ihre Funktion auf Ebene von Transkripten
ausüben ohne jemals in Proteine übersetzt zu werden. In den vergangenen Jahren hat
sich gezeigt, dass ncRNAs Hauptakteure in vielen zellulären Vorgängen sind, einschließlich
Prozessen wie transkriptioneller und post-transkriptioneller Regulation, Chromatinmodifika-
tion oder Epigenetik. Genomweite Annotation und bioinformatische Analysen von ncRNAs
haben im letzten Jahrzehnt erhöhte Aufmerksamkeit erhalten und die RNA-Biologie ist zu
einem der Hauptforschungsgebiete der modernen Molekularbiologie aufgestiegen. Im Gegen-
satz zu protein-kodierenden Genen weisen ncRNAs keine gemeinsamen statistisch signifikan-
ten Eigenschaften auf. Dies macht das Auffinden von ncRNAs zu einer anspruchsvollen
Aufgabe. In dieser Arbeit werden mehrere computergestützte Strategien zum effizienten
Auffinden von ncRNAs präsentiert. Dabei werden sowohl Methoden zur de novo Erken-
nung als auch homologiebasierte Verfahren vorgestellt. Insbesondere beschäftigt sich diese
Arbeit mit einer verbesserten Version des RNAz Algorithmus, einer aktualisierten Version des
RNALfold Algorithmus und zwei Studien zur Homologiesuche von ncRNAs am Beispiel der
beiden RNA Familien 7SK RNA und sbRNAs.

RNAz ist ein Softwarepaket zum Auffinden von konservierten, thermodynamisch stabilen RNA
Sekundärstrukturen. Im Zuge dieser Arbeit wurde RNAz verbessert. Eine verbesserten Erken-
nungsgenauigkeit wird durch Verwendung eines dinucleotidbasierten Background-Modells,
eines neu zusammengestelltes Training-Set, strukturellen RNA Alignments und der Shan-
non Entropie als Maß für Sequenzvariation erreicht. Wenn keine oder nur begrenzte Daten
aus vergleichender Genomik vorliegen, gibt es nur wenige Methoden zur de novo Vorhersage
funktioneller RNA Strukturen. Für solche Fälle, ist mit RNALfoldz ein Ansatz entwickelt
worden, der es erlaubt lokale, thermodynamisch stabile Strukturen in einzelnen genomischen
Sequenzen effizient zu finden. Die effiziente Berechnung der thermodynamischen Stabilität
wird durch einen Modifikation der Support Vector Regression erzielt. Diesem neue Ansatz
führt zu einer deutlichen Reduktion der Ausführungszeit im Vergleich zu früheren Methoden.

Noncoding RNAs evolvieren oft schnell und behalten häufig nur ein paar sequenzkonservierte
Elemente. Da oft nur Sekundärstrukturelemente konserviert sind, stellt die RNA Homologie-
suche eine extreme Herausforderung für Suchmethoden dar. In dieser Arbeit werden zwei Stu-
dien zur Homologiesuche von RNA Familien, nämlich für 7SK RNAs und sbRNAs, vorgestellt.
Mit Hilfe eines computergestützten ncRNA-spezifischen Promoter-Screens gelang es 7SK Gene
in der Gruppe der Arthropoden zu identifizieren, wo zuvor sowohl experimentelle als auch
computergestützte Methoden gescheitert waren. Die zweite Studie behandelt die detaillierte
Charakterisierung der vermeintlich neuen Familie der sbRNAs. Mit einer Reihe an verschieden
Methoden gelang es 240 neue sbRNA Gene in Nematoden zu identifizieren. Eine detaillierte
Analyse der strukturellen Merkmale von sbRNAs zeigte schliesslich, dass sbRNAs nicht eine
neuartige RNA Familie sind, sondern homolog zur Familie der Y RNAs.
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1
Introduction

In a visionary act Francis Crick was the first to define relations between DNA, RNA, and pro-

teins, the main macromolecules found in a cell (Crick, 1958, 1970). He proclaimed the central

dogma of molecular biology and since then this dogma has shaped the scientific community’s

view on the roles of these macromolecules. RNA has long been regarded as an intermediate

to promote the flow of information from DNA to proteins. Over the last decade evidence has,

however, mounted that RNA molecules have versatile functions inside a cell ranging from cat-

alytic processes to complex patterns in gene regulation (Fedor and Williamson, 2005; Amaral

et al., 2008; Sharp, 2009; Waters and Storz, 2009). Research on RNA molecules and their

functions has now again become a primary research topic in molecular and computational

biology.

1.1 The early steps in (computational) RNA biology

The ground-breaking work of Watson and Crick (1953) in describing the double helical struc-

ture of DNA was one of the first contributions that helped to establish the field of molecular

biology. At that time scientists were working hard at putting together the pieces of the puzzle

of life, not even knowing if they possessed all pieces. One of those pieces was the macro-

molecule RNA. Neither questions about the role of RNA in the cell nor if RNA could also

form double helical structures could be clearly answered. First experiments on the structure

of RNA (Rich and Davies, 1956; Felsenfeld et al., 1957) soon showed that RNA is also capable

of forming helical structures and that RNA can adopt complex structures by intra-molecular

base-pairings (Fresco et al., 1960). Continued work by Rich (1960) also revealed that DNA-

RNA complexes can be formed. Francis Crick canalized all information available at that

1
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E Rivas, and SR Eddy. Noncoding 
RNA gene detection using 
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(2001) BMC Bioinformatics, 2:8.

RNAz - ncRNA gene finder S Washietl, IL Hofacker, and Stadler PF. (2005) 
Fast and reliable prediction of noncoding RNAs. 
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Figure 1.1. Timeline depicting selected, major findings and inventions in computer

science, molecular biology, and computational RNA biology.
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1.1. The early steps in (computational) RNA biology

time and postulated the central dogma of molecular biology (Crick, 1970). The central dogma

shaped the view of the roles of the biological macromolecules DNA, RNA, and proteins for

the next decades. DNA is assigned the task of information storage, proteins are responsible

for catalytic events in a cell, and RNA acts as a vehicle for information transfer from DNA

to proteins. Figure 1.1 depicts a timeline of some selected, major findings and inventions in

computational RNA biology and molecular biology discussed in this chapter.

It had been realized early on that RNA molecules can adopt complex conformations (Fresco

et al., 1960), and scientist were striving to develop models that could be used to assess and

quantify the network of base-pairing interactions. Based on experimental measurements a

rudimentary set of energy parameters were available that allowed to calculate the free energy

of a secondary structure (Tinoco et al., 1971). Nussinov and colleagues were the first to present

efficient algorithms for the prediction of RNA secondary structures by either maximizing

base-pairings (Nussinov et al., 1978) or minimizing the free energy (Nussinov and Jacobson,

1980). Building on the work of Nussinov, Zuker and Stiegler (1981) proposed an RNA folding

algorithm that uses a more refined energy model that takes different loop types into account.

A variant of the Zuker algorithm is also implemented in the Vienna RNA package (Hofacker

et al., 1994), which is extensively used in this thesis. There are, however, also methods for

structure prediction that do not consider a thermodynamical model. Gutell et al. (2002)

reviewed the power of comparative sequence analysis for RNA structure prediction. In this

work covariation analysis, which aims at detecting and quantifying exchanges between a set

of base-pair types that covary with one another at a specific position, has been successfully

applied to derive structure models for 16S and 23S ribosomal RNA molecules.

With the findings of the groups of Altman and Cech (Cech et al., 1981; Guerrier-Takada et al.,

1983) that some RNA molecules have enzymatic activity a new era for RNA molecules was

started. RNA molecules that can act as chemical catalysts were named ribozymes, short for

ribonucleic enzymes. The group led by Cech discovered that an intron within a pre-ribosomal

RNA from Tetrahymena thermophila can catalyze its own cleavage (called self-splicing) to

form the mature ribosomal RNA product, while the group of Altman showed that the active

component of the RNase P particle responsible for cleavage of a phosphodiester bond to form

the mature transfer RNA is actually an RNA molecule. The fact that RNA can both store

information and act as an enzyme led to the RNA world hypothesis suggesting that RNA was

the original molecule of life (Gilbert, 1986). This hypothesis has been recently fueled by the

works of Lambert et al. (2010) and Barks et al. (2010). Both works report on advances in

determining on how building blocks of nucleic acids might have emerged at abiotic conditions.

3



1. Introduction

1.2 ncRNAs: the new hot topic

Besides the RNA classes of ribosomal RNAs (rRNA) and transfer RNAs (tRNAs), a functional

description of which can be found already in any standard high school biology textbook, a

lot of new noncoding RNA (ncRNA) classes have been discovered. Noncoding RNA or non-

protein-coding RNA is a term that has become increasingly popular over the past years.

In general, noncoding RNA describes RNA molecules that do not carry information for the

translation to proteins, but rather exert their function in a cell as RNA molecules themselves.

Recent research on noncoding RNA has to a great extent been fueled by findings of genome

sequencing studies such as the ENCODE project (ENCODE Project Consortium, 2007). It

has been shown that a significant fraction of the human genome is transcribed. Parts of the

genome that had previously been considered as “Junk DNA” have since then moved into

the focus of research. Moreover, genome sequencing studies and accompanying papers have

shown that the number of protein-coding genes alone is not sufficient to explain the differences

between simple and complex life forms.

The known spectrum of biological functions, ncRNAs are involved in, has considerably broad-

ened over the past years. At this point, let us briefly review some of the most important

RNA classes. Because of the ability of RNA molecules to form inter-molecular base-pairing

interactions, many functional RNAs are involved in biological processes that involve other

RNA molecules, e.g. tRNAs “read” base triples of mRNAs encoding information for amino

acids, the group of small nuclear RNAs (snRNAs) is involved in splicing of mRNA (Valad-

khan, 2010), or the class of small nucleolar RNAs (snoRNAs) guides chemical modifications

(methylation and pseudouridylation) of ribosomal RNAs (Bachellerie et al., 2002). Transfer-

messenger RNA (tmRNAs) have structural and functional properties of both a tRNA and a

mRNA. They are able to rescue stalled transcriptional complexes and are involved in pro-

tein quality control by adding tags for proteolysis to ribosome-associated protein-fragments

(Dulebohn et al., 2007). On the other hand, the family of Y RNAs is involved in RNA quality

control (Stein et al., 2005) and has recently been shown to be required for initiation of DNA

replication in human cells by a yet unknown mechanism (Gardiner et al., 2009). Other house-

keeping RNAs are telomerase RNAs, which serve as template for elongating telomeres, 7SK

RNA, which is involved in controlling eukaryotic gene expression by regulating the fraction of

active RNA polymerase II molecules, or the RNA component of the signal recognition particle

(SRP), which acts in promoting protein translocation across the endoplasmic reticulum mem-

brane. The family of microRNAs with its first member discovered by Lee et al. (1993) has

profoundly changed our view of gene regulation. The binding of microRNAs to complemen-

tary sequences in messenger RNA molecules eventually leads to silencing of the targeted gene.

4



1.2. ncRNAs: the new hot topic

1990 2000

2005 2009

mRNA siRNArRNA

microRNA ncRNAtRNA

sRNA

other

Figure 1.2. Comparative analysis of Pubmed indexed articles. Circles are drawn

proportionally to the number of publications matching the corresponding RNA class. The

scientific community’s research focus on RNA moved away from a protein synthesis centric

view (mRNA, tRNA, rRNA) to a more diverse set of biological functions, where RNA

molecules also account for various gene regulatory processes (miRNA, siRNA, sRNA).
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1. Introduction

Current estimates start from at least 800 microRNAs in the human genome (Bentwich et al.,

2005). MicroRNAs seem to be an eukaryotic innovation, but also in bacteria RNA molecules,

often termed small RNAs (sRNA), have been found regulating synthesis of proteins by a mul-

titude of different actions (Massé et al., 2003). While the RNA families discussed so far have

been fairly well characterized in terms of function, structure and evolutionary history, there

are still a lot of RNA molecules where little is known about their function. Long noncoding

RNAs currently experience a hype not only in the RNA community. In a recent contribu-

tion Tsai et al. (2010) showed that long noncoding RNAs can regulate chromatin states and

epigenetic inheritance and Huarte et al. (2010) identified a novel regulation mechanism of

the p53 tumor suppressor gene. These recent findings clearly demonstrate that we are just

beginning to understand the multitude of biological processes and pathways RNA molecules

are involved in.

Figure 1.2 compiles results of a literature screen of Pubmed indexed articles. It clearly

shows how the scientific community’s view on RNA has changed over the last twenty years.

In the years 1990 to 2000 research on RNA was dominated by RNAs involved in protein

synthesis. mRNAs, tRNAs and ribosomal RNAs were the major RNA species investigated

at that time. 2005 marks a trend of new RNA classes that shapes our current view (2009)

of RNA. MicroRNAs, siRNAs (small interfering RNAs), and sRNAs exert their function not

as catalytically active molecules or molecules in the protein synthesis pathways of a cell, but

rather function in gene regulation at various stages. Today’s role of RNA molecules is, hence,

seen threefold: i) information transfer, ii) catalytic functions, and iii) gene regulation.

In this thesis we explore computational methods for the efficient detection of novel functional

RNA structures and RNA genes. In detail, we address de novo detection of functional RNA

secondary structures by means of improved versions of the RNAz (Washietl et al., 2005b) and

RNALfoldz (Hofacker et al., 2004b) algorithms. We also present two studies on homology

search and detailed evolutionary characterization of the RNA families of sbRNAs (Deng

et al., 2006) and 7SK RNA (Zieve and Penman, 1976). In the following section we give a brief

introduction into the topic of computational noncoding RNA detection and highlight current

approaches.

6



1.3. Computational noncoding RNA detection

1.3 Computational noncoding RNA detection

The emerging interest in noncoding RNAs has also led the scientific community to focus on the

development of computational tools that are capable of detecting novel ncRNAs. First steps

were done in the field of RNA homology search. tRNAs were among the first well characterized

RNA molecules, and the well defined secondary structure and the internal promoter elements

led to the development of a series of computational tools for the efficient detection of tRNA

genes (Fichant and Burks, 1991; Pavesi et al., 1994; Lowe and Eddy, 1997). tRNAscan-SE

(Lowe and Eddy, 1997) is still the state-of-the-art program for tRNA detection. There are,

however, only few RNA families that are so abundant and of broad interest that specialized

tools have been developed. Notable examples are tmRNAs (BRUCE - Laslett et al. (2002),

ARAGORN - Laslett and Canback (2004)), RNase P (Bcheck - Yusuf et al. (2010)), snoRNAs

(snoScan - Lowe and Eddy (1999), snoGPS - Schattner et al. (2004), snoSeeker - Yang et al.

(2006), snoReport - Hertel et al. (2008), Fisher - Freyhult et al. (2008)) and microRNAs

(MiRscan - Lim et al. (2003), MiRseeker - Lai et al. (2003), ProMiR - Nam et al. (2005),

FindMiRNA - Adai et al. (2005), RNAmicro - Hertel and Stadler (2006)). These RNA classes

have additional features that can be exploited to improve the detection sensitivity.

Model- or descriptor-based tools such as Infernal (Nawrocki et al., 2009) or RNABOB (Eddy,

1996) are the most widely used tools for ncRNA homology search nowadays. Their generic

framework does not restrict the application of the method to a certain class of RNA molecules.

In case of Infernal the input consists of a structure-annotated multiple sequence alignment,

from which a covariance model (Eddy and Durbin, 1994) is generated. RNABOB takes as input

a set of user defined sequence and structure patterns describing the structure of the RNA

molecule of interest.

While in RNA homology search we now see a set of technically mature algorithms and tools,

the establishment of tools for de novo detection of functional RNA structure is still in progress.

The most obvious reason for that is that noncoding RNAs, unlike proteins, lack common

statistically detectable signals. There are no clear start and stop signals and there is no

equivalent for the codon bias in noncoding RNAs. The first idea that has been pursued is that

RNA genes, since their functions heavily depend on their structures, should have structures

that are more thermodynamically stable than expected by chance. This has, however, been

a topic of controversial discussion (Le et al., 1990b,a; Seffens and Digby, 1999; Workman and

Krogh, 1999; Rivas and Eddy, 2000; Clote et al., 2005; Freyhult et al., 2005). The current

view is that certain RNA families do indeed show signatures of thermodynamic stability, but

this concept cannot be applied to all functional RNA molecules. NCRNASCAN (Rivas and Eddy,

7



1. Introduction

2000) was the first attempt to predict ncRNA genes based on thermodynamic stability. The

clear message of this study was that thermodynamic stability alone cannot serve as a good

signal for ncRNA genes in a genome-wide search. On the other hand, a series of tools such

as QRNA (Rivas and Eddy, 2001), ddbRNA (di Bernardo et al., 2003), MSARi (Coventry et al.,

2004), or Evofold (Pedersen et al., 2006) has been developed that try to exploit the network

of compensatory (two base changes) and consistent mutations (one base change) often found

in homologous RNA sequences (see Fig. 1.3). Approaches are quite different in their nature

though.
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Figure 1.3. Consensus structure of human tRNA-met genes. Base-pairs are colored

according to the number of compensatory and consistent mutations supporting a base-pair

at a particular position. Sequences were obtained from tRNAdb (Jühling et al., 2009).

Consensus structure prediction was done with RNAalifold (Bernhart et al., 2008).

QRNA operates on pairwise alignments and uses stochastic context free grammars to discrim-

inate between three models (RNA, protein and a null hypothesis). Evofold is a follow-up

and extends the model of QRNA to operate on multiple sequence alignments. ddbRNA and

MSARi search for conserved stem structures and evaluate the significance on randomly shuf-

fled versions of the input alignment and on a distribution mixture model, respectively. With
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1.3. Computational noncoding RNA detection

Alifoldz Washietl and Hofacker (2004) offered an approach that combines both thermo-

dynamic stability assessment and evaluation of evolutionary conservation of RNA secondary

structures. Again, significance was evaluated on randomly shuffled versions of the input align-

ment. In a later work (Gesell and Washietl, 2008) – SISSIz – this concept has been improved

to consider a dinucleotide background model. RNAz (Washietl et al., 2005b) is currently the

most widely used program for noncoding RNA detection. It is also based on the principles

of thermodynamic stability and evolutionary conservation of secondary structures but uses

a machine learning approach to allow fast and accurate detection on a genome-wide scale.

Assessment of the evolutionary conservation is heavily influenced by the quality of the input

alignments with regard to RNA secondary structures. With increasing sequence variation

sequence-only based alignment programs often fail to do a good job though. Two contribu-

tions in this field RSSVM (Xu et al., 2009) and Dynalign+SVM (Uzilov et al., 2006) seize the

power of structural alignments to increase detection sensitivity. So far, approaches discussed

are general in their concept in a sense that there are no species-specific restrictions these

algorithms can be applied to. In the field of bacterial small noncoding RNA detection several

efforts have taken advantage of promoter and transcriptional terminator signals (Argaman

et al., 2001; Chen et al., 2002; Livny et al., 2005; Yachie et al., 2006; Sridhar et al., 2010).

There is also evidence that methods using base composition statistics can be successful in

detecting noncoding RNAs (Carter et al., 2001; Schattner, 2002; Wang et al., 2006; Salari

et al., 2009). In hyper-thermophilic organisms, especially, screens for GC-rich regions have ef-

fectively identified noncoding RNAs (Klein et al., 2002; Upadhyay et al., 2005; Larsson et al.,

2008).

So far, approaches that infer novel ncRNAs from genomic sequences have been discussed.

Many of the above cited works have subsequently confirmed that some of their predicted

ncRNA candidates are indeed expressed and a transcript can be found. Searching for non-

coding RNAs directly at the level of transcripts seems therefore a promising strategy, since

there is already evidence that the sequence is expressed. A first contribution in this field

was by MacIntosh et al. (2001). They screened collections of Arabidopsis expressed sequence

tags (ESTs) for transcripts that do not show coding potential. Similar efforts (FANTOM

Consortium, 2002; Numata et al., 2003; Liu et al., 2006) were done on data generated by the

FANTOM project (The FANTOM Consortium, 2001), which aimed at the functional annota-

tion of a full-length mouse cDNA collections. It has long been in question if noncoding RNAs

can really be found in EST data, since many EST projects aimed at collecting mRNAs and

various experimental filtering stages were applied prior to sequencing. There is, however, a

series of contributions using quite different approaches, that report on successful identifica-

tion of noncoding transcripts in EST collections (Tupy et al., 2005; Seemann et al., 2007; Xue

9



1. Introduction

et al., 2008; Arrial et al., 2009). Two recent works (Jung et al., 2010; Langenberger et al.,

2010) make use of next generation sequencing data and analyze the shapes of read patterns

to find homologs of known ncRNA classes.

At this point let me state a few words on validation of predicted functional noncoding RNAs.

Based on the assumption that expression is inherently linked to function, the standard proto-

col to verify a candidate is to show that there is a transcript that corresponds to the predicted

locus either by RT-PCR or Northern blotting. This has been accepted by the scientific com-

munity for years. Studies like the ENCODE project (ENCODE Project Consortium, 2007)

have shown that there is a good chance that any region in the genome is transcriptionally

active at some time in some tissue. Hence, demonstrating that a predicted ncRNA is really

functional merely based on transcriptional evidence will become less accepted in future times.

Although there have been major advances in the field of computational noncoding RNA

detection it is still very competitive. Especially, the growing number of long noncoding RNAs

poses new challenges for novel and improved algorithms.

10



1.4 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 gives a general overview of

methods, algorithms, techniques and findings essential to this thesis. In particular, important

chemical and biological aspects of RNA molecules, RNA folding algorithms, the concept of

support vector machines, and tools for ncRNA detection are discussed. Chapter 3 introduces

the particular problem statements discussed in this thesis. Chapters 4, 5, 6, and 7 are original

research articles addressing problems of de novo detection and homology search of noncoding

RNAs. In detail, Chapter 4 presents an improved version of the noncoding RNA gene finding

algorithm RNAz. In Chapter 5, we describe a modified version of the RNALfold algorithm

and its application and usefulness for genome-wide ncRNA detection. Chapter 6 presents a

study that reports on the successful detection of 7SK RNA homologs in arthropod species. In

Chapter 7, a study revealing new Y RNA family members in nematodes is presented. Finally,

in Chapter 8, we conclude our work and discuss directions for future research.
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2
Background

This chapter briefly discusses the basics essential to this thesis ranging from biological and

chemical aspects of RNA to modern concepts of machine learning algorithms. In detail, we

discuss RNA secondary structure prediction algorithms, the alignment problem for related

sequences, the concept of support vector machines, and computational tools for both de novo

detection and homology search of noncoding RNAs.

2.1 Chemistry and biology of RNA molecules

Like any macro-molecule ribonucleic acid (RNA) is composed of smaller building blocks. For

RNA these building blocks are called nucleotides and consist of a nitrogenous hetero-cyclic

base, a pentose sugar, and a phosphate group. Nucleotides are linked by phosphodiester bonds

to form a polymer. The bases adenine (A) and guanine (G) belong to the group of purines and

form a double ring, whereas cytosine (C) and uracil (U) are pyrimidine derivatives. Since the

work of Watson and Crick, it is well known that nucleic acids can form complex base-pairing

patterns via non-covalent hydrogen bonds between bases. In general, we distinguish between

the Watson-Crick or canonical base-pairs (A · U, U · A, C · G, G · C), and the Wobble base-pairs

(G · U, U · G). The hydrogen bonding patterns of RNA base-pair interactions are depicted in

Fig. 2.1. All other base-pairing interactions are observed less frequently and are therefore

referred to as non-standard base-pairs (Leontis and Westhof, 2001). Although non-standard

base-pairs can account for a significant fraction of base-pairs in some RNA molecules and

currently meet increased attention (Parisien and Major, 2008; Zhong et al., 2010), Watson-

Crick and Wobble base-pairs are considered as the main driving forces in shaping the secondary

structure of an RNA molecule. RNA secondary structure can be defined as the architecture

13
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Figure 2.1. RNA base-pairing interactions. A-U base-pairs and G-C base-pairs belong to

the set of Watson-Crick or canonical base-pairs. G-U base-pairs are referred to as Wobble

base-pairs.

of helical regions and loops formed by intra-molecular base-pairings. Hydrogen bonding is

responsible for selective pairing of bases, most of the energy gain from adopting a particular

secondary structure formation comes, however, from π-π stacking of the aromatic systems

of the bases (Petersheim and Turner, 1983). The folding of an RNA molecule can hence

be seen as a hierarchical process, where the 3D structure (tertiary structure) is shaped to a

large extent by secondary structural elements (Tinoco and Bustamante, 1999). This process

is schematically depicted in Fig. 2.2 showing the primary (sequence), secondary, and tertiary

structure of a tRNA molecule.

Double-stranded DNA usually adopts a helical form called B-helix. Double-stranded RNA

(dsRNA) is not able to form a B-helix, since the additional hydroxyl group at the 2’ position of

ribose prevents adopting of this conformation. The usual form of dsRNA is the A-helix. This

additional hydroxyl group compared to DNA makes RNA more catalytically active, see e.g.

the cleavage reaction catalyzed by the hammerhead RNA (Scott et al., 1995). So far, when

discussing secondary structure elements we were talking only about intra-molecular base-

pairs. Pairing interactions are not restricted to be intra-molecular. Inter-molecular pairing

is crucial in many biological processes. Consider e.g. the RNA primer in DNA replication,
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Figure 2.2. Folding hierarchies of an RNA molecule illustrated on a tRNA. The

formation of base-pairs between complementary regions forms a network of stems and

loops, referred to as secondary structure. The secondary structure is energetically much

more stable than the tertiary structure. The process of RNA folding can hence be seen as

hierarchical in its nature.

where we see a heterodimer of DNA and RNA or tRNA-mRNA interactions in translation.

microRNAs and snoRNA also recognize their targets via base-pairing.

In cells RNA is synthesized by the process known as transcription, where an RNA molecule is

generated by an enzyme complex from a DNA or in the case of RNA viruses an RNA template.

The enzyme that catalyzes the reaction is called RNA polymerase (pol). In eukaryotes there

are several types of RNA polymerases, responsible for the transcription of different classes

of RNA molecules. RNA polymerase II is responsible for transcribing protein coding genes

(mRNA) and several snRNAs. RNA polymerases I and III have a more limited set of action.

RNA polymerase I synthesizes a pre-rRNA 45S, which matures into 28S, 18S and 5.8S rRNAs,

the core RNA components of the ribosome. The set of transcribed genes by RNA polymerase

III is also limited. In particular, the RNA families of tRNAs, 5S rRNA, 7SK, U6 snRNA,

U6atac snRNA, 7SK RNA, RNase P, RNase MRP and Y RNAs are known to be transcribed

by pol III. The recruitment of a specific RNA polymerase is achieved by specific promoter

elements. Figure 2.3 depicts promoter structures of RNA genes transcribed by RNA pol III.

Type 1 (rRNA) and type 2 (tRNA) are internal promoter elements that reside within the

RNA gene. Type 3 promoter elements are found upstream of the RNA gene, consisting of
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a TATA box, a proximal sequence element (PSE) and an enhancer element named distal

sequence element (DSE). The transcription termination signal is a stretch of a at least four T

residues.

