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A B S T R A C T

RNA molecules fold back onto themselves through interaction of complementary seg-
ments of the linear sequence. This process which leads to the biologically functional
shape of an RNA molecule is called "folding". The formed secondary structure cap-
tures most of the folding free energy and can be formally described by a set of base
pairs.

Computational methods exist that allow one to predict ground states, base pairing
probabilities, and other thermodynamic properties of RNA secondary structures with
relatively high accuracy. These algorithms are based on experimentally determined
enthalpy and entropy parameters.

Besides the ground state, an RNA can adopt a multitude of different structures
that taken together constitute a conformational ensemble. By introducing a notion of
structural neighborhood the ensemble and the free energies of its members form an
energy landscape.

This sets the scene to investigate the folding and refolding dynamics of RNA molecules.
Biological phenomena like regulation of gene expression by riboswitches, attenuators
in prokaryotic cells, or structural changes of the genomic RNA of viroids and RNA-
viruses require an understanding of refolding paths and their kinetics.

In my PhD thesis I present novel heuristic algorithms to predict optimal folding
paths and folding behavior on top of an abstract view of the energy landscape using
distance class partitioning. Great value is set on the applicability of these algorithms to
RNA molecules of biologically significant sequence lengths. By exploration of variable
and static energy landscapes with stochastic and deterministic techniques the new
approaches can even be used to predict folding kinetics during transcription.

Furthermore, I developed an extension to existing RNA-RNA interaction prediction
tools that allows their application to RNA/DNA heterodimers, which for instance oc-
cur in the transcription process. To provide an efficient and accurate framework for all
my secondary structure based analyses, I implemented the latest thermodynamic en-
ergy models into the ViennaRNA Package. In addition, G-Quadruplexes were introduced
into several programs of the ViennaRNA Package and constitute the first structural mo-
tif beyond classic secondary structures.

These new methods may help to better understand the relation between structural
features of the energy landscape and their impact on the folding kinetics of RNA
molecules. Therefore, this might open the path to in silico design of RNA molecules
with prescribed folding behavior, knowledge that will facilitate research in highly in-
terdisciplinary areas such as Synthetic Biology.
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Z U S A M M E N FA S S U N G

RNA-Moleküle falten auf sich selbst zurück durch Interaktion komplementärer Seg-
mente der linearen Sequenz. Dieser Prozess, der zu der biologisch funktionellen Form
eines RNA-Moleküls führt, wird als "Faltung" bezeichnet. Die dabei gebildete Sekun-
därstruktur umfasst den größten Teil der freie Energie und kann formal durch eine
Menge von Basenpaaren beschrieben werden.

Bestehende Berechnungsmethoden erlauben relativ genaue Vorhersagen von Grund-
zuständen, Basenpaarungswahrscheinlichkeiten und anderen thermodynamischen Ei-
genschaften von RNA Sekundärstrukturen. Diese Algorithmen basieren auf experi-
mentell bestimmten Enthalpie- und Entropieparametern.

Neben den Grundzustand kann eine RNA eine Vielzahl verschiedener Strukturen
annehmen, welche gemeinsam eine Ensemble verschiedenster Konformationen darstel-
len. Durch die Einführung des Begriffs der ‘strukturellen Nachbarschaft’ bildet dieses
Ensemble, zusammen mit der freien Energien seiner Elemente, eine Energielandschaft.

Diese Konzepte erlauben nun, Faltungs- und Umfaltungsdynamiken von RNAs zu
untersuchen. Biologische Phänomene, wie die Regulation der Genexpression durch
RNA-Schalter, prokaryotische Attenuatoren oder strukturelle Veränderungen der ge-
nomischen RNA von Viroiden und RNA-Viren erfordern detailiertes Verständnis von
Umfaltungspfaden und deren Kinetik.

In meiner Doktorarbeit präsentiere ich neue heuristische Algorithmen basierend auf
einer abstrakten Darstellung der Energielandschaft mittels Distanzklassenpartitionie-
rung, um optimale Faltungspfade und Faltungsverhalten vorherzusagen. Großer Wert
wird hierbei darauf gelegt, diese Algorithmen auf RNA-Moleküle von biologisch si-
gnifikanter Sequenzlänge anwenden zu können. Durch Untersuchung variabler und
statischer Energielandschaften mittels stochastischer und deterministischer Methoden
können diese neuen Ansätze auch zur Vorhersage co-transkriptioneller Faltungskine-
tiken verwendet werden.

Darüber hinaus wurde eine Erweiterung vorhandener Methoden zur RNA-RNA-
Interaktionsvorhersage entwickelt, sodaß diese auch auf RNA/DNA Heterodimere,
die beispielsweise während des Transkriptionsprozesses auftreten, angewandt werden
können. Um effiziente und genaue Rahmenbedingungen für alle meine Sekundär-
strukturanalysen zu schaffen, implementierte ich die neuesten thermodynamischen
Energiemodelle in das ViennaRNA Package. Weiters wurden G-Quadruplexe in mehre-
re Programme des ViennaRNA Package eingeführt und bilden somit das erste Struktur-
motiv, das über die klassischen Sekundärstrukturen hinausgeht.

Diese neuen Verfahren können helfen, die Beziehung zwischen Strukturmerkmalen
der Energielandschaft und ihren Einfluß auf Faltungskinetik von RNA-Molekülen bes-
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ser zu verstehen. Weiters könnten dadurch neue Wege in Richtung in silico Design von
RNAs mit bestimmten Faltungsverhalten eröffnet werden und somit in stark interdis-
ziplinären Bereichen wie der Synthetischen Biologie Anwendung finden.
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1
I N T R O D U C T I O N

1.1 biological background and motivation

Amongst the most prominent macro molecules in living cells are the nucleic acids
deoxy-ribonucleic acid (DNA) and ribonucleic acid (RNA). While DNA serves as infor-
mation storage forming a template for the transcription of RNA, it was long assumed
that RNA itself merely represents an intermediate messenger RNA (mRNA) on the way
to the final gene product, a protein. Therefore, its only purpose is to provide informa-
tion flow from the DNA to the protein production facilities of the cell, the ribosomes.
This model is well known as the central dogma of molecular biology [45, 44], depicted in
Figure 1.

However, as it turned out, RNA is capable to do much more. Already at the time
when the central dogma was proposed in the 1970s, it was found that two types of
RNA, namely transfer RNA (tRNA) and ribosomal RNA (rRNA), are rather exceptional,
since their nucleotide sequence does code for any proteins. Instead, they interact
with the ribosome and play an active role in the translation of the genetic code into
proteins [163]. Later, many more so-called non-coding RNA (ncRNA)s were discovered
that, although being transcribed, do not encode proteins.

In the early 1980s, several labs discovered RNAs with catalytic activity, so-called
ribozymes, that able to cleave and ligate their own phosphate backbone (autocatalytic
ribozymes) or use other RNAs as substrates. This has been shown for instance for the
RNA component of ribonuclease P [90], the hairpin ribozyme [225], and the hammerhead
ribozyme [229, 26]. A more detailed investigation of the ribosome revealed, that the
RNA component, the rRNA, is the active part of the ribosome that catalyzes the peptide
bond between two consecutive amino acids [171, 193].

Moreover, a small nuclear RNA (snRNA) is typically bound in complexes of specific
proteins, the so called small nuclear ribonucleic particles (snRNP), and plays a signifi-
cant role in enzymatic reactions of RNA intron splicing, maintenance of DNA telomeres,
as well as the regulation of transcription in the nucleus [62, 194, 139]. In fact, RNA is
able to catalyze a wide variety of reaction types, including phosphoryl group transfer,
isomerisation of C-C bonds and hydrolysis [219, 26, 24].

In 1986, Thomas Cech proposed “A model for the RNA-catalyzed replication of RNA” [36].
This ground breaking work showed, for the first time, that RNA itself may act as a self-
replicating system without the need for any auxiliary protein enzymes. Thus, RNA
may have been among the first self-sustaining macro molecules in a prebiotic world,
prior to the emergence of the last universal common ancestor (LUCA). Its capability
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DNA

RNA PROTEIN

Figure 1: The Central Dogma of Molecular Biology. Solid and dashed arrows show general and
special transfer of information, respectively. Information transfer that was not de-
tected by 1970 [44] is indicated by missing arrows. Despite being outdated due to
new insights in the role of RNA on cellular processes, the depicted dogma still is quite
popular.

to store information, replicate itself, and act as a catalytic entity opens the possibility
of a precellular evolution,where RNAs may have been one basic step at the origin of
life, known as the RNA World hypothesis [23, 50, 83, 101, 120, 35]. This hypothesis is
also supported by the findings of quasi-species effects in RNA viruses, subviral cir-
cular RNA plant-pathogens (viroids) [43, 98], and evolutionary effects of other short,
replicating RNA sequences [144].

The last feature of RNAs that I want to mention here, is in my opinion also the
most intriguing: their role in gene regulation. For many years it was widely believed
that regulation and control over of gene expression is mainly determined by proteins
and enzymes, both on transcriptional and translational level. However, within the
last decade, more and more evidence has been provided which suggests, that RNA
itself acts as the major driving force in gene regulation and thus servers as an addi-
tional RNA based layer of gene regulation [165]. Bacterial riboswitches, for instance,
use transient structures allowing them to sense small ligand molecules or temperature
changes in their environment, in order to activate or inactive gene expression [243].
This mode of gene regulation is widely used amongst bacteria and archaea, and can
act on transcriptional, as well as translational level [235]. Many bacterial mRNAs con-
tain regulatory elements in their 5 ′ untranslated region (UTR) that cotranscriptionally
fold into structures which in turn tightly sequester the Shine-Dalgarno (SD) sequence,
and thus inhibit translation [22, 89, 232]. A complex example for an RNA based con-
trol of gene expression provides the Hok-Sok system [222, 78] in Escherichia coli. This
system constitutes a control mechanism to ensure correct cell division and plasmid
stabilization. Both, the ncRNA Sok (suppression-of-killing) and the toxin encoding Hok
gene (host-killing) reside on a plasmid, named R1. The principle of this system can
be sketched as follows: Sok binds to hok mRNA and prevents translation of HOK pro-
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tein. In the absence of Sok, Hok is expressed and the bacterium dies. The interesting
part of this system, however, lies in the details. During transcription, the Hok mRNA

becomes trapped in a translationally inactive form that masks the SD sequence. The
fully transcribed Hok mRNA then refolds into a further inactive state that is subjected
to 3 ′ exonucleolytic cleavage. As degradation proceeds, it triggers several RNA struc-
ture refolding events that finally convert the mRNA into an active form, where the SD
sequence becomes accessible to the ribosome. Hence, translation of the HOK protein
is initiated leading the death of the cell through depolarization of the cell membrane.
At this step Sok ncRNA antidote comes into play. In bacteria carrying this gene, Sok is
constitutively expressed and can bind proximal to the SD sequence of the active form
of Hok mRNA. This interaction finally triggers degradation of Hok by RNaseIII, thus
keeping the cell viable.
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1.2 the structure of this thesis

Within this thesis, four papers are presented, that set the foundation for my main
focus of research: to detect, understand, predict, and possibly design cis-acting multi-
stable RNA structures (see also Chapter 4). Of course, the methods presented here are
applicable to a wide range of RNA secondary structure related analyses. On top of
these methods and tools, the potential of applications will be discussed exemplarily
for three important bioinformatics analysis, that have not yet been published 1:

1. The detection of meta stable secondary structures, i.e. RNAs with the potential
to switch between at least two low free energy conformations.

2. A method for coarse grained simulation if RNA folding dynamics that utilizes
ab initio partitioning of the secondary structure space.

3. Cotranscriptional folding simulation and the detection of kinetic traps.

The most important toolset for in silico RNA secondary structure analysis is a frame-
work that allows efficient and accurate predictions. Such a toolset is provided by the
ViennaRNA Package [104, 137]. Although initially developed about 20 years ago, it
still is one of the most accurate and fastest Dynamic Programming (DP) implemen-
tations for RNA secondary structure prediction [75, 137]. The programs included in
the ViennaRNA Package can be used for a variety of secondary structure analyses, as
for instance (i) simple minimum free energy (MFE) structure prediction for single se-
quences, sequence alignments, and interacting RNAs [104, 20, 19], (ii) genome-wide
scans for interactions between a long target RNA and a (semi-) complementary short
query sequence [213], and (iii) the generation of sets of suboptimal secondary struc-
tures by three different approaches[264, 255, 54]. The core of the ViennaRNA Package

is a library of implemented algorithms written in the programming language C, that
allows third party applications to easily interface with the very fast realizations of the
corresponding methods. For rapid prototyping, this library is also exported to the
scripting language Perl2.