A box B box

+1 +8 +19 +52 +62 +73

A box C box

+1 +50 +64 +80 +97 +120

IE

PSE TATA

-66 -47 -30 -25 +1

DSE

-244 -214

Type 1 internal promoter (5S RNA)

Type 2 internal promoter (tRNA)

Type 3 external promoter (U6 snRNA)

Figure 2.3. Promoter elements of RNA genes transcribed by RNA pol III. Figure

adapted from Cassimeris et al. (2010). Abbreviations: IE - internal element, PSE - prox-

imal sequence element, DSE - distal sequence element. Black box marks the transcription

terminator composed of four or more T residues.
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2.2. RNA secondary structure prediction

2.2 RNA secondary structure prediction

While in the previous section we loosely defined RNA secondary structure as the architecture

of helical regions and loops formed by intra-molecular base-pairings, we aim to give a more

formal definition here. Given a finite alphabet ARNA = {A, C, G, U} we define the primary

structure or sequence of an RNA molecule as a string S = s1s2 ... sn, where n is the number

of nucleotides in the molecule and s ∈ ARNA. A base-pair between nucleotides si and sj is

denoted in the following by i · j. An RNA secondary structure Y is then defined as the set of

base-pairs i · j (i < j) meeting following criteria:

(i) i · j ∈ B where B = {A · U, U · A, C · G, G · C, G · U, U · G}.

(ii) Two base-pairs i · j and k · l are either identical, or else i 6= k and j 6= l.

(iii) Two base-pairs i · j and k · l with i < k satisfy either i < j < k < l (Fig. 2.4b) or

i < k < l < j (Fig. 2.4c).

(iv) For any base-pair i · j: |i− j| > 3.

These conditions help us to reduce the folding space of RNA molecules that has to be consid-

ered to a well defined set of structures and to deduce algorithms that are capable of evaluating

this folding space in reasonable time. Condition (i) restricts the set of base-pairs to Watson-

Crick and Wobble base-pairs. This is not a strict condition. It is, however, motivated by

the fact that most of the free energy of an RNA molecule is contributed by these base-pairs

and that only for these standard base-pairs energy parameters have been reliably measured

(Mathews et al., 1999, 2004). Once parameters for non-standard base-pairs will have been de-

termined, the set of valid base-pairs has to be extended for sure. In fact, a recent statistically

motivated approach for RNA folding reported on the successful prediction of non-standard

pairing interactions (Parisien and Major, 2008). Condition (ii) is to ensure that each base can

take part in at most one base-pair (Fig. 2.4a), while condition (iii) prohibits the formation of

pseudo-knots (Fig. 2.4d). Base-triplets and pseudo-knots are, however, frequently observed

in RNA molecules and form functionally important structural elements. Fig. 2.4e shows

canonical base-pairs, base triples, and pseudo-knots of a tRNA molecule. A recent survey

also demonstrated that these interactions are often evolutionarily conserved (Messmer et al.,

2009). Despite the biological importance of the pseudo-knots, there are two good reasons to

exclude them from the set of secondary structure motifs. First, there is no energy parameter

set available accounting for all possible pseudo-knotted interaction types. And second, the

computational prediction of pseudo-knotted structures without any restriction of the folding
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Figure 2.4. RNA secondary structure rules and visualizations. a-d Visualization of

the rule set of RNA secondary structures. a. Base triples (tertiary structure motif). b.

Two adjacent base-pairs. c. Nested base-pairs. d. Pseudo-knot (tertiary structure motif).

e. Visualization of the secondary structure of a tRNA molecule (with modified residues)

indicating standard base-pairs in blue, and tertiary motifs such as pseudo-knots (green)

and base triples (red). Non-secondary structural motifs are indicated by pale colors. Figure

adapted from (Messmer et al., 2009) f. Circular Feynman representation of the tRNA

structure from (e). Tertiary structure motifs are indicated in pale colors. By definition, a

secondary structure is free of crossing edges. g. Sequence and secondary structure of the

tRNA in the Vienna dot-bracket notation.

18



2.2. RNA secondary structure prediction

space using energy-based models is NP-hard (Lyngsø and Pedersen, 2000). There exists,

however, a series of practical approaches that either limit the search space to a certain set

of pseudo-knots or are based on a heuristic, see e.g. Rivas and Eddy (1999), Reeder and

Giegerich (2004) or Ren et al. (2005). To the knowledge of the author there is currently no

computational approach for predicting base triples, which are in most cases non-standard

base-pairs anyway. Due to these difficulties pseudo-knots and base triples are commonly re-

ferred to as tertiary structure motifs. The last condition (iv) prohibits sharp U-turns. This is

argued with sterical hindrance by the RNA sugar-phosphate backbone. Any valid secondary

structure can be represented as a string over the alphabet AStructure = {(,),.}. Characters

“(” and “)” correspond to the 5’ base and the 3’ base in a base-pair, while “.” denotes an

unpaired residue (Fig. 2.4g). This dot-bracket notation is intuitive as it follows mathematical

rules for setting parentheses, but is not well suited for easily recognizing the fold of an RNA

molecule. Visualization of RNA structures is in many cases a key step in the analysis of a

molecule’s function. From a mathematical point of view an RNA secondary structure can be

considered as an outer-planar graph (Fig. 2.4f). By shortening the edges of this graph to a

fixed length, the commonly known representation of secondary structures is deduced. This

can be achieved by special layout algorithms (Bruccoleri and Heinrich, 1988) or force-field

like approaches (Wiese et al., 2005). We only want to briefly mention here that there exist

many other visualization methods such as mountain plots, dot plots or ordered, rooted trees,

each suited to highlight different aspects of RNA secondary structures (Hogeweg and Hesper,

1984; Shapiro, 1988; Fontana et al., 1993).

2.2.1 Secondary structure prediction algorithms

As briefly discussed in Chapter 1, first efforts to predict RNA secondary structures date back

to 1978, when Ruth Nussinov and colleagues presented a dynamic programming algorithm for

maximizing the number of base-pairs known as the maximum matching problem (Nussinov

et al., 1978). Although the non-thermodynamic scoring model used by the algorithm is too

simple to predict RNA secondary structures with adequate accuracy, the algorithmic principle

applied is fundamental in its nature. Current state-of-the-art approaches still rely on the basic

principle of this algorithm introduced more than 30 years ago. In the following we will shortly

discuss Nussinov’s solution to the maximum matching problem.

Let us assume an RNA sequence x with n nucleotides, then xi denotes the ith nucleotide

in sequence x. As mentioned before when formally defining the concept of RNA secondary

structure, only Watson-Crick and Wobble base-pairs are allowed, no pseudo-knots and no

base triples are allowed to occur. For sake of simplicity, we skip the minimum distance of
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Figure 2.5. Decompositions used in the Nussinov algorithm. There are only two

ways a structure on sub-sequence x[i...j] can be composed of. Either j is unpaired or j is

paired to some nucleotide k splitting x[i...j] into two smaller sub-sequence x[i...k− 1] and

x[k + 1...j − 1].

three nucleotides in this setting. x[i...j] denotes a sub-sequence of x from position i to j and

Mi,j the maximum number of base-pairs on the sub-sequence x[i...j]. The basic idea is that

there are only two ways a structure on the sub-sequence x[i...j] can be composed of (Fig.

2.5). Let us assume that we have already computed all the maximum matching scores on the

interval x[i...j− 1]. If we now add the nucleotide xj one of the two scenarios has to match: i)

j is unpaired, or ii) j is paired to some base k with i ≤ k < j. The second case splits x[i...j]

into two smaller sub-sequences x[i...k−1] and x[k+1...j−1]. Since we have already computed

all matching scores on the interval x[i...j−1], we know the scores of Mi,k−1 and Mk+1,j−1 and

can now easily calculate the score Mi,j . The maximum matching on a sub-sequence x[i...j] is

hence given by following recursion:

Mi,j = max


Mi,j−1

max
i≤k≤j−1
(k,j)∈B

Mi,k−1 +Mk+1,j−1 + 1
(2.1)

While this approach yields the maximum number of base-pairs on a sequence, it does not

instantaneously produce the secondary structure with those base-pairs. The list of base-pairs

has to be retrieved via backtracking. This is simply done by inverting the algorithm using the

calculated values of the forward recursion to reconstruct the optimal path (set of base-pairs)

that give rise to the maximum matching score M1,n. The Nussinov algorithm scales with

O(n3) in CPU time and O(n2) in memory requirements.

Nussinov’s solution for the maximum matching problem can easily be extended to use a toy

thermodynamic model, where a pseudo-energy E is minimized:

Ei,j = min


Ei,j−1

min
i≤k≤j−1
(k,j)∈B

Ei,k−1 + Ek+1,j−1 + ε(k, j)
(2.2)
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ε is an energy scoring function yielding e.g. -3 for G · C and C · G pairs, -2 for A · U and U · A
pairs, and -1 for G · U and U · G pairs. Current state-of-the-art approaches still use the basic

structure of the algorithm discussed above, but apply a more sophisticated, thermodynamic

scoring model, the so called loop-based energy model or nearest neighbor model. Any RNA

secondary structure can uniquely be decomposed into a set of loops. A position k is called

immediately interior to a base-pair i · j, if i < k < j and there is no other base-pair p · q such

that i < p < k < q < j. Hence, any loop is uniquely determined by its closing base-pair i · j.
The exterior loop L0 refers to all bases not enclosed by a base-pair. Loops are characterized

by the number of unpaired bases and the number of base-pairs k, discriminating between

interior and closing base-pairs. The term k-loop denotes a loop composed of k − 1 interior

base-pairs and one closing base-pair. A hairpin loop has only a closing base-pair and all bases

between the base-pair are unpaired. The degree k is 1 in this case. Loops with a degree k

of 2, are called interior loops or internal loops. Bulged loops, or bulges for short, and stacked

pairs are special cases of interior loops. Bulges are asymmetric interior loops where only one

side has unpaired bases and stacked pairs are two adjacent base-pairs containing no unpaired

bases. Multiple stacked pairs give rise to stems or helical regions. Multi-loops are of degree 3

or more. Fig. 2.6 schematically shows all loop types. The k-loop decomposition is the basis

for the energy model used by the programs of the Vienna RNA package.

5' 3'

3' 5'

5' 3' 5' 3'5' 3'

3' 5'3' 5' 3' 5'

5' 3'

5'

3'

5'

5' 5'3' 3'

3'

stacked 
pair

hairpin 
loop

bulge interior 
loop

multi
loop

exterior loop interior base-pair

closing base-pair

any structure

unpaired base

Figure 2.6. RNA secondary structure loop types. In a k-loop decomposition a hairpin

loop is of degree one. Interior loops, including the special cases of bulged loops and stacked

pairs, are of degree two. Multi loops are of degree three or more. The exterior loop collects

all bases not enclosed by a base-pair.

21



2. Background

At this point, let us briefly resume the objective of our proposed secondary structure predic-

tion algorithm. Given an RNA sequence x and a set of energy parameters M we want an

algorithm A(x,M) that returns one or more RNA secondary structures that can be adopted

by the sequence x and, let’s say, are of biological interest. Based on the assumption that RNA

molecules tend to fold into a state of minimum free energy (MFE), it is hence a reasonable

choice to ask for the minimum free energy structure given the energy parameter set M . It

is important to note at this point that whenever we are talking about free energy here we

actually refer to the free energy change ∆G that quantifies the difference in energy between

the unfolded and the folded state. A folded RNA has a negative free energy change, and the

lower it is the more stable the particular fold. Let ∆G be a function that quantifies the free

energy of a structural element. The total free energy of a structure Y is then given by the

sum of the individual contributions of all loops composing Y :

∆G(Y ) = ∆G(exterior loop) + (2.3)∑
∆G(stacked pairs) +∑
∆G(interior loops) +∑
∆G(bulged loops) +∑
∆G(hairpin loops) +∑
∆G(multi-loops)

Energy parameters can be derived experimentally from RNA oligomer unfolding experiments

(Xia et al., 1998; Mathews et al., 1999, 2004) or inferred by statistical methods (Andronescu

et al., 2007, 2010). The formation of helical regions (series of stacked pairs) is the dominant

stabilizing factor, while all other loop types have, in general, destabilizing contributions. For

stacked base-pairs and small hairpin loops one usually uses tabulated values, free energies for

other loop types are calculated with models derived from polymer theory. The first efficient

algorithm that utilizes such an energy model was proposed by Zuker and Stiegler (1981). It is

again a dynamic programming solution, but the different loop types of the nearest neighbor

model make it necessary to keep track which structural element yields the lowest free energy

at a particular position. Instead of filling one two-dimensional matrix one now has to fill

four matrices. Recursions as implemented in the Vienna RNA package (Hofacker et al., 1994)

are depicted in Fig. 2.7. The matrix F stores the global free energy, while C, M , and

M1 hold values of particular sub-components. Once the forward recursion is completed, the

minimum free energy is found at position F1,n and the corresponding secondary structure is

again derived by backtracking. If the number of unpaired bases in an interior loop is restricted

by a constant c (e.g., c = 30) CPU time requirements are still in O(n3).
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2.2. RNA secondary structure prediction

Figure 2.7. Vienna RNA package loop decompositions and recursions. Fi,j holds

the free energy of the optimal sub-structure on the interval [i...j]. Ci,j the free energy of

the optimal sub-structure given the constraint that i and j form a base-pair. Mi,j the free

energy of the optimal sub-structure given the constraint that i..j is part of a multi-loop and

has at least one component. M1
i,j the free energy of the optimal sub-structure given the

constraint that [i...j] is part of a multi-loop and has exactly one component. H(k, l) denotes

the energy contribution of a hairpin loop. I(k, l; p, q) denotes the energy contribution of

an interior loop including stacked pairs and bulges. Energy contributions of multi-loops

are calculated by an additive model M = a + b + c, where a is the contribution of the

closing pair, b = b′ × B the contribution of helices with B being the number of interior

base-pairs, and c = c′ × ` the contribution of unpaired bases with ` being the number of

unpaired bases. Drawings are adapted from Bompfünewerer et al. (2008) and Hofacker

and Stadler (2007) and recursions are due to Hofacker et al. (1994).

23



2. Background

At room temperature there is usually not a single stable fold Y an RNA molecule is trapped in,

rather it is an ensemble of structures Y that the molecule will adopt. Statistics describing this

ensemble are of particular interest. The partition function Z is the sum over all Boltzmann

weighted structures, formally defined as

Z =
∑

Y ∈Y
exp(− 1

RT
∆G(Y )) (2.4)

where R is the molar gas constant and T the absolute temperature in Kelvin. McCaskill

(1990) proposed a dynamic programming algorithm that allows the efficient computation of

the partition function of the ensemble of RNA structures. In principle, min operators in the

MFE recursions are exchanged to sum operators
∑

, and additions to multiplications. Once

the value of the partition function is known, one can easily derive the probability P of a single

structure Y

P (Y ) =
exp(− 1

RT ∆G(Y ))
Z

(2.5)

and subsequently the probability p of a certain base-pair i · j

pi,j =
∑

Y ∈Y
P (Y ) δi,j(Y ) (2.6)

where the function δ is 1 if the particular base-pair i · j is found in Y and 0 otherwise.

2.2.2 Prediction of local minimum free energy structures

Many of the RNAs in today’s known repertoire of functional, structured noncoding RNAs

are rather short in size. MicroRNA precursors and tRNAs typically have a length below 100,

and even the longest house-keeping structured RNAs such as 7SK RNA or RNaseP RNA

are below 400 nucleotides. When searching for RNA structures in long genomic sequences,

one does not want to globally fold the whole genomic sequence and then pick structural sub-

motifs. One is rather interested in efficiently predicting local structural motifs with base-pairs

that do not span over a maximal distance L. This is of particular interest, when start and

end positions of putative ncRNA genes are not known a priori. An efficient solution for this

task was presented by Hofacker et al. (2004b) and is implemented in RNALfold in the Vienna

RNA package. Considering again the Nussinov algorithm at this point, it is sufficient to pose

a limit when searching for k paired to j. The recursion when processing a sequence from the

5’ end to the 3’ end is then given by
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EL
i,j = min


Ei,j−1

min
j−L≤k≤j−1

(k,j)∈B

EL
i,k−1 + EL

k+1,j−1 + ε(k, j)
(2.7)

The implementation of the RNALfold algorithm in the Vienna RNA package uses the full

loop-based energy model. The overall memory consumption scales efficiently with O(n + L2),

where n is the length of the sequence. The computational complexity is O(nL2). The output

consists of a list of self-contained RNA secondary structures, corresponding to minimum free

energies and positions in the sequence.

2.2.3 Consensus structure prediction of aligned sequences

As briefly discussed in Chapter 1, the use of a set of related RNA molecules is a powerful

method to predict RNA secondary structures, see e.g. Gutell et al. (2002) and references

therein. The basic assumption is that related RNA molecules with identical functions are ex-

pected to have identical or related structures. Structural elements will be conserved despite

of sequence variation. Such patterns of sequence variation that preserve base-pair interac-

tions, called covariation, give additional evidence that a predicted base-pair might indeed be

correct. In the early days of RNA secondary structure prediction this was widely employed

computational method to infer secondary structures (Woese et al., 1980). RNAalifold is

a computational approach that combines thermodynamic folding with covariation analysis

(Hofacker et al., 2002; Bernhart et al., 2008). RNAalifold predicts a consensus secondary

structure common to the sequences in the input alignment. “Common” in this case means

that a base-pair can be formed by at least 50% of the sequences in the alignment. To include

covariation information the standard energy model is modified by introducing a (base-pair)

conservation score γ(i, j) that is added as a pseudo-energy. Given an alignment D with n

sequences, the consensus energy βD
ij of two columns i and j is given by

βD
ij =

1
n

∑
x∈D

ε(xi, xj)− φ2γi,j , (2.8)

where γ is composed of two parts γ′ and γ′′. γ′ measures the covariance contribution and γ′′

adds a penalty if a base-pair cannot be formed by a sequence. γ′ is calculated as follows

γ′(i, j) =
1
2

∑
x,y∈D
x 6=y

{
h(xi, yi)+h(xj , yj) if (xi, xj) ∈ B and (yi, yj) ∈ B
0 otherwise

(2.9)
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where i and j denote two columns in the alignment, h is the Hamming distance, and B is the

set of valid base-pairs. Using this pairwise comparison setting, compensatory and consistent

mutations will be awarded 2 and 1, respectively, while total conservation is assigned 0. With γ′

we do not capture inconsistent base-pairs. γ′′ quantifies these counter-examples to structural

conservation by the following score matrix:

γ′′(i, j) =
∑
x∈D


0 if (xi, xj) ∈ B
0.25 if xi and xj are gaps

1 otherwise

(2.10)

Finally, γ is given by γ = γ′ + φ1 γ
′′. RNAalifold uses the two scaling factors φ1 and

φ2 to control the influence of the covariance score. φ1 weights the contribution of counter

examples, and φ2 controls the overall contribution of the covariance score to the consensus

energy. Lindgreen et al. (2006) demonstrated that the RNAalifold scoring schema, despite its

simplicity, is well suited to quantify covariance. RNAalifold is employed by several noncoding

RNA gene finders to measure structural conservation (Washietl and Hofacker, 2004; Gesell

and Washietl, 2008; Washietl et al., 2005b). In the latest version of RNAalifold RIBOSUM

matrices replace the Hamming distances in the covariance evaluation. While this modification

results in increased prediction accuracy, it does not directly lead to better discrimination

capability in terms of the Structure Conservation Index (see Section 2.5; Bernhart et al.

(2008)).
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2.3 Alignments: sequence vs. sequence/structure based

Comparison of two or more sequences, be they DNA, RNA or protein, is a crucial task in

the analysis of biological sequences. The generation of sequence alignments is often the first

step to later identify homologous positions or sites and infer an evolutionary history. Since

comparative sequence analysis is of such fundamental nature it has been addressed already

at the very beginnings of computational biology. Needleman and Wunsch (1970) proposed

a solution for the global alignment problem, where both sequences are aligned along their

entire length and an optimal solution is found. In the local alignment problem one aims

for an optimal alignment of sub-sequences. An efficient solution to this task was presented

by Smith and Waterman (1981). At this point, let us briefly discuss how to generate a

global alignment of two sequences and what optimality in this case means. When aligning

two sequences we have three basic options, which reflect evolutionary events: i) match, ii)

mismatch, and iii) gaps. A match is given when two identical characters are compared, a

mismatch otherwise. Gaps are introduced to model biological events such as insertions or

deletions. Aligning two gap characters is always forbidden. Given a scoring system that

defines appropriate scores for matches, mismatches, and gaps we can ask for an alignment

with the highest score when maximizing similarity or with the lowest score when minimizing

distances. These are equivalent procedures and will return the same result (Smith et al.,

1981). The solution to the global alignment problem by Needleman and Wunsch (1970) is

based on dynamic programming, and follows the same principles as the Nussinov algorithm,

namely recursively deducing the optimal solution from optimal solutions of smaller parts.

Given two sequences x and y with a sequence length of |x| and |y|, respectively, a matrix Q

is filled using the recursion below.

Qi,j = max


Qi−1,j + γ,

Qi,j−1 + γ,

Qi−1,j−1 + σ(xi, yj)

(2.11)

Where σ is a scoring function for matches and mismatches, and γ is the score for a gap.

In this setting the word penalty is often used for mismatches and gaps. Qi,j is the optimal

score given that sub-sequence x[1...i] is aligned to sub-sequence y[1...j]. Therefore the optimal

score of the global alignment of the two sequences x and y is found in matrix Q at position

Q|x|,|y|. The actual sequence alignment is then retrieved via backtracking starting with the

last column.
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Alignments of multiple sequences can also be computed via dynamic programming. The

complexity scales, however, exponentially with the number of sequences. For every-day-

use, heuristics are applied to generate multiple sequence alignments. Progressive alignment

introduced by Feng and Doolittle (1987) is one strategy to do so. Starting with the alignment

of the two most closely related sequences the next closest sequence or sequence group is added.

This process continues in an iterative manner. Positioning of gaps is adjusted in all sequences

at each iteration. CLUSTAL W (Thompson et al., 1994; Larkin et al., 2007) is the most widely

used approach implementing this strategy.

Structural alignment from tRNAdb

Alignment generated with CLUSTAL W

tdbD00007452 AGCAGAGTGGTGCAGT-GGAAGCATACTGGGCCCATAACCCAGAGGTTGATGGATGGAAACCATCCTCTGCT
tdbD00007453 AGCAGAGTGGCGCAGC-GGAAGCGTGCTGGGCCCATAACCCAGAGGTCGATGGATCTAAACCATCCTCTGCT
tdbD00007454 GCCCTCTTAGTGCAGCTGGCAGCGCGTCAGTTTCATAATCTGAAAGTCCTGAGTTCAAGCCTCAGAGAGGGC
tdbD00007455 AGCAGAGTGGCGCAGC-GGAAGCGTGCTGGGCCCATAACCCAGAGGTCGATGGATCGAAACCATCCTCTGCT
tdbD00007456 GCCTCGTTAGCGCAGTAGGCAGCGCGTCAGTCTCATAATCTGAAGGTCGTGAGTTCGAGCCTCACACGGGGC
tdbD00007457 GCCCTCTTAGCGCAGCTGGCAGCGCGTCAGTCTCATAATCTGAAGGTCCTGAGTTCAAGCCTCAGAGAGGGC
tdbD00007458 GCCCTCTTAGCGCAGCGGGCAGCGCGTCAGTCTCATAATCTGAAGGTCCTGAGTTCGAGCCTCAGAGAGGGC
tdbD00007459 GCCTCCTTAGCGCAGTAGGCAGCGCGTCAGTCTCATAATCTGAAGGTCCTGAGTTCGAACCTCAGAGGGGGC
tdbD00007460 GCCTCGTTAGCGCAGTAGGTAGCGCGTCAGTCTCATAATCTGAAGGTCGTGAGTTCGATCCTCACACGGGGC
#=GC SS_cons  (((((((..((((........)))).((((.........)))).....(((((.......))))))))))))

tdbD00007452  AGCAGAGTGGTGCAGT-GGAAGCATACTGGGCCCATAACCCAGAGGTTGATGGATGGAAACCATCCTCTGCT-
tdbD00007453  AGCAGAGTGGCGCAGC-GGAAGCGTGCTGGGCCCATAACCCAGAGGTCGATGGATCTAAACCATCCTCTGCT-
tdbD00007454  GCCCTCTTAGTGCAGCTGGCAGCGCGTCAGTTTCATAATCTGAAAGTCC-TGAGTTCAAGCCTCAGAGAGGGC
tdbD00007455  AGCAGAGTGGCGCAGC-GGAAGCGTGCTGGGCCCATAACCCAGAGGTCGATGGATCGAAACCATCCTCTGCT-
tdbD00007456  GCCTCGTTAGCGCAGTAGGCAGCGCGTCAGTCTCATAATCTGAAGGTCG-TGAGTTCGAGCCTCACACGGGGC
tdbD00007457  GCCCTCTTAGCGCAGCTGGCAGCGCGTCAGTCTCATAATCTGAAGGTCC-TGAGTTCAAGCCTCAGAGAGGGC
tdbD00007458  GCCCTCTTAGCGCAGCGGGCAGCGCGTCAGTCTCATAATCTGAAGGTCC-TGAGTTCGAGCCTCAGAGAGGGC
tdbD00007459  GCCTCCTTAGCGCAGTAGGCAGCGCGTCAGTCTCATAATCTGAAGGTCC-TGAGTTCGAACCTCAGAGGGGGC
tdbD00007460  GCCTCGTTAGCGCAGTAGGTAGCGCGTCAGTCTCATAATCTGAAGGTCG-TGAGTTCGATCCTCACACGGGGC
#=GC SS_cons  .((((....((((........)))).((((.........))))........................))))..

1 2 3 41
0 0 0 0

5 6
0 0

7
0

1 2 3 41
0 0 0 0

5 6
0 0

7
0

Figure 2.8. Structural alignment and CLUSTAL W generated alignment of hu-

man tRNA-met sequences. While the D-loop stem and the Anticodon-loop stem are

predicted in both cases, the TΨC-loop stem is only present in the structural alignment.

Moreover, the closing acceptor stem is also only correctly predicted in the structural align-

ment. Consensus structures were computed with RNAalifold (Bernhart et al., 2008).

Alignments were visualized using the RALEE-mode in emacs (Griffiths-Jones, 2005).

The application range of purely sequence-based aligners is limited in computational RNA

biology, since RNA molecules often evolve fast on sequence level and only retain their struc-

tural features. An alignment program that only considers sequence motifs and not shared

structural components will hence fail to yield a good alignment in terms of RNA secondary

structure. Figure 2.8 illustrates the difference in quality on a structural and a CLUSTAL W

generated alignment for human tRNA genes. Until position 49 both alignments are identical.

The gap character at position 50 introduced by CLUSTAL W to better fit the sequence patterns
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2.3. Alignments: sequence vs. sequence/structure based

in the remaining part disassembles the consensus structure. RNAalifold is not able to predict

the last hairpin and the closing stem correctly then.