However, its a long and winding road from the development of new models to their
later application. Much effort is necessary to include them into large software projects.
This was especially true for the ViennaRNA Package. Over the past two decades, the
group around David Mathews made an enormous effort to measure melting temper-
atures for a comprehensive set of small RNA structures [227, 152, 150, 228]. These
constitute the source of the free energy parameters used in virtually all physics based
secondary structure prediction algorithms to-date. Moreover, their enduring effort to
revise previous experiments resulted in more accurate, yet more complex models. The

1 Manuscript in preparation
2 By the time of writing this thesis I also included an interface for the scripting language Python, which is

now included in the distributed source code archive of the ViennaRNA Package
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ViennaRNA Package as of the year 2008, i.e. in the beginning of my years of PhD study,
implemented an energy model that got a bit long in the tooth. Already four years had
passed since a new, more accurate model had been proposed [151].

To bring the ViennaRNA Package and its powerful set of tools back on track was there-
fore one of the top priorities on my to-do list, during my time at the TBI, the home
of the ViennaRNA Package. But as it turned out, that over the years contributions by
dozens of researchers introduced thousands of lines of redundant code. Implement-
ing the latest energy model into every single application of the ViennaRNA Package

would have required me to repeat the same task over and over again. Thus, I decided
to reimplement major parts of the software package and unify the code base to sim-
plify eventual future updates. The result of this work is presented in my publication
"ViennaRNA Package 2.0" [137], in Part iv, Chapter 7.

The development of methods that allow one to investigate multi-stable RNA sec-
ondary structures requires many different techniques. Starting with a static view on
the ensemble of secondary structure, my first steps were towards a more generalized
view on the idea of distance class partitioning using a reference structure as introduced
by Freyhult et al. [72]. This allowed me to develop an algorithm that not only predicts
meta-stable low free energy structures, but also opens up new ways to tackle various
problems requiring a deeper understanding of the entire secondary structure space.
The RNA2Dfold algorithm partitions the structure space into distance classes with re-
spect to two references, while exploiting the sparseness of the resulting DP matrices.
The latter permits analysis of relatively long RNAs as found in many biological model
systems.

My publication "2D Projections of RNA folding Landscapes" [136] sets the foundation
for my work on distance classes, see Chapter 9. Potential applications for the concept
of distance class partitioning are exemplarily discussed in much detail in Chapters 11,
and 12. They include methods for the estimation of refolding energy barriers, and
the prediction RNA folding dynamics, respectively. Moreover, efficient methods to
simulate RNA folding dynamics offer the potential to investigate the folding behavior
of RNAs under varying environmental settings. One such environmental setting is
chain growth during transcription, which is why I discuss cotranscriptional folding and
its dynamics in the context of distance class partitioning within the last section of
Chapter 12.

As further outlined in Chapters 11, 12, and 13, the ideas of distance class partition-
ing are not restricted to only two reference structures. In fact, they can be applied
to an arbitrary number of reference structures. However, the computational effort for
this purpose would render most ideas practically impossible. Thus, I suggest an alter-
native, computationally cheaper method in the last part of this thesis (see "Conclusions
and Outlook", Chapter 13).

Since RNA molecules in living cells are produced by a process called transcription,
where an enzyme, the RNA polymerase, assembles the nucleotides of the RNA accord-
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ing the sequence of a DNA template, the interplay between RNA and DNA is of utter-
most importance. This is due to the fact, that an already transcribed RNA segment of
about 8 nt, that still resides within the transcription bubble, stays attached to its comple-
mentary DNA template. Depending on the strength of this interaction, the RNA/DNA
hybrid is able to slow down the transcription process or even terminate it [174, 260].
Furthermore, RNA/DNA hybrids have been found to be involved in many more con-
texts such as gene silencing, genome stability, and DNA damage [10, 3, 113].

Thus, efficient tools are required to predict the interactions, determine their sta-
bility, and investigate the nature of RNA/DNA hybrids. Such tools must take the
concurrent intramolecular and intermolecular interactions between and within both nu-
cleic acids into account [138] (See Chapter 8, "Prediction of RNA/DNA hybrid structure").
Consequently, the predicted thermodynamic properties allow for many applications,
such as the prediction of R-loops which are known to be involved in genome instability
and DNA damage [10, 3, 113]. Additionally, such a method also allows one to develop
more sophisticated cotranscriptional folding algorithms. Here, the constant transcrip-
tion speed used in virtually all available methods to-date may be replaced by a more
elaborate approach that governs the transcription speed based on the interaction be-
tween RNA and DNA [259].

The restricted perspective of secondary structure prediction itself rules out many
structural elements that are necessary to understand the functional relationship be-
tween an RNAs structure and its environment [256, 29]. However, the extension of
the well established and efficient method of secondary structure prediction towards
tertiary interactions of RNAs is difficult, both in terms of development of efficient
models, and their accurate parametrization. A brief introduction to this topic is given
in Chapter 3.8, followed by an outlook to future perspectives in the last chapter. In fact,
many of the tertiary interactions can not be efficiently integrated into today’s structure
prediction algorithms. Nonetheless, some self-contained structural elements such as
G-Quadruplexes [249], whose thermodynamic properties have been experimentally eval-
uated [156, 261] make it possible to do exactly that: incorporate RNA modules into
fast and efficient secondary structure prediction algorithms.

Such an extension is provided with my work "2D meets 4G: G-Quadruplexes in RNA
Secondary Structure Prediction", as included in Chapter 10. Since G-Quadruplexes are
extraordinary stable tertiary structure elements which control gene regulation on the
mRNA level as parts of the 5 ′ UTR, act as recognition sites for RNA-protein interactions
of transcripts involved in brain development [212], and maintain RNA stability by
preventing degradation through exonucleases in the 3 ′ UTR, they constitute an integral
part of the life-cycle of many RNAs [249]. The potential of the described method for
G-Quadruplex prediction using secondary structure prediction algorithms is further
outlined in the last part of this thesis, Chapter 13.

This thesis starts with an historical overview of the advances in RNA secondary
structure prediction over the last four decades. Although within the last ten years or so
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many probabilistic approaches on RNA secondary structure prediction emerged [124,
57, 96], I restrict myself here to an in-depth discussion of physics (thermodynamic)
based DP approaches.Therefore, Chapter 2 sets the mathematical foundations that are
necessary for the development of all structure prediction algorithms, which are ex-
plained in detail in Chapter 3. The subsequent Chapters 4, 5, and 6 then extend from
the prospect of single secondary structures to the connections and dynamics between
them. Part iv includes the most essential publications for my hitherto research, as
outlined earlier in this section. The last part, Chapters 11, 12, and 13, includes a broad
discussion about the potential and future perspectives of the methods that I developed
for this PhD thesis.





2
R N A S E C O N D A RY S T R U C T U R E S

2.1 nucleic acid structures

From the biochemical point of view, nucleic acids such as DNA or RNA are linear or
circular biopolymers that consist of a sequence of nucleotides connected by a phospho-
diester bond. The nucleotides themselves are composed of three organic molecules, a
nitrogenous base, a five-carbon sugar, and a phosphate group. Monomers lacking the
phosphate group are termed nucleosides. In the unpolymerized state, nucleotides may
carry more than a single phosphate group. Accordingly, nucleic acid monomers carry-
ing a single, two, or three phosphate groups are named nucleoside mono-Phosphate
(NMP), nucleoside di-Phosphate (NDP), and nucleoside tri-Phosphate (NTP), respec-
tively. The main difference between nucleic acids is in the ribose, precisely in its
C2 ′ atom. While RNA has a hydroxyl group attached to this position, this group is
substituted by a hydrogen atom in DNA, hence the name deoxyribonucleic acid. Fur-
thermore, both biopolymers distinguish only a four letter alphabet in terms of the
consecutive sequence of their nitrogenous bases, the purines adenine (A) and guanine
(G), and the pyrimidines cytosine and thymine (T), where the latter is replaced by uracil
(U) in RNA (see Figure 2). In nature, nucleotides are polymerized by an enzyme, the
RNA polymerase, that catalyzes the phosphodiester bond between the C3 ′ atom of
one, and the C5 ′ atom of another ribose part. Thus, a chain molecule of nucleotides
has two free ends, 5 ′ and 3 ′, and it grows from its 5 ′ to 3 ′ end.

As a convention biochemistry discriminates four levels of abstraction for biopoly-
mers that consist of a recurring, relatively small number of distinct monomers, the
primary, secondary, tertiary, and quaternary structure. The first three of them are the
most relevant in RNA biology, exemplified for the hammerhead ribozyme in Figure 3.

primary structure The primary structure is just the sequence of monomers in
a defined reading direction along the polymer. For RNA this is the sequence of ri-
bonucleotides A, G, C, and U, read from the 5 ′ to 3 ′ end, since this is its most natural
reading direction. Typical sequence lengths of RNA primary structures vary from
about 22 nucleotides, for the short micro RNA (miRNA), to several thousand for some
mRNA transcripts.

secondary structure Similar to the two complementary strands that form the
double helix of DNA in all living organisms, RNA can form base pairs as well. How-
ever, RNA is typically found as a single molecule, where complementary parts of the

11
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Figure 2: The building blocks of an RNA. A shows the nucleosides with the riboses in the
lower left part, labeled at their C5 ′ and C3 ′ atom. Attached to the C1 ′ atom of the
ribose are the nitrogenous bases adenine, guanine, cytosine, and uracil. B lists the
three canonical base pairs, the Watson-Crick base pairs G-C, and A-U, as well as the
Wobble pair G-U. Dashed lines between the bases indicate hydrogen bonds.

same sequence allow it to fold back on itself. As in DNA, the most abundant base pairs
in RNAs are the so-called Watson-Crick base pairs, named after the heads of the team
of scientists who discovered the DNA helix in 1953 [244]. They suggested that DNA
consists of a helix of two complementary strands, bound together by hydrogen bonds
between two opposing nucleotides. Particularly, a pyrimidine pairs with a purine,
where A pairs with T, and G pairs with C, forming two and three hydrogen bonds,
respectively. This finally answered the observation made by the chemist E. Chargaff,
who found in the late 1940s, that the relative quantities of the DNA nucleotides in cells
from diverse organisms are equally correlated [38]. In 1954, A. Rich and J.D. Watson
proposed that RNA is able to form base pairs as well, having A-U pairs instead of
A-T [189]. Furthermore, RNA frequently forms an additional, energetically weaker
base pair between a G and a U, the so-called Wobble pair [233].

This set of three types of base pairs, the Watson-Crick base pairs G-C and A-U, and
the Wobble pair G-U, as depicted in Figure 2, are assumed to largely determine an
RNAs spatial arrangement, and may therefore be used to describe an RNAs confor-
mation in the most conceptional way, the secondary structure. Still, this limited number
of base pairs, the so-called canonical base pairs, are not the full story. In fact, there
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are many more types of base pairs that belong to the so-called group of non-canonical
pairs [247, 210]. However, they are generally treated as tertiary interactions and will
be only briefly discussed in Chapter 3.8. A further restriction of the arrangement of
these base pairs, conventionally used in bioinformatics dealing with RNA structure
prediction, is introduced in the next section.

tertiary structure The complete three dimensional conformation of an RNA
contributes to the tertiary structure. It is usually given as the coordinates of its atoms
in space, but also intramolecular interactions beyond pairs of nucleotides, such as
base triples, are commonly accepted to be part of the tertiary, instead of the secondary
structure. The same applies to knotted structures and pseudo knots, which are generally
treated as tertiary interactions (see Chapters 2.2 and 3.8).

Figure 3: Structures of a 49 nucleotide RNA hammerhead ribozyme taken from [229]. (A)
Primary structure as supplied in the article. (B) Secondary structure predicted with
RNAfold of the ViennaRNA Package [104] (C) Tertiary structure displayed by PyMOL,
3-D structure based on PDB-ID 1RMN

2.2 on rna secondary structures and graphs

the (formal) definition of a secondary structure As mentioned earlier,
the primary structure of an RNA, the RNA sequence σ = (N1, . . . ,Nn), is an ordered
set of letters Ni ∈ Σ from 5 ′ to 3 ′ end, where the alphabet Σ = {A,G,C,U}, and n is
the sequence length. The secondary structure s, is the set of base pairs, i.e. the set
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of pairs (i, j) of sequence positions i and j that form hydrogen bonds between each
other. Therefore, from a mathematical point of view, an RNA secondary structure
can be considered a (labeled) graph G = {V ,E}, where the nucleotides, particularly
their positions in the sequence, constitute the vertex set V = {1, . . . ,n}. The edge set
E = {(i, j)}, on the other hand, is derived from (i) the strong covalent bond between
two consecutive nucleotides (i, i+ 1), representing the phosphate backbone of the RNA,
and (ii) its pairs of hydrogen bonds between two complementary nucleotides, the base
pairs (i, j). As a convention, an RNA secondary structure is considered valid, if it
complies with the following definition.

Definition 2.1 A valid secondary structure graph G = {V ,E} can be described by an adja-
cency matrix A with entries ai,j = 1 for each (i, j) ∈ E, and fulfills the following proper-
ties [240, 242]:

1. ai,i+1 = 1 for 1 6 i < n.

2. For each fixed i, 1 6 i 6 n, there is at most one j 6= i± 1 for which ai,j = 1.

3. If ai,j = ak,l = 1 and i < k < j and i 6= l 6= j, then i < l < j.

Naturally speaking, the above definition ensures the following three conditions: 1.
the phosphate backbone is part of the graph, 2. any nucleotide is involved in at most
one base pair, and 3. base pairs do not cross each other. As a consequence, G is
a planar graph, i.e. it can be drawn on a two-dimensional plane without crossing of
its edges. Moreover, G is outerplanar, since drawn on the plane, no vertex is com-
pletely surrounded by edges. The last condition of Definition 2.1 basically excludes
non-nested structures, so called pseudo-knots, which will be discussed in Chapter 3.8.
This comes in handy for the prediction of secondary structures, as described in the
following parts of this thesis.

Furthermore, the steric configuration of an RNA does not allow for base pairs (i, j)
with j − i 6 4, thus a minimal hairpin loop length of 3 will be assumed under all
circumstances within this thesis. If not mentioned otherwise, the set of allowed base
pairs that constitute a secondary structure is restricted to the six so-called canonical
base pairs, i.e. the Watson-Crick pairs G-C,C-G,A-U, and U-A, as well as the Wobble
pairs G-U, and U-G (see Figure 2). Therefore, a secondary structure s is considered
compatible with a sequence σ if it is (i) valid, (ii) consists of canonical base pairs only,
and (iii) no hairpin loop has a length shorter than 3.

notation Throughout this entire thesis, I make use of some short, formal nota-
tions for sequences and secondary structures. This enables me to write down mathe-
matical concepts and algorithms in a more compact and convenient way. While most
of them are defined in the context of their appearance, the most frequently-used will
be introduced here.
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The ith nucleotide Ni of an RNA sequence σ will most often be denoted as σ[i],
while entire subsequences from nucleotideNi toNj are written as σ[i : j] =

(
Ni, . . . ,Nj

)
.

A pair of sequence positions i and j put in parentheses marks hydrogen bonding be-
tween the two nucleotides Ni and Nj, i.e. the base pair (i, j). For secondary structures,
the lower case symbol s = {(i, j) | 1 6 i < j 6 n} will be used to identify the set of base
pairs (i, j) they consist of. Analogous to subsequences, the notation s[i : j] indicates the
subset of base pairs {(k, l) ∈ s | i 6 k < l 6 j} = s[i : j] ⊆ s. For the ensemble of all sec-
ondary structures s compatible with a particular sequence σ, I will use the shorthand
symbol Ω.

Additionally, several distance measures to assess the similarity of two secondary
structures s1 and s2 have been proposed [214, 195, 200, 201, 27, 104]. The most fre-
quently used among them is the base pair distance dBP(s1, s2), which is the number of
base pairs the two structures do not have in common, i.e. the size of their symmetric
difference s14 s2, hence

dBP(s1, s2) = |s14 s2| = |s1 ∪ s2|− |s1 ∩ s2| (1)

with

s14 s2 =
{
(p,q) |

((
(p,q) ∈ s1

)
∧
(
(p,q) /∈ s2

))
∨
((
(p,q) ∈ s2

)
∧
(
(p,q) /∈ s1

))}
2.3 rna secondary structure representations

Since RNA secondary structures are planar graphs, they can be more or less easily
drawn on a plane. Indeed, they have been depicted in a multitude of publications
for more than 50 years [71]. While most secondary structure drawings reveal com-
mon properties, for instance equidistantly drawn nucleotides and hydrogen bonds,
the difference in the underlying layout algorithm can be large. Of course, hand-drawn
images are still used in scientific literature, too, but generally (semi-)automated ap-
proaches are the preferred way for image generation. Here, I present some of the most
commonly used forms of secondary structure representations.

circular drawing Many structure plotting algorithms derive their layout from
an initial circular representation of the molecule, that was already suggested in 1978

by Nussinov et al. [173]. Therefore, all nucleotides are placed equidistantly on a circle
that depicts the phosphate backbone of the RNA. Base pairs are then highlighted by
arcs between the corresponding nucleotides within the interior of the circle, see Figure
4 for an example. Alternatively, the circle can be replaced by a straight line with the
5 ′ and 3 ′ ends on its left and right, respectively. Such a representation is known as
linked graph representation. Both kinds of this drawings can be easily generated in an
automated manner.
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Figure 4: Different representations of a the secondary structure of an artificially designed
RNA [258]. All programs used are part of the ViennaRNA Package[104, 135]. A
"Classical plot" (radial drawing) as obtained from the RNAfold program B Mountain
plot depicting the auxiliary information of average number of enclosing base pairs,
i.e. y(x) =

∑
i<x<j pij with base pair probabilities pij. Furthermore, the positional

entropy si = −
∑
j pij · ln(pij) is shown. Base pair probabilities were computed with

RNAfold -p. See Chapters 3.4 and 3.5 for details. C Circular drawing as obtained
from the program RNAplot -t2. D Sequence and Dot-bracket annotation taken from
the output of RNAfold.

radial drawings The first more realistic drawings generated by computer algo-
rithms appeared in the early 1980s [126]. However, theses early attempts produced
many crossing helices in larger structures. Meanwhile, many more sophisticated al-
gorithms were developed [202, 30, 12]. Still, the problem of generating overlap-free
secondary structure plots that allow to easily compare structural features while being
visually pleasing is not yet solved and leaves further space for improvements. The
more recent approaches are usually implemented as standalone applications which
sometimes also allow for user interaction, e.g. rotation and translation of helices and
nucleotides [48, 47, 97]. These programs take sequence/structure pairs for input to
produce a drawing. However, most RNA secondary structure prediction programs
implement the NAVIEW algorithm developed by Bruccoleri and Heinrich [30], which
constitutes the more or less classical plot of an RNA secondary structure. It extends the
circular drawing by not placing the whole sequence on a circle but the central loop,
which usually is the loop with the most branches. It then extrudes the branching he-
lices toward the outside in optimal angles to allow enough space for the substructures,
whose layout is determined iteratively. Still, this method is not perfect and may pro-
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duce overlapping secondary structure parts. A radial drawing of an exemplary RNA
secondary structure is given in Figure 4.

mountain plots A totally different kind of secondary structure representation is
the so-called mountain plot, shown in Figure 4. This representation was suggested by
Hogeweg and Hesper [107] and it allows to visually compare RNA secondary struc-
tures in a most simplistic way. The construction of this 2D plot is straight-forward.
The x-axis denotes the nucleotide positions from the 5 ′ to 3 ′ end. Every base pair (i, j)
with i < j introduces a move in y-direction, where position i and j are associated with
the moves ’upwards’, and ’downwards’, respectively. Any unpaired nucleotide does
not change the value of y. Therefore, the y-coordinate at any nucleotide position, the
height of the mountain, reflects the number of enclosing base pairs. A peak indicates a
hairpin, where the unpaired nucleotides form a plateau enclosed by symmetric slopes
representing the enclosing stem. A plateau interrupting a sloped region indicates a
bulge if there is no other plateau of the same height on the other side of the mountain.
Otherwise it depicts an interior loop. Valleys represent the unpaired nucleotides of a
multi loop, and the exterior loop depending on whether they are above zero, i.e. y > 0,
or not, respectively (See also Chapter 3.2).

dot-bracket notation A much more compact visualization that is both human-
and machine-readable is provided by the dot-bracket notation. Here, a string of length
n composed of the characters ’.’, ’(’, and ’)’ represents the pairing pattern of an
RNA sequence with n nucleotides. Base pairs (i, j) are represented by a matching pair
of parentheses at position i and j while unpaired nucleotides are denoted as dots. An
example is shown in Figure 4.





3
R N A S E C O N D A RY S T R U C T U R E P R E D I C T I O N

3.1 decomposition of secondary structures and its implications

The definition of secondary structures, as introduced in the previous chapter 2.1, re-
veals an intriguing property. Considering a sub structure s[i : j] within the sequence
interval σ[i : j], there are only two alternatives how position i may contribute to s[i : j].
Either i has no pairing partner, or i pairs with another nucleotide k with i < k 6 j. In
the first case, where i is unpaired, s[i : j] consists of the base pairs in s[i+ 1 : j] only, i.e.
s[i : j] = s[i+ 1 : j]. Formation of a base pair (i,k), however, subdivides the structure
into two parts, one enclosed by (i,k), namely s[i+ 1 : k− 1], and the other adjacent to
it, s[k+ 1 : j]. Thus s[i : j] = s[i+ 1 : k− 1] ∪ s[k+ 1 : j] ∪ {(i,k)}. Since condition (3)
of 2.1 ensures that s[i : j] can not contain base pairs that ’cross’ (i,k), the two shorter
substructures s[i+ 1 : k− 1] and s[k+ 1 : j] can be treated independently for a large
variety of purposes.

These observations lead to a recursive decomposition scheme for RNA secondary
structures that is the basic step for a large variety of DP approaches that solve RNA
secondary structure related problems. A graphical representation of the idea can be
found in Figure 5.

number of secondary structures The first application that made use of this
recursive decomposition scheme targeted the number of secondary structures N1,n

compatible with a given sequence σ[1 : n] [240, 242]. While structural alternatives
add up to Ni,j, the combinatorial possibilities to form structures out of shorter and
independent substructures demands for a multiplicative construction. This leads to
the recursive relationship

Ni,j = Ni+1,j +
∑
i<k6j

(σ[i],σ[k])∈B

(
Ni+1,k−1 ·Nk+1,j

)
(2)

with

Ni,i = 1 and B =
{
(G,C), (C,G), (A,U), (U,A), (G,U), (U,G)

}
,

i.e. only canonical Watson-Crick and Wobble base pairs are allowed to contribute to the
set of solutions.

19
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Figure 5: Any secondary (sub)structure s[i : j] can be recursively decomposed into smaller
parts by considering only one particular nucleotide, e. g. Ni. The vertical bar in
the right-hand side of the figure separates the possibilities that emerge. Either this
nucleotide position i is unpaired and the decomposition yields the substructure s[i+
1 : j] (left part of the right-hand side), or i is paired with some other position k (right
part of the right-hand side). For the latter, the s[i : j] decomposes to the base pair
(s,k), the substructure s[i+ 1 : k− 1] it encloses, and the remaining part next to (i,k),
namely s[k+ 1 : j].

Rewriting recursion (2) in terms of the number of structures Sn compatible with a
sequence of length n, and minimal hairpin loop length m leads to

Sn+1 = Sn +

n−1∑
i=m

SkSn−k−1 (3)

with

n > m+ 1 and S0 = S1 = . . . = Sm+1 = 1.

This is most useful, since it allows to derive an asymptotic value ψ(Sn) ≈ 1.8n for the
number of secondary structures compatible with an RNA sequence of length n and
equally probable nucleotides [265, 105].

structures with maximized number of base pairs In the same year that
Waterman et al. presented their recursive decomposition scheme for RNA secondary
structures, Ruth Nussinov released the first efficient DP algorithm capable of predicting
optimal secondary structures [173]. Here, the optimality criterion is a maximization
of base pairs, hence, the algorithm solves the so called maximum matching problem.
The decomposition scheme introduced in the beginning of this section recursively
divides the space of possible structures within an interval [i : j] into combinations
of independent substructures. Now, a (sub)structure s[i : j] maximizes the number
of base pairs, if its decomposition leads to substructures with a maximum number
of base pairs again. Therefore, Bellman’s principle of optimality [15] holds, and a DP

algorithm can be developed to compute the maximum number of base pairs E in a
secondary structure s compatible with a sequence σ.

Similar to the above structure counting algorithm, Ei,j is selected from a set of
combinations of maximal subsolutions. The maximum number of base pairs for a
(sub)structure s[i : j] is either the same as for s[i+ 1 : j] (i is unpaired), or if i pairs
with some k, the score is the sum of Ei+1,k−1, Ek+1,j, and 1 for the pair (i,k). This
results in an O(n3) algorithm that requires O(n2) memory for sequences of length n.



3.1 decomposition of secondary structures and its implications 21

Ei,j = max



Ei+1,j,

max
i < k 6 j

(s[i], s[k]) ∈ B

{
Ei+1,k−1 + Ek+1,j + S(i,k)

}
(4)

with

S(i,k) = 1

Once E1.n is computed, the corresponding secondary structure smax can be deter-
mined by application of a recursive backtracking procedure. In principle, backtracking
is the reverse operation of the above forward recursion (4) that, instead of constructing
an optimal solution Ei,j, traces back the subsolutions that constitute Ei,j. For instance,
if Ei,j = Ei+1,j nucleotide i can be considered unpaired and backtracking continues in
Ei+1,j. If the opposite is true, i.e. Ei,j 6= Ei,j, then i must be paired with some k. As
soon as k is determined, the base pair (i,k) is put into smax and backtracking continues
for Ei+1,k−1 and Ek+1,j. Thus, to obtain the complete structure s[1 : n] with maximum
number of base pairs, backtracking starts for E1,n and smax = ∅.