Sankoff (1985) proposed a dynamic programming solution for the problem of simultaneously

aligning and folding of RNA sequences. Due its high computational cost of O(n6), where n is

the length of the two sequences to be aligned, it is not suited for practical use. Restricted ver-

sions of Sankoff’s algorithm are implemented in foldalign (Havgaard et al., 2005), dynalign

(Mathews and Turner, 2002), PMcomp (Hofacker et al., 2004a), or LocARNA (Will et al., 2007).

At this point let us briefly discuss the underlying approach of PMcomp and LocARNA as re-

viewed in Bompfünewerer et al. (2008). In principle, the algorithms follow Sankoff’s solution,

but are split in two separate stages. First, base-pairing probability matrices are calculated

using RNAfold for each sequence. Pairwise alignments of two sequences x and y are then

generated by following recursions (Fig. 2.9), where Qi,j,k,l denotes the maximal score of an

alignment of sub-sequences x[i...j] and y[k...l]. The optimal score is found in matrix Q at

position Q1,|x|,1,|y|.
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Figure 2.9. Recursion scheme used by LocARNA. There are four distinct cases for calcu-

lating scores in matrix Q and a single decomposition for the entries in D. Figure adapted

from Bompfünewerer et al. (2008).

As seen before for plain sequence alignment (Eq. 2.11) γ and σ are scores or scoring functions

for gaps and unpaired (mis)matches, respectively. At Di,j,k,l we find the optimal score of an
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alignment of sub-sequences x[i...j] and y[k...l] given the condition that the base-pairs i · j and

k · l are matched. α is a scoring function for base-pair matches using base-pair scores that are

derived from the base-pairing probability matrices of the two individual sequences. LocARNA

uses only base-pairs that have a base-pairing probability higher than a certain cut-off. This

improves the time complexity to O(n4) in CPU time, and O(n2) in memory requirements.

LocARNA is used in this thesis for generation of the structural alignment training set for RNAz

(cf. Chapter 4). Moreover, we applied the LocARNA-RNAclust clustering pipeline to group

ncRNA candidates based on sequence/structure similarity (cf. Chapter 7).
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2.4 Machine learning using support vector machines

Machine learning is a discipline in computer science that deals with the development and

design of algorithms to perform tasks commonly associated with artificial intelligence. A

formal definition on how to define and evaluate “learning” in terms of computer programs

was given by Mitchell (1997):

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks in T , as

measured by P , improves with experience E.”

Given for example the task T of recognizing handwritten digits, P can be defined as the

percentage of correctly classified digits and E as a database of handwritten digits. Actually,

recognizing handwritten digits was among the first real-world problems where an efficient

solution was found employing machine learning techniques (Matan et al., 1990). Over the

years, many concepts and algorithms have emerged (Alpaydin, 2004; Bishop, 2006). Most

prominent approaches include neural networks, kernel methods such as the support vector

machines (SVMs), hidden Markov models, k-nearest neighbor algorithms, Gaussian mixture

models, näıve Bayes classifiers, or decision trees. While artificial neural networks dominated

the field in the beginning, support vector machines (Cortes and Vapnik, 1995) are currently

the tools of the trade in many disciplines. Especially in computational biology, SVMs have

been applied to a wide variety of problems, including protein-coding gene detection (Schweik-

ert et al., 2009), protein sub-cellular localization prediction (Shi et al., 2007; Lei and Dai,

2005), protein fold recognition (Sun and Huang, 2006; Shamim et al., 2007), detection of

translation initiation sites (Zien et al., 2000), splice site detection (Sonnenburg et al., 2002;

Hiller et al., 2009), cancer tissue classification (Chu and Wang, 2005; Chiu et al., 2008), pro-

moter prediction (Sonnenburg et al., 2006; Towsey et al., 2008), or microRNA gene prediction

(Xue et al., 2005; Hertel and Stadler, 2006; Ng and Mishra, 2007; Xu et al., 2008; Li et al.,

2010). Since SVM techniques are extensively used in this thesis, we briefly outline the theo-

retical principles of SVMs based on contributions by Bennett and Bredensteiner (2000) and

Bennett and Campbell (2000) in the following.

2.4.1 Supervised learning and the conceptual idea of SVMs

In supervised learning the machine learning algorithm trains on input-output pairs and learns

a decision function to map the input to the output. Depending on whether the output is

discrete or continuous, problems are inferred as classification and regression, respectively.
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Support vector machines are prototype examples of supervised learning algorithms and can

be applied to both classification and regression problems.

Following the reasoning of Bennett and Campbell (2000), the success of support vector ma-

chines is largely attributed to these features: i) the SVM approach is systematic, reproducible,

and properly motivated by statistical learning theory, and ii) since training involves optimiz-

ing of a convex cost function, the algorithm does not get trapped in local minima and the

optimal solution can always be found. Moreover, ready-to-go software implementations like

libSVM (Chang and Lin, 2001) or SVMLight (Joachims, 1999) have made the use of SVMs

fairly easy. The conceptual idea behind this powerful machine learning technique is depicted

in Fig. 2.10. Given a binary classification problem, a set consisting of data points from two

classes that is not linearly separable in the input space is transformed via a function Φ into

a higher dimensional feature space, where a linear separation is possible.

Input space X Feature space F

Figure 2.10. Conceptual idea of classification with SVMs. Data points from two

classes (red and blue) are mapped from the input space X to a higher dimensional feature

space F via Φ. A maximum margin separating hyperplane is constructed in F, which

yields a non-linear decision boundary in the input space. Figure adapted from Schölkopf

and Smola (2002).

2.4.2 Hyperplane classifiers and the kernel trick

Let us assume a binary classification problem and a set of ` training instances {xi, yi} with

i = 1, ..., `, where xi ∈ Rn and yi ∈ {−1,+1}. Each training instance is a vector of n features

x = (x1, ..., xn)T and belongs either to the positive or the negative class. Based on the training

instances we seek a classification function f(x) such that x is assigned to the positive class if
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f(x) ≥ 0, or to the negative class otherwise. In the simple case, where the data set is truly

linearly separable, a hyperplane of the form

D(x) = 〈w · x〉+ b =
n∑

1=1

wixi + b (2.12)

with w ∈ Rn and a bias term b ∈ R can be constructed that correctly classifies all instances.

However, an infinite number of such hyperplanes exist. Fig. 2.11a shows two possible hy-

perplanes (dashed and solid lines), and certainly the question arises: which one provides the

better classifier? Without any additional information, the hyperplane represented by the solid

line seems to be the better choice, since it is likely to generalize better on future data. From

a geometric point of view this hyperplane can be described as being “furthest” from both

classes. In other words, the optimal hyperplane in terms of generalization ability adopts the

maximal distance from any of the two sets.

a                                b                                c

c

d

〈w⋅x 〉 + b = -1i 〈w⋅x 〉 + b = 0i

〈w⋅x 〉 + b = 1i

w
2

y = -1i y = -1i y = -1i

y = +1i y = +1i y = +1i

*

*

*

*

Figure 2.11. Construction of an optimal hyperplane in a binary classification

problem. (a) There exist an infinite number of linearly separating hyperplanes. The

hyperplane represented by a solid line is not that sensitive to small perturbations in the

training data as the hyperplane drawn with a dashed line. (b) Convex hulls of each class

are indicated by dashed lines. c and d mark the two closest points of the two hulls. The op-

timally separating hyperplane bisects these two closest points. (c) Supporting hyperplanes

are indicated by dashed lines. The optimally separating hyperplane (solid line) is defined

as the hyperplane with the maximal margin with respect to the supporting hyperplanes.

There are two possible ways to determine the optimally separating hyperplane. The methods

are graphically outlined in detail in Fig. 2.11b and Fig. 2.11c. In the convex hull approach,

a convex hull (convex set that contains all data points) is generated for each class. Next the

two closest points of each hull c and d are found, which can be done efficiently via a quadratic
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minimization problem (Bennett and Campbell, 2000). The optimal hyperplane bisects these

two closest points. An alternative approach is to maximize the margin between two parallel

supporting hyperplanes (Fig. 2.11c dashed lines). A hyperplane is called supporting if all

points of a class are on one side. w and b are rescaled such that the points closest to the

hyperplane satisfy D(x) = y(〈w ·x〉+ b) = 1 and thus D(xi) = yi(〈w ·xi〉+ b) ≥ 1 is valid for

all points xi with i = 1, ..., `. When D(x) = y(〈w ·x〉+ b) = 0 the separating hyperplane is in

the middle of the two supporting hyperplanes. The distance from the separating hyperplane

to the nearest training point is called margin. The optimal separating hyperplane with the

maximal margin is obtained by following constrained quadratic minimization problem for w

and b:

minimize Q(w, b) =
1
2
‖w‖2

subject to yi(〈w · x〉+ b)− 1 ≥ 0, ∀i = 1, ..., `
(2.13)

Data points that satisfy the equality constraint are called support vectors. In Fig. 2.11c, data

points marked with an asterisk indicate support vectors. The convex optimization problem

of minimizing Q(w, b) could in theory be solved by quadratic programming techniques, but

today’s efficient SVM implementations rely on conversion into the equivalent dual problem,

where the number of variables is the number of training data:

maximize Q(α) =
∑̀
i=1

αi −
1
2

∑̀
i,j=1

αi αj yi yj xT
i xj

subject to
∑̀
i=1

yiαi = 0 αi ≥ 0 ∀i = 1, ..., `

(2.14)

Where αi are non-negative Lagrange multipliers, arising from conversion into the dual prob-

lem. So far, we have considered a perfectly separable data set and deduced a classifier, which

is commonly referred as hard margin support vector machine. In real-world applications the

scenario of perfectly separable classes is rarely seen and a hard margin SVM will fail in the

case of inseparable data. However, the concept of soft margin support vector machines al-

lows errors to be made during the training process (Cortes and Vapnik, 1995). The strict

constraints in Eq. 2.13 are relaxed and a margin parameter C is then used to control the

trade-off between maximization of the margin and minimization of the classification error. If

the data is not linearly separable a soft margin SVM will succeed in generating a classifier.

Although the hyperplane has been optimally determined, the classifier may suffer from poor

generalization ability. To handle non linearly separable data, SVM techniques generally ap-

ply a mapping of data from the input space to a higher dimensional feature space using a
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nonlinear vector function Φ (cf. Fig. 2.10). The separating hyperplane is then given by

D(x) = 〈w · Φ(x)〉+ b (2.15)

Instead of using Φ(x) a kernel function H(xT,x) is used since this elegantly avoids treating

the high dimensional feature space explicitly. This technique is commonly referred to as kernel

trick (Aizerman et al., 1964). A kernel function must be continuous, symmetric, and most

preferably it should have a positive (semi-)definite Gram matrix, since this guarantees that

the optimization problem will be convex and the solution unique. Among the most widely

used kernel functions is the radial basis function (RBF) kernel

H(xT,x) = exp−γ‖xT − x‖ (2.16)

where γ is a positive parameter controlling the radius.

2.4.3 Support vector regression

The idea of finding a separating hyperplane in a binary classification task can be easily

generalized to regression analysis. Training data is still in the form of input-output pairs

{x, y} while now y ∈ R. In linear regression usually a squared error function E(r) based on

the residual r is used. Such a quadratic error function is not an optimal choice in the case of

support vector regression since it will generate no sparseness in the support vectors (Gunn,

1998). Instead a piecewise, linear function of the form

E(r) =

0 if |r| ≤ ε

|r| − ε otherwise
(2.17)

is used where ε is a small positive value. This simply means that in the evaluation of the

error function errors that are smaller than ε are ignored.
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2.5 Structured noncoding RNA detection with RNAz

RNAz (Washietl et al., 2005b) is a noncoding RNA gene finder that relies on signatures of

thermodynamic stability and evolutionary conservation of RNA secondary structures. RNAz

ncRNA screens have been conducted in several organisms including mammals (Washietl et al.,

2005a, 2007; Seemann et al., 2007), fish (Rose et al., 2008), nematodes (Missal et al., 2006),

arthropods (Rose et al., 2007), yeast (Washietl et al., 2005b; Steigele et al., 2007), plants

(Song et al., 2009), bacteria (del Val et al., 2007; Sonnleitner et al., 2008; Pánek et al., 2008)

or even metagenomics data (Shi et al., 2009). The RNAz algorithm or parts of it have also

been used in a series of other programs (Song and Deng, 2010; Xu et al., 2009; Hertel and

Stadler, 2006; Hertel et al., 2008; Reiche and Stadler, 2007). Besides the core program the

RNAz package comes with a series of helper scripts that allow the user to easily set up a

computational pipeline for genome-wide screens. There is also a RNAz web server that allows

to easily conduct RNAz ncRNA screens online (Gruber et al., 2007). A schematic overview of

the RNAz algorithm is given in Fig. 2.12.

Structural
conservation

Thermodynamic 
stability

Sequence
variation

Multiple sequence
alignment (MSA)

Probability that
MSA contains
a structured

ncRNA

SVM classifier

Figure 2.12. Overview of the RNAz algorithm. A multiple sequence alignment serves as

input. Structural conservation, sequence variation, and thermodynamic stability are mea-

sured and serve as input values for a SVM classifier. The output is the probability that the

alignment shows signatures of evolutionary conserved, thermodynamic RNA structures.

A multiple-sequence alignment serves as input and three properties, namely thermodynamic

stability, sequence variation, and structural conservation are measured. Subsequently, these

features serve as input for a binary SVM classifier that outputs the probability that the multi-
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ple sequence alignment shows signatures of thermodynamically stable, evolutionary conserved

RNA secondary structures. First, for each sequence in the alignment the thermodynamic sta-

bility is calculated in terms of a z-score of the form z = (E − µ)/σ. E denotes the energy

of the minimum free energy structure of the native sequence and µ and σ are the average

energy and standard deviation of the energies of a set of shuffled sequences with the same

base composition. The conventional approach of generating the set of shuffled sequences by

explicitly shuffling and folding is far too expensive to apply it on a genome-wide scale in a

reasonable amount of time. Instead, support vector regression models have been trained to

estimate µ and σ, which can be done at a fraction of the time needed in the explicit approach.

Finally, the averaged z-score of all sequences in the alignment is calculated.

For training of the regression models, Washietl and colleagues generated training sequences

by sampling the sequence space with a regularly space gird. In particular, the G+C content,

the A/(A+T) ratio, and the C/(C+G) ratio were all varied from 0.25 to 0.75 in steps of 0.05.

The length of the sequences was varied from 50 to 400 in steps of 50 nt. In total a set of

10,648 sequences was used. For each of these sequences 1,000 randomized sequences were

generated using the Fisher-Yates shuffling algorithm and subsequently folded with RNAfold.

The average pairwise sequence identity and the number of sequences in the alignment serve as

input features describing the sequence variation. Measuring sequence variation is necessary in

order to somehow normalize the structure conservation index (SCI), which is used to measure

the structural conservation of the sequences. This is motivated by a series of reasonable

assumptions that with increasing sequence variation standard alignment algorithms fail to

yield good alignments in terms of correctly aligned RNA secondary structures (Gardner et al.,

2005). Hence with more sequence variation, we are expecting lower SCI values. “Somehow”

in this context relates to the fact that normalization is not done explicitly via a known

model, but implicitly by the black box SVM classifier. The SCI is formally defined as SCI =

Econsensus/〈Esingle〉, where Econsensus is the energy of the consensus structure predicted by

RNAalifold (Hofacker et al., 2002; Bernhart et al., 2008) and 〈Esingle〉 is the average of the

energies of the single sequences. The SCI is an refinement of the concept first introduced

by Washietl and Hofacker (2004). There the RNAalifold consensus energy was interpreted

by calculating a z-score on consensus energies of randomized alignments. In contrast, the

consensus energy in the SCI is normalized by the average of the single sequence folding

energies. If all sequences in the alignment are able to fold into the consensus structure, the

consensus energy will be close to the average of single sequence folding energies, hence yielding

a SCI close to 1. Due to the rewarding schema for consistent and compensatory mutations

in terms of bonus energies implemented in RNAalifold, the SCI can even have values higher
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than 1. Note, that structural conservation is measured in terms of energies and not by taking

the secondary structures into account. In a subsequent work (Gruber et al., 2008a) to RNAz

we showed that the SCI is the overall best measure to quantify structural conservation. The

concept of measuring structural conservation in terms of energies rather than the conservation

of single base-pairs is not easily intuitive, but becomes more comprehensible when considering

the following. RNA secondary structure predictions are far from yielding perfect predictions

(Gardner and Giegerich, 2004). Estimates of the prediction accuracy depending on the used

data set and metric are roughly speaking between 45-70% (Doshi et al., 2004). Taking for

example 100,751 tRNA sequences present in Rfam (Gardner et al., 2009) and folding them

with RNAfold, only 85% will adopt the typical tRNA shape ([[][][]]) as their predicted

minimum free energy structure. The moderate overall prediction accuracy is only one problem.

Another one is the presence of degenerate folding states. In the forward recursion of any

dynamic programming RNA folding algorithm the minimum free energy is computed first,

and then a secondary structure with that energy is determined by back-tracking. There can,

however, be multiple secondary structure with the same folding free energy, as shown below:

UCGUUCCUGGCCGCCGGACUGAAAGUGAGCGUAGAACUCCGAUGGGGGUCUUGAAGCAACUACCUUUGUGAUUCUUCUUG

.(((((((((...))))((.....))))))).((.(((((....))))))).((((.((.(((....))).))))))... -14.60

.(((((((((...))))((.....))))))).(((.((((....))))))).((((.((.(((....))).))))))... -14.60

(((.(((.((...))))).))).(((..((..((.(((((....)))))))....)).)))................... -14.60

(((.(((.((...))))).))).(((..((..(((.((((....)))))))....)).)))................... -14.60

The minimum free energy of the sequence given above as predicted with RNAfold is -14.60.

There is not a single structure associated with that energy, rather it is a set of four structures

with quite different structural elements. If one aims to compute the structural conservation

of this sequence with some other sequences and uses some kind of base-pair based metric,

the output is heavily influenced by which structure was actually backtracked by the RNA

folding program. The use of folding free energies to calculate structural conservation elegantly

circumvents such pitfalls and has been shown to be a powerful strategy (Gruber et al., 2008a;

Okada et al., 2010).
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2.6 Computational tools for ncRNA homology search

2.6.1 Sequence based tools: BLAST

The running time of standard alignment algorithms makes it impractical to apply these al-

gorithms for screening and searching of large collections of nucleotide or protein sequences.

Instead, common day sequence analysis for finding a query sequence in a large data set relies

on the use of heuristic methods. The BLAST software package (Altschul et al., 1990, 1997) and

web resources (http://blast.ncbi.nlm.nih.gov/Blast.cgi) are the most commonly used tools for

this purpose. BLAST is an acronym for Basic Local Alignment Search Tool. The dramatic

speedup of BLAST compared to standard alignment algorithms is achieved by a reduction of

the search space. Basically, the BLAST algorithm consists of two components: i) heuristic

search, and ii) statistical evaluation of the computed solutions. In a first step, the sequence

is split into a set of words. Words are sub-sequences of a defined length, typically 11 for

nucleotide and 3 for protein sequences. Words that score above a certain threshold when

aligned to the query sequence are selected as seed sequences and the database is subsequently

screened with the seed sequences, i.e. determining all locations of all common words of the

query and the target sequence. In a next step, hits are grouped and the algorithm tries to

expand the ends by adding further alignment columns forming so called high scoring segment

pairs (HSPs). At least two hits have to be found, that can be grouped, otherwise the search

is unsuccessful. Finally, BLAST computes for each HSP a bit score and an E-value, which

measures the number of alignments with an equal or better score that are estimated to occur

by chance.

A BLAST search is usually the first step when searching for homologous RNA sequences. The

web interface at NCBI allows easy and effortless searching of millions of nucleotide sequences

by a simple copy-and-paste of the query sequence and hitting the run button. Although chang-

ing of the standard BLAST parameters may improve results, this search strategy is deemed

to fail to retrieve homologs in distantly related species since RNA genes are known to show

only weak sequence conservation. Nevertheless, BLAST can be used to collect an initial pool

of homologous sequences.

2.6.2 Sequence based tools: fragrep

Because of the moderate sequence conservation of many ncRNA families or large insertions

and deletions BLAST fails to recover distantly related RNA sequences in many cases. This

does not necessarily mean that sequence based search methods are no use for noncoding
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RNA detection. It is quite common that the researcher has identified sequence stretches

based on conservation analysis or wet-lab experiments that seem to be more important than

others for the biological function of the RNA molecule. Since BLAST is a fully automated

software package, there is no easy way to incorporate this kind of expert knowledge into

the algorithm. A software package that allows to construct user defined sequence queries is

fragrep (Mosig et al., 2006, 2007a). In detail, it is a dynamic programming algorithm that

allows to search for fragmented sequence patterns in long genomic sequences. Scanning speed

depends on the complexity of the query patterns and the length of the genome, but run-times

are usually in the range of a few minutes. fragrep has been successfully applied in a series

of noncoding RNA detection approaches, e.g. vault RNAs (Stadler et al., 2009), 7SK snRNA

(Gruber et al., 2008b), telomerase RNAs (Mosig et al., 2007a), and Y RNAs (Mosig et al.,

2007b).
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Figure 2.13. Outline of fragrep query patterns. The upper panel shows the search

patterns as a combination of sequence logos. Numbers between the logos indicate minimal

and maximal distances. The lower panel shows the corresponding fragrep input pattern

consisting of header information and position weight matrices for each sub-sequence.

While in its first version (Mosig et al., 2006) fragrep only allowed to define a query as a

combination of sequence strings in IUPAC nomenclature, the newest version (Mosig et al.,

2007a) uses position weight matrices derived from a multiple alignment of the sequences of

interest. Fig. 2.13 shows a typical fragrep input pattern. Usually, the pattern is generated

from user annotation of a multiple alignment, but the user is free to modify the generated

pattern to his or her needs. Especially, the adjustment of minimal and maximal distances

between two sequence patterns can help to recover distantly related homologous sequences.
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2.6.3 Model based tools: RNABOB

Although there is no official publication describing the algorithm used in RNABOB (Eddy, 1996),

RNABOB is a widely used tool to search for RNA structure and sequence motifs (Riccitelli and

Lupták, 2010). It falls into the group of descriptor based search algorithms. The pioneer

program in this field was RNAMOT (Gautheret et al., 1990), which serves also as basis for

RNABOB. Recent contributions are RNAmotif (Macke et al., 2001) and RNAMST (Chang et al.,

2006). Common to all these methods is the use of descriptors, which are basically a set

of sequence or structure patterns describing the RNA molecule of interest. The easy, yet

powerful descriptor syntax of RNABOB has for sure contributed to its wide acceptance. The

upper panel of Fig. 2.14 depicts the consensus secondary structure of a toy RNA molecule

and one potential RNABOB descriptor.

RNAbob output

Toy RNA consensus model             RNAbob descriptor

A   U
A   U
A   U

C
C

C

CC~ 5-30 nt

G   U
R   U
G   U

C
C

C
h1 s1 h1' s2 h2 s1 h2'

h1 0:0 AAA:TTT

h2 0:0 GRG:TTT

s1 0 CCC

s2 0 CCNNNNN[25]

Genomic sequence

detected

detected

not detected

maximal length of RNAbob descriptor 

h1

s2

h2

s1 s1

Figure 2.14. RNABOB descriptors and pitfalls. The upper panel shows the secondary

structure of toy RNA consensus model and one potential RNABOB descriptor. The lower

panel depicts pitfalls in genome-wide search with RNABOB. Not all putative hits are detected,

although they are in the maximal length span defined in the descriptor.
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“h” is used to describe helical regions, while “s” denotes single-stranded regions. The user also

has to define the number of allowed sequence mutations and a sequence pattern for the region.

The sequence pattern “CCNNNNN[25]”, for example, resembles a sequence that starts with two

C residues, followed by a minimum of five residues up to a maximum of 30 residues. When

such length-variable regions are used one has to carefully evaluate the RNABOB output. One

has to keep in mind that the more loosely defined a sequence/structure pattern is the more

likely it will produce a match in the target sequence. RNABOB reports only the first matching

hit, although there might be another (better) one within the maximal sequence spans defined

in the descriptor. An ad hoc solution to this problem is to build multiple descriptor files

and gradually increase the number of residues. Due to combinatorial explosion this becomes,

however, intractable when multiple variable regions are defined.



3
This Thesis

In this thesis we address several computational strategies for noncoding RNA detection rang-

ing from de novo detection to homology based methods. In the following, we will give a brief

introduction into each topic. Moreover, we will discuss scientific works and developments that

motivated and guided the studies in this thesis.

With the RNAz gene finding software package Washietl and colleagues have developed the

currently most widely used, general noncoding RNA gene finder. One part of this thesis deals

with the technical improvement of the RNAz algorithm. We have discussed the RNAz algorithm

in great detail in Chapter 2, but let us at this point briefly summarize the approach. RNAz

uses a machine learning approach to identify functional RNA secondary structures based on

the z-score as a measure of thermodynamic stability and the SCI as a measure of structural

conservation. There has been a serious debate whether the z-score can serve as a good

discriminator of functional RNA secondary structures against randomized decoys at all (Le

et al., 1990b,a; Seffens and Digby, 1999; Workman and Krogh, 1999; Rivas and Eddy, 2000;

Clote et al., 2005; Freyhult et al., 2005). The current point of view is that there are RNA

classes that do indeed show signatures of thermodynamic stability, and this effect is even more

pronounced when a dinucleotide background model is considered. As discussed in Chapter 2,

state-of-the-art RNA folding algorithms use a so called nearest neighbor energy model, i.e.

a model where stacking energies of base-pairs are the main stabilizing force. These stacking

energies are dependent on the immediate neighboring base-pairs, and hence the dinucleotide

composition of a sequence is of great influence. Washietl et al. (2007) showed that this is an

important factor one has to consider when applying RNAz on a genome-wide scale. Authors of

this study reported that the distribution of z-scores for screened sequences was not centered

around zero, but shifted slightly to -0.5. One could argue that there might be evolutionary
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Figure 3.1. Visualizations of probability landscapes of the RNAz 1.0 classification

SVM. Probability landscapes are shown depending on the SCI and z-score given a fixed

sequence variation (MPI and number of sequences). The upper panel depicts a two-way

alignment with a MPI of 86%, while the lower panel depicts a four-way alignment with a

MPI of 90%. The red square indicates a sample alignment.

44



pressure towards increased thermodynamic stability. The fact that this shift vanishes when

dinucleotide preserving shuffling is used suggests that this is more likely to be an artifact

than of true biological significance. In its initial release RNAz used a support vector regression

to estimate the z-score of a sequence only trained on mononucleotide shuffled sequences.