A simple specialization of S(i,k) into a base pair type dependent scoring function

S(i,k) =


1 if (s[i], s[k]) ∈ {(G,U), (U,G)},

2 if (s[i], s[k]) ∈ {(A,U), (U,A)},

3 if (s[i], s[k]) ∈ {(G,C), (C,G)}

(5)

transforms this algorithm into a more or less crude estimator for the most stable sec-
ondary structure, by taking the individual hydrogen bond strengths into account.
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3.2 thermodynamic secondary structure prediction

Although the maximum matching algorithm as presented in the previous section, was
the first step towards optimal secondary structure prediction, its simplifications lead
to poor prediction quality. This is mainly due to the fact that the major part in struc-
ture stability is contributed by stacking interactions of the π-electron systems of two
adjacent bases, e. g. in a base pair stack, not from hydrogen bonds between two bound
nucleotides. This observation was already made in the early 1970s when researchers
performed the first RNA melting experiments to determine the free energy contri-
butions of different structure motifs [64, 224, 87, 88, 11, 28, 6, 179]. In general, it
turned out that the construction of an algorithm to compute a secondary structure
with minimal free energy, i.e. the thermodynamically most stable one, is much more
complicated and needs to distinguish base pairs according to the types of loop they
enclose.

loop decomposition Any secondary structure can be uniquely decomposed into
basic components enclosed by base pairs, its loops L, see Fig. 6. Sparse energy contri-
bution data for some of those primitive components, e.g. hairpin loops, bulge loops,
and some interior loops, were already available in the beginning of the 1980s. This
suggested that the total free energy E(s) of relatively complex structures s can be ade-
quately estimated by the sum of the free energy of its loops EL [223, 224]

E(s) =
∑
L∈s

EL. (6)

Here, the special case of the totally unfolded single stranded RNA serves as a reference
for the relative free energy E(s), hence it has a free energy of 0 kcal/mol by definition.

The decomposition of a secondary structure s into its constituent loops can be
formally defined as follows. Each base pair (i, j) closes a loop L and thereby en-
closes further unpaired nucleotides

{
u | i < u < j

}
, and possibly other base pairs{

(u, v) | i < u < v < j
}

as well. Let u with i < u < j being an unpaired nucleotide
enclosed by the base pair (i, j). We denote u immediately interior to (i, j), if there is no
other base pair (p,q) enclosing u with i < p < u < q < j. Similarly, a base pair (u, v)
with i < u < v < j is immediately interior to (i, j) if there is no other base pair (p,q)
with i < p < u < v < q < j. Using this definition, a base pair (i, j) closes a cycle in the
secondary structure graph which only consists of

1. an amount l of immediately interior unpaired nucleotides, and

2. a degree k of immediately interior base pairs (u, v).

The degree k of base pairs (u, v) on the path around such a cycle in turn determines
a k−loop of size l, where the size may also be considered the length of the loop. The
set of all k−loops constitute the faces of a planar drawing of a secondary structure
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Figure 6: The different loop types distinguished by the nearest neighbor energy model. A Six
classes of loops are distinguished, namely hairpin loops with exactly one closing base
pair, interior loops with two base pairs involved, one enclosing the loop, the other be-
ing enclosed. Interior loops that do not enclose any unpaired nucleotides are further
specialized to a stacks of base pairs, while completely asymmetric interior loops having
unpaired nucleotides only in one side of the loop make up the bulge loops. Any other
loop that consists of more than two base pairs is treated as a general multi loop, or
multibranch loop. A special case is the exterior loop, since it does not have an enclosing
pair, but only enclosed unpaired nucleotides and base pairs. B An example for the
loop decomposition of a secondary structure with a central multi loop having three
branching helices attached. The free energies of the individual loops according to the
latest nearest neighbor energy parameters [228] are drawn on their inside, and add
up to −6.5 kcal/mol in total.

(see Fig. 6). Since this set is unique for pseudo-knot-free secondary structures, it
corresponds to the unique minimal cycle basis of the structure graph [132].

From now on, I denote k-loop with k = 1 hairpin loop, loops with k = 2 as a ei-
ther a stack, if its size is 0, a bulge if there are unpaired nucleotides only on one side
between the closing and the enclosed base pair, or simply an interior loop in all other
cases. Loops with k > 2 are generally termed multi loop, or multibranch loop. All un-
paired nucleotides or base pairs not enclosed by any other base pair (i, j) reside in the
exterior loop which serves as a special case in this definition. Fig. 6 gives a graphical
representation of the distinguished loop types.

nearest neighbor energy parameters With the advent of reliable RNA ri-
bonucleotide synthesis in the early 1980s, scientists were able to design new experi-
ments to fill gaps and improve consistency in the knowledge of thermodynamic data
on RNA structures [70, 116]. However, despite the large number of experiments, where
for instance UV melting temperatures of a large variety of hairpin- and interior-loops
were measured, they cannot cover all possible loop configurations1. The enormous

1 A hairpin loop of size n has 4n possible arrangements of its loop sequence and may be closed by 6
different base pairs, resulting in 6 · 4n possibilities.
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combinatoric variability simply does not allow one to measure all of them. As a conse-
quence, the nearest neighbor energy model used in the algorithms discussed below distin-
guishes just three types of loops, namely hairpin loops, interior loops, and multibranch
loops. It furthermore distinguishes between loops of small and large sizes in terms of
the assessment of energy contributions. While tabulated, experimentally determined
parameters are used for small loops only, mathematical models serve as estimates of
the contributions for larger ones. In the past decades, the list of small, exhaustively
tabulated loops grew a lot [9, 39, 228]. To date it accounts for certain short-sized hair-
pin loops that are exceptionally stable, and interior loops with very small loop length,
such as 1− 1, 1− 2, 2− 2, and 2− 3 interior loops. For the latter, each pair of num-
bers indicates the length of the left and the right part of the loop, respectively. Some
of these tabulated energy parameters can be considered to capture the stabilizing ef-
fect of non-canonical hydrogen bonds between unpaired nucleotides within these small
loops, see also Chapter 3.8. In contrast to that, the mathematical models that predict
the free energies of larger loops, do not take the loops entire sequence into account.
They rather depend on the nucleotide composition of the base pairs that constitute
the loop and their directly adjacent unpaired nucleotides, so called terminal mismatches
and dangling ends [169, 238], hence the name nearest neighbor energy model. Furthermore,
polymer theory predicts a logarithmic growth of a loop’s free energy EL in terms of its
size l [115]. Accordingly, the model distinguishes three independent terms of energy
contributions

EL = Emismatch + Esize + Especial (7)

where Especial serves as a bonus energy for unusually stable loops, such as tetra-loops,
which are certain hairpin motifs of size 4. Within the last three decades the set of
energy parameters for this model was constantly upgraded and revised [227, 238, 152,
150, 40].

For hairpin and interior loops, this model allows for a loop decomposition that
enables the implementation of efficient DP algorithms to predict optimal secondary
structures with respect to their free energy. However, the evaluation of multi branch
loops does not allow for that, since a multiloop may consist of an arbitrary number
of branching helices, and therefore an arbitrary number of differently sized segments
of unpaired nucleotides connecting the branches. This renders a decomposition of a
logarithmic evaluation of Esize infeasible [155, 150]. While the first secondary struc-
ture prediction algorithms that made use of the nearest neighbor model simply ne-
glected the contributions of multi loops, a simple linear model is used in more recent
algorithms [155, 104]. This ensures that multi loops can be efficiently and uniquely
decomposed into their constituents. Nonetheless, most implementations allow one
to re-evaluate multi loop contributions with respect to a more sophisticated energy
model in a post-processing step [150]. The linear model only considers two properties
of the multi branch loop, namely the total number of unpaired nucleotides C (the size),
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and the number of branches B (the degree). Each of these features is assumed to be in
a linear relationship with a free energy determining parameter c and b. Furthermore,
since the closing pair of the loop introduces a restriction in the degrees of freedom of
the enclosed part, a free energy penalty for closing the multibranch loop a is added,
hence the simplistic model

M = a+ B · b+ C · c. (8)

Still, limited thermodynamic data for only a small subset of multibranch loops is avail-
able to even fit the parameters a, b, and c of this simple linear model [150]. Thus,
the multi branch loop energy evaluation can be considered the weakest part of the
nearest neighbor model. Furthermore, the nearest neighbor model neglects many sta-
bilizing nucleotide-nucleotide, and nucleotide-backbone interactions. They are rather
assumed to be parts of the so-called tertiary structure, since their incorporation into
efficient DP algorithms introduces either too much complexity in computational terms,
or parametrization is insufficient to date. Nevertheless, in Chapter 3.8 I briefly present
the nature of some of these tertiary interactions together with the concepts how to
include them in RNA structure prediction algorithms.

zuker’s algorithm In 1981, Michael Zuker presented a modification to the max-
imum matching algorithm to determine the MFE and its corresponding structure for
an RNA molecule [266]. It was the first time hairpin loops, interior loops and multi-
branch loops were distinguished in an efficient secondary structure prediction algo-
rithm. However, this first approach did not explicitly take into account potential en-
ergy contributions of multibranch loops, but simply added the contributions of its en-
closed substructures. It took another three years until secondary structure prediction
using a full nearest neighbor model, as described above, was finally published [265].

computing the mfe In principle, Zuker’s MFE algorithm follows the same de-
composition scheme that Ruth Nussinov already applied for the maximum matching
problem, see Fig. 5. The major difference, however, is that due to the distinction of
the three types of loops a single base pair (i, j) may enclose, some additional DP ma-
trices had to be introduced. Below are the recursions as implemented in the program
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RNAfold of the ViennaRNA Package [104, 137] that resemble the algorithm presented by
Michael Zuker, graphically depicted in Figure Fig. 7.

Fi,j = min

Fi,j−1,

mini<k<j Fi,k−1 +Ck,j

(9)

Ci,j = min


H(i, j),

mini<k<l<j I(i, j,k, l) +Ck,l,

a+ b+ mini<k<jMi+1,k−1 +M
1
k,j−1

Mi,j = min


c+Mi,j−1,∑
i<k<j(k− i)c+ b+Ck,j,∑
i<k<j b+Mi,k−1 +Ck,j

M1
i,j = min

c+M1
i,j−1,

b+Ci,j

While Fij may be considered analogous to Eij of Equation (4), Cij is used to store the
optimal free energy for any (sub-)structure given that i and j form a base pair. Mij and
M1
ij, on the other hand, are necessary to decompose the structural parts of a multiloop.

They are filled with the optimal energy for multiloop components with at least one
branch, and exactly one branch, respectively. It should be noted that for MFE prediction
the fourth DP matrix, M1, is actually not essential, but may be replaced byM. Still, it is
included here, since it allows for an unambiguous decomposition of multibranch loops
which, for instance, is required for suboptimal structure prediction. Furthermore, this
unique decomposition can be translated to the recursions necessary for computing
the partition function as discussed in the upcoming sections. The asymptotic time
complexity of the MFE algorithm is essentially determined by the evaluation of interior
loops. Since for any enclosing pair (i, j) any possible enclosed pair (k, l) with i <
k < l < j needs to be considered, the amount of work required scales with O(n4).
However, it is generally assumed that large interior loops are unfavorable and may be
ignored [155]. Therefore, most implementations restrict the maximal length of interior
loops to a constant lmax = 30, which in turn renders the MFE algorithm an O(n3) DP

approach. Nonetheless, Lyngsø et al. presented an MFE algorithm that manages to
compute interior loop contributions without restricting the loop length in O(n3) [141].

Once the DP matrices F, C, M, and M1 are filled, F1,n contains the minimum free
energy of all structures compatible with the RNAs sequence. A corresponding sec-
ondary structure sMFE can then be obtained via backtracking through the DP matrices,
analogously to the backtracking procedure of the maximum matching algorithm (see
Section 3.1).
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Figure 7: Decomposition scheme for the full Nearest Neighbor Energy Model. The first line
shows the decomposition of exterior loops where either a position i is unpaired, or
it is paired with some k. The second line highlights the decomposition of a base pair
(i, j). Here, (i, j) may either form a hairpin loop, an interior loop with enclosed base
pair (k, l), or a multibranch loop. For the latter, a unique decomposition into a part
with at lease one branching stem within interval [i+ 1 : k− 1], and exactly one branch
within interval [k : j− 1] is applied. Unpaired nucleotides are represented by either
an individual unconnected dot or a dashed line.

An implementation of Zuker’s algorithm can be found in the software packages
RNAstructure [188], UNAfold [147], and the ViennaRNA Package [104, 137]. The latter
will be introduced in more detail in my publication ViennaRNA Package 2.0 (Part iv,
Chapter 7 of this thesis).
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3.3 suboptimal secondary structures

Predicting the MFE structure as shown in the section before retrieves only one single
representative structure. However, RNA molecules in equilibrium are in constant flux
between different low free energy structures. Furthermore, structure predictions may
be inaccurate with no chance to assess their reliability. To circumvent this limitation,
suboptimal secondary structures, i.e. a set of several low free energy structures can be
generated giving more robust insight into the structure space.

zuker’s suboptimals The first attempt toward suboptimal structure was taken
by Michael Zuker in 1989 [264]. He presented a modification in the backtracking
procedure of his secondary structure prediction algorithm for circular RNAs that en-
abled him to produce for any fixed base pair (i, j) the optimal secondary structure that
includes this pair. Ignoring the original implementation of the Zuker’s suboptimal
structure algorithm, the MFE under the constraint that i and j form a base pair can be
formulated in terms of an outside-MFE Oij with

Oij = min



F1,i−1 +Cij + Fj+1,n

mink<i<j<lOkl +Cij + I(k, l, i, j)

mink<i<j<lOkl +Cij + a+ b+ min


(i− k− 1) · c+Mj+1,l−1

(l− j− 1) · c+Mk+1,i−1

Mk+1,i−1 +Mj+1,l−1

(10)

Here, the first line corresponds to all cases where (i, j) is an exterior base pair, i.e. it
is not surrounded by any other pair. The remaining terms cover the cases where
(i, j) constitutes the enclosed pair of an interior loop, or the left, the right or some
intermediate branch of a multi loop, respectively. The application of a backtracking
procedure that starts with each possible base pair (i, j), i.e. backtracking from Oij, then
yields the optimal secondary structure under the constraint that i and j form a base
pair (i, j).

However, although his paper had the title "On finding all suboptimal foldings of an
RNA molecule", the method he presented did not exactly do that. In fact, there are
cases where this method might miss some possibly important low free energy struc-
tures [255]. Still, since Zuker’s method of finding suboptimal structures generates only
a relatively small amount of conformations that might be taken as representatives of
the entire structure ensemble Ω structures2. Thus, this approach can be used quite
conveniently to obtain a crude estimate for the diversity of low free energy structures.

2 On a sequence of length n, there are at most (n · (n− 1))/2 possible base pairs (i, j)
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finding all suboptimal structures As stated above, the set of suboptimal
structures generated by Zuker’s suboptimal structure algorithm might miss some po-
tentially important structures. This is due the design of backtracking a single structure
only, for each fixed base pair taken into account. However, for some applications it
is crucial to know about all the low free energy structures, even if they share large
parts of substructures. When using the structure ensemble for simulation of RNA
folding kinetics, for instance, very large numbers of closely related structures need to
be generated, see Chapter 6.

A solution to this problem was provided in 1999 Wuchty et al. [255], who presented
the first algorithm that exhaustively enumerates all secondary structures within a pre-
defined energy range δ around the MFE. For this purpose, the authors of this method
applied the ideas of Waterman and Byers [241] to RNA structure prediction. While
using the MFE algorithm presented in Equation (9) to fill the corresponding matrices,
its method modifies the backtracking procedure. Instead of tracing back the exact
constituents of a particular solution in the DP matrices, it rather constructs a list S

of (partial) solutions of type (E, ŝ, I), where E is the free energy gained so far from
backtracking the substructure ŝ, and I = {[i : j]X} is a set of position intervals [i : j] in
matrix X ∈

{
F,C,M,M1

}
that still need to be backtracked.

Let’s first consider only a single partial solution in the list. The algorithm starts by
removing an interval [i, j]X from I to find the subsolutions that constitute Xij. The re-
sulting subintervals [k : l]Y with i 6 k 6 l 6 j are then inserted into I, any backtracked
base pair is inserted into ŝ, and the corresponding loop energy is added to E. This
process constitutes the backtracking procedure of Zuker’s MFE algorithm, see Section
3.2.

However, in contrast to that, the suboptimal secondary structure algorithm by Wuchty
et al. extends S with alternative backtracking routes. In particular, for any partial so-
lution (E, ŝ, I), an alternative backtracking path produces some subintervals [k : l]Y ,
possibly a base par (p,q) and a corresponding loop free energy EL. Accordingly, the
partial solution (E+ EL, ŝ∪ (p,q), I∪ [k : l]Y) is inserted into S, if the following condi-
tion is fulfilled

MFE+ δ > Xij + E+ EL +
∑

[k,l]Y∈I

Yk,l. (11)

The exhaustive backtracking procedure starts with a single list entry (0, ∅, {[1 : n]F}),
and terminates as soon as all partial solutions in S have been processed, i.e. all struc-
tures s with E(s) 6MFE+ δ are backtracked.
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3.4 the thermodynamic ensemble of secondary structures

Almost a decade after the first efficient algorithm for RNA secondary structure pre-
diction, scientists were still limited to explore only a few representative structures,
for instance the MFE structure, or some suboptimal structures. The only reliability
measure of a single secondary structure prediction, e.g. the MFE structure, was to
investigate a (possibly small) set of other structures with similar free energy and a suf-
ficient amount of unshared base pairs. However, such an approach depends strongly
on the choice of suboptimal structures to compare to and may therefore be rather arti-
ficial. A thorough, straight-forward solution to this dilemma would require taking the
complete ensemble of secondary structures into account. But exhaustive enumeration
of all suboptimal secondary structures is only possible for RNAs with very small se-
quence length. In 1990 the situation was about to change: John McCaskill presented an
algorithm to compute the partition function Q of an RNA [155]. This finally enabled
one to compute equilibrium properties of an RNA, e.g. various reliability measures,
and base pairing probabilities.

mccaskill’s partition function algorithm The algorithm presented by
McCaskill applied the physical ideas of statistical mechanics and polymer science to
RNA structure prediction. Each secondary structure s ∈ Ω compatible with a particu-
lar RNA sequence is a state within the system of structures, and is associated with a
free energy E(s). Considering the ensemble of structures in thermal equilibrium, the
frequency or probability p(s) of a particular state s follows a Boltzmann distribution,
i.e.

p(s) ∝ e−βE(s) with β =
1

kT
(12)

where k ≈ 1.987 · 10−3 kcalmol K is the Boltzmann constant, and T the thermodynamic
temperature. However, to obtain an actual probability, the above proportionality needs
to be scaled. Such a scaling factor provides the canonical partition function

Q =
∑
s∈Ω

e−βE(s) (13)

which determines the free energy of the system

G = −
1

β
lnQ. (14)

McCaskill realized that a simple change in the algebraic structure of the MFE prob-
lem, as presented in Equation (9), yields an algorithm to compute Q. In detail, the
introduced change of algebra is a substitution of each addition with a multiplication,
each minimum becomes a sum, and the energy contributions are substituted with their
Boltzmann factor counterparts.
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Qi,j = Qi,j−1 +
∑
i6k<j

Qi,k−1Q
B
k,j (15)

QBi,j = e
−βH(i,j)

+
∑

i<k<l<j

e−βI(i,j,k,l) ·QBk,l

+
∑
i<k<j

e−β(a+b) ·QMi+1,kQ
M1
k+1,j−1

QMi,j = e
−βc ·QMi,j−1∑
i<k<j

e−β((i−k)c+b) ·QBk,j∑
i<k<j

e−βb ·QMi,k−1QBk,j

QM1i,j = e−βc ·QMi,j−1 + e−βb ·QBi,j

The result is an algorithm which is generally as fast as the MFE algorithm3.

equilibrium probabilities of structural features Once the partition func-
tion Q of the ensemble of RNA secondary structures is known, it opens a great variety
of applications. Not only can the (equilibrium) probability p(s) = e−βE(s)

Q of a par-
ticular secondary structure s be predicted, but also the probability p(F) to observe
any structural feature F. Therefore, the only requirement is the partition function
QF =

∑
sF
e−βE(sF) of all structures sF that exhibit F, and

p(F) =
QF

Q
. (16)

This exact same relation was already applied by McCaskill in his 1990 article about
the partition function algorithm. Using the restricted partition function matrices Q,
QB, QM, and QM1, he presented an efficient DP algorithm to compute the equilibrium
probabilities pij =

Qij

Q for all base pairs (i, j) in O(n3). Since in this case, the structural
feature F is the base pair (i, j) the restricted partition function QF = Qij has to be
computed. This can be done analogously to the outside-MFE algorithm presented for
Zuker’s suboptimal structures in Section 3.3. Therefore, Qij = Q̄ij + Q̂ij is divided
into two parts. The first part, Q̄ij which comprises all structures where (i, j) is an

3 Despite the fact that both algorithms share the same asymptotic time complexity, actual execution time
on a real physical machine may differ a lot. Not only may multiplication take longer on a CPU than an
addition, but, depending on the type of CPU, there may also be differences in the number of clock cycles
any other operation requires for floating point numbers compared to integer numbers.
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exterior base pair, thus not enclosed by any other pair (k, l) with k < i < j < l, can be
computed straight forward:

Q̄ij = Q1,i−1 ·QBi,j ·Qj+1,n. (17)

All remaining cases, where (i, j) is the enclosed part of an interior loop, or the left, the
right, or an intermediate part of a multi branch loop, contribute to Q̂ij. Taken together,
the equilibrium probability pij of a base pair (i, j) evaluates to

Pi,j =
Q1,i−1 ·QBi,j ·Qj+1,n

Qi,j
(18)

+
∑
(k,l)

k<i<j<l

Pk,l
QBij

QBk,l
· e−βI(k,l,i,j)

+
∑
(k,l)

k<i<j<l

Pk,l
QBij

QBk,l
· e−β(a+b)

·
(
e−β(i−k−1)c ·QMk+1,i−1

+ e−β(l−j−1)c ·QMj+1,l−1

+QMk+1,i−1 ·QMj+1,l−1

)
With respect to the sequence length n, the sums in the above equation introduce
a quadratic time complexity. An algorithm to compute all pij, again, introduces
quadratic evaluation for all base pairs (i, j) as well. Hence, the recursions of Equation
(18) suggests an asymptotic time complexity of O(n4). However, by introducing some
changes of the order in which the sums are evaluated, and the usage of additional
dynamic programming tables, an O(n3) algorithm can be constructed [155].

stochastic sampling from the boltzmann ensemble The partition func-
tion matrices as computed in equation (15) also allow for construction of secondary
structure representatives. Particularly, it allows one to sample suboptimal structures
s according to their equilibrium probability p(s). This can be achieved by application
of a backtracking procedure that operates on the partition function matrices Q, QB,
QM, and QM1, rather than the minimum free energy matrices [54]. Therefore, the
algorithm has to select the base pair pattern, and thus the decomposition tree, by ran-
domly choosing a decomposition step according to its probability mass. For instance,
upon backtracking in Qi,j, the decomposition scheme distinguishes two possibilities
(see Equation (15), first line). Either j is unpaired, or j is paired with some nucleotide
i 6 k < j. The contribution of both cases to Qi,j are (a) Qj-unpaired = Qi,j−1 and (b)
Qj-paired =

∑
i6k<jQi,k−1Q

B
k,j, respectively. Thus, the probability of j being unpaired
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is p(j-unpaired) =
Qi,j−1
Qi,j

, while the probability of j being involved in a base pair is

given by p(j-paired) = Qj-paired

Qi,j
. Given a random variable 0 6 r 6 1, the decision of

which of both backtracking paths to follow can be done easily. If Qi,j−1 > r ·Qi,j, j
is considered to be unpaired and backtracking has to proceed in Qi,j. Otherwise, the
pairing partner k that forms a base pair with j has to be evaluated. Using the auxiliary
function

Z(k, i, j) = Qi,j−1 +
∑
i6u<k

Qi,u−1Q
B
u,j (19)

the first i 6 k < j that fulfills the inequality r ·Qi,j < Z(k, i, j) is chosen, and back-
tracking proceeds in Qi,k−1 and QBk,j. The application of this principle to all decom-
positions of the recursion scheme in equation (15) then results in an O(n2) algorithm
which constructs secondary structures based on their equilibrium probability.
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3.5 reliability measures and representative structures

Base pair probabilities and probabilities of larger structure components like helices
may be useful to gain insights into the diversity of the ensemble. However, the result-
ing number of descriptors can rapidly grow very large, and thus may not be suitable
for representation. Instead, a single or a small set of structure representatives is cho-
sen. Here, the problem arises, that such representatives may be misleading since they
aim to represent a larger structure space. For instance, sometimes the MFE structure
may be a wrong choice as a representative, it is after all only the structure with highest
equilibrium probability. There may be other structures with similar probabilities but
different base pairs. Furthermore, it is not guaranteed that the RNA actually reaches
its equilibrium state within its lifetime, i.e. before degradation.