The reason that a dinucleotide background model for regression (and also classification) was

not considered right from the beginning is twofold. First, data generation and training of

SVMs for the z-score regression considering dinucleotides is not as straightforward as it is

for mononucleotides. For the estimation of the z-score by SVM regression, Washietl and

colleagues generated approximately 10,000 synthetic sequences as training instances in a four-

dimensional regularly spaced grid. There is, however, no simple and intuitive way of how to

uniformly sample sequences from the 16-dimensional dinucleotide space, a space with higher

order dependencies. Because of these higher order dependencies (dinucleotide composition

controls mononucleotide composition), the grid-like approach for generating sequences is not

applicable and even when using an Order-1 Markov model to simulate sequences one is in the

need to be able to uniformly sample dinucleotide probability matrices. The second reason

was that there was no method available to generate negative instance alignments given a

dinucleotide background model. With the works of Anandam et al. (2009) and Gesell and

Washietl (2008) two solutions were presented to overcome this lack of an appropriate negative

instance set of alignments. Given an input alignment both approaches generate approximately

dinucleotide preserving, randomized alignments, either by shuffling or simulation. The many

studies conducted with RNAz and resulting user feed-back have also identified some other

shortcomings of the original approach. Sequence variation in the input alignment is measured

by two parameters, namely, number of sequences and mean pairwise identity (MPI). Based on

the training data used, this implies an upper limit of six sequences in an alignment that can

be processed. There is, however, a more severe implication of using the number of sequences

as an input parameter to the classification SVM. The mixed use of a discrete and continuous

parameters poses, in general, problems in many machine learning algorithms, and especially

in the setting of RNAz. Let us assume we have an alignment with two sequences with a

MPI of 86%, a SCI of 1.1 and a z-score of -1, as illustrated in the upper panel of Fig. 3.1.

It will be assigned a probability of being a ncRNA close to 1 by the RNAz SVM classifier.

If we generate a four-way alignment by simply copying and pasting the sequences in the

alignment into the alignment, we obtain a four-way alignment with a MPI of 90%. SCI and

z-score will remain unchanged. This new alignment will be assigned a much lower ncRNA-

class probability around 0.6%. Although we did not add new information to the alignment,

classification results differ. This effect can be attributed to two factors. On the one hand,

it is the RNAz training data, which obviously shaped the probability landscapes of the SVM
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classifier differently for pairwise and four-way alignments. On the other hand, measuring

sequence variation with a combination of two parameters is not an optimal choice. A simple

doubling of sequences, which does not add any additional information that has not already

been present in the alignment, leads to a change in the parameters. In a previous study

(Gruber et al., 2008a), we have shown that the Shannon entropy can be used as a qualified

measure to capture sequence variation in the context of structural conservation evaluation.

In the same study we also showed that the use of structural alignments can significantly

boost the discriminative power of truly conserved structures against randomized decoys. An

obvious conclusion is that a structural alignment program should be used instead of a plain

sequence-only based aligner. As RNAz is only trained on CLUSTAL W generated alignments, the

use of structurally aligned sequences will result in higher SCI values, mainly contributed by

compensatory mutations. Overall higher SCI values compared to levels of sequences based

alignments will subsequently lead to an increased amount of false positives. In order to use

structural alignments the RNAz classification engine also needs to be trained on structural

alignments. RNAz is a highly successful noncoding RNA gene finder, but taken together, there

are still some shortcomings. In Chapter 4 we describe an improved implementation of the

RNAz algorithm posing solutions to the above described issues.

RNAz uses comparative genomics data to infer putative noncoding RNAs. There are, how-

ever, many scenarios where the use of comparative data is applicable only in a limited way.

Concerning de novo detection of functional RNA secondary structures the set of available

methods is very sparse in these cases. There are specialized methods to screen for ncRNA in

AT-rich genomes, but generally applicable methods other than simple sequence-based statis-

tics to detect at least a set of putatively biologically interesting regions are not available.

The aim to obtain such a set of putative biologically interesting regions is of particular in-

terest, as intersection with transcriptomics sequencing data or promoter regions can yield

novel insights. RNALfold is a general approach for predicting locally stable, self-contained

RNA secondary structures in long genomic sequences (Hofacker et al., 2004b). A graphical

summary of the RNALfold output for an E. coli tRNA cluster is shown in Fig. 3.2. In this

experiment, RNALfold was called with a maximum base-pair span of 120 nt. For each of the

seven tRNAs a predicted structure is found in the RNALfold output that almost perfectly

matches the sequence boundaries of the corresponding tRNA. Since RNALfold predicts all lo-

cally stable structures, the whole tRNA structure and also structural sub-elements are found

in the output. The huge amount of predicted structures limits the usefulness of the RNALfold

approach. For the complete E. coli genome a total of 1,387,136 structures is obtained, which

approximately corresponds to a new structure predicted every third nucleotide. Hence, an

efficient filtering strategy is needed to reduce the set of candidate sequences to a reasonable
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Figure 3.2. Visualization of the RNALfold output for a sequence region in the E.

coli genome. The region contains a cluster of seven tRNA genes indicated by red bars

and gray boxes. Structures are colored by their minimum free energy.

amount. To ask for a function that takes an RNA sequence and/or structure as input and

returns a value of biological significance is out of reach. A feature or value that we can ask

for is the thermodynamical stability as previously employed by RNAz. In Chapter 5 of this

thesis, we report on the successful approach of integrating a z-score based filtering strategy

into the RNALfold algorithm and demonstrate the applicability of the approach to obtain a

set of putatively biologically interesting regions in the setting of a genome-wide screen.

Two studies in this thesis are devoted to homology search for new members of an already

known RNA family. In particular, we report on the successful detection of new members

of the 7SK snRNA family (Zieve and Penman, 1976; Wassarman and Steitz, 1991) and in a

second work we characterize in detail a putatively novel ncRNA family named sbRNAs (Deng

et al., 2006). As pointed out in a recent review by Menzel et al. (2009), RNA homology search

is a non-trivial task that requires expert knowledge and manual curating of steps at multiple

stages. Despite recent advances in this field, there is no plug-and-play software package that
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allows effortless detection of new family members as one might be used to when doing protein

homology search.

7SK snRNA is a highly abundant noncoding RNA in human cells (Zieve and Penman, 1976)

that regulates the RNA polymerase II transcription elongation process (Yang et al., 2001;

Nguyen et al., 2001). In detail, 7SK snRNA and HEXIM proteins associate in a reversible

process with the elongation factor P-TEFb (Li et al., 2005), which leads to inhibition of P-

TEFb activity. By this mechanism, gene expression is controlled by regulating the fraction of

RNA polymerase II molecules that generate full-length mRNAs (Price, 2000). 7SK snRNA is

highly conserved in mammals with only a few known homologs in lower vertebrates (Gürsoy

et al., 2000). In human 7SK snRNA has been shown to be transcribed by polymerase III using

an external promoter (Murphy et al., 1987). In a previous study we successfully identified 7SK

homologs in lower deuterostomia and lophotrochozoans, but failed to recover any plausible

candidate in ecdysozoans (Gruber et al., 2008b). We used a combination of fragrep search

patterns focusing on major structural and functional elements to identify candidate sequences.

Manual evaluation of structure conservation and comparison of upstream promoter elements

to other snRNAs were then used to detect homologous sequences. We observed that only two

structural elements, namely the 5’ and the 3’ stem structures, are conserved. The remaining

part of the molecule shows both low sequence and low structural conservation and large

indel regions. The lack of identification of putatively homologous sequences in arthropods or

nematodes can, in principle, be of two reasons. First, a 7SK/HEXIM control mechanism does

not exist in these species, or second, 7SK molecules in these species are structurally so diverged

that they cannot be detected with the methods used so far. The P-TEFb complex has been

originally identified in Drosophila (Marshall and Price, 1995), and due to its importance in

cell cycle control homologs of P-TEFb are easily identified in all eukaryotes. However, no

components of the 7SK/HEXIM snRNP have been experimentally identified in Drosophila

so far. Hanyu-Nakamura et al. (2008) reported on an alternative regulatory pathway of

P-TEFb by the protein Pgc in Drosophila primordial germ cells. Authors of this study

argue that such a mechanism may also apply to somatic cells, and that this explains the

apparent lack of 7SK in insects. On the other hand, our previous study on 7SK homologs

showed that 7SK RNA evolves rapidly with only few well conserved elements. It seemed

therefore likely that a homologous gene in insects might have been missed. In Chapter 6 we

present a study that successfully identified 7SK RNA homologs in arthropod species. Since a

purely structure based homology search was not successful in the previous contribution, we

employed a computational promoter screen to identify putative ncRNAs that are transcribed

by polymerase III. Subsequent structural characterization of candidates and refined search

patterns then identified 7SK RNA homologs in a broad range of arthropod species.
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There has been a large number of noncoding RNA screens in various species, both experi-

mentally and/or computationally. While in many studies a large number of putative novel

ncRNAs is reported, a functional characterization is often missing. Even the assignment to

already known RNA families is a non-trivial task. Homology search is an appropriate strat-

egy towards a functional characterization of molecules, because it helps to identify conserved

elements which are in turn important for the function of the molecule. Deng et al. (2006)

report on a genome-wide identification of noncoding RNA transcripts in C. elegans. Among

new snoRNAs and microRNAs Deng and colleagues described in their work a putative novel

RNA family with at least seven members in C. elegans and a few homologs in C. briggsae.

Based on the predicted secondary structure, which consists of a stem structure interspersed

by a small bulge, the family was termed sbRNAs. In a series of contributions by the group of

Runsheng Chen (He et al., 2006, 2007; Li et al., 2008; Aftab et al., 2008) expression profiles

of sbRNAs among other ncRNAs were studied, but no clue about the function of sbRNAs

could be drawn from that data. In Chapter 7 we report on RNA homology search for sbRNAs

in nematodes and, moreover, show that sbRNAs do not constitute a novel RNA class, but

instead are members of the Y RNA family.
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RNAz is a widely used software package for de novo detection of structured noncoding RNAs in comparative genomics
data. Four years of experience have not only demonstrated the applicability of the approach, but also helped us to
identify limitations of the current implementation. RNAz 2.0 provides significant improvements in two respects: (1)
The accuracy is increased by the systematic use of dinucleotide models. (2) Technical limitations of the previous
version, such as the inability to handle alignments with more than six sequences, are overcome by increased training
data and the usage of an entropy measure to represent sequence similarities. RNAz 2.0 shows a significantly lower
false discovery rate on a dinucleotide background model than the previous version. Separate models for structural
alignments provide an additional way to increase the predictive power. RNAz is open source software and can be
obtained free of charge at: http://www.tbi.univie.ac.at/~wash/RNAz/

Keywords: RNA structure; noncoding RNA; structure conservation; comparative genomics; gene prediction

1. Introduction

Noncoding RNAs (ncRNAs) are transcripts that are not translated to proteins but function directly on the
RNA level. During the past few years it has become evident that such “RNA genes” are more common than
previously thought. MicroRNAs, for instance, have profoundly changed our view of gene regulation, and
several completely new classes of ncRNAs were discovered recently.1 They have been found to be involved
in such diverse processes as transcriptional regulation,2–4 post-transcriptional regulation,5 chromatin modi-
fication and epigenetics,6,7 and development.8 Non-coding RNAs thus are key players in cellular regulation,
a realization that has also moved the computational analysis and the annotation of ncRNAs at genome-wide
scales into the focus of attention.

With the rapidly increasing availability of genomic sequence data, the de novo prediction of ncRNAs is of
particular interest. While protein gene prediction is a classical problem in computational biology and has been
studied for more than 15 years, RNA gene prediction is still in its infancy. Nevertheless, significant progress
has been made regarding the prediction of “structured ncRNAs”. This class of ncRNAs is characterized
by evolutionary conserved secondary structures which appear to be important for their function. Most of
the well-characterized ncRNAs belong to this class. Leading software tools developed for de novo RNA gene
finding therefore use evolutionary conservation of functional secondary structures as the main signal to detect
these ncRNAs.9–13

RNAz also detects structural ncRNAs by means of a comparative approach. In addition to measuring
evolutionary conservation, however, it also explicitly evaluates the thermodynamic stability of the secondary
structure.14 A support vector machine (SVM) is then used to evaluate both criteria. RNAz 1.0 has been used
successfully to map structural ncRNAs in a wide variety of genomes.15–20 A large number of these predictions
have also been verified experimentally.21–23 Moreover, the generic approach and many algorithmic details
developed for RNAz 1.0 have been re-used, extended, and adapted to other problems in the field of RNA
gene-finding.11,24–30

The wide-spread use of RNAz 1.0 also helped to identify some of its limitations and to point our directions
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for improvements. In this contribution, we describe a major update of the RNAz program. It is based on the
results of two follow-up studies,31,32 on our experiences gained during many real-life applications, in particular
the ENCODE pilot project,33,34 and last but not least, on the user feedback we received over the past four
years.

One major improvement is that RNAz 2.0 now allows to calculate thermodynamic stability scores based
on a dinucleotide background model. It has been noted early-on that folding algorithms utilizing stacking
energies of adjacent base-pairs in their energy model are sensitive to the dinucleotide content.35 In the
context of genome-wide ncRNA predictions, this effect can lead to an increased number of false positive
calls as pointed out several times.32,33,36 The new dinucleotide model in RNAz 2.0 now avoids this source of
potential false positives and increases the accuracy of the program.

Another major limitation of RNAz 1.0 was the fact that only alignments with at most six sequences
could be scored. This rather arbitrary restriction was the result of the limited amount of comparative data
sets that were available at the time. During the past few years, however, comparative data sets have grown
massively and therefore we adapted the algorithm to allow flexible analysis of alignments of any size.

2. Methods

2.1. Overview of the RNAz algorithm

RNAz predicts functional RNA structures on two independent criteria: (i) thermodynamic stability and (ii)
structural conservation.

A common way to express thermodynamic stability is in terms of a z-score. This is simply the number
of standard deviations by which the minimum free energy (MFE) deviates from the mean MFE of a set of
randomized sequences with the same length and base composition. A negative z-score thus indicates that a
sequence is more stable than expected by chance. As this procedure involves energy evaluation of a large set
of random sequences it is not applicable for large-scale genomic screens. RNAz instead uses support vector
regression (SVR) to estimate the mean and the standard deviation based on the nucleotide composition of
a sequence.

RNAz evaluates evolutionary conservation of RNA structures in terms of the structure conservation index
(SCI). A consensus secondary structure is predicted using the RNAalifold algorithm,42 which is an extension
of standard minimum free energy folding algorithms with the constraint that all sequences have to fold
into a common structure. Compensatory mutations, i.e. mutations that preserve a certain base pair, yield
bonus energies, while inconsistent mutations add penalty energies. RNAz measures structural conservation
by calculating the ratio of the consensus folding energy to the unconstrained folding energies of the single
sequences.

Both criteria are combined by another support vector machine model that classifies the input alignment
as “structural RNA” or “other”. A graphical overview of the RNAz algorithm is depicted in Fig. 1. In the
following, we describe independent refinements of these steps that improve the overall prediction accuracy
of the RNAz approach.

2.2. z-score regression for dinucleotide shuffled sequences

As in RNAz 1.0, we use support vector regression to compute z-scores for folding energies because the direct
approach via repeated shuffling and folding is too costly for genome-wide applications.

In order to efficiently train the regression engine of RNAz 2.0, we used the following grid-like procedure:
We first generated synthetic sequences of length 50 with G+C content, A/(A+U) ratio, and C/(C+G) ratio
ranging from 0.20 to 0.80 in steps of 0.05. For each of these start sequences we then generated 500,000
mononucleotide shuffled sequences and discarded those sequences where the relative difference between the
observed dinucleotide frequency and the expected frequency exceeded the threshold of 1.5. Evaluation on
human ENCODE sequences showed that only a small fraction of approximately 1% of the sequences have
a higher value and it was hence considered to be a reasonable threshold. Sequences of length 100, 150 and
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Fig. 1. Outline of the RNAz 2.0 work-flow and algorithm. In a first step large genomic multiple alignments are processed using
rnazWindow.pl into smaller alignments. This filtering procedure involves several steps: (i) overlapping windows given a fixed
window and step size are created, (ii) sequences that contain too many gaps are removed and (iii) from the remaining sequences
only those sequences are kept that meet a predefined average pairwise identity threshold. The resulting alignments are then
separately processed by RNAz. First, structure and energy predictions are performed for both the single sequences and the
alignment. These results can be immediately combined to calculate the SCI as the measure of the evolutionary conservation of
the RNA sequences in the alignment. In a second step, the mean free energy and the standard deviation used for the calculation
of the z-score are estimated. For this purpose descriptors based on the nucleotide composition (G+C content, A/(A+U) ratio,
C/(C+G) ratio, all 16 dinucleotide frequencies and the length of the sequence) are calculated for each sequence. If descriptors are

within the training boundaries they are passed to the corresponding support vector regression (SVR) based on the G+C content.
Otherwise, the mean and the standard deviation are evaluated explicitly by folding of 1,000 randomized sequences with the
same dinucleotide composition. In a final step the average z-score of the sequences, the SCI and the normalized Shannon entropy
of the alignment are passed to the classification SVM, which returns a probability estimate that the given alignment harbours
thermodynamically stable and/or evolutionary conserved RNA secondary structures. Parts that are highlighted in dashed boxes
are new or modified components of RNAz algorithm. RNAfold and RNAalifold are part of the Vienna RNA Package. Numbers
in the SVR boxes indicate the G+C content the particular SVR is trained on. For a detailed explanation of the formulas we
refer to section 2.3.

200 where then generated by concatenating the initial set of sequences 2 to 4 times. This initial set can be
generated very quickly and served as the basis for the selection of a much smaller, approximately evenly
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spaced, training set with representative dinucleotide frequencies. A sequence from the initial set was only
added to the representative training set if the Euclidean distance of the dinucleotide frequencies to any
sequence already present in the representative set was above a certain threshold (0.075 for a G+C content of
0.20 and 0.80, 0.100 for a G+C content of 0.25, 0.30, 0.70 and 0.75, and 0.125 for the remaining range). For
the final training set we also added sequences of length 75, 125 and 175, which were generated as described
above, resulting in a total of 1,155,737 training instances.

For each of these instances, we generated 1,000 randomized sequences by the Altschul-Erikson algo-
rithm37 with the same dinucleotide composition and used RNAfold38 with parameter -d2 to evaluate their
folding free energy. More than 1 million training instances are by far too many to be used in SVM training
procedures in reasonable time. For this reason we split the training instances into smaller subsets according
to their G+C content. In total we have 10 subsets with at most 150,000 training instances. We used the
SVM library LIBSVM to train regression models for the mean and the standard deviation for each of the
ten subsets. As input features we used the G+C content, the A/(A+U) ratio, the C/(C+G) ratio, all 16
dinucleotide frequencies and the length of the sequence scaled to the interval [0,1]. The regression for esti-
mating the mean free energy was trained to learn energy per nucleotide, while the standard deviation was
not scaled. We chose the ν variant of regression and a radial basis function kernel. The standard grid search
approach was used to find optimal combinations for SVM parameters. Regression accuracy was monitored
on an independent test set compiled from randomly selected sequences of variable length from 50 to 200 nt
from the human ENCODE regions. The average number of support vectors for the mean and the standard
deviation regression models are 8,763 and 8,607, respectively.

2.3. Training data generation and training of the SVM classifier

Training and test sets are based on the data available in the Rfam 9.1 database.39 93 RNA families were
selected based on their signals for thermodynamic stability and structural conservation. The RNAz 2.0

training set covers a broad range of different RNA families including major classes such as tRNAs, snoRNAs,
microRNAs, riboswitches, and bacterial regulatory RNAs.

For each RNA family, a set of alignments with varying numbers of sequences and average pairwise
identities was generated using the following strategy: Rfam full alignments were used if they contained
less than 300 sequences, otherwise we used the seed alignments. For our purpose the use of at most 300
sequences proofed well to generate a set of alignments over the desired range of average pairwise identities.
Rfam alignments were utilized only as a source to retrieve family members of a particular ncRNA class and
only extracted, ungapped RNA sequences were used for subsequent analyses.

First, Rfam alignments were filtered to remove nearly identical sequences, so that the training alignments
contained sequences with at most 98% identity. The sequences were then re-aligned using ClustalW. For each
of these ncRNA family alignments we then proceeded as follows: for each number of sequences from 2 to 15
we generated at most 10 alignments with a randomly chosen average pairwise identity between 50 and 98%
and with a maximum relative difference in sequence lengths of 65% using rnazWindow.pl which is part of
the RNAz analysis pipeline.44

To ensure that this set of positive training examples contained only instances with good structural
conservation signals we filtered alignments by using tree editing distances between the structures of the
sequences in the alignment as a quality measure of structural conservation. Ordered, rooted trees can be
deduced from the dot-bracket notation of RNA secondary structures. Tree editing defines a metric in the
space of trees by a set of operations (deletions, insertion and relabeling of nodes) and hence can be used
to calculate distances between RNA secondary structures.31 For each alignment we extracted sequences,
removed gaps and calculated the averaged pairwise tree editing distance using RNAdistance with options
-d2 -Dh to enable dangling ends and to use the HIT representation for RNA secondary structures. We
repeated this for a set of 100 randomized alignments and calculated an empirical p-value as a measure of
structural conservation. Alignments with a p-value higher than 0.05 were removed from the training set.
Alignments retained after this filtering procedure were realigned with ClustalW with standard options for
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application to sequence-based alignments.
For the generation of structural alignments for the training set we chose to use LocARNATE,40 which is

a structural alignment program based on the Sankoff algorithm for the simultaneous solution of the RNA
folding and the alignment problem. LocARNATE uses RNAfold for structure predictions and hence the same
energy parameters as RNAz does. LocARNATE was called with options --no-seq --no-struc to generate
global, structural alignments.

Negative instances of the training set were generated by shuffling using multiperm41 v. 0.9.3 if the
normalized Shannon entropy of the alignment31 was less than 0.50. Otherwise, alignments were simulated
using SISSIz32 to ensure full randomization for the more diverse alignments where shuffling can become
inefficient. The final training set was composed of 10,538 alignments for each the positive and the negative
class.

The RNAz 2.0 SVM classifier uses three features to detect structured noncoding RNAs: (i) the average
minimum free energy z-score z̄ estimated from a dinucleotide shuffled background, (ii) the SCI and (iii) the
normalized Shannon entropy H of the alignment as a measure for the content of evolutionary information.

Consider an alignment A consisting of N sequences. Let Ex denote the minimum free energy of sequence
x, and let µx and σx be the mean and standard deviation, respectively, of the folding energies of a large
number of random sequences of the same length and same dinucleotide composition as x. The averaged
z-score of the alignment A is defined as

z̄ =
1
N

∑
x∈A

Ex − µx

σx

The SCI of an alignment is given as the fraction of the consensus folding free energy (Econsensus) to the
average of the folding free energies of the single sequences:

SCI =
Econsensus

1
N

∑
x∈A

Ex

The normalized Shannon entropy H of an alignment A of RNA sequences over the alphabet Σ = {A, C, G,
U, -} is defined as the sum of the Shannon entropies of the individual columns divided by the length of the
alignment denoted by L:

H = − 1
L

L∑
i

∑
α∈Σ

pi
α log2 pi

α

The probability pi
α is approximated by the observed frequency of character α in alignment column i (nor-

malized by the number N of sequences in the alignment). All features were scaled to a range of [-1,1].
Standard grid search combined with a 10-fold cross validation was applied to find optimized SVM param-
eters. Among the models with the best cross-validation accuracy (top 20) we chose the model that showed
best performance on an independent test set created the same way as the training set. The output of the
final classification SVM is a probability estimate that the input alignment contains thermodynamically stable
and/or structurally conserved RNA sequences.

A second, independent, SVM classifier was trained on sequence/structure-based alignments generated
by LocARNATE using the same procedure.

3. Results

3.1. Dinucleotide based z-scores

To estimate the mean and standard deviation of folding energies for mononucleotide shuffled sequences it is
feasible to sample uniformly simply by varying variables describing the four mononucleotide frequencies and
the length of the sequence on a grid. This approach cannot, however, be extended that easily for dinucleotide
shuffled sequences. One has to consider the much larger space of dinucleotide compositions that is occupied by
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Fig. 2. z-scores calculated by support vector regression in comparison with z-scores determined from 1,000 random samples
preserving dinucleotide frequencies for 10,000 randomly drawn sequences from the human ENCODE regions. Correlation of
z-scores is 0.996 and the mean absolute error is 0.076.

sequences of practical interest. In this work we use a grid-like approach, where we first apply uniform sampling
to cover the mononucleotide space and then choose, for each data point in the grid, a representative set of
sequences that covers the dinucleotide space for that particular base composition. However, this procedure
still gave more than one million training instances. The training data was split into different ranges of
the G+C content to guarantee efficient training and fast prediction. This comes at the price of increased
memory consumption but keeps the number of support vectors comparable to the approach used in RNAz

1.0. Accuracy of the z-score regression for dinucleotide shuffled sequences was evaluated on 10,000 randomly
chosen sequences of variable length from 50 to 200 nt from the human ENCODE regions34 (Fig. 2) and
genomic sequences of D. melanogaster and E. coli. The mean absolute error (MAE) and the correlation (R)
of z-scores calculated by SVM regression compared to z-scores determined from 1,000 random samples is
0.0748 and 0.996, respectively (n = 30, 000; genomic sequence from ENCODE regions, D. melanogaster, and
E. coli). Comparisons of z-scores determined from 1,000 dinucleotide shuffled sequences to 100 dinucleotide
shuffled sequences (MAE= 0.107, R = 0.992) and to 1,000 mononucleotide shuffled samples (MAE= 0.420,
R = 0.916) clearly demonstrate that our method is a suitable approach for fast and efficient estimation of
dinucleotide controlled z-scores. RNAz 1.0 also showed restrictions on the base composition because of the
training range of the SVR. This limitation is now overcome by explicit generation of shuffled sequences once
the base composition of a sequence is out of the training range. Since boundaries have been chosen broadly
(e.g. G+C content from 20 to 80%) this will only apply in a small minority of cases.

3.2. New training sets and improved classification model

Since the postulation of the SCI, it has been a major point of criticism that the SCI evaluates structural
conservation on the energy level rather than on the RNA structures themselves. However, in previous study31

it has been shown that the SCI is on average the most powerful method and that it is only outperformed by
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Fig. 3. Accuracy of RNAz 2.0 classification (black) vs. RNAz 1.0 classification (orange) on a previously published data set for
the evaluation of noncoding RNA gene finders.32 The positive instance data set consists of 4,303 alignments of structural RNA
families (5S ribosomal RNA, U2 spliceosomal RNA, tRNA, Hammerhead ribozyme, U3 snoRNA, U5 spliceosomal RNA, Group
II catalytic intron, and Mir-10 microRNA) with two to six sequences per alignment. The negative instance data set consists of
4,303 alignments taken from random genomic location, which resemble approximately the same dinucleotide composition and
conservation degree as the positive set. The inset shows the region of high specificity were RNAz 2.0 clearly outperforms the old
version.

other approaches in the high sequence identity range. Attempts to use other conservation measure methods
than the SCI, however, failed to give results of comparable quality (data not shown).

To use the SCI for efficient classification one has to take into account the average pairwise identity and
the number of sequences as well. Due to the lack of comparative data at the time of training of the initial
RNAz algorithm limits on these two descriptors were rather arbitrarily chosen. In this work we generated a
new training set covering a broader range of RNA families and evaluate sequence variation in terms of the
normalized Shannon entropy which has been shown to combine both sequence variation and the number of
sequences into one measure.31 This does not only result in dimensionality reduction of the final classification
model, but also overcomes the need to set an upper boundary to the number of sequences in an alignment.