Hence, measures are necessary to judge the reliability of (parts of) a representative
structure. Some of these measures can be used to obtain a global reliability that usually
depicts how diverse the structures space is. In contrast to that, a nucleotide position
wise local reliability may tell how trustworthy individual pairing patterns of a particular
representative structure are.

Finally, instead of assessing the reliability of a given structure, the approach can be
turned around to construct representative structures which are most reliable according
to certain requirements. Two examples that implement this kind of construction, the
centroid-, and the MEA-structure, will be discussed below.

structural diversity of the ensemble A classical and widely used global
reliability measure that reflects the diversity of structures within the ensemble Ω in
one single number is the mean equilibrium distance

〈d〉 =
∑
s,t∈Ω

p(s) · p(t) · d(s, t). (20)

The choice of the base pair distance dB(s, t) as distance measure d between two sec-
ondary structures s and t allows to rewrite Equation (20) in terms of base pair proba-
bilities pij. It turns out that 〈d〉 is the sum of all pairing probabilities weighted against
their propensity of being unpaired

〈d〉 =
∑
ij

pij · (1− pij). (21)

Considering only a single base pair (i, j), the largest diversity in the structure ensemble
requires that its pairing status is undecided, i.e. pij = 0.5. Then, the score pij · (1−
pij) = 0.25 is maximal, and 〈d〉 becomes larger the more diverse the complete structure
ensemble is.

positional entropy Originating from information theory, a commonly used lo-
cal reliability measure is given by following Shannon’s entropy formula [199] to re-
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Figure 8: Two methods to assign reliability measures to secondary struc-
ture predictions. Exemplary shown for an RNA with sequence
GGGCGCGGUUCGCCCUCCGCUAAAUGCGGAAGAUAAAUUGUGUCU and ensemble diversity of
5.95, artificially designed to adopt two distinct low free energy states. On the
left side of the figure the positional entropy for each nucleotide is depicted. On
the right-hand side base pairs (i, j) are colored after their pairing probability,
i.e. pij, whereas unpaired nucleotides i depict their propensity to stay unpaired,
i.e. qi = 1−

∑
j pij. A shows the MFE structure predicted with RNAfold [104, 137]

with minimum free energy of −17.7 kcal/mol. B represents the designed meta-stable
state with free energy of −17.2 kcal/mol.

trieve the so-called positional entropy S(i). This allows for a position-wise assessment
of the information whether or not a nucleotide i is mainly paired or unpaired within
the ensemble of possible structures:

S(i) = −
∑
k

pik log2 pik + (1− pik) log2(1− pik) (22)

Here, S(i) = 0 if position i shows no entropy within the ensemble, i.e. it exhibits the
same state (paired or unpaired) among the whole ensemble, whereas higher values
reflect its tendency to occur in diverse contexts (See Figure 8). Therefore, predictions
for positions with low positional entropy can be considered more reliable than those
with high entropy.

the centroid structure Sometimes, it is hard to obtain a good structure repre-
sentative, especially in ensembles of high structural diversity. In these cases, it might
be useful to look at a very special structure that somehow represents the Boltzmann
weighted mean of the ensemble. Such a representative is the centroid structure. It is
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defined as the structure sc which minimizes its Boltzmann weighted distance dΩ to
all other structures in the ensemble. Hence,

dΩ(sc) =
∑
s∈Ω

p(s)d(sc, s). (23)

The most simple distance measure d one can use here, is the base pair distance dBP(si, sj),
i.e. the number of base pairs si and sj have not in common. Interestingly, it turns out
that using dBP, this structure can be easily constructed by the set of all base pairs with
a probability pij > 0.5.

structures that maximize an expected accuracy As shown above, the
more probable a certain structural feature is, the more reliable will be the prediction
of its state.4 Hence, one can ask to construct a structural representative that consists
of the most probable structural features, e.g. base pairs. Such a structure would then
yield the highest accuracy, or Maximum Expected Accuracy (MEA). Assuming that the
base pair probability pij serves as a good measure for correctness of the pair (i, j), the
following equation has to be maximized

EA(s) =
∑

(i,j)∈s

2γpij +
∑
i

@(i,j)∈s

qi (24)

with

qi = 1−
∑
j

pij.

Here, γ serves as a factor that allows weighting of paired against unpaired positions.
This, again, leads to an optimization problem that can easily be solved by a Nussi-

nov style DP algorithm (see (4)). Instead of counting the number of base pairs, their
probabilities need to be summed up. Similarly, for unpaired positions i their probabil-
ity to be unpaired qi must be taken into account. After a successful forward recursion
to determine the MEA score, a backtracing procedure can be applied to retrieve a cor-
responding structure.

4 Here, a feature can be the pairing state of a single nucleotide i. Of course, in this context, the more
probable means it is mostly paired or unpaired, i.e. pi >> 0.5 or qi >> 0.5.
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3.6 classified dynamic programming approaches

All the DP algorithms discusses so far are variations of a same common scheme to
determine certain properties. They generate a search space of candidates, which usu-
ally grows exponential with the input size, and evaluate certain features in polynomial
time through application of a recursive decomposition of the problem. Of course, such
a method can only be applied if Bellman’s Principle of Optimality holds [15], i.e. "An
optimal policy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision". In other words, an optimal solution for the actual
problem can be constructed from optimal solutions of smaller subproblems. For in-
stance, the DP algorithms discussed in the previous sections, count the number of
structures, compute the MFE, base pair probabilities, and so on, all from subsolutions
of a smaller problem. However, in some analysis it would be better to partition the
search space and analyze each of the partitions independently. With such an approach,
one could retrieve e.g. the best representative of each partition, or the base pair proba-
bilities of all structures within a certain subclass of structures, or even the probability
of the subclasses themselves. Furthermore, one could ask for the number of partitions
a particular classification scheme generates. Such approaches are termed classified
dynamic programming (classified DP), since they subdivide the underlying state space
into classes before evaluation. Although some methods that implement classified DP

for RNA secondary structure analysis were published within the last decades, a for-
malism that separates the generator of the search space from the evaluation of each
candidate was first introduced in the work on Algebraic Dynamic Programming (ADP)
of the group around Robert Giegerich [80, 196, 197, 209]. Their formalism allows for
an easy way to express complicated combinations of DP approaches, such as classified
DP, in terms of grammars. Though, abstractions of functional programming languages
and specialized compilers are used to actually implement ADP. While first approaches
like ADP as an extension of the functional programming language Haskell, or the
GAP-compiler [196, 197] had a relatively large trade-off between the ease of formalism
and performance in terms of runtime, recent tools like ADP-fusion [109] produce code
that performs close to hand-optimized C implementations.

Some remarkable approaches that implement a classified DP scheme are RNAshapes [81],
RNAbor [72], RNAHeliCes [111], and RNA2Dfold [136], which, except for RNAshapes, were
originally developed without the explicit notion of classified DP. Below, I introduce a
small collection of classified DP algorithms in more detail. The algorithm of RNA2Dfold
that partitions the secondary structure space into distance classes with respect to two
initially chosen reference structures is presented in Part iv, "2D Projections of RNA
folding Landscapes", Chapter 9.
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classification order and complexity In general, a classified dynamic pro-
gramming approach introduces a particular classification order, which states how fast
the number of classes grows relative to the size of the actual search space. In prin-
ciple, the previously described algorithms for MFE, or partition function algorithms
are classified DP algorithms too. But their order is of type O(1), i.e. their number of
classes is bound by a constant, in particular for these examples the number of classes
is exactly 1, namely the whole ensemble of secondary structures. Any other classifi-
cation that distinguishes between a fixed number of features in the search space is of
constant order O(1) as well. However, some classifications may result in a growing
number of partitions, with respect to the input size. Here, the number of classes may
grow linearly, in some polynomial order k, or even exponential, hence their classification
orders are O(n), O(nk), or O(an), respectively. Still, the number of classes for any
given input can not be larger than the search space, it is usually much smaller. As
one would expect, the order of classification has a strong influence on the asymptotic
complexity of such algorithms, and therefore, must be carefully investigated.

In detail, any classification C of order O(f(n)) splits up the search space in f(n) parti-
tions. For each of them, some DP analysis B with asymptotic complexity of polynomial
order k, i.e. B ∈ O(nk), is carried out separately. Classified DP is then the product
of the classification algebra C and evaluation algebra B denoted by

(
C ∗B

)
[197]. In

the case of RNA secondary structure prediction the total efficiency of the classified
analysis5 is(

C ∗B
)
∈ O(n2f(n) · (f(n) ·n)k−2). (25)

Here, the first term, n2f(n), specifies the memorization requirements of (C ∗B), while
the remaining factor of (f(n) · n)k−2 accounts for the work required to obtain a par-
ticular subsolution. As a consequence, the efficiency of an algorithm is unchanged6,
if the classification is of order O(1), remains polynomial if C ∈ O(nk), and becomes
exponential, if C ∈ O(an).

density of states Among the many secondary structures an RNA molecule is
capable to adopt, secondary structure prediction algorithms usually compute the one
with lowest free energy, i.e. the ground state. But for the assessment of how well defined
the predicted ground state is, it is crucial to know about alternative structures that also
exhibit low free energies. In the previous sections I already presented such measures,
e.g. using the partition function to obtain base pair probability derived reliability
measures (see Chapter 3.5). Another, though computationally expensive, method was

5 This formula does not necessarily apply to arbitrary classified DP algorithms. The n2 factor captures the
number of possible subsolutions, i.e. each subsequence interval [i, j] of an RNA sequence. Furthermore,
it is assumed that the additional work required for any subsolution is determined only by the order of C,
hence f(n).

6 Nevertheless, the introduction of a classification scheme will certainly introduce a additional constant
factor to the algorithms asymptotic complexity in terms runtime and memory requirements
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sketched in Chapter 3.3, the exhaustive enumeration of all suboptimal secondary struc-
tures within a certain energy interval δ around the MFE. Once a set of suboptimals is
generated, one can derive the diversity and connectedness of structural alternatives.
Here, I want to introduce an alternative to these approaches that counts the number of
possible structures with free energy ε, the so-called density of states. Such approaches
typically divide the range of free energies into a set of discrete bins, depending on the
resolution of the energy evaluation, and the requirements for a particular application.
In 1993 Paul G. Higgs explored the thermodynamic differences between structures of
real tRNAs and random RNA sequences of the same length [103]. Utilizing a crude
algorithm to compute the density of states, he found that not only real tRNAs have
more folded configurations than random RNAs, but that the ground state of an actual
tRNA has fewer low free energy competitors. However, his method was only applica-
ble to relatively short sequences and required enormous amounts of memory, since it
first exhaustively enumerates all possible structures, and only then evaluates their free
energies to cluster them into discrete bins according their energy.

In 1996, Cupal et al. presented the first DP algorithm to compute the density of
states for an RNA [46]. Using the common decomposition scheme of RNA secondary
structures (see Figure Fig. 7), their algorithm computes the density of states N(ε) for
all ε of fixed resolution 0.01 kcal/mol. Although the notion of classified DP was not
common at this time, their algorithm constitutes a nice example. Here, the classifica-
tion C is based on free energy, in particular each class consists of all structures with
energy ε. To make the idea clear, I use the simple Nussinov energy model (see Chapter
3.1) with energy score S(k, j) for each base pair (k, j) for the following equation. Under
this model the number of structures N(ε) with energy ε can be computed by

Ni,j(ε) = Ni,j−1(ε) (26)

+
∑
ε ′

Ni,k−1(ε
′) +Nk+1,j−1(ε− ε

′ − S(k, j))

Since the minimum free energy of an RNA sequence scales linearly with the se-
quence length [69], the number of ε-classes does as well, i.e. C ∈ O(n). According to
Equation (25), the algorithm that Cupal et al. proposed has an asymptotic time com-
plexity of O(n5) and space requirements of O(n3), because the energy evaluation using
the nearest neighbor energy model requires time proportional to n3, i.e. B ∈ O(n3).

rna shapes It has been stated before, that predicting only a single secondary struc-
ture representative is usually not sufficient to effectively understand the potential role
of an RNA. For some tRNAs, for instance, the MFE structure predicted with the nearest
neighbor energy model is a rod-like helix interspaced with some small interior loops
and bulges, rather than the commonly known cloverleaf structure. Only an inspection
of a relatively large set of suboptimal structures reveals, among others, the central
multi loop from which four helices emanate. However, even for such small RNAs, one
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Figure 9: Abstract Shapes of an RNA. On top, an RNA sequence and its corresponding struc-
ture in dot-bracket notation is shown. Below are the results of the five distinguished
abstract shape levels for secondary structures according to Giegerich et al. [81].

is easily overwhelmed with the large variety of possible structures, and it can hardly
be decided which of them might be biochemically relevant.

A solution to this dilemma was presented by the shape abstraction of RNAs as in-
troduced in 2004 by Giegerich et al. [81]. Their RNAshapes algorithm abstracts from
individual base pairs and their actual location on the sequence, while retaining the
nestedness of helices and hairpin loops. For each of the resulting shapes a representa-
tive structure with minimal free energy, a so-called shrep, is computed. Offering five
levels of abstraction, see Figure 9, this approach allows for a fast visual inspection of
structural alternatives. For instance cloverleaf like structures are clustered together
into the same shape, no matter where the location of the multi loop is, or how long
the branching helical arms are. Although the number of possible shapes of an RNA
structure grows exponential with the sequence length, it does so way slower than ac-
tual number of secondary structures [81]. Furthermore, the RNAshapes approach was
extended to compute equilibrium shape probabilities, which allow to asses the pro-
portional ’volume’ of structures of a given shape. This can help to identify the most
probable candidate shape, represented by its shrep. It may even help to identify RNA
switches, i.e. RNAs that can exist in at lest two distinct structures with low free en-
ergy, since one would expect that the corresponding shape classes of their meta-stable
states subsume a relatively large portion of the probability density compared to other
classes [236].

From the computational point of view, the RNAshapes algorithm is a classified DP

approach, where the number of classes grows exponentially with the input size n,
i.e. C ∈ O(an). Hence, its asymptotic time complexity (C ∗B) ∈ O(bn) is exponential,
too, though with a small base b. The first implementation of RNAshapes was done
in an ADP framework using the programming language Haskell. This rendered the
program rather slow and limited its application to RNAs with sequence lengths up to
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about 150 nt. However, by using clever heuristics, and omitting shape classes of low
probability, the latest RNAshapes implementation is speed up substantially. Therefore,
their method becomes applicable to RNAs with lengths up to 800 nt [117]

rnabor For the sake of riboswitch detection, Freyhult et al. developed an ab-initio
RNA secondary structure space partitioning that clusters structures according to their
base pair distance to an initially chosen reference structure [72]. The basic idea behind
this approach is, that next to the MFE structure, a biologically relevant meta-stable state
should (i) be somewhat distant to the MFE itself in terms of structural similarity, (ii)
exhibit a relatively low free energy, and (iii) be separated from the MFE structure by a
sufficiently large energy barrier to show a switch like behavior.

Conceptually, the classes introduced by their algorithm, RNAbor, are determined a
priori by choosing a reference structure s1. Any structure s ∈ Ω with dBP(s, s1) = κ

is assigned to a corresponding distance class ακ. The algorithm then determines sev-
eral thermodynamic properties, such as the MFE, a corresponding secondary structure,
and the partition function for each of the resulting classes. Since the base pair dis-
tance between any two secondary structures grows linearly with the sequence length7,
the number of distance classes grows linearly as well, i.e. C ∈ O(n). Therefore, the
overall time complexity of distance class partitioning with respect to a single reference
structure becomes (C ∗B) ∈ O(n5), with memory requirements of O(n3).

7 The linear growth of the distance classes can be easily seen. According to the definition of secondary
structures the maximum number of base pairs for any sequence of length n is bound by n/2. Assuming
that there exist two structures with maximal number of base pairs si and sj which are maximally apart
from each other in terms of base pairs, i.e. si ∩ sj = ∅, their distance is at most n/2+n/2 = n.
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3.7 nucleic acid interactions

Many RNA folding problems involve not only the prediction of secondary structures
of a single RNA, i.e. intra-molecular base pairs, but deal with the interaction of two
or more sequences, and thus require the prediction of inter-molecular base pairs. Sev-
eral non-coding RNAs (ncRNAs) are involved in gene silencing and repression in a
post-transcriptional manner. In bacteria, the most prominent class of such RNAs are
the small RNA (sRNA) which, amongst other things, bind to their target mRNA via an
antisense sequence [243, 211]. In plants and animals, such RNAs are known as small
interfering RNA (siRNA), and miRNA [154, 63, 220, 161]. After formation of the RNA
dimer helices, the resulting complex is recognized by the cells molecular machinery
and subsequently degraded [251]. Consequently, they constitute an RNA-mediated
down-regulation of gene expression. Furthermore, many other biological processes
rely on RNA-RNA interaction. RNA editing, rRNA modification, splicing, and devel-
opmental regulation are performed and regulated by small nucleolar RNA (snoRNA)s,
snRNAs, and miRNAs [237, 13, 153].

Whereas siRNAs are almost perfectly complementary to their target sequence, this is
not necessarily true for miRNA and sRNA. They are able to form more or less complex
structures with interwoven inter- and intra-molecular helices [237, 153, 165]. Therefore,
to better understand the interaction between two RNAs, in particular the competi-
tion between intra- and inter-molecular base pairs, methods for RNA-RNA secondary
structure prediction are necessary. An extension to the approaches described below,
that takes the hybridization of the two naturally occurring nucleic acids RNA and
DNA into account is presented in Part iv, Chapter 8, with my work on "Prediction of
RNA/DNA hybrid structures".

inter-molecular pairs only The most simple way to predict RNA dimer in-
teractions is to neglect intra-molecular base pairs at all. Such approximative meth-
ods are described in literature many times and have been implemented in the pro-
grams RNAhybrid, RNAduplex, GUUGle, RNAplex, DINAMelt, and many others [185,
51, 79, 213]. However, there is no biologically motivated reason to assume that the
involved RNAs only form inter-molecular base pairs. Though, these methods are gen-
erally much faster than any other thermodynamics based approach with asymptotic
run times spanning from O(n logn) (GUUGle) to O(n ·m) (RNAhybrid, RNAduplex)
where n and m are the lengths of both RNA sequences, respectively. In general, these
methods are used to scan a (longer) target RNA for potential binding sites with a
(shorter) query RNA. Hence, the algorithms allow for RNA-RNA duplex prediction in
linear time with respect to the target RNAs length.

sequence concatenation method Another simple, yet more thorough ap-
proach is to simply concatenate both RNAs and predict secondary structures with
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the Zuker algorithm (see Section 3.2) for the resulting hybrid sequence [104]. Here,
only a handful of small modification are necessary to deal with the loops that contain
the artificially introduced cut point. In particular, the loop length restriction to at least
3 unpaired nucleotides is invalidated, and the resulting inter-molecular loop motifs
are handled as a special kind of exterior loop with an additional destabilizing energy
contribution Eduplex to account for loss of entropy due to the hybridization of both
molecules. As a result, this method provides an O((n+m)3) algorithm to predict a
certain class of possible RNA-RNA hybrid secondary structures by taking intra- as
well as inter-molecular base pairs into account. The program RNAcofold implements
this method for Zuker’s, and McCaskill’s algorithm, enabling it to MFE, partition func-
tion, base pair probabilities, as well as MEA- and centroid structure [19]. Furthermore,
it allows to predict the equilibrium concentrations of duplex structures.

A generalized approach to predict secondary structure hybrids where more than
two RNA molecules are involved was already proposed for minimum free energy
structures in 1994 [104]. It’s partition function variant was published in 2007 by Dirks
et al. [56]. Here, the authors presented a method that deals with the combinatorial
symmetry issues arising when RNA hybrid structures are predicted. In particular,
they suggest corrections to the partition function, that may occur due to over-counting
of symmetrical structures.

As noted before, the sequence concatenation method is restricted, as it can not
predict RNA-RNA interactions that form pseudoknots in the concatenated sequence.
However, such interactions, like the kissing hairpin motif, are quite common in na-
ture [31, 73], and may not be excluded for some bioinformatics analysis, see also
Fig. 10 of Section 3.8.

hybridization as a two-step process A more sophisticated approach is to
consider the binding of one RNA to another a two-step process, (i) removal of intra-
molecular base pairs from the the interaction sites, and (ii) hybridization of both
molecules. Hence, the total free energy ∆G of such a structure takes the form

∆G = ∆Gu +∆Gh (27)

with the energy contribution necessary to expose the binding site(s) ∆Gu, and the gain
in free energy by hybridization at the binding site [167]. For most applications, it is
sufficient, to compute ∆Gu only for one of the sequences. Especially in sRNA-mRNA
or miRNA-mRNA target prediction, the length of the query sequence, i.e. the sRNA or
miRNA, is usually much smaller than that of the target, i.e. the mRNA. In such cases
∆Gu has to be computed only for the target sequence. Two approaches employing
this exact scheme have been proposed. However, both of them are limited to only
a single interaction site, since they compute ∆Gu just for independent continuous
subsequences.
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The RNAup algorithm [167] computes ∆Gu up to some user specified window size
w and the hybridization energy ∆Gh for any possible interaction site according to an
RNAhybrid like approach. The best RNA-RNA interactions in terms of ∆G are then re-
turned for each position along the target sequence. Although the free energy to expose
an unpaired stretch of length w is only computed for the longer RNA sequence, its
asymptotic complexity in time and memory are quite high with O(n3 + nw5) and
O(n2 + nw3), respectively. A similar method is implemented in the program In-
taRNA [32]. Utilizing ∆Gu contributions precomputed by RNAplfold [18, 21] in O(nL2)

time, where L is the size of the locally folded subsequence, and enforcing the interac-
tion between both RNAs to start with a user-defined seed makes this approach much
faster than RNAup. In particular, the authors reduced the memory requirements of
their approach to O(nm), whereas the asymptotic time complexity is O(n2m2)8.

rip and its limitations The generally unrestricted RNA-RNA interaction prob-
lem (RIP), i.e. the prediction of RNA-hybrid secondary structures that may form
pseudo-knot like structures, was first dealt with independently by Dmitri Pervouchine
and Can Alkan et al. in 2004 and 2006, respectively [177, 5]. Although the general,
unrestricted RIP is NP-hard [5], in both approaches a polynomial time algorithm was
developed that enables the computation of a subclass of RNA-RNA hybrid secondary
structures. Pervouchine’s IRIS algorithm utilizes a crude base pair energy model,
comparable to Nussinov’s maximum matching algorithm. Furthermore, the algorithm
restricts the possible base pair interactions to nested intra-molecular pairs, i.e. there
are no crossings between any intra-molecular base pairs within each sequence, and
nested inter-molecular base pairs. Hence, any two inter-molecular base pairs (ix,ky)
and (jx, ly) imply that if i < j, also k < l and vice versa. This enables the IRIS al-
gorithm to compute an optimal RNA-RNA interaction according the simple energy
model, with O(n2m2) memory-, and O(n3m3) time requirements. The approach of
Alkan et al., on the other hand, discusses the RIP under the more sophisticated near-
est neighbor energy model. Along with a prove for the NP-completeness of the general
problem, they define all RNA-RNA hybrid structures that comply to the nestedness
assumptions as used in the IRIS algorithm as valid. Then they develop an algorithm
that enables to solve the RIP for valid RNA-RNA hybrids with an asymptotic time
complexity of O(n3m3).

Still, both approaches described above only compute a single, yet optimal secondary
structure representative according to the energy model used. The computation of
the partition function for valid hybrid structures, however, requires an unambiguous
decomposition scheme, which was first published in 2009 by Chitsaz et al. [41]. In the
same year, Huang et al. independently developed the same decomposition scheme
for the partition function [110]. Huang et al. furthermore extended their algorithm

8 Here, the time and memory requirements to pre-compute ∆Gu with RNAplfold are assumed to be negli-
gibly small.
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with appropriate data structures to compute thermodynamic ensemble features, such
as base pair probabilities, and probabilities of hybrid formations.
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3.8 beyond secondary structures

All the algorithms and methods discussed so far make use of the same scheme, the
loop decompositions of the nearest neighbor energy model. This model serves very
well for most applications with a prediction accuracy of up to 75% [135]. Still, it ne-
glects many properties of a folded RNA that could in principle be considered part of
the secondary structure too, possibly increasing its predictive power. Most of these
properties have been found experimentally by three-dimensional RNA structure iden-
tification using NMR, X-Ray crystallography, or chemical probing [176, 234, 108, 134].
Among these features is a whole new realm of possible pairwise edge-to-edge inter-
actions between nucleotides, the so-called non-canonical base pairs. In fact, apart from
the Watson-Crick edge, a nucleotide has two additional edges available for base pair-
ing. Although non-canonical base pairs do not occur as frequently as the canonical
Watson-Crick base pairs, they still give rise to the distinct tertiary structures of many
RNAs [131, 210]. Furthermore, due to the ability to take part in base pairing with more
than one edge, an RNA is not limited to pairs of bases, but a nucleotide may exhibit hy-
drogen bonds with more than one nucleotide, e.g. to form base triples [2]. One of the
most remarkable structure motifs consisting of base triples is the G-Quadruplex, that
forms a stack of adjacent G-quartets, i.e. planar assemblies of four guanosines [119].