The new RNAz 2.0 algorithm now uses the average z-score of the sequences in the alignment based
on a dinucleotide background model, the SCI and the normalized Shannon entropy as features in the final
classification model. To evaluate the predictive power of RNAz 2.0 we chose a test set used in a previous
study.32 This test set is especially well suited as it contains randomly chosen genomic regions from vertebrate
alignments as negative controls. The background dinucleotide content in vertebrate genomes is known to be
the main reason for false positive calls in RNAz 1.0.33 Although both versions perform well on this test set,
RNAz 2.0 clearly outperforms version 1.0 in the high specificity range (Fig. 3). For example, at the generally
used 0.01 false-positive cutoff, RNAz 2.0 shows 0.899 sensitivity compared to 0.688 in the old version.

It is a well known fact that sequence-based alignment methods fail to give high quality alignments
regarding RNA secondary structures in low average pairwise identity ranges. By using structural alignments
one can expect an improvement in discrimination capability of the SCI for alignments with low sequence
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Fig. 4. ROC curves for the RNAz 2.0 prediction accuracy on sequence-based alignments (black) vs. structural alignments (red).
A significant improve of the overall predictive power of RNAz 2.0 is achieved by use of structural alignments. The test set is
composed of 2,455 alignments of various ncRNA families with an average pairwise identity between 30 and 70%, as well as
a negative set consisting of 2,455 alignments derived by randomization of reference alignments with multiperm or SISSIz as
described in section 2.2. Sequence-based alignments were generated with ClustalW, while structural alignments were generated
with LocARNATE.

similarity.11 Therefore, we trained a separate SVM decision model based on sequence/structure alignments,
similar to the approach used in RSSVM.30 Structural alignments were generated using LocARNATE, a multiple
alignment variant of LocARNA.46 As depicted in Fig. 4 structural alignments improve the overall predictive
power of RNAz.

Recent studies (e.g. Washietl et al.33) have shown that RNAz suffers from a high false discovery rate
(FDR). We therefore evaluated the performance of both versions for the human ENCODE regions. 17-way
MAF alignments based on the human genome assembly hg.17 were downloaded from the UCSC genome
browser. In total we screened 193,634 MAF alignments derived by pre-filtering with rnazWindow.pl with
standard options (window length is 120 nt, step size is 40 nt, average pairwise identity the resulting alignment
is optimized to is 80%, and at most six sequences are allowed). Both reading directions were considered in
our analysis. A dinucleotide background model was generated with SISSIz32 and all hits detected by RNAz

on this data set were considered to be false positives. Results are summarized in Tab. 1. While RNAz 1.0

shows a very high FDR of around 80%, the FDR of RNAz 2.0 is much lower being around 54% for high
confident hits (classification probability > 0.9). It seems noteworthy, that in a previous study33 the FDR for
RNAz 1.0 on ENCODE data was estimated to be around 50%. This estimate was based on a rather simplistic
ad hoc method to correct for the dinucleotide bias. The new results are based on the more accurate SISSIz

null model and demonstrate that RNAz 1.0 is even more affected by the dinucleotide bias than previously
assumed. The new version, however, reduces this source of false positives significantly.

To investigate a potential G+C bias of RNAz that was observed for version 1.0,33 we also trained a
classification model that included the G+C content as fourth feature. This additional feature, however, had
little impact on the predictions. In particular, the distribution of the G+C content of the positive predictions
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4. RNAz 2.0: improved noncoding RNA detection

Table 1. Comparison of the false discovery rate (FDR) based on ENCODE
regions and a dinucleotide background model for low (P > 0.5) and high
(P > 0.9) confidence hits. A hit corresponds to a single alignment derived from
pre-filtering of ENCODE MAF alignments with rnazWindow.pl.

RNAz 1.0 RNAz 2.0

# low conf. # high conf. # low conf. # high conf.

ENCODE regions 17,814 6,854 6,880 2,259
background 14,489 5,596 4,090 1,219

estimated FDR 81% 82% 59% 54%

remained nearly unchanged (data not shown). This suggests that the elevated G+C content of RNAz hits
is not an artificial bias, but rather reflects the G+C content of true functional RNAs. Consistent with this
observation, the G+C bias of structured RNAs has been used successfully for de novo prediction of RNA
genes.43 Preliminary analysis of the ENCODE data showed that the effect is smaller for RNAz 2.0 than in
the earlier version.

3.3. Computational speed

The performance of RNAz 2.0 in comparison to RNAz 1.0 was benchmarked on 50,000 randomly chosen MAF
alignments from the ENCODE data set. Alignment length was 120 nucleotides and alignments contained
at most six sequences. Experiments were conducted on an Intel Xeon 2.40GHz CPU. For each alignment
both reading directions were examined, resulting in a total of 100,000 alignments that had to be scored. The
execution time required by RNAz 1.0 was 202 min, RNAz 2.0 with explicit shuffling switched off was 252
min and RNAz 2.0 using explicit shuffling was 1,230 min. Although explicit shuffling had to be used for only
1% of the sequences (5,524 out of 549,210), it comes with an tremendous overhead increasing the run time of
RNAz 2.0 almost 5-fold. We extracted those alignments where explicit shuffling was used and compared the
classification probability to the one derived from calling RNAz with option --no-shuffle to avoid explicit
shuffling. For the vast majority of cases (96%) the change in classification probability was less than 1%. For
this data set the maximal observed difference was 0.21. In general, we observed larger differences in the range
from 0.2 to 0.8 than in the regions close to 0 or 1.

With option --no-shuffle, RNAz 2.0 has an execution time that is increased by about 25% compared
to RNAz 1.0.

4. Future directions

In this work we present a major update of the RNAz algorithm. Evaluation of thermodynamic stability has
been improved by considering a dinucleotide background model. This directly translates into a significantly
lower false discovery rate. In addition to the dinucleotide z-score, the overall prediction accuracy is improved
by a combination of the use of a new training set and the normalized Shannon entropy as a measure of
sequence variation. Furthermore, the updated version is not any more restricted to limitations concerning
the base composition or number of sequences in the input alignment.

The generation of structural alignments is computationally expensive but we showed that they can
improve the RNAz classification power. This is true in particular for alignments of low average pairwise
identity. Given that the overall computational complexity of LocARNATE is O(n4), the routine use of structural
alignments on a genome-wide scale is still out of reach, at least when off-the shelf hardware is used. In
general, it has to be questioned if ncRNA gene finding would benefit from realigning genomic alignments
available to date with a structural aligner. These alignments have been generated by means of sequence-
only based methods and therefore are not likely to contain homologous RNA sequences that evolve fast
on nucleotide level but retain structural conservation. A feasible strategy, however, is the pre-selection of
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syntenic regions based on better-conserved flanking regions.13 Such an approach could be employed for
the detection of conserved local structures in the untranslated regions of protein-coding mRNAs, where
orthology is established based on similarities of the much better conserved coding sequences. The re-scoring
of positively scored hits of a sequence-based RNAz screen after re-aligning them with a structural aligner
may help to increase the overall accuracy, in particular for relatively poorly conserved alignment slices. One
could also use RNALfold45 augmented with the z-score prediction engine of RNAz to screen for loci that show
signature of increased thermodynamic stability then re-evaluate these loci using structural alignments with
RNAz 2.0 to also account for structural conservation.

An open question, not covered by this work, is how to address the growing number of species in genomic
alignments. The use of the normalized Shannon entropy helped us to remove the upper limit on the number
of sequences in the alignment. Preliminary analysis of RNAz 2.0 on multiz 44-way, 28-way and 17-way
alignments shows, however, that the simple use of more sequences does not necessarily correlated with
improved classification power. To a large extent the increased conservation signal is counteracted by increasing
levels of alignment errors. Structural variation of the ncRNAs themselves also poses technical challenges. To-
date, an algorithm that addresses both possible misalignments and structural variation is still missing.

RNA secondary structure prediction is sensitive to the exact ends of the input sequence. The use of
arbitrarily determined alignment windows of fixed width thus introduces noise. This issue will be allevi-
ated in a forthcoming update of RNAz that addresses the pre-processing of long genomic alignments. Here,
the sliding window approach will be replaced by the systematic use of RNALalifold,47 an algorithm that
computes locally stable consensus RNA secondary structures. These are then used to extract alignments of
self-contained (sub)structures for RNAz scoring.

RNAz 2.0 was trained on two particular alignment methods, ClustalW for sequence-based alignments
and LocARNATE for structure-based alignments. As RNAz uses a machine learning approach, we have to expect
some influence of the alignment algorithm since the features passed to the SVM implicitly also incorporate
properties of the alignment algorithms themselves. It may thus become necessary to either re-align the input
data or to train decision models for alternative alignment methods.

Supplementary material

An Electronic Supplement located at www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/09-026/
compiles a supplemental figure and data sets used in this work.
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Abstract: The search for local RNA secondary structures and the annotation of unusu-
ally stable folding regions in genomic sequences are two well motivated bioinformatic
problems. In this contribution we introduce RNALfoldz an efficient solution two
tackle both tasks. It is an extension of the RNALfold algorithm augmented by sup-
port vector regression for efficient calculation of a structure’s thermodynamic stability.
We demonstrate the applicability of this approach on the genome of E. coli and investi-
gate a potential strategy to determine z-score cutoffs given a predefined false discovery
rate.

1 Introduction

Over the past decade noncoding RNAs (ncRNAs) have risen from a shadowy existence to
one of the primary research topics in modern molecular biology. Today computational
RNA biology faces challenges in the ever growing amount of sequencing data. Effi-
cient computational tools are needed to turn these data into information. In this context,
the search for locally stable RNA secondary structures in large sequences is a well mo-
tivated bioinformatic problem that has drawn considerable attention in the community.
RNALfold [HPS04] has been the first in a series of tools that offered an efficient solution
to this task. Instead of a straight-forward, but costly sliding window approach a dynamic
programming recursion has been formulated that predicts all stable, local RNA structures
inO(N ×L2), where L is the maximum base-pair span and N the length of the sequence.
Since its publication, the RNALfold algorithm has inspired a lot of work in this field, see
e.g. Rnall by Wan et al. [WLX06] or RNAslider by Horesh et al. [HWL+09]. All
contributions so far in this field focused on improving the computational complexity of
the algorithm, but none of the approaches has ever been used to unravel results of biolog-
ical significance. In particular, de novo detection of functional RNA structures has been
addressed, but application on a genome-wide scale with a low false discovery rate seems
still out of reach. Even on the moderately sized genome of E. coli (4.6 Mb) one is drown-
ing in hundreds of thousands of local structures. Unlike in the well established field of
protein coding gene detection where one can exploit signals like codon usage, functional

1
64



RNA secondary structures, in general, do not show strong characteristics that make them
easily distinguishable from random decoys. Successful approaches for ncRNA detection
operating solely on a single sequence [HHS08, JWW+07] are limited to specific RNA
classes, where some outstanding characteristics can be harnessed. There is no master plan
for the detection of functional RNA structures, but one would certainly want to limit the
RNALfold output to a reasonable amount. So far, only the minimum free energy (MFE)
of the locally stable secondary structures, which is intrinsically computed by the algorithm,
has been considered as potential discriminator to limit the number of secondary structures.
As demonstrated clearly by Freyhult and colleagues [FGM05] the MFE is roughly a func-
tion of the length of the sequence and the G+C content. Even normalizing the MFE by
length of the sequence does not serve as a good discriminator between shuffled or coding
sequences and functional RNA structures. A strategy that does work, however, is to com-
pare the native MFE E of the RNA molecule to the MFEs of a set of shuffled sequences of
same length and base composition [LM89]. This way we can evaluate the thermodynamic
stability of the secondary structure. A common statistical quantity in this context is the
z-score, which is calculated as follows

z =
E − µ
σ

where µ and σ are the average and the standard deviation of the energies of the set of
shuffled sequences. The more negative the z-score the more thermodynamically stable is
the structure. Efficient estimation of a sequence’s z-score has been a profound problem
already addressed in the very beginnings of computational RNA biology. A first strategy
to avoid explicit shuffling and folding was based on table look-ups of linear regression
coefficients [CLS+90]. Clote and colleagues [CFKK05] introduced the concept of the
asymptotic z-score, where the efficient calculation is also solved via table look-ups. The
current state-of-the art approach for fast and efficient estimation of the z-score is to use
support vector regression [WHS05].

The study by Clote and colleagues and a follow up to Chen et al. (1990) [LLM02] also
report on the effort to predict thermodynamically stable structures using a sliding window
approach. In this contribution we present RNALfoldz an algorithm that combines local
RNA secondary structure prediction and the efficient search for thermodynamically stable
structures. RNALfoldz is an extension of the RNALfold algorithm augmented by sup-
port vector regression for efficient calculation of a sequence’s z-score. We demonstrate the
applicability of this approach on the genome of E. coli and investigate a potential strategy
to determine z-score cutoffs given a predefined false discovery rate.

2 Methods

2.1 Fast estimation of the z-score using support vector regression

For the efficient estimation of the z-score we follow the strategy first introduced by Washietl
et al. [WHS05]. Instead of explicit generation and folding of shuffled sequences in order to
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determine the average free energy and the corresponding standard deviation support vector
regression (SVR) models are trained to estimate both values. As described in detail in the
previous work, we used a regularly spaced grid to sample sequences for the training set.
Synthetic sequences ranged from 50 to 400 nt in steps of 50 nt. The G+C content, A/(A+T)
ratio and C/(C+G) ratio were, however, extended to a broader spectrum, now ranging from
0.20 to 0.80 in steps of 0.05. A total of 17,576 sequences were used for training. For each
sequence of the training set 1,000 randomized sequences were generated using the Fisher-
Yates shuffle algorithm, and subsequently folded with RNAfold with dangling ends op-
tion -d2 [HFS+94]. SVR models for the average free energy and standard deviation were
trained using the LIBSVM package (www.csie.ntu.edu.tw/˜cjlin/libsvm).
While in the previous work input features and the dependent variables were normalized
to a mean of zero and a standard deviation of one, we apply here a different normalization
strategy that leads to a significantly lower number of support vectors for the final models.
For the regression of the average free energy model the dependent variable is normalized
by the length of the sequence, while for the standard deviation it is the square root of the
sequence length. The length still remains in the set of input features and is scaled from 0 to
1. Other features remain unchanged. We used a RBF kernel, and optimized values for the
SVM parameters were determined using standard protocols for this purpose. Final regres-
sion models were selected by balancing two criteria: (i) mean absolute error (MAE) on a
test set of 5,000 randomly drawn sequences of arbitrary length (50-400) from the human
genome, and (ii) complexity of the model (number of support vectors) , which translates to
following procedure: from the top 10% of regression models in terms of MAE we selected
the one that had the lowest number of support vectors. For the average free energy re-
gression we selected a model with a MAE of 0.453 and 1,088 support vectors, and for the
standard deviation regression a model with a MAE of 0.027 and 2,252 support vectors. To
validate our approach we finally compared z-scores derived from the SVR to traditionally
sampled z-scores on a set of 1,000 randomly drawn sequences from the human genome.
The correlation coefficient (R) is 0.9981 and the MAE is 0.072. This is in fair agreement
to results obtained when comparing two sets of sampled z-scores (R: 0.9986, MAE: 0.054,
number of shuffled sequences = 1,000).

2.2 Adaption of the RNALfold algorithm

RNALfold computes locally stable structures of long RNA molecules. It uses a Zuker
type secondary structure prediction algorithm [ZS81] and restricts the maximum base pair
span to L bases to keep the structures local. The sequence is processed from the 3’ (the
sequence length n) to the 5’ end. In order to keep the number of back trace operations low
and the output at moderate size, we want to avoid backtracing structures that differ only
by unpaired regions. Furthermore, only the longest helices possible are of interest. To
achieve this, a structure starting at base i is only traced back if the total energy F (i, n) is
smaller than that of its 3’ neighbor F (i+ 1, n) while its 5’ neighbor has the same energy:
F (i−1, n) = F (i, n) < F (i+1, n). The local minimum structure is found by identifying
the pairing partner j of i so that C(i, j)+F (j+1, n) = F (i, n), i.e. the minimum energy
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from i to n is decomposed into the local minimum part i, j and the rest of the molecule.
Here, C(i, j) stands for the energy of a structural feature enclosed by the base pair i, j.
As a result of this, the output of RNALfold contains components, i.e. structures that are
enclosed by a base pair, only. Before we actually start the trace back, we evaluate two
new criteria: (1) the sequence of the structure traced back has to be within the training
parameters of the SVR, and (2) the z-score of the energy of this structure has to be lower
than a predefined bound. Criterion (1) is simply imposed by the training boundaries of
the SVMs. Boundaries have, however, been chosen carefully to cover a broad range of
today’s known spectrum of functional RNA structures. 99.79% of the sequences in the
Rfam v. 10 full data set match the base composition requirements of the SVR and 90% of
Rfam RNA families are in within the sequence length restrictions.

In order to get the exact sequence composition that is needed for the SVR evaluations,
the 3’ end of the structure (j) has to be computed first. This is done by a first, short
backtracing step, where the decomposition F (i, n) = C(i, j) + F (j + 1, n) is used to
find j. Subsequently, the average free energy given the base composition of the sequence
s(i, j) is computed by calling the corresponding SVR model. The SVR model for the
standard deviation has approximately twice the number of support vectors as the average
free energy model. To minimize calls of this model, first the minimal standard deviation
for the particular sequence length is looked up. We can then, using the free energy of
C(i, j), calculate a lower bound of the z-score. Only if this lower bound is below the
minimal required z-score, the support vector regression for the standard deviation is called
to calculate the actual z-score. If the z-score then still meets the minimal z-score criterion,
the structure is fully traced back and printed out.

3 Results

The concept of fast and efficient estimation of the z-score by support vector regression
was first introduced by Washietl et al. [WHS05], and implemented in the noncoding RNA
gene finder RNAz. The speed up of this approach compared to explicit shuffling and fold-
ing, which is usually done on 1,000 replicas, is tremendous, at minimum a factor of 1,000.
Moreover, computing time is invariant to the length of the sequence, while RNA folding
is of complexity of O(N3). When considering the z-score as evaluation criterion in the
RNALfold algorithm, calculation of the z-score becomes a time consuming factor, as in
a worst case scenario it has to be done almost for every nucleotide of the sequence. It is
therefore a crucial concern to use support vector models that do not only have good accu-
racy, but also a moderate number of support vectors (SVs). In this work we extended the
z-score support vector regression to cover a broader range of the sequence spectrum, but
managed at the same time to build models that have significantly less SVs than the models
used by RNAz. This was accomplished by normalizing the dependent variables of the re-
gression, i. e. the average free energy and the standard deviation, by the sequence length.
The dependent variables do not strictly linearly correlate with the sequence length and so
we have to keep the sequence length as an input feature. Nevertheless, redundant points
are created in the training set, which eventually leads to a smaller space to be trained. For
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the average free energy model and the standard deviation model we were able to achieve
a 6.3 and a 2.7 fold reduction, respectively, in the number of SVs compared to the RNAz
equivalents.

3.1 Evaluation of RNALfoldz predicition accuracy

For the task of predicting local RNA secondary structures one would particularly be inter-
ested in following criteria: (i) to which extent can functional ncRNAs be discovered, (ii)
how well do the molecule’s predicted boundaries match to the real coordinates, and (iii) is
there any significant difference between native, biological sequences and random decoys.
To address these questions, we applied RNALfoldz to the genome of E. coli (Accession
number: CP000948). A maximum base-pair span L of 120 nt and a z-score cutoff of -2
was used. Setting the cutoff at -2 is for sure restrictive, but it should still cover a large
fraction of the ncRNA repertoire. Both strands were considered. A total of 202,126
structures have been obtained. In comparison, the regular RNALfold returned a total of
1,387,136 structures, 824, 000 of which have a length ≥ 50 nt. The RNALfoldz output
(a true subset of the RNALfold output) is only a forth of the regular RNALfold output.

The E. coli genome Genbank file lists 119 ncRNAs with a maximum length of 120 nt
in its current annotation. To investigate the extent annotated ncRNAs are covered in the
RNALfoldz output, we define for a RNALfold/RNALfoldz prediction to be counted
as hit a minimal coverage of 90% of the ncRNA sequence. Giving this setup a total of 106
and 89 ncRNAs can be found in the RNALfold and RNALfoldz output, respectively.
Detailed results for each RNA gene are shown in an online supplementary table. With a
z-score cutoff of -2, 17 ncRNAs that were found by RNALfold are not in output set of
RNALfoldz. The detection success is directly proportional to the reduction rate of the
RNALfold output. Modulating the z-score cutoff affects both quantities (Fig. 1). The
failure to detect the 13 ncRNAs that were missed by both RNALfold and RNALfoldz
results from the fact that the RNALfold algorithm predicts only self-contained RNA
structures. For example, the two ncRNA genes rprA and ryeE that have only low cover-
ing RNALfoldz hits, have indeed multi-component structures at the MFE level (abstract
shape notation [GVR04]: [][][][], [][][]). In these cases RNALfoldz will rather
produce multiple hits than one single hit covering the whole ncRNA. Overall, our findings
confirm that most E. coli small ncRNAs are indeed more thermodynamically stable than
expected by chance and that the RNALfoldz algorithm is able to detect these structures
efficiently.

We further investigated how precisely the RNALfoldz predictions map to the coordinates
of the annotated ncRNAs. This is a legitimate issue, but one has to keep in mind that
functional RNAs adopt their structure at the transcription level, while in this experiment
we used the genomic sequence to detect these structures. So it might easily happen that
the RNA is predicted in a bigger structural context than its actual size. The underlying
dynamic programming algorithm is the same for RNALfold and RNALfoldz, and hence
results discussed here do hold for both versions. In this work we define noise as the fraction
of the RNALfoldz hit that does not overlap with the annotated ncRNA. In total, 34 out of
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Figure 1: Non-coding RNA detection success vs. reduction of the RNALfold output. Given a z-
score cutoff of 0 only one structure prediction is missed in the RNALfoldz output. With a z-score
cutoff of -2 (circle) we see a four-fold reduction of the output, while at the same time covering 84%
of the correct RNALfold ncRNA predictions.

the 89 predictions have less than 10% noise. Averaged over all hits ( ≥ 90% coverage) we
see noise of 18%. Using a classic sliding window approach with a length of 120 nt, one
would expect more than 33% noise for a window containing a tRNA sequence (average
length of tRNAs in E. coli: 78 nt). In the RNALfoldz output we find that 29 out of 73
tRNA predictions have less than 10% noise.

Finally, we address the significance of the predictions when compared to randomized con-
trols. Therefore, we performed the same experiment on randomized sequences generated
by (i) mononucleotide shuffling, (ii) simulation with an order-0 Markov model (mononu-
cleotide frequencies) , and (iii) simulation with an order-1 Markov model (dinucleotide
frequencies). Shuffling and simulations were done with shuffle from Sean Eddy’s
squid library using default parameters. A detailed comparison of the results of these four
experiments is shown in Fig. 2. In general, we observe a tendency to more stable structures
in the native sequence than in any randomized sequence. Structures with a z-score ≤ -8
are profoundly enriched in the native sequence, which might point to biological relevance
of these structures. These are, however, extremes and most ncRNAs will have z-score
values in a much higher range.

The value -2 for the z-score cutoff in this experiment was chosen arbitrarily. Moving to an
even lower value than -2 will reduce the false discovery rate, but at the same time limit the
number of ncRNAs that show such high thermodynamic stability. Using the RNALfoldz
output from the experiment with randomized sequences (order-1 Markov model), we can
calculate an empirical precision or positive predictive value (PPV), which is simply the
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Figure 2: Comparison of the distribution of stable secondary structures from the native E. coli
genome and randomized controls. The native E. coli sequence has a strong tendency to more stable
local secondary structures. RNALfoldz predictions with a z-score below -8 are exclusively found
in the native sequence.

proportion of true positives against all positive results. Assuming that thermodynamic sta-
bility is inherently linked to biologically function, we declare any RNALfoldz prediction
with a z-score below a certain threshold from the native sequence and the randomized se-
quence as true positive and as false positive, respectively. Using then a PPV of 0.75, which
corresponds to 25% estimated false positives, and, hence, a deduced z-score cutoff of -
3.86 we can find 25 of the 106 annotated ncRNAs that are detectable with the RNALfold
algorithm, while reducing the RNALfoldz to 21,715 predictions (3% of the RNALfold
output). We further investigated if we can determine more specific z-score cutoffs when
the RNALfoldz output is partitioned into different structural classes. This is motivated by
the reasonable assumption that, for example, a short stable hairpin is more likely formed
by chance than a stable, structurally more complex, multi-branched molecule. Hence, one
would set different z-score cutoffs for different structural classes. To investigate this claim
we map the MFE structures to the corresponding abstract RNA shape at the highest ab-
straction level. At this abstraction level only the helix nesting pattern is considered. As
an example, the well-known cloverleaf structure of tRNA molecules is then simply repre-
sented as [[][][]]. The six major structural classes are shown in Tab. 1. We further
partition structures according to their length into two classes short (≤ 85 nt) and long.

Fig. 3 shows structure class specific precision values in dependency of the z-score, for
those three classes that show the most deviation from the population precision. Using
now class-specific z-score values when filtering the RNALfoldz output we can raise our
prediction count from 25 to 38 ncRNAs, while keeping the expected false-positive rate
fixed at 25%. The total number of RNALfoldz predictions increases slightly to 23,225.
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Table 1: Major structural classes in the E. coli genome
frequency abstract length figure class specific z-score

shape class code cutoff (PPV 0.75)

27% [[][]] long -3.60
26% [[][]] short SC2 -4.14
21% [] short SC3 -4.16
7% [[][[][]]] long -3.80
7% [[[][]][]] long -3.74
4% [] long SC6 -3.35
8% rest -3.35

All
SC2

SC6
SC3

Figure 3: Precision values of different structural classes by the z-score. The solid line represents the
whole RNALfoldz output.

3.2 Timing

The overall complexity O(N × L2) of the core algorithm does not change, the z-score
calculation just adds a constant factor. We benchmarked both implementations on an Intel
Quad Core2 CPU with 2.40 GHz. Detailed results are shown in Tab. 2.

At a maximal base-pair span of 120 nt RNALfold is able to scan at a speed of approx.
250 kb/min. At the same settings and with a minimal z-score cutoff of -2 scanning speed
drops to 153 kb/min for RNALfoldz. The performance clearly depends on the number
of times the support vector regression has to be called. When moving to a lower z-score
cutoff of -4 the scanning speed increases to 207 kb/min.
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Table 2: Timing results [sec] for RNALfold and RNALfoldz.
L RNALfold RNALfoldz

z-score≤ -2 z-score≤ -3 z-score≤ -4
120 1,123 1,842 1,477 1,359
240 2,629 3,922 3,321 3,105

4 Discussion

In this work we have presented an extension of the RNALfold algorithm to predict ther-
modynamically stable, local RNA secondary structures. Using fast support vector regres-
sion models to calculate the z-score this approach comes with only a minor overhead in
execution time compared to the former version, while yielding at the same time a much
lower number of relevant structures. We have demonstrated that already with a z-score
cutoff of -2, approx. 80% of the annotated E. coli small ncRNAs can be found in the
RNALfoldz output. Comparison to randomized genome sequences showed that the na-
tive E. coli genome sequence has a strong bias to more stable secondary structures. This
shift is, however, not significant enough to qualify RNALfoldz as a stand-alone RNA
gene finder with an acceptable false discovery rate. We see the role of RNALfoldz
mainly as a first filtering step in a cascade of computational ncRNA detection steps. In
particular, the intersection of data from high throughput sequencing, promoter and tran-
scription termination signals (see e.g. [SNS+10]) or G+C content on AT rich genomes
with RNALfoldz hits could be of value.

In this contribution, we assume that thermodynamic stability is inherently coupled to bi-
ological function. This is certainly true to some extent, but there are also a lot of RNA
classes where stability is not a major issue for function, e.g. C/D box snoRNAs or ncR-
NAs that form interaction with other RNAs. It is therefore highly unlikely that these RNA
classes will show up in the RNALfoldz output. In this context, RNALfoldz can, how-
ever, be used to define a set of highly stable loci which can then be excluded from further
analysis.

It has been noted early on that thermodynamic stability alone is not a sufficient discrim-
inator to distinguish ncRNAs from random sequences [RE00]. This is the main reason
why most ncRNA gene finders rely solely on signals from evolutionary conservation of
RNA secondary structures, or use thermodynamic stability only as an additional feature.
These methods are clearly limited by the comparative genomics data available. Investiga-
tion of species that are distantly related to any species sequenced so far, or species specific
RNA genes are, hence, out of scope for these methods. The RNALfoldz algorithm pre-
sented in this work will not be a magic tool suddenly shedding light on these dark areas.
The search for extraordinarily stable structures, however, can help to give first clues to
putatively functional RNA secondary structure elements, where other methods fail.
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Abstract

The 7SK small nuclear RNA (snRNA) is a key player in the regulation of poly-
merase (pol) II transcription. The 7SK RNA was long believed to be specific to
vertebrates where it is highly conserved. Homologs in basal deuterostomes and a
few lophotrochozoan species were only recently reported. On longer timescales 7SK
evolves rapidly with only few conserved sequence and structure motifs. Previous at-
tempts to identify the Drosophila homolog thus have remained unsuccessful despite
considerable efforts. Here we report on the discovery of arthropod 7SK RNAs using
a novel search strategy based on pol III promoters, as well as the subsequent verifi-
cation of its expression. Our results demonstrate that a 7SK snRNA featuring two
highly structured conserved domains was present already in the bilaterian ancestor.

Key words: 7SK snRNA, homology search, non-coding RNA
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1 Introduction

The 7SK small nuclear RNA (snRNA) is one of the most highly abundant non-
coding RNAs (ncRNAs) in vertebrate cells. Due to its abundance it has been
known since the 1960s. Its function as a transcriptional regulator, however,
has only recently been discovered: 7SK mediates the inhibition of transcrip-
tion elongation factor P-TEFb, a critical regulator of RNA polymerase (pol)
II transcription which stimulates the elongation phase (Nguyen et al., 2001;
Yang et al., 2001; Michels et al., 2004; Blazek et al., 2005; Egloff et al., 2006;
Peterlin and Price, 297-305; Krueger et al., 2008). In addition, 7SK RNA sup-
presses the deaminase activity of APOBEC3C and sequesters this enzyme in
the nucleolus (He et al., 2006).

The pol III transcript with a length of about 330nt (Krüger and Benecke, 1987;
Murphy et al., 1987) is highly conserved in vertebrates (Gürsoy et al., 2000). In
contrast to the nearly perfect sequence conservation in jawed vertebrates, the
7SK RNA from the lamprey Lampetra fluviatilis differs in more than 30% of
its nucleotide positions from its mammalian counterpart (Gürsoy et al., 2000).
Based on several unsuccessful attempts to clone 7SK homologs, the molecule
has long been believed to be vertebrate specific. In a recent contribution (Gru-
ber et al., 2008), however, we reported on the computational detection and
experimental verification of 7SK sequences from several basal deuterostomes
as well as a few Lophotrochozoa. Direct experimental evidence is available
for the hagfish Myxine glutinosa, the lancet Branchiostoma lanceolatum, and
the snail Helix pomatia. In contrast, neither experimental cloning procedures
nor computational homology search revealed a plausible 7SK candidate in
Drosophila melanogaster or any other sequenced genome of an ecdysozoan.

In this contribution, we report on the computational discovery of the 7SK
snRNA homologue in Drosphilidae and other arthropod genomes, on its bioin-
formatical characterization, and its subsequent verification in Drosophila melano-
gaster.
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6. Arthropod 7SK RNA

2 Materials and Methods

2.1 Sequence Data

Genomic sequences were downloaded from ENSEMBL (version 48, www.ensembl.
org), the Joint Genome Institute (www.jgi.doe.gov), and the Broad Institute
(www.broad.mit.edu) Web sites. Details on the assemblies used here are listed in
the Electronic Supplement. 100nt upstream regions of the annotated U6 (CR31379,
CR32867, CR31539) and U6atac (CR32989) RNAs were retrieved from FlyBase
(www.flybase.org). Previously described 7SK sequences and their alignment were
taken from Gruber et al. (2008).

2.2 Homology Search

From the 100nt upstream regions of the Drosophila melanogaster U6 and U6atac
snRNAs, we generated a multiple sequence alignment using MAFFT (Katoh et al.,
2002). Guided by previous findings (Mount et al., 2007; Hernandez Jr et al., 2007),
we selected the search pattern such that it contained the conserved promoter re-
gion, two conserved Thymidine residues to guarantee distinguishability from pol II
recognized PSE elements and the TATA-box. Then we scanned the D. melanogaster
genome using fragrep (version 2) (Mosig et al., 2007) in position weight matrix
mode. The sequence conservation pattern downstream of the resulting hits was visu-
ally inspected in the UC Santa Cruz (UCSC) genome browser (genome.ucsc.edu).
Neoptera species were searched iteratively using the blast front-end at the Fly-
Base Web site, using previously identified hits as additional queries. In addition, we
searched GenBank using NCBI’s Web interface (www.ncbi.nlm.nih.gov/blast).
Sean Eddy’s rnabob (selab.janelia.org/software.html) was used for pattern-
based RNA structure searches.

2.3 Sequence-Structure Alignments

Initial alignments were generated using ClustalW (Thompson et al., 1994), dialign2
(Morgenstern, 1999; Morgenstern et al., 2006), and MAFFT (Katoh et al., 2002). Ini-
tial structure annotation was produced using RNAalifold (Hofacker et al., 2002).
This information was used as the basis for a semimanual alignment edited in emacs
using the ralee mode (Griffiths-Jones, 2005). The 5’ and 3’ domains were re-aligned
using locarna (Will et al., 2007).
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2.4 Northern Blot

Total RNA was isolated from D. melanogaster (Canton S) flies according to Chom-
czynski and Sacchi (1987). For Northern blots, 15 µg of total RNA were separated in
2% agarose-formaldehyde gels and blotted onto Hybond-N membrane (Roche) ac-
cording to Sambrook et al. (2001). A DIG-labeled probe of 344nt of the 7SK RNA
was obtained by amplification of the respective fragment on genomic DNA of D.
melanogaster (Canton S) with the primers CGATATTCAGGTAACTGCATCTG (positions
35 to 58 in the predicted transcript) and CGAAAATCCGAAGCTAAGCTACT (positions 356
to 379) and the PCR DIG labeling mix (Roche, catalog number 11636090910). Hy-
bridization was carried out in 5x standard saline citrate, 0.1%N-lauryl-sarcosine,
1% milk powder, 0.02% SDS at 65◦ C overnight. The membranes were washed
with 0.1 M Tris/HCl (pH 7.5), 0.15 M NaCl, 0.3% Tween 20. The same buffer
with additional 1% milk powder was used for the blocking. For detection, we used
the alkaline phophatase-conjugated anti-DIG-antibody (Roche, catalog number #
11093657910) in a dilution of 1:7500 in the same buffer at room temperature for 2h.
For detection, 7ml AP-buffer (0.1M Tris/HCl, 0.1M NaCl, 5mM MgCl2, pH 9.5)
was freshly mixed with 14µl NBT (Nitro-Blue Tetrazolium Chloride; 100mg/ml)
and 21µl BCIP (5-Bromo-4-Chloro-3 p-Toluidine Salt; 50mg/ml). The substracte
reaction was stopped when a signal appeared (after 20 to 30 min) by adding ddH2O
to decrease the pH-value.

3 Results

3.1 Initial Search

Because direct homology search had failed previously, we employed a differ-
ent strategy. The snRNAs, including the 7SK snRNA, exhibit a characteristic
promoter structure (Hernandez, 2001) that is fairly well conserved in evo-
lution. The spliceosomal snRNAs had recently been studied in great detail
in Drosophilidae (Mount et al., 2007; Hernandez Jr et al., 2007), and their
promoter sequence motifs are known in detail for most of the 12 sequenced
drosophilid fly species. The 7SK snRNA has a canonical pol III type 3 pro-
moter in vertebrates, see Bannister et al. (2007) and the references therein. We
thus derived a search pattern for canonical type 3 pol III promoters, Fig. 1,
using a region of 100nt upstream of the U6 and U6atac snRNAs as template.

The pattern was used to search the D. melanogaster genome. In addition to
recovering the U6 and U6atac snRNAs, we uncovered 4 hits, summarized in
Tab. 1. One of them belongs to a known snoRNA previously described in
Huang et al. (2005). Pol III regulated expression of snoRNAs has not been
described in Drosophilidae so far. The observation is not unexpected, however,
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Fig. 1. Upstream regions of known U6 and U6atac genes and the four candidate
sequences listed in Tab. 1. The fragrep pattern used to scan the genome of D.
melanogaster is indicated in the middle.

Table 1
Characterization of conserved loci with putative U6-like snRNA promoter motifs.
Evidence for evolutionarily conserved secondary structure is taken from a recent
RNAz-based survey. The numbers refer to the loci listed in the Supplemental Material
of Rose et al. (2007). Evidence from ChIP-on-chip data for binding of TRF1 and
BRF refers to the loci listed in the Supplemental Material of Isogai et al. (2006).

Location RNAz pol-III Note Ref.

A 3L:7 632 840-7 632 900(+) — — CR34703
C/D snoRNA
Me18S-A1806-RA

(Huang
et al., 2005)

B 3R:3 300 270-3 300 900(-) 1077 TRF1 (1582)
BRF (1580)

CR33925
smnRNA:331-RA

(Yuan et al.,
2003)

C 3R:19 555,800-19 556 250(-) 7371,
7372

BRF (9494)
BRF (9495)

CR33682
smnRNA:342
RNAse MRP

(Yuan et al.,
2003; Wood-
hams et al.,
2007; Pic-
cinelli et al.,
2005)

D X :21 308 600-21 308 750(+) — — — —

because pol III transcription of snoRNAs has been observed previously in Sac-
charomyces cerevisiae (Moqtaderi and Struhl, 2004). The candidate located
on the X chromosome shows no direct evidence for pol III transcription in the
study (Isogai et al., 2006).

Two candidates on chromosome 3R overlap small nonmessenger RNAs cloned
in an experimental survey of small RNAs in D. melanogaster (Yuan et al.,
2003). While both Woodhams et al. (2007) and Piccinelli et al. (2005) list
candidate C as RNAse MRP, no further annotation is available for candidate
B. A comparison with a recent computational survey of structure conserved
ncRNAs in flies shows that both loci have been detected by RNAz (Rose et al.,
2007). Furthermore, there is direct evidence that these regions are transcribed
by pol III. Isogai et al. (2006) showed that unlike in most other eukaryotes,
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Repetitive ElementsAT-rich
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RNAz-1077.4

EvoFold

Conservation

snmRNA:331-RA

Fig. 2. Detailed genomic view of the 7SK candidate B at 3R(3.3M). Adapted from
a USCS Genome Browser view. The upper bar indicates the predicted 7SK tran-
script along with the snRNA promoter element. The predicted transcript overlaps
the conserved secondary structures reported by RNAz and evofold as well as the
fragment cloned in Yuan et al. (2003).

TRF1/BRF binding appears responsible for the initiation of all classes of pol
III transcription and they have mapped TRF1 and BRF binding sites in the
respective sites.

3.2 Homology Search

Candidate B, located on chromosome 3R at 3.3M, Fig. 2, shows strong evi-
dence for pol III transcription, strong evidence for an evolutionarily well con-
served secondary structure, and a characteristic T-rich region indicative of a
pol III terminator. With an overall length of about 450nt, the conserved se-
quence is only slightly longer than the previously known 7SK snRNAs (Gruber
et al., 2008). Note however, that the ends of the transcripts cannot be pre-
dicted accurately. In D. melanogaster, an AT-rich low-complexity region is
located immediately downstream of the annotated conserved region, which
could be (partially) transcribed. The human 7SK, for instance, shows some
variability in the exact position of its 3’ end, which consists of a short U-
rich tail of length 5-7. In addition, a fraction of the human transcripts are
adenylated posttranscriptionally (Sinha et al., 1998). For the bioinformatic
analysis, we defined the 3’ end of the arthropod candidate sequence before the
low complexity region.

The high level of sequence conservation in Drosophilidae promoted us to
search for homologs in additional arthropod genomes. In Neoptera species,
these could easily be retrieved by iterative blast searches. As blast failed to
recover a homologue in Ixodes scapularis, we constructed a fragrep pattern
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Fig. 3. Phylogenetic distribution of 7SK candidate sequences. A bullet indicates a
match in the genomic sequence, the hexagons for Armigeres, Culex, Gryllus and
Mesobuthus refer to partial ESTs. For complete genomic sequences a sketch of
the alignment structure highlights the large insertion domains in Pancrustacea and
in Drosophilidae in particular. Aligned blocks are shown in black, gray bars indi-
cate gaps in the alignment, missing sequence data adjacent to EST regions appear
white. The underlying tree is composed from the genome-wide near intron positions
(Krauss et al., 2008), a phylogeny of mosquitoes (Harbach and Kitching, 1998) and
two recent studies of arthropod phylogeny (Cameron et al., 2004; Kjer, 2004), for
the relationships outside the Endopterygota.

from already identified arthropod sequences (see Electronic Supplement 1 ).

We recovered candidate sequences from most of the available arthropod genomes,
with the notable exceptions of the lepidopteran Bombyx mori and the aphid
Acyrthosiphon pisum, and the crustacean Daphnia pulex see Fig. 3 and Elec-
tronic Supplement. In these cases, it is plausible to assume that no candidate
was found due the quality of the current draft assemblies, although we cannot
rule out that the sequence is too derived to be recognizable by our search
methods.

In addition to genomic DNA, we also searched the NCBI EST database using
all the genomic hits as blast queries. This resulted in some evidence for
expression of the 7SK candidates beyond the fragments reported in Yuan
et al. (2003).

A blast search of the NCBI NR and EST collections revealed additional ev-
idence for transcription of this locus in several species, namely Culex pipiens
(multiple ESTs from an unpublished EST project), Armigeres subalbatus (a
single EST from the ref. Aliota et al. (2007)), Gryllus bimaculatus (a single un-

1 http://www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/08-008/
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Fig. 4. Sequence Logos (Schneider and Stephens, 1990) representing an alignment
of the 7SK consensus sequences reported in Gruber et al. (2008) (upper sequences)
and the consensus of the arthropod candidates (lower sequences). The logos were
computed using aln2pattern (Mosig et al., 2007) separately for the two groups of
sequences. Common well-conserved motifs are shaded.

published cDNA), Mesobuthus gibbosus (five ESTs from an unpublished EST
project). GenBank accession numbers are listed in the Electronic Supplement.

A multiple sequence alignment (Electronic Supplement) shows that the can-
didate sequences have two well conserved domains located at the 5’ and the
3’ termini, whereas the intermediate portion appears to evolve rapidly and
contains large insertions and deletions, see also Fig. 3. Overall, this organiza-
tion conforms the observations for the known 7SK sequences (Gruber et al.,
2008): the highest sequence conservation among the known 7SK snRNAs is
also observed in the 5’ and 3’ hairpin regions.

Fig. 4 demonstrates substantial similarities between the 7SK snRNAs reported
in (Gruber et al., 2008) and the candidate sequences discovered in this contri-
bution. The domains with similar sequences are located in a similar structural
context, see below.

3.3 Structural Characterization

We therefore constructed a structural consensus model of the arthropod se-
quences and compared this with the structural models derived in Gruber
et al. (2008). Two distinct secondary structure elements are highly conserved
throughout vertebrates (Egloff et al., 2006): a 5’-terminal hairpin structure
that binds both HEXIM1 and P-TEFb, and a 3’-terminal hairpin that inter-
acts with P-TEFb only. A recent study (Krueger et al., 2008) revealed that
7SK snRNA is stably associated with LARP7, a close relative of La, which
is associated with many nascent pol III transcripts, including 7SK snRNA
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Fig. 5. Comparison of structural motifs of 7SK snRNAs. Conserved nucleotides in
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(Hogg and Collins, 2007). It is unknown, however, how LARP7 binds to 7SK.
Interestingly, LARP7 has a well-known homologue in Drosophila melanogaster
(Krueger et al., 2008), namely mxc (multi sexcomb reduced), a member of the
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polycomb group regulating gene expression during development (Rajasekhar
and Begemann, 2007).

Structural alignments of identified candidate sequences based on previously
published 7SK sequence data (Gruber et al., 2008) were generated for both
the 5’ region and the terminal 3’ region. Independent models were gener-
ated for the 5’ regions of Drosophilidae, Neoptera, and all Arthropoda, re-
spectively. Using also the previously published sequence data on 7SK (Gru-
ber et al., 2008), we furthermore constructed combined models for Arthro-
poda+Lophotrochozoa, and Vertebrata+Cephalochordata. Their combination
was then used to suggest a consensus model.

Overall, the secondary structure of the 5’-stem region of arthropods is quite
similar to its vertebrate and lophotrochozoan counterpart. While the lower
part of the stem-loop structure is very similar in all know sequences, the closing
hairpin loop varies considerably in size and base composition. In drosophilid
flies, this stem is extended by a helical element consisting of five base-pairs
(supported by several compensatory mutations), while otherwise the terminal
loop consists of 8-15 nt. The hairpin loop is closed by a stem that is highly
conserved in both sequence and structure. This stacked region is only inter-
spersed by a positionally conserved bulge loop. The outer part of this stem
comprises the GAUC-GAUC motif enclosed by positionally conserved bulge
loops. The functional importance of this motif is discussed in detail in Egloff
et al. (2006). The consensus model shows that there exists only a structural,
not a strong sequence constraint on the other elements of the 5’-stem region.

Both helices in the 3’-stem region are supported by many compensatory mu-
tations. The position of the bulge loop as well as the position of the hairpin
loop are highly conserved. While both Vertebrata and Lophotrochozoa show
a sequence constraint in the hairpin loop, this does not seem to be the case
in arthropods. For Diptera, the hairpin loop is reduced to a minimal size of
three nt. Based on the structure model for Deuterostomia and Lophotrochozoa
suggested in Gruber et al. (2008) and the arthropod model derived here, we
suggest a universal structural model of the 3’ terminal stem.

The sequence similarities, Fig. 4, the very similar structural organization of
both the 5’ and the 3’ conserved domains, Fig. 5, and the fact the Drosophila
loci have the typical organization of a pol III transcript with a type 3 pol III
promoter demonstrate beyond reasonable doubt that the 3R(3.3M) locus B
indeed harbors a 7SK homologue.

The conserved elements in Figs. 4 and 5 can in principle be used to construct
sequence or sequence/structure patterns for further homology searches. At-
tempts to find a 7SK homologue in the shotgun traces of the Daphnia pulex
genome remained unsuccessful, however, with both fragrep and rnabob.
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Fig. 6. (A) Electrophoretic separation of total RNA from D. melanogaster adults
in a 2% agarose gel (ethidium bromide stained), (B) Northern blot hybridized with
the 7SK DNA probe of length 344bp.

3.4 Expression in Drosophila melanogaster

In order to verify the expression of the 7SK locus, for which a previous study
had already reported a partial transcript (Yuan et al., 2003), we performed a
standard Northern blot experiment. We used a 344bp probe located between
position 35 and 379 within the 445nt long predicted 7SK gene.

The DIG-labelled PCR fragment was hybridized to a blot of total RNA from
flies, separated on an agarose gel. For the detection of the hybrids we used alka-
line phosphatase-labelled anti-DIG antibody for the reaction with NBT/BCIP
as substrate which yields a purple reaction product.

Fig. 6 shows the electrophoretic separation of the total RNA and the Northern
blot, which resulted in a clear single band. Comparison between the marker in
the gel and the blot shows that detected transcript appears somewhat larger
than the predicted 7SK gene.
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4 Discussion

Homology search for non-coding RNAs has turned out to be a surprisingly hard
problem in bioinformatics. Standard methods of homology search often fail due
to large variations in sequence length and oftentimes extremely poor sequence
conservation, see, e.g. (Mosig et al., 2007; Gruber et al., 2008; Xie et al., 2008)
for recent examples. Indeed, the arthropod 7SK RNAs reported in this contri-
bution were not discovered by straightforward search but rather by an indirect
strategy that uses the typical promoter structure of 7SKs (Bannister et al.,
2007), experimental evidence for pol III transcripts in Drosophila melanogaster
(Isogai et al., 2006), sequence conservation (Drosophila 12 Genomes Consor-
tium, 2007) and de novo prediction of evolutionarily conserved RNA secondary
structure (Rose et al., 2007). Once the representative sequences in Drosophil-
idae were found, conventional blast-based searches revealed additional ho-
mologs, which could then be used as starting-point for pattern-based searches
that resulted in 7SK sequences spanning most of the arthropod tree.

A detailed analysis of sequence motifs and the construction of RNA secondary
models based on a combination of thermodynamic folding and sequence covari-
ation demonstrates that our candidate sequences share key features, namely
the the 5’ and 3’ stem regions, with deuterostome and lophotrochozoan 7SK
RNAs, demonstrating that we have indeed found the 7SK snRNA.

A search of EST and cDNA data revealed evidence for transcription of the
7SK locus in several species across the Arthropoda. We furthermore performed
a Northern blot to verify the 7SK in Drosophilidae directly. The resulting
transcript is somewhat longer than expected. There is, however, an AT-rich
repetitive region immediately downstream of the 7SK RNA which may be at
least partially transcribed. Human 7SK ends are known to be heterogeneous
(Sinha et al., 1998). Furthermore, an extension of pol-III transcripts beyond
a putative 3’end inferred from homology search was for instance observed
in mouse and rat vault RNAs (compared to most other mammalian vault
RNAs) (Vilalta et al., 1994; Kickhoefer et al., 2003). The smear observed in
the Northern blot below the major signal might indicate the presence of a
series of smaller transcripts due to earlier termination.

Our results demonstrate that a 7SK snRNA featuring two highly structured
conserved domains was present already in the bilaterian ancestor. This sug-
gests that also the function of the 7SK snRNA is evolutionary conserved de-
spite a recent report that the inhibition of P-TEFb by the peptide Pgc is
RNAse insensitive in primordial germ cells (Hanyu-Nakamura et al., 2008).
The hypothesis of functional conservation is further supported by the obser-
vation that all major protein components of the human 7SK snRNP (P-TEFb,
HEXIM, and LARP7) have homologs in D. melanogaster (P-TEFb, CG3508,
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and mxc, respectively). More generally, the presumably ancient origin of 7SK
snRNA and the ubiquitous role of 6S RNA as transcriptional regulator in
bacteria (Barrick et al., 2005) suggests that the recently uncovered variety
of non-coding RNAs regulating the transcriptional machinery (Goodrich and
Kugel, 2006; Barrandon et al., 2008) may also be evolutionary ancient (Lu
et al., 2008).

Supplemental Information

An Electronic Supplement located at http:www.bioinf.uni-leipzig.de/

Publications/SUPPLEMENTS/08-008/ compiled sequence data, primers, align-
ments in machine-readable form, and fragrep2 search patterns.
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Abstract Stem-bulge RNAs (sbRNAs) are a group of
small, functionally yet uncharacterized noncoding RNAs
first described in C. elegans, with a few homologous se-
quences postulated in C. briggsae. In this study we re-
port on a comprehensive survey of this ncRNA family
in the phylum Nematoda. Employing homology search
strategies based on both sequence and secondary struc-
ture models and a computational promoter screen we
identified a total of 240 new sbRNA homologs. For the
majority of these loci we identified both promoter regions
and transcription termination signals characteristic for
pol-III transcripts. Sequence and structure comparison
with known RNA families revealed that sbRNAs are ho-
mologs of vertebrate Y RNAs. Most of the sbRNAs show
the characteristic Ro protein binding motif, and contain
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a region highly similar to a functionally required motif
for DNA replication previously thought to be unique to
vertebrate Y RNAs. The single Y RNA that was pre-
viously described in C. elegans, however, does not show
this motif, and in general bears the hallmarks of a highly
derived family member.

Keywords
sbRNA, nematodes, Y RNA, homology search, non-

coding RNA

Introduction

Stem-bulge RNAs (sbRNAs) were discovered in the ne-
matode C. elegans three years ago in a systematic screen
of a ncRNA-specific full-length cDNA library by Deng
et al. (2006). This initial study identified 9 distinct mem-
bers of the family. In a subsequent contribution, Aftab
et al. (2008) annotated three additional experimentally
verified ncRNAs as sbRNAs. These seed sequences are
listed in Tab. 1. They share two conserved internal mo-
tifs at the 5’- and 3’-end of the molecules, respectively.
Computational predictions showed that these regions are
able to form a long stem interrupted by a small bulge.
The term “stem-bulge RNA” was coined because of this
feature (Deng et al. 2006). A BLAST-based comparison
with the C. briggsae genome revealed eleven putative ho-
mologs (Deng et al. 2006), providing further support for
the stem-structure and indicating that the loop regions
evolve rapidly.

The sbRNAs in C. elegans as well as their C. brig-
gsae homologs show a common promoter structure con-
sisting of a proximal sequence element B (PSE B) and a
TATA-box (Deng et al. 2006). This type of pol-III pro-
moter is closely related to that of snRNAs (Hernandez
2001), from which it differs by the lack of the conserved
PSE A box in the proximal element, see Fig. 1 top. In
a subsequent, detailed analysis of the sbRNA promoter,
Li et al. (2008) showed that in contrast to the other pro-
moters analyzed, transcription – albeit reduced by 30 to
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Table 1 Seed set of sbRNAs.
All twelve sbRNAs are found in the ncRNA set identified
by Deng et al. (2006). Ref. b indicates that they were first
annotated as sbRNA by Aftab et al. (2008). The sequences
marked c were also reported in Zemann et al. (2006). RNAi
experiments were conducted for sequences marked d (Ka-
math et al. 2003) and e (Sönnichsen et al. 2005). A Y RNA
homolog computationally predicted by Perreault et al. (2007)
is marked by f. Column L denotes the length.