Last but not least, the presumed nestedness for RNA secondary structure loops as
introduced in Section 2.2, does not always hold. There are many examples where an
RNA forms base pairs, that would introduce crossing edges in the resulting secondary
structure graph, so-called pseudo-knots. Two hairpin loops with (partly) complemen-
tary loop sequence, for instance, may form a small, Watson-Crick paired helix, the
kissing hairpin motif [31]. A comprehensive overview of possible loop-loop interac-
tions can be found in the reviews of Batey et al. [14], and Butcher et al. [33].

Despite the fact that the above properties of RNAs show a high relevance in bio-
logical and biochemical terms, their inclusion in prediction algorithms introduces an
undesirable complexity, and/or poor predictive performance in many cases. Never-
theless, I want to briefly introduce some approaches that approach the problem of
tertiary structure prediction within this section. In Part iv Chapter 10 "2D meets 4G: G-
Quadruplexes in RNA Secondary Structure Prediction", I present a method to include the
self-contained tertiary structure motif of G-quadruplexes into RNA secondary structure
prediction algorithms.

pseudo-knots Since the beginning of efficient computational secondary structure
prediction it was known, that the nearest neighbor energy model discards a certain
class of looped structures, the pseudo-knots[190]. First discovered as long-range interac-
tions in RNA viruses [204, 208], these loop motifs arise when a looped region, typically
a hairpin loop, pairs with another unpaired part outside its enclosing helix, see Fig-
ure 10 for some examples. This allows the RNA to form more compact structures by
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Figure 10: Different types of pseudo-knots with base pairs indicated as blue dashed lines. A
An H-type pseudo knot with initial hairpin and base pairs between its loop region
and some part outside its enclosing stem. B A bulged region pairs with some
part outside the interior loop forming a B-type pseudo-knot. Loops where regular
interior loop region(s) pair with some other part are generally termed I-type. C A
kissing hairpin motif. D A densely packed H-type pseudo-knot with triple helices
and coaxially stacking stems.

minimizing the amount of unpaired nucleotides, and maximization of the stabilizing
effects of base pair stacks. Meanwhile, many more RNA pseudo-knots have been dis-
covered, and their importance in several biochemical contexts has been revealed. They
can exhibit enzymatic activity, control gene expression, regulate genome stability, and
seem to play an active role in the replication of some RNA Viruses [208, 178, 25, 170].

The topology of pseudo-knots violates the nearest neighbor energy model. In detail,
a pseudo-knotted structure exists if any nucleotide p enclosed by a base pair (i, j) with
i < p < j forms a base pair (p,q), with q < i or q > j. Such ’crossing’ base pairs can be
arbitrarily interleaved to form more or less complex structures. The enclosing helices
of a pseudo-knot may gain an additional stabilizing contribution from stacking on top
of each other. Furthermore, the looped regions sometimes form base triples with their
enclosing helices. As a consequence, the looped region of pseudo-knots can not easily
be decomposed in algorithmical terms. In fact, the problem of predicting arbitrary
pseudo-knots has been shown to be NP-complete [4, 140]. This is probably the main
reason why most secondary structure prediction algorithms simply ignore them, and
consider pseudo-knots as part of the tertiary structure instead.

Nonetheless, for some particularly common classes of pseudo-knots polynomial
time DP algorithms have been proposed that take their existence into account [192,
4, 140, 55, 184, 186, 206]. These computational apporaches can be devided into ab-initio
methods, where the pseudo-knot is a part of the underlying decomposition scheme,
and a posteriori methods, that consider pseudo-knot formation as a hierarchical pro-
cess where a nested structure forms first and the pseudo-knot is formed only after
that, similar to the two-step process of RNA-RNA hybridization discussed in Section
3.7. Still, the parametrization of the variety of loops is challenging. Only a few ex-
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Figure 11: The determinative features of the Leontis-Westhof base pair nomenclature [129]. A
The three edges of a nucleobase available for pairing, namely the Watson-Crick (W)
edge, the Hoogsteen (H) edge, and the Sugar (S) edge. B Depending on the relative
orientation of the ribose parts of two pairing nucleotides, they pair either in cis or
in trans.

perimental data exist, and pseudo-knots are often further stabilized by cations such as
Mg2+, making it difficult to derive a generalized loop model with reasonable thermo-
dynamic parameters [34].

the base pair trilogy Within the last decades a closer look at experimentally
determined three dimensional RNA structures revealed a large variety of possbile base
pairs. RNA crystallography showed that not only can RNA form hydrogen bonds with
their Watson-Crick edge, the one used in Watson-Crick base pairing (see Figure 2), but
two additional edges of a nucleotides nitrogenous base are sometimes involved in
base pairing, too, namely the Hoogsteen edge, and the Sugar-edge [128, 247, 129, 130], as
depicted in Figure 11. Indeed, the resulting so-called non-canonical base pairs are quite
frequent and can make up to about 1/3 of an RNAs structure [210].

To bring order into the new realm of base pair possibilities, Leontis and Westhof
[129] proposed an RNA base pair nomenclature that categorizes pairs according to
both involved edges, and the rotational orientation of the nucleobase relative to each
other. This resulted in a distinction between twelve edge-to-edge configurations, see
Figure 11. While half of them are sterically compatible with the usual anti-parallel
orientation of the phosphate backbone, the others require a parallel configuration.

With this nomenclature in hand, tertiary structures of a folded RNA molecule can
be decomposed into three-dimensional motifs, whereas their pairwise interactions can
easily be added to secondary structure drawings. Unfortunately, despite the effort
made in identification and annotation of these types of tertiary motifs [2, 180, 221],
their incorporation into existing efficient prediction algorithms appears to be almost
impossible for several reasons. First, the additional base pair types introduce a de-
pendence on specific spatial and rotational conformations as well as orientation of the
phosphate backbone. But nowadays secondary structure prediction algorithms have
no sense of spatial dimensions or rotational degrees of freedom. Furthermore, the base
pairs are always assumed to exhibit anti-parallel orientation.
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Second, some base pair configurations can only be adopted when certain other con-
formations are present in the vicinity of the particular pair. This makes them context
sensitive, and the nearest neighbor model does not hold anymore. The nearest neigh-
bor model is also easily violated by so-called base triples, where a nucleotide forms
hydrogen bonds with more than one other nucleotide [2].

Third, since some of the above special base pair types are adopted only when the
RNA is interacting with a protein, ligand or other chemical compound [42, 162], it
can be hard or even impossible to assess the melting temperature of such a configu-
ration. Thus, obtaining enthalpy- and entropy-values necessary for a thermodynamic
parametrization of a putative prediction algorithm is impossible.

Nevertheless, work has been done to circumvent the afforementioned drawbacks. In
2008, Parisien and Major [175] presented the MC-fold/MC-sym pineline, an algorithm
that is capable of predicting optimal tertiary structures. The authors introduced the
term nucleotide cyclic motif (NCM) that defines an indivisible set of nucleotides together
with their corresponding interactions [127], analogous to the loops of the nearest neigh-
bor energy model. Extraction of these motifs from crystallographic structures and the
statistical analysis of their occurence within different overlapping structural contexts
finally lead to an effective NCM scoring function. With this in hand, the same algo-
rithm could be used for secondary and tertiary structure prediction. However, the
original implementation of MC-Fold consists of an exhaustive enumeration of all stem-
loop configurations that can be constructed by with the NCMs of a particular input
sequence. As a consequence, the runtime of MC-fold scales exponentially with the in-
put sequence length, making it applicable only to RNA sequences with no more than
150 nt. This limitation was lifted when zu Siederdissen et al. [263] presented the algo-
rithmic framework to solve the folding problem for the MC-Fold model in polynomial
time.

Still, the predictive power of such algorithms can not compete with that of the usual
secondary structure prediction algorithms, yet [263]. However, this may be mostly
due to the limited data available for tertiary motifs. Currently, the MC-fold model
uses statistical measures derived from frequencies of certain motifs in a rather limited
set of experimentally determined tertiary structures.

For some self-contained tertiary motifs, such as G-Quadruplexes, melting curves have
been experimentally determined. This not only makes predictions with the MC-fold
model more reliable, but also offers promising alternatives. In Chapter 10, for instance,
I present a fully parameterized extension of the nearest neighbor energy model to
include G-Quadruplexes.
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4
T R A N S I T I O N S B E T W E E N R N A S T R U C T U R E S

Until now, I only presented static RNA secondary structures, i.e. all methods to pre-
dict secondary structures so far yield one or more unrelated representative results.
However, an RNA molecules structure always fluctuates between different low energy
conformations.s While for the protein coding sequence of some mRNAs its particular
secondary structure may not be important, it matters for all ncRNAs, since their struc-
ture determines whether or not the molecule is functional. Riboswitches, for instance,
usually adopt two distinct structures representing their ON-, and OFF-state. Another,
rather extreme, example of RNAs that adopt distinct functional structure states are
viroids. These tiny plant pathogens, which solely consist of an RNA molecule with
a sequence length of about 400 nt, form very stable rod-like secondary structures. It
has been shown, that during their life-cycle they switch between at least three meta-
stable functional states, to perform their reproduction, pathogeneity, and cell-to-cell
trafficking [187, 53, 52].

Furthermore, any RNA in a cell comes to life during transcription of its correspond-
ing DNA template1. This polymerization process is a discrete, sequential addition of
nucleotides to the 3’ end of the nascent RNA, which in turn immediately starts fold-
ing back on itself, known as co-transcriptional folding (see Chapter 12.2). Therefore, any
RNA has to refold at least during transcription to eventually adopt its native state.
Whether on not this refolding can happen within the lifetime of the RNA, i.e. before
it is degraded by nucleases, can only be predicted by simulating its folding dynamics,
which will be discussed in Chapter 6. Hence, to better understand the function of a po-
tentially switching RNA, or the transition from a (transient or persistent) meta-stable
state into the native structure, the process of refolding needs to be investigated.

In general, refolding from one structure into another can be divided into cis-, and
trans-induced switching. Cis-induced switches do not require additional external fac-
tors for their structural transition. Their conformation change is purely driven by
the kinetic- and thermodynamic properties of the RNA molecule itself. Hence, ev-
ery RNA that relaxes its structure towards thermodynamic equilibrium from a meta-
stable transient state, e.g. structure adopted during the transcription process or by
degradation, is considered to act in cis [22, 89, 232, 78]. Furthermore, RNA thermome-
ters [168] which change their conformation along with slight temperature changes
also constitute to this class of switches. On the other hand, trans-induced switching

1 Most RNA viruses encode for an RNA-dependent RNA polymerase, that allows for the duplication of
their genome without the need of a DNA template. Still, the nascent RNA immediately starts folding
during the duplication process.
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represents the change in structure upon binding of one or more auxiliary molecules.
Such molecules may be other RNAs, proteins, or small ligands, e.g. metal-ions and
metabolic reactants and products [42, 59, 253]. Therefore, most of the trans-induced
switches have the ability to act as sensors of their chemical environment.

The principle of how switching occurs in both classes may be interpreted equally,
as their switching rates, i.e. the difficulty of refolding, is determined by the energetic
barrier separating both states [29, 164, 66]. However, for trans-induced switches the
binding of auxiliary molecules to the RNA often physically restrains the formation of
certain base pairs. This happens either by coating specific regions of the structure and
thus blocking base pairs entirely, or by competition between the binding free energy
of the ligand and regular base pairs. Additionally, the external factor can serve as a
kind of enzyme, usually lowering the barrier to an energetically preferred state. In the
following sections we will restrict ourselves to cis- induced switches, since (i) to date
thermodynamic data on the influence of bound molecules is quite sparse, and (ii) there
exists no generic solution for structure predictions of RNAs upon ligand or protein
binding yet. However, in Chapter 13 I will sketch an hierarchical method that enables
secondary structure predictions to incorporate some environmental constraints in a
generic way.

In this chapter, the theoretical background for transition paths of RNA secondary
structure conformation changes is presented. After a formalization of elementary moves,
a scoring measure for refolding paths, the energy barrier, will be introduced. Further-
more, heuristic approaches to determine optimal direct- and indirect folding paths are
discussed.
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4.1 move sets , paths and energy barriers

Formally, the transition process between two RNA structures can be considered a
discrete sequence of intermediate structure states, a path, where a particular set of
elementary modifications serves as the transforming connection between any two con-
secutive intermediates. The energy barrier of this path is determined by the highest
free energy among the intermediates. However, the vast number of possible patterns
of base pair formation and dissociation introduces a combinatorial explosion, render-
ing exhaustive enumeration strategies, that explore all paths, practically impossible.
In fact, it has been shown, that finding an optimal (re-)folding path between two
secondary