Name Wormbase Acc.No. L Refs.
CeN71 F08G2.13 AY948635 74 c
CeN72 – AY948636 98
CeN73-1 – AY948637 133
CeN73-2 – AY948638 131
CeN74-1 M163.13 AY948639 79 c
CeN74-2 M163.12 AY948640 77 c
CeN75 – AY948593 70
CeN76 W01D2.8 AY948641 77
CeN77 fragmented AY948602 69
CeN135 F08G2.12 AM286261 67 b,d
CeN133 C15H11.12 AM286259 95 b,d, e
CeN134 F35E12.11 AM286260 119 b,f

50% – was detectable when only one of the two parts of
the promoter (either PSE B or TATA-box) was present.
Taken together with the fact that sbRNAs are uncapped
and terminate with a poly-U stretch, these observations
leave little doubt that sbRNAs are transcribed by RNA
polymerase III.

Most sbRNAs are differentially expressed in devel-
opmental stages. The highest levels of expression have
been found in mature adult worms, dauer larvae and es-
pecially worms after heat shock (Deng et al. 2006). In an
unrelated study focusing on the snoRNAs complement of
C. elegans, Zemann et al. (2006) confirmed two of Deng’s
sbRNAs.

For two sbRNAs (CeN135 and CeN133), along with
almost 20,000 other genes, knock-down experiments were
performed (Kamath et al. 2003). No phenotype was re-
ported for these two knock-downs. CeN133 was also knock-
ed down in a study by Sönnichsen et al. (2005), again
with no visible phenotype. Considering latest results on
the efficiency of RNAi on ncRNAs (Ploner et al. 2009)
it has to be questioned if sbRNA expression levels were
sufficiently decreased to see an effect. Furthermore, func-
tionally required motifs may reside in the highly struc-
turally conserved stem common to all sbRNAs. It is
plausible, therefore, that other sbRNAs may function-
ally compensate for the reduced levels of a particular
paralog.

A first attempt to gain insight into the putative bio-
logical functions of sbRNAs is reported by Aftab et al.
(2008). Some sbRNAs showed increased levels of expres-
sion after depletion of the protein components of the
snoRNPs. A detailed understanding of these findings is
still missing and, up to now, biological functions and
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Fig. 1 Comparison of promoter elements of sbRNAs to other
pol-III transcripts. The upper row for each species shows
sequence logos (Crooks et al. 2004) of the promoter motifs
for other pol-III transcripts (U6 snRNA, RNase P, RNase
MRP, tRNA-SeC, Y RNAs), while the lower row denotes the
corresponding elements for sbRNAs. High similarity is ob-
served for the PSE B and the TATA-box for all species, while
high similarity for PSE A is only observed for H. contortus
and P. pacificus. Similarity was measured using the averaged
Kullback-Leibler divergence of position frequency matrices of
the corresponding motifs, see e.g. Aerts et al. (2003). A value
of 0.20 and below can be considered to indicate high similar-
ity. Abbreviations: Cel - C. elegans, Cbr - C. briggsae, Cre -
C. remanei, Cbn - C. brenneri, Cja - C. japonica, Hco - H.
contortus, Ppa - P. pacificus.

processes the sbRNAs are involved in remain to be un-
covered.

In this contribution we report on a comprehensive
homology search for sbRNAs in the phylum Nematoda,
and on an in depth analysis of the large gene family
uncovered by this survey. We show that, unexpectedly,
sbRNAs are homologs of Y RNAs.

Materials and Methods

Sequence Data

Genomic sequences of nematode species were downloaded
from Wormbase (WS198, www.wormbase.org), the Sanger
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Institute (www.sanger.ac.uk), TraceDB (www.ncbi.nlm.
nih.gov/pub/TraceDB), the Sophia-Antipolis Institute
(meloidogyne.toulouse.inra.fr) (Abad et al. 2008), the M.
hapla Genome Sequencing Group (www.hapla.org). De-
tails on the assemblies used here are listed in the Elec-
tronic Supplement. The phylogenetic relations of the in-
vestigated species are depicted in Fig. 2.

Sequence-Based Homology Search

Starting from an initial set of experimentally verified sb-
RNAs, listed in Tab. 1, we performed a blastn search
with default parameters against the available genome as-
semblies of nematode species. Due to the high sequence
variation in the central loop region, this initial step re-
covered only a few full length sbRNAs in other species.
Blastn hits that showed a query coverage of at least 50%
were extended by flanking sequence and manually com-
pared to known sbRNAs in a structural alignment. In
addition, we extracted putative sbRNA sequences from
the multiz 6-way alignments of nematode species avail-
able at the UCSC Genome browser (genome.ucsc.edu)
for known C. elegans sbRNA loci.

Homology Search with Promoter Elements

We applied a computational promoter search using the
characteristic promoter elements of sbRNAs (PSE B and
TATA-box) in species of the genus Caenorhabditis, in
P. pacificus and in H. contortus. In the first step, we
extracted regions 200 nt upstream of RNase P, RNase
MRP, U6 snRNAs, and Selenocysteine tRNAs. These
noncoding RNAs are known to utilize very similar PSE
B and TATA-Box promoter elements. For C. elegans the
sequences for RNase P, RNase MRP, and Selenocysteine
tRNA could easily be retrieved from annotated Worm-
base entries (rpr-1, mrpr-1, K11H12.t1) or, in case of U6,
snRNAs from the literature (Dávila López et al. 2008;
Marz et al. 2008). Simple blastn searches were sufficient
to identify their orthologs in other nematode species.
We then created multiple sequence alignments of the up-
stream regions using Jalview (Waterhouse et al. 2009) for
each species, marked blocks corresponding to the PSE B
and the TATA-box and generated a FRAGREP (Mosig
et al. 2007b) search pattern. The FRAGREP search re-
sulted in approx. 1,200 hits in C. remanei and more mod-
erate numbers for the other nematodes. For each hit we
searched the 300 nt of genomic DNA downstream of the
putative promoter regions for a possible terminator con-
sisting of a consecutive run of at least four T residues.
The region ranging from 20 nt downstream of the TATA-
box to the putative terminator was extracted for further
analysis.

We then applied sequence-structure based clustering
using the LocARNA-RNAclust pipeline (Will et al. 2007;

Kaczkowski et al. 2009) to these putative transcripts.
Default parameters were used for both LocARNA and
RNAclust. Clusters were visually examined for sequence-
structure similarity to already identified sbRNAs using
the RNAsoupViewer (www.bioinf.uni-leipzig.de/pages/
40/software.html).

This approach offers two major advantages over purely
sequence-based or (structure) model-based searches, where
only the ncRNA itself is used as query: (i) since promoter
elements that are shared with other ncRNA classes are
used for initial filtering of the genomic data, knowledge
on the variability of the sequence and/or structure of the
query ncRNA is irrelevant at this stage. Instead, a search
using the query ncRNA is only performed on the small
set of putative transcripts. Thus, more sensitive but also
computationally much more expensive tools can be used
in this second step; (ii) the canonical promoter struc-
ture lends additional credibility to the candidates. The
feasibility of this strategy was recently demonstrated for
identifying 7SK snRNAs of arthropods (Gruber et al.
2008).

Model-Based Homology Search

Multiple sequence alignments of the seed sequences and
the hits of both the sequence-based homology search and
the promoter screen were constructed. In a first analy-
sis, sbRNAs were manually grouped into clusters based
on length and sequence identity and aligned. RNAalifold
(Hofacker et al. 2002; Bernhart et al. 2008) predictions
for each group were then used as starting point for de-
riving a consensus structure for the well-conserved parts.
These initial alignments were then refined manually and
combined to a global alignment in the emacs text editor,
making use of the RALEE mode (Griffiths-Jones 2005),
which explicitly handles secondary structure annotation.

These structure-annotated alignments were then used
to deduce a non-stringent sequence/structure model (avail-
able in the Electronic Supplement), which was then em-
ployed to screen the nematode genomes with RNABOB
(selab.janelia.org/software.html) with default parameters.
The resulting initial candidates were filtered using a mod-
ified position weight matrix scoring in which base-pairs
are treated like individual letters:

Let A = {A,C,G, T} be the nucleotide alphabet.
Then B = {AA,AC,AG,AT, ..., TT} is the alphabet of
all standard and non-standard base pairs. The modified
equation for the information vector I at position i in the
approach of Kel et al. (2003) is

I(i) =
∑

b∈A or B
fi,b ln(k(b) fi,b) (1)

where i is now either an unpaired nucleotide or a base
pair, and k(b) = 4 if b ∈ A and k(b) = 16 if b ∈ B.
We implemented a Perl script that takes the RNABOB
output and position weight matrices derived from the
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structural alignment as input and outputs RNABOB
hits augmented by a matrix similarity score (mSS) as
defined by Kel et al. (2003). Hits with a mSS > 0.65
were then compared manually to previously identified
sbRNAs. Recognizable homologs were incorporated into
the sequence-structure alignment.

Identification of Promoter Elements

For the five species of the genus Caenorhabditis, P. pacifi-
cus, and H. contortus we were able to collect a sufficient
number of upstream regions of ncRNAs that share at
least partially the same promoter elements as sbRNAs.
We created separate position weight matrices (PWMs)
for the PSE A and the PSE B for each species as well
as a general TATA-box PWM and used the approach by
Kel et al. (2003) to score corresponding elements in the
upstream sequences of our sbRNA candidates. Sequence
motifs corresponding to PSE A were only classified as re-
liable if their score was higher than 0.75 and if they were
exactly located 5 nt upstream of a PSE B. Alignments
and PWMs are available in the Electronic Supplement.

Identification of Syntenic Regions

The UCSC Genome Browser provides gene annotations
for all Caenorhabditis genomes used in this study. The
advantage of this resource is that C. elegans genes were
mapped using tblastn to other Caenorhabditis proteins
so that the gene identifiers are available across all genomes.
Wormbase, on the other hand, uses different gene iden-
tifiers for the individual species and does not supply a
read-to-use homology table. In order to construct local
synteny maps between Caenorhabditis genomes, we first
used a simple blastn search to map our sbRNA sequence
to the genomes version provided by the sequence reposi-
tory at UCSC, which are older than the genome assem-
blies for the other analyses used here. We then extracted
gene annotations within ±40 kb of each sbRNA loca-
tion. In the next step, sbRNAs and adjacent genes were
compared between all genomes. If sbRNAs in different
genomes are located in the vicinity of genes with identi-
cal annotation, we consider these locations syntenic.

All genomes used here, except for C. elegans and C.
briggsae, have not been assembled to the level of chromo-
somes. Thus, sbRNAs and adjacent protein coding genes
might resided on different contigs making it difficult to
identify both upstream and downstream markers. As a
consequence, our strategy for detecting sbRNAs in syn-
tenic regions requires at least one homologous protein
within ±40 kb flanking a sbRNA.

Using this approach, we found that only two C. ele-
gans sbRNA clusters, namely those on chromosome III
and chromosome X have syntenically conserved locations
in other Caenorhabditis species. These two clusters where
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Fig. 2 Phylogenetic distribution of the 240 identified sbRNA
homologs. Hits are divided into sbRNAs with confirmed pro-
moter regions, and those hits that did not yield any signifi-
cant homology to known ncRNA promoters. The species phy-
logeny is represented as a cladogram with arbitrary branch
lengths, combining the Caenorhabditis species phylogeny by
Sudhaus and Kiontke (2007) with the phylogeny of phylum
Nematoda by Blaxter et al. (1998) and Mitreva et al. (2005)
and the work from Chilton et al. (2006). ∗Accounting for al-
lelic variants (Barrière et al. 2009), the number of sbRNAs in
C. remanei is reduced to 26, while in C. brenneri 19 copies
with intact promoter and 15 without are genomically dis-
tinct. The column “source” denotes the assembly status of
the genomic DNA sequences (T: Traces, C: contigs, S: super-
contigs, G: chromosomal level). For H. contortus we found
a hit with 37 adjacent copies. For the list of sbRNA with
verified promoter regions this hit was just counted once.

then in detail examined using the synteny resources avail-
able at wormbase.org.

Results

Homology Searches

Starting from the seed sequences, both the analysis of
the multiz alignments and an iterative BLAST search
resulted only in a moderate number of additional ho-
mologs in the Caenorhabditis species and a few hits in
P. pacificus, and failed to give any plausible candidate
in other nematodes. In a second approach to identify
new sbRNAs, we took advantage of the well charac-
terised promoter elements of known sbRNAs (Li et al.
2008) and performed a computational promoter screen.
sbRNAs found to that point were used to construct a
promiscuous search pattern for RNABOB, whose results
were filtered further using a PWM-based method to de-
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tect faint sequence similarities as described in detail in
the Methods section.

After manual inspection of the search results, we re-
tained a list of 240 sbRNAs distributed over the nema-
tode clade V (Strongylida, Diplogasterida, and Rhabdi-
tida) and clade IV (Tylenchida, Cephalobina, and Pana-
grolaimida), summarized in Fig. 2. It was recently shown
that a considerable fraction of the genome assemblies of
C. remanei and C. brenneri represents two alleles rather
than distinct genomic loci (Barrière et al. 2009). In C.
brenneri 14 sbRNAs that assembled to separate contigs
show extensive sequence similarities (> 80% identity)
within 1,000 nt examined flanking regions. Six out of
these 14 show nearly perfect sequence conservation in
the 3’ flanking region, while the 5’ flanking region does
not. For these cases it is likely that we see an assembly
artifact instead of an allelic variant. In C. remanei we
find two sbRNAs that are located on separate contigs
and show extensive sequence identity in the flanking re-
gions. High identity is, however, only observed in the 5’
flanking region suggesting that it might again be an as-
sembly artifact. We conclude that 8 of our 240 sbRNA
sequences are duplicates.

In particular, we report a total of 18 sbRNAs genes
in the C. elegans genome, all having confirmed promoter
elements. In the other species we also list a significant
number of sbRNAs that do not show significant matches
to known ncRNA promoter elements. One of the hits
we identified in H. contortus has several (37) adjacent
copies on one contig. We cannot exclude that this might
be an assembly artifact and therefore we count this hit
just once in the list of sbRNAs with promoter elements.
Our survey failed to retrieve homologs in the genomes of
A. suum, B. malayi and T. spiralis and in the shotgun
trace sequences of Heterodera glycines.

Analysis of Upstream Regions

For C. elegans the core promoter of sbRNAs has been
shown to consist only of a PSE B and a TATA-box (Li
et al. 2008), while other polymerase III transcripts in-
cluding the previously described Y RNA (Van Horn et al.
1995) have an additional conserved element located 5 nt
upstream of the PSE B, called PSE A (Thomas et al.
1990; Missal et al. 2006). In other species of the phylum
nematoda, studies of snRNA promoters of this type (pol-
III type 3) have not been conducted so far. For all species
except C. elegans, we identified corresponding promoter
elements by sequence and positional conservation.

A detailed analysis of the upstream regions of sb-
RNAs with position weight matrices used in the com-
putational promoter screen revealed that the shortened
core promoter characteristic for sbRNAs in C. elegans
can only be found in the genus Caenorhabditis. Upstream
sequences of sbRNAs in P. pacificus and H. contortus
show the presence of both a PSE A and a PSE B. A

detailed representation of the core promoter for these
species is shown in Fig. 1 together with corresponding
elements of other putative pol-III transcripts. For A.
caninum, N. brasiliensis, G. pallida, M. hapla, and M.
incognita we were not able to find a sufficient number
of high-confidence homologs of other pol-III transcripts
to build reliable species-specific position weight matri-
ces (PWMs) or to determine the exact position of PSEs
and the TATA-box. In these cases upstream regions were
visually compared for stretches of homologous regions.
Results of promoter analysis are summarized in Fig. 2.

Secondary Structure

In order to derive a consensus secondary structure, we
used the subset of those 155 (out of 240) sbRNA ho-
mologs that exhibit clearly recognizable pol-III promot-
ers to avoid contamination by possible pseudogenes. The
structural alignment was constructed manually. Due to
high sequence variation in the central loop this region
remained unaligned and was investigated separately.

The combination of thermodynamic structure pre-
dictions and phylogenetic analysis revealed several con-
served structural elements, summarized in Fig. 3. Nema-
tode sbRNAs exhibit three conserved stem structures:

S1 Stem S1 consists of at least four conserved base-pairs.
It is extended at the outer end in most of the se-
quences. The closing inner AU pair of stem S1 is ab-
solutely conserved in all sequences.

S2 Stem S2 is composed of three base-pairs only, and the
majority of sequences shows two GU wobble-pairs.
From a thermodynamic point of view this is a rather
weak stem, but supporting evidence is given by com-
pensatory mutations.

S3 Stem S3 is composed of nine base-pairs. The outer
part of S3 shows many compensatory mutations, sug-
gesting that the ability to form this double stranded
region is more important than the actual sequence.
Stem S3 closes with three conserved GC pairs, pre-
ceded by a conserved UA pair. Only 13 sequences, all
from H. contortus, show an AU pair at this position.

B Stems S1 and S2 are separated by a conserved single
bulged cytosine.

I Stems S2 and S3 are separated by a small internal
loop. Although some related sbRNAs show conserva-
tion of some nucleotide positions, it does not seem
to be a general sequence motif for the entire set of
sbRNAs there.

H The central loop enclosed by the stem starts with the
conserved sequence motif UUAUC. Detailed analysis
of this motif showed that it is in general not involved
in a structural context. For short sbRNAs, the en-
tire central region is generally unstructured, forming
a single hairpin loop. The longer sbRNA homologs
tend to form short structural elements that appear
conserved within subgroups.
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Fig. 3 Secondary structure model of sbRNAs derived from
155 sbRNAs with verified promoter regions. The table on
the left shows the absolute counts of canonical and wobble
base-pairs observed at a given position. The schematic draw-
ing of the structure displays the most frequent base-pair.
The sequence logo shows the frequencies of nucleotides for
the UUAUC motif, which immediately follows the conserved
stem. In only two out of 240 sbRNAs we observed one or
two additional G residues inserted between the stem and this
motif.

T At the 3’ end we generally observe a stretch of at least
four U residues, which are believed to function as
transcription termination signals. For most sbRNAs
further poly U/T stretches, which may serve as al-
ternative termination signals (Gunnery et al. 1999;
Guffanti et al. 2004) can be observed downstream of
their genomic location.

sbRNAs are Y RNAs

Comparison with other RNA families revealed that ne-
matode sbRNAs show substantial similarities in both se-
quence and secondary structure to vertebrate Y RNAs
(see Mosig et al. (2007a) and Perreault et al. (2007) for Y
RNA structure). The sbRNA CeN134 was reported as a
possible Y RNA in the kingdom-wide survey for Y RNA
homologs by Perreault et al. (2007). The connection of Y
RNAs and sbRNAs was not commented on, and other sb-
RNA family members in C. elegans were not recognized,
however. Fig. 4 summarizes a detailed comparison of the
Nematode sbRNA consensus with the analysis of verte-
brate Y RNAs by Mosig et al. (2007a) and the orthologs
of the previously reported C. elegans Y RNAs from the
genus Caenorhabditis. The latter were found using Go-
tohScan (Hertel et al. 2009) starting from the experimen-
tally known C. elegans CeY sequence (Van Horn et al.
1995).

All three structures share not only the overall orga-
nization but also several sequence features. In particular
the inner part of stem S3, the two outer pairs of stem
S2, the conserved cytidine bulge B, and the inner pairs
of stem S1 are the same. These regions largely coincide
with the most conserved ones within each of the three
groups.

In mammals, stem S1, the bulged cytidine (B), and
stem S2 have been shown to be required for Ro binding
(Green et al. 1998; Stein et al. 2005), and thus for the
formation of the Ro RNP particles, which are involved in
RNA quality control. These features are well conserved
between Y RNAs (vertebrates and nematodes) and sb-
RNAs (Fig. 4B). This strongly suggests that sbRNAs
contain a functional Ro binding site.

Recently, it has been shown that Y RNAs are also re-
quired for chromosomal DNA replication in human cell
nuclei (Christov et al. 2006; 2008). The primary motif
for this function resides at the 3’ end of stem S3 and
consists of a stretch of three base-pairs (denoted by red
stars in Fig. 4A) (Gardiner et al. 2009). In particular the
UA base-pair turned out to be crucial for Y RNA func-
tionality in DNA replication. Indeed, C. elegans CeY
and a Y RNA homolog from D. radiodurans (Chen et al.
2007), both lacking this feature, were not able to com-
pensate for vertebrate Y RNAs in DNA replication. All
sbRNAs with the exception of 13 H. contortus sequences
also show the conserved UA base-pair at this position.

Overall, nematode sbRNAs show more similarities
with vertebrate Y RNAs than the previously reported
Caenorhabditis Y RNAs. In addition to unambiguous
structure homology in the helical regions, the conserved
loop motif UUAUC is also present in the paralogous ver-
tebrate subfamilies Y1 and Y3.
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sbRNAs, vertebrate Y RNAs and the previously described Y
RNA family in the genus Caenorhabditis. Red stars denote
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Evolutionary History of sbRNAs

In C. elegans we uncovered six new sbRNA homologs
(Tab. 2) in addition to the twelve previously described
sbRNAs. All six are supported by promoter elements.
Three hits have already been assigned a Wormbase ID,
and for two of these there is evidence of transcription
from a previously conducted study by Zemann et al.
(2006). The same study annotated Cel7 as a C/D box
snoRNA. This sequence yields a negative snoRNA clas-
sification by snoReport (Hertel et al. 2008) and can be

Table 2 Newly identified sbRNA homologs in C. elegans.
Hits marked with * are also reported by Zemann et al. (2006).

Name Location Other names L
Cel1 intergenic W01D2.7, Ce150* 81
Cel2 intergenic – 85
Cel3 intronic – 155
Cel5 intergenic – 121
Cel6 intergenic M163.15 83
Cel7 intergenic M163.14, Ce94* 98

unambiguously recognized as a sbRNA homolog based
on both sequence and secondary structure.

Due to the rapid evolution of the relatively short
sbRNA sequences it is impossible to derive a reliable
gene phylogeny based on sequence information alone. We
therefore follow the strategy introduced for microRNA
clusters by Tanzer and Stadler (2004). Furthermore, we
systematically included synteny information. Syntenic
clusters were identified in the genus Caenorhabditis based
on their flanking protein coding genes (see Methods for
details). Surprisingly, syntenic conservation can be es-
tablished only for two of the five clusters: those located
on C. elegans chr. III and chr. X. For the other clusters,
only the sequence information could be used.

Standard phylogenetic methods are not applicable
because the loop-part of the sbRNAs cannot be reli-
ably aligned, while at the same time the better con-
served stems barely contain phylogenetic information.
We therefore used a z-score approach (Tanzer and Stadler
2004; 2006). In brief, the significance of pairwise align-
ments is evaluated by comparing the score with the score
distribution of of pairwise alignments of shuffled input se-
quences. The resulting z-scores serve as similarity mea-
sure that can be used to construct hierarchical clustering.
While this approach of course does not reconstruct an ac-
curate phylogeny, it is capable of identifying clusters with
statistically significant mutual similarities (Tanzer and
Stadler 2006). The clustering not only identifies sbRNAs
as unambiguous homologs of Y RNAs, it also confirms
the observation that nematode sbRNAs are more similar
to vertebrate Y RNAs than to the previously described
nematode Y RNAs.

In vertebrates, Y RNAs show features required for
both their known functions in DNA replication and bind-
ing to Ro. Their nematode homologs apparently under-
went subfunctionalization so that sbRNAs and Y RNAs
contain different features, Fig. 4. The exact time point
of the divergence of sbRNAs and the CeY lineage can-
not be determined with any certainty. While the z-score
clustering points at an early divergence, CeY homologs
were detectable within the genus Caenorhabditis only,
suggesting a late duplication. Within Caenorhabditis, we
observe a rapid radiation of divergent sbRNAs, support-
ing the hypothesis of a late divergence of CeY and sb-
RNAs.
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Fig. 5 Schematic drawing of the organization of the five sbRNA clusters in C. elegans. Each line represents a sbRNA cluster.
White boxes denote sbRNAs, annotated Wormbase genes (release WS205) flanking sbRNA loci are shown in black.

The 18 C. elegans sbRNAs identified to-date are or-
ganized in five clusters, Fig. 5. Each cluster consists of
multiple copies of one sbRNA subfamily. Thus, clusters
seem to have arisen by local tandem duplications of one
ancestral sbRNA. The mechanism by which sbRNAs were
multiplied remains unknown. Nevertheless, we find evi-
dence that not only single genes, but also groups of sev-
eral sbRNAs might be affected by a single duplication
event.

The sbRNA cluster on chromosome X. The chr. X clus-
ter can be found with syntenic regions in all five Caenorhab-
ditis species, Fig. 6 and Supplemental Fig. S2A. The
cluster apparently derives from a single sbRNA, with C.
japonica representing the ancestral state. The first dupli-
cation gave rise to two distinctive sbRNA families (A and
B). In C. elegans, A was lost and B was copied 2 times.
After the divergence of C. elegans and C. briggsae, B
was duplicated leading to a cluster comprising three sb-
RNAs: A, B1 and B2, as found in C. brenneri. Clusters
in both C. briggsae and C. remanei contain two copies
of sbRNAs of family B2 suggesting a duplication prior
to the speciation event. However, phylogenetic analysis
rather suggest individual duplications in both species.

The sbRNA cluster on chromosome III. Both sequence
similarity and cluster organisation indicate that the chr.
III cluster has undergone different complex fates in each
species, comprising multiple local duplication and dele-
tion events (Fig. 6 and Supplemental Fig. S2A). Unlike
the cluster on chromosome X, were single genes were ef-
fected, here two genes in tail-to-tail orientation seem to
form a unit which is propagated. The two genes both
contain their own PSEB and PSEA elements and thus
do not seem to rely on promoter sharing.

In C. elegans the cluster is composed of one such
unit (CeN75/CeN77) reflecting the ancestral state. Du-
plication of the ancestral 75/77 pair resulted in tandem
copies 75A/77A and 75B/77B after the speciation event
leading to C. elegans.

In C. brenneri, one of the two copies (75B/77B) was
deleted and the other one (75A/77A) duplicated leading
to Cbn29/Cbn30 and Cbn25/Cbn26. Thus, the cluster in
C. brenneri consist only of members of families 75A and
77A. In addition, we find two more copies of 75A (Cbn28
and Cbn27), which most likely result from duplications
of the adjacent Cbn29 (family 75A). In an alternative
scenario, the whole unit of Cbn29/Cbn30 (77A/75A)
was duplicated and each copy of 77B was subsequently
lost. Such a scenario, however would be more costly than
individual duplications and thus appears less probable.
Cbn31, which is also present at this locus, shows some
homology to the other members of the cluster. However,
neither phylogenetic analysis nor sequence motifs in the
loop regions allowed an unambiguous assignment to any
of the the two families.

Members of both the 75A/77A and 75B/77B fami-
lies are present in C. remanei. As in C. brenneri, we find
an individual duplication of 75A (Cre12). The unit of
75B/77B was duplicated once such that in C. remanei
there is one copy of 75A/77A (Cre10/Cre11), two copies
of 75B/77B (Cre8/Cre9 and Cre14/Cre13) and another
cape of 75A (Cre12). Interestingly, in C. remanei this
locus seem to have undergone extensive genomic rear-
rangement. The exon structure of the surrounding gene
(B0361.11) was altered, such that in C. remanei the sb-
RNA cluster resides in intron 2 instead of intron 3 (see
location in C. elegans, Fig. 5).

In an alternative scenario, the duplication of the an-
cestral 75/77 pair took place after the speciation of C.
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Fig. 6 Schematic drawing of the genomic organization of the sbRNA clusters on chromosome III, chromosome X, and
chromosome V of C. elegans and their homologs. Based on phylogenetic analysis, conserved motifs and position within a
cluster, individual genes were group into different subfamilies (shown as different shades of gray). Clusters are shaped by
duplications of single genes as well as units of sbRNAs followed by deletions of individual genes. The cluster on chromosome
V consist of two sbRNA families of different loop sizes (white boxes mark shorter ones, black the longer ones). The shorter
ones date back to H. contortus (data not shown), whereas the longer ones appear in Caenorhabditis. Besides the structure
and sequence motifs common to all sbRNAs, both families of this cluster reveal no homology in the heavily structured
loops and therefore do not seem to have arisen by gene duplication. Gene duplications of the “long” sbRNAs coincided with
duplications of substructures in the multiloop. A, B, C, D refers to these substructures. The loop region of CeN72 is too
degenerated to assign this gene to either of the two groups based on sequence similarity. Due to its close vicinity to CeN73-1,
Fig. 5, we grouped it with the long ones. For details see text and Supplemental Fig. S1 and Fig. S2. The figure shows the
organisation of sbRNA clusters only and does not reflect genomic distances. Arrows indicate sbRNA orientation: plus strand
(→) and minus strand (←). sbRNA which could not be assigned unambiguously to a subfamily are labelled as “unclassified”.
Abbreviations: Ce – C. elegans, Cbr – C. briggsae, Cre – C. remanei, Cbn – C. brenneri, Cja – C. japonica

brenneri. However, motifs in the loop region of all 75A
family members in both C. brenneri and C. remanei are
highly conservation and thus support the scenario out-
lined above.

Corresponding sbRNAs in C. briggsae seem to have
been lost, since the corresponding intron is just 60 nt in
size. C. japonica has a normal sized intron of 2,000 nt
as seen in other species, but no sbRNA signatures have
been detected there.

Two sbRNA clusters on chromosome V. The clusters on
C. elegans chromosome V, Fig. 6, are distinct from all
other sbRNAs discussed so far because their loop regions
are both much longer than those of other sbRNAs and
heavily structured. The clusters belong to two distinct
sbRNA subfamilies of different length. Members of the
shorter ones, white boxes in Fig. 6, are present in C.
japonica, C. elegans, C. brenneri, C. remanei, and C.

briggsae were also found in H. contortus (Electronic Sup-
plement). The longer paralogs, indicated by filled boxes
in Fig. 6, appear in Caenorhabditis only. Both families
represented here seem to be ancestral to (or at least as
old as) the family comprising the majority of sbRNAs.
Further support for their evolutionary age comes from
the presence of at least one of these families in H. con-
tortus. As in the chr. III and chr. X clusters, there are
multiple duplications and deletions of individual genes.

Taking a closer look at the loop regions of the individ-
ual genes showed that several gene duplications coincided
with changes of the organization of the loop regions, i.e.,
regional duplications and deletions of substructures (see
Supplemental Fig. S1). Thus, we grouped members of the
cluster into four subfamilies based on their loop motifs
(Fig. 6C). Sequence/structure alignments revealed that
each of these subfamilies contains at least three stems in
the loop region with hairpin A being the best conserved
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one. In addition, each Caenorhabditis species seem to
have undergone individual duplications of a subfamily.
Based on both phylogenetic analysis and structure infor-
mation, we deduced the following evolutionary scenario:

The ancestral copy of the long sbRNAs probably con-
sisted of three hairpins (A CD). This first round of gene
duplications results in subfamilies AB D and ABCD,
where hairpin B seems to have arisen by a duplication
of the upstream hairpin A (Fig. 6D). In particular, the
loop motifs are almost identical, suggesting that they
have arisen in the ancestral sbRNA by the duplication
of an already existing secondary structure element. In
a subsequent duplication of subfamily ABCD hairpin C
was deleted leading to subfamily AB D.

In C. elegans A CD was lost again, AB D was copied
2 times and hairpin C of ABCD degraded (Ce3). C. bren-
neri still shows all three ancestral subfamilies, but again
underwent individual gene duplications. After the spe-
ciation of C. brenneri, subfamily AB D was lost, such
that in C. briggsae we find only members of ABCD and
A CD. In C. remanei, the whole cluster was heavily re-
modelled. A CD was deleted and a duplicate of ABCD
lost hairpin A.

Our analysis suggests that at least loop regions of
these sbRNAs contain functional motifs, possibly estab-
lishing interactions with binding partners such as pro-
teins or RNAs. In particular, the high conservation of
motifs in hairpin A and B (CTTG) is striking. Most sb-
RNAs here have at least one stem in the loop region
of this type. Hairpins 3 and 4, in contrast, seem to be
more flexible and may be responsible for gene specific
functions.

Reconstructing such complex patterns of gene du-
plications strongly depends on the genome information
available. Data from additional Caenorhabditis as well
as fully assembled genomes would be required to dis-
entangle the apparently complex history of this cluster
with any certainty. Thus, additional data and improved
assemblies of the Caenorhabditis genomes will help to
resolve the ambiguities in the scenario described above
and may favour a slightly different reconstruction of the
details evolutionary history in particular of these “non-
syntenic” sbRNA clusters.

The sbRNA cluster on chromosome II. The cluster on
C. elegans chromosome II consists of very short sbRNAs.
The loop motif does not exceed 20 nt in length and seems
to be unstructured. Due to these short loop motifs the
evolutionary history of this sbRNA cluster could not be
resolved unambiguously.

Discussion

Deng et al. (2006) annotated sbRNAs as a novel RNA
family because of their unique promoter structure and
the lack of obvious sequence homology with other known

RNA families. Our analysis of the patterns of sequence
and structure conservation established that sbRNAs are
homologs of Y RNAs. We identified sbRNA homologs
in species of nematode clades IV and V by a combina-
tion of several search strategies. While homology search
based solely on sequence failed to identify many of the
sbRNAs, the computational promoter screen and the
searches with secondary structure models were success-
ful in a broader range of species. We show here that a
screen for characteristic promoter elements can substan-
tially improve both sensitivity and specificity of RNA ho-
mology searches. This strategy, however, requires prior
knowledge of promoter or other regulatory DNA ele-
ments. The construction of the promoter search patterns
itself requires a collection of known RNA genes that are
under the control of similar promoters. Due to the lack
of a comprehensive ncRNA annotation for most inverte-
brate genomes, this amounts again to a homology search
problem – although for better conserved ncRNAs. So far,
promoter-based approaches have been employed system-
atically only for pol-III type 3 promoters (Gruber et al.
2008; Pagano et al. 2007), which are associated with a
quite limited set of ncRNA families. In a recent contribu-
tion, some of us reported on the identification of the 7SK
snRNA homologs in arthropods (Gruber et al. 2008) us-
ing a similar approach. In that study, the small number of
initial hits allowed a manual analysis. Here, we had to use
a a less stringent search because of the variability in the
promoter structure itself. The deviant pol-III promoter
structure of the sbRNAs described by Deng et al. (2006)
turned out to be restricted to the genus Caenorhabdi-
tis. As a consequence, a large number initial candidates
has to be a evaluated. This task could be mastered only
by computational methods such as sequence/structure-
based clustering (Will et al. 2007). This approach is com-
putationally expensive, but has the benefit that one is
not limited to structure or sequence constraints that have
to been known from the beginning. As a third strategy
we applied model-based RNA homology search combin-
ing sequence and structure information gathered in the
two previous steps. Instead of focusing on specificity, we
opted for a non-stringent RNABOB model and used a
PWM-based approach for subsequent filtering. In total
we end up with 240 loci across the currently available
genome data of Chromadorea that we identified as sb-
RNAs with very high confidence. Accounting for the al-
lelic variants included in some genomes, this number re-
duced to 231 distinct sbRNA genes.

We have been unable to find unambiguous sbRNA/Y
RNA genes in basal nematodes. This does not come as
a surprise. B. malayi, T. spiralis, and A. suum are sep-
arated by large evolutionary distances from their closest
relatives with sequenced genomes. Signals of sequence
homology are therefore faint for the short sequences in
question. In the case of the Chromadorea we could start
from several experimentally validated sequences in C. el-
egans to retrieve a large number of homologs from closely
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related species. It is these data that allowed a detailed
study of the sequence and structure constraints of sb-
RNAs. These models, in turn, were necessary to recog-
nize the homology of sbRNAs with the previously de-
scribed Y RNA of C. elegans and with the vertebrate Y
RNAs. The information contained in these models, how-
ever, does not provide sufficient specificity to retrieve ho-
mologs from distantly related genomes with acceptable
confidence. This also explains the surprising fact that the
descriptor-based survey for Y RNAs by Perreault et al.
(2007) hit one of the sbRNAs with borderline significance
but failed to recognize most other family members.

The number of sbRNAs detected in this study varies
significantly between species. For the two syntenically
conserved sbRNA clusters we showed in detail that they
exhibit a complex evolutionary history resulting in very
different sbRNA complements even in fairly closely re-
lated species. The syntenically non-conserved clusters
provide further evidence for the rapid evolution of the sb-
RNA complement. Strictly speaking, we cannot rule out
that there are additional, highly-derived, members of the
sbRNA/Y RNA family. The group of sequences identified
here, however, shows coherent features and we did not
detect ambiguous borderline-cases. Sampling biases, e.g.
due to incomplete genome assemblies, thus might affect
the exact sbRNAs counts, such technical artifacts can
by no means account for the large differences between
closely related species within the genus Caenorhabditis.
Most likely, therefore, the striking differences observed
in other clades, also reflects evolutionary variation rather
than computational limitations.

Recent results on the function of mammalian Y RNAs
suggest that they have at least two distinct modes of ac-
tion. On the one hand, they are part of the Ro-RNA
particle which is involved RNA quality control (Stein
et al. 2005). On the other hand, they are essential for
chromosomal DNA replication (Christov et al. 2006).

Despite the fact that sbRNAs form a large and di-
verse family of ncRNAs, only a single representative, the
most derived CeY RNA (encoded by the yrn-1 gene)
was found to bind the C. elegans Ro60 ortholog ROP-1
in vivo (Van Horn et al. 1995). The same study also
reported that human Y RNAs are not bound by the
ceROP-1 protein in vitro, whereas the CeY RNA is bound
by human Ro60 even more efficiently than the human Y3
and Y4 RNAs. Van Horn et al. (1995) also noted that the
human Ro60 protein significantly differs from its C. ele-
gans ortholog. Of the 28 residues of the Xenopus laevis
Ro60 protein that are in contact with the Y RNA (Stein
et al. 2005), only 11 are conserved in frog and worm,
while 27 are shared between human and frog. Of the 14
amino acids in contact with mis-folded RNAs, on the
other hand, almost all that are conserved between frog
and human are also conserved in the worm. We found
here that the other nematode sbRNAs are more similar
to human Y RNAs than to ceY, in particular in terms
of their secondary structure. Taken together, this sug-

gests that sbRNAs (except ceY) in fact do not bind to
ROP-1 at all. In this context, the ill-defined role of rop-
1 in C. elegans dauer larvae formation is of interest,
which suggests alternative binding partners of ROP-1.
The Caenorhabditis sbRNAs, however, conserve a motif
that was recently demonstrated by Gardiner et al. (2009)
to be essential for the function of vertebrate Y RNAs in
DNA replication.

It is very tempting, therefore, to speculate about an
involvement of sbRNAs in nematode chromosomal DNA
replication. Our unpublished data of a C. elegans yrn-
1 deletion, furthermore, indicate that the ceY RNA —
in contrast to human Y RNAs — is not essential for
chromosomal DNA replication. The available informa-
tion suggests that the sbRNA family has undergone sub-
functionalization that separated the RNA responsible for
the Ro-related function (ceY) from a much larger fam-
ily of sbRNAs responsible for the replication-associated
functionality. If this is true, then reports (Kamath et al.
2003; Sönnichsen et al. 2005) that depletion of some in-
dividual sbRNAs does not cause a phenotype detectable
in high throughput studies are not surprising. For the
hypothetical role of sbRNAs in DNA replication it is
plausible to speculate that either not all sbRNAs might
be involved in nematode DNA replication or, alterna-
tively, that different sbRNAs might substitute for each
other similar to vertebrate Y RNAs (Gardiner et al. 2009;
Christov et al. 2006). If this is indeed the case, research
by reverse genetics will not be easy given that the sbRNA
family comprises at least 18 paralogs in C. elegans.

All sbRNAs, including the previously described ceY
RNA, are subject to strong evolutionary pressure on
the conserved stem structure. The central loop, on the
other hand, seems to evolve rapidly since conserved mo-
tifs in the central loop are only recognizable in closely
related species. This extreme variability poses the ques-
tion if these loop motifs are of biological relevance at all.
Hogg and Collins (2008) suggest that the loop regions of
Y RNAs might specify substrate specificities, although
there is not direct evidence for this hypothesis. Without a
clearly defined and experimentally supported functional
role for sbRNA, one could only speculate about the rea-
sons and implications of species-specific differences.

Supplemental Information

An Electronic Supplement located at http:www.bioinf.uni-
leipzig.de/Publications/SUPPLEMENTS/09-020/ com-
piles a list of detected sbRNAs, sequence data and align-
ments in machine-readable form.
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8
Discussion

In this thesis we have explored several strategies for computational noncoding RNA detection

ranging from de novo detection approaches like RNAz and RNALfoldz to homology search

problems for the RNA families of 7SK RNA and sbRNAs. De novo detection of functional

RNA structures or even RNA genes is an ill-defined problem. There are no statistically

significant features common to all functional structural elements. Signals that mark the

boundaries of an RNA gene like start and stop codons as in the case of open reading frames

are missing. Moreover, there is no clear definition of what defines functional in terms of RNA

structures. There is no doubt that independent RNA genes such as tRNAs or microRNAs

are functional, but there are often a multitude of secondary structures in mRNAs that are

considered as functional, see e.g. the iron responsive element (Hentze et al., 2004) or the

SECIS element (Lambert et al., 2002). The set of actions of such elements is broad. They

can serve for example as recognition elements for proteins or can control the access to other

elements. The global assessment of such functional structures is still out of reach, but first

steps in this direction have been recently made by Kertesz et al. (2010), who conducted

genome-wide RNA structure probing in yeast. Recently, some progress has also been made

in functional characterization of long noncoding RNAs (Tsai et al., 2010). Long noncoding

RNAs, or often also termed long intergenic noncoding RNAs, can span several thousand

nucleotides. The question if structural elements, or more precisely to which extent structural

elements, are required for the function of these RNAs still remains unanswered.

So far, de novo detection approaches for functional RNAs from genomic sequence are limited

to the set of structured RNAs, where the structure of the RNA is essential for its function.

RNAz is a leading software package in this field. In detail, RNAz aims at the detection of

thermodynamically stable, conserved RNA secondary structures. In Chapter 4 of this thesis

107



8. Discussion

we have introduced an improved version of RNAz, which now operates using a dinucleotide

background model. A prerequisite to this was the development of computational tools (Gesell

and Washietl, 2008; Anandam et al., 2009) that allowed to generate randomized alignments

preserving the dinucleotide composition of the input alignment. The task of establishing a

support vector regression (SVR) for the z-score estimation that is based on dinucleotide-

preserving shuffled sequences was the most challenging one. For the first version of RNAz it

was sufficient for training of the SVR to generate a set of approximately 10,000 sequences to

uniformly cover the sequence space of interest. When moving to the dinucleotide space it is not

intuitively clear how to draw a uniformly distributed sample of sequence in that case. We have

developed a strategy that is best described as “coverage-oriented sampling”. Briefly recapping

the approach, we first generate a set of sequences that uniformly cover the mononucleotide

space of interest, and in a second step we draw a representative set of sequences covering

the dinucleotide space of a sequence with a particular mononucleotide composition. This

strategy generated a training set of several hundred thousand sequences. Efficient training

and prediction was then mastered by splitting data by the G+C content to smaller data sets.

The presented dinucleotide regression is comparable in speed and accuracy with the original

mononucleotide approach. We also applied a series of modifications that affect the overall

classification capability and usage of RNAz. The use of the Shannon entropy as a measure

of sequence variation instead of the mean pairwise identity and the number of sequences,

helped to get rid of artifacts in the SVM classifier probability landscape (cf. Fig. 3.1) and

eliminated the upper limit on the number of sequences. We also compiled a new training set

and extended the RNAz approach to consider structural alignments. In a recent work by Salari

et al. (2009), it was argued that RNAz makes use of conserved structure databases covering

only a small portion of the genome. In fact, RNAz is a machine learning approach that is based

on training data and, hence, restricted in generalizing by the examples in the training data.

Features used by RNAz to infer putative functional RNA structures are general in a sense

that they are not restricted to a particular RNA family and allow to discover a broad range

of functional structures as demonstrated by a multitude of successful studies. With RNAz

2.0 we have presented a completely refurbished version of the RNAz algorithm addressing all

major shortcomings of the previous version. Next tasks that aim at improving the prediction

accuracy of RNAz will focus on preprocessing strategies of alignments before they are scored

with RNAz. In particular, the classic sliding window approach used to scan long genomic

alignments will be addressed. RNALalifold, a scanning version of RNAalifold, can be used

to better split longer alignments into smaller ones based on local structure predictions.To the

knowledge of the author, the new version of RNAz has so far been applied to genome-wide

screens in nematodes and bacteria of the Order Aquificales.
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All general de novo computational RNA gene finding methods rely on signatures of evo-

lutionary conservation of RNA secondary structures. When only limited or no comparative

genomics data is available, the set of computational methods becomes very sparse. In bacteria

for example, some strategies using promoter and termination signals or screens for elevated

G+C content haven been proposed for ncRNA detection, but a general approach is miss-

ing. Indeed, options are limited when no comparative data is available, but one strategy

that can be applied is to ask for unusually stable folding regions, regions that are more ther-

modynamically stable than expected by chance. With RNALfoldz (cf. Chapter 5) we have

introduced a program that implements this strategy. RNALfold (Hofacker et al., 2004b) is a

local, minimum free energy (mfe) folding algorithm that can be used to predict local RNA

secondary structures in long genomic sequences. Filtering of structures is needed to reduce

the amount of structures to a reasonably sized set. RNALfoldz is an extension of RNALfold

combining local mfe prediction with evaluation of thermodynamic stability. We modified the

RNAz support vector regression approach to yield support vector models of a equal accuracy,

but with a reduced number of support vectors. The number of support vectors inherently

determines the execution time of the z-score regression. Since in a worst case scenario the

z-score regression has to be called once for every position in the genomic sequence, it is of

crucial concern to have a fast approach for the z-score evaluation. Current work in progress is

focusing on building regression models by multiple linear regression instead of support vector

regression. If this strategy shows comparable results in terms of accuracy compared to the

support vector approach, the time spent for z-score evaluation could be reduced to a fraction

of the amount currently spent. We have also explored a strategy to control the empirical false

discovery rate of RNALfoldz using abstract shapes. If one simply opts for the most stable

structures, the set will certainly consist to a large extent of small hairpin structures. Group-

ing by the sequences’ abstract shapes poses an elegant way to retain a structurally diverse

set of the most stable structures found in the screen. So far, we have applied RNALfoldz in

a prototype screen in E. coli and in a still unpublished study on ncRNA detection in Aquif-

icales (Nickel et al., 2010). In the later work we intersected RNALfoldz predicted structures

with next generation sequencing transcriptomics data to infer novel ncRNAs. The specificity

of RNALfoldz is too low to function as a standalone ncRNA gene finder, but intersection

of RNALfoldz predicted structures with transcriptomics data or promoter/terminator signals

can give predictions additional confidence.

De novo detection is often used to get a first guess on putative novel functional RNA struc-

tures. Functional annotation of those predicted structures whether experimentally or com-

putationally is still an open problem. In Chapter 6 we presented a study on homology search

for 7SK RNA members in arthropod species. The Drosophila melanogaster 7SK RNA gene
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had been previously seen both in computational screens (Rose et al., 2007; Stark et al., 2007)

as well as a experimental screen (Yuan et al., 2003), but none of these studies was able to

provide a functional annotation. The main problem in such cases is that RNAs are often too

diverged in sequence and structure to be recognized as members of a particular RNA family

by standard methods. Indeed, the Drosophila 7SK RNA is so diverged, that also a previously

conducted homology search on 7SK RNA (Gruber et al., 2008b) failed to recover a candidate

in arthropods. In Gruber et al. (2008b), we used the polymerase III type 3 promoter structure

of 7SK RNA to verify hits found by homology search. The typical 7SK promoter consists of

a TATA-like box, a proximal sequence element (PSE) and often a distal enhancer element.

Based on the assumption that this promoter structure is conserved across species, we con-

ducted a computational promoter screen to find ncRNAs that are expressed by a pol III type

3 promoter. Detailed inspection of candidate RNA genes then revealed that one candidate

located on chromosome arm 3R is a 7SK RNA homolog. Homology search starting with this

initial hit then identified 7SK RNA genes in a broad range of arthropod species. We also

tried to find homologs in nematodes, but our search remained unsuccessful. In a recent study

(Marz et al., 2009) on the evolution of 7SK RNA and its protein binding partners presented

a 7SK RNA homolog in the nematode C. elegans. This 7SK RNA gene was, however, later

shown to be a snoRNA involved in rRNA processing (Hokii et al., 2010). A computational

promoter screen is a powerful method to first identify a set small of candidates that can then

be analyzed in detail. Large-scale application of this strategy is, however, limited. Such well

defined promoter structures as in the case of 7SK RNA are limited to a certain set of house-

keeping ncRNAs. Moreover, one needs to identify a set of ncRNAs first to build promoter

search patterns. Pagano et al. (2007) performed a screen using a similar strategy on the

human genome, but results are difficult to interpret. Experimental verification of candidate

genes showed that the promoter region was often found located within the transcript. Pol III

type 3 promoters are, however, known to be external promoters found upstream of the RNA

gene.

Structural analysis of detected 7SK snRNA genes highlighted conserved sequence and struc-

ture motifs that are of functional importance, e.g. the conserved motif GAUC-GAUC in the

5’ stem (Egloff et al., 2006; Lebars et al., 2010). Identification of such conserved motifs is

often a starting point for functional characterization. In Chapter 7, we presented a study

that aimed at the detailed characterization of the putatively novel RNA family of sbRNAs

(Deng et al., 2006). We applied various homology search strategies ranging from sequence

based blastn searches, computational promoter screens with sequence-structure clustering,

to descriptor based search with RNABOB. We chose to use a non-stringent RNABOB descriptor,

which resulted in several thousands of predictions. In order to rank these predictions we
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developed a scoring schema to efficiently filter the RNABOB output. High scoring candidates

were then manually examined. With the established secondary structure model of sbRNAs,

we were able to find homologies to other RNA families. In particular, sbRNAs turned out to

be homologous to vertebrate Y RNAs. Y RNAs are involved in quality control of ncRNAs

(Stein et al., 2005). The Ro60-Y RNA complex recognizes specific misfolded RNAs, which

are then tagged for destruction. Y RNAs and sbRNAs share the Ro protein binding motif.

The group of Torsten Krude recently identified that Y RNAs are required for the initiation

step of DNA replication in human (Gardiner et al., 2009; Krude et al., 2009). In a very recent

contribution they showed that this function is not dependent on the Ro particle formation

(Langley et al., 2010), suggesting that Y RNAs do indeed have two separate modes of action

in a cell. The sequence-structure motif that has been identified to be crucial for the function

in DNA replication initiation, is also conserved in sbRNAs, leaving no doubt that sbRNAs

are true homologs of Y RNAs. There have been two independent homology search studies

on Y RNAs (Perreault et al., 2007; Mosig et al., 2007b), but none of these studies identi-

fied the huge (240!) group of sbRNAs in nematodes. This is, however, a general problem

in RNA homology search. RNA structure models used by INFERNAL or RNABOB are based

on so far identified sequence data. This limited view often results in failure to capture the

whole structural spectrum a particular RNA family has adopted over the millions of years

of evolution. The Y RNA binding protein Ro can be easily identified in other species by

PSI-blast searches. Even a bacterial homolog is known (Ramesh et al., 2007). Y RNAs so

far have only been identified in vertebrates and nematodes. In a still unpublished study on

Y RNA homology search in the set of species, where no Y RNA homolog is known so far, we

successfully identified Y RNAs in lower deuterostomes such as S. purpuraturs, B. floridae,

and S. saccoglossus. However, not a single candidate could be discovered in arthropods.

In summary, this thesis addressed methods for de novo detection of functional RNA structures

as well as strategies for the task of ncRNA homology search. With RNAz 2.0 and RNALfoldz

we have presented two computational strategies that can be readily used for de novo detection

of ncRNAs. Moreover, with two case studies on ncRNA homology search we have not only

introduced novel ways for RNA homology search, but also expanded the set of known ncRNA

genes.
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of tRNA sequences and tRNA genes. Nucleic Acids Res, 37(Database issue):159–162, 2009.

C H Jung, M A Hansen, I V Makunin, D J Korbie, and J S Mattick. Identification of novel non-coding

RNAs using profiles of short sequence reads from next generation sequencing data. BMC Genomics,

11:77–77, 2010.

M Kertesz, Y Wan, E Mazor, J L Rinn, R C Nutter, H Y Chang, and E Segal. Genome-wide

measurement of RNA secondary structure in yeast. Nature, 467(7311):103–107, 2010.

R J Klein, Z Misulovin, and S R Eddy. Noncoding RNA genes identified in AT-rich hyperthermophiles.

Proc Natl Acad Sci U S A, 99(11):7542–7547, 2002.

T Krude, C P Christov, O Hyrien, and K Marheineke. Y RNA functions at the initiation step of

mammalian chromosomal DNA replication. J Cell Sci, 122:2836–45, 2009.

E C Lai, P Tomancak, R W Williams, and G M Rubin. Computational identification of drosophila

microRNA genes. Genome Biol, 4(7), 2003.

A Lambert, A Lescure, and D Gautheret. A survey of metazoan selenocysteine insertion sequences.

Biochimie, 84(9):953–959, 2002.

J B Lambert, S A Gurusamy-Thangavelu, and K Ma. The silicate-mediated formose reaction: bottom-

up synthesis of sugar silicates. Science, 327(5968):984–986, 2010.

D Langenberger, C I Bermudez-Santana, P F Stadler, and S Hoffmann. Identification and classification

of small RNAs in transcriptome sequence data. Pac Symp Biocomput, pages 80–87, 2010.

A R Langley, H Chambers, C P Christov, and T Krude. Ribonucleoprotein particles containing non-

coding Y RNAs, Ro60, La and nucleolin are not required for Y RNA function in DNA replication.

PLoS One, 5(10), 2010.

M A Larkin, G Blackshields, N P Brown, R Chenna, P A McGettigan, H McWilliam, F Valentin, I M

Wallace, A Wilm, R Lopez, J D Thompson, T J Gibson, and D G Higgins. Clustal W and clustal

X version 2.0. Bioinformatics, 23(21):2947–2948, 2007.

P Larsson, A Hinas, D H Ardell, L A Kirsebom, A Virtanen, and F Söderbom. De novo search
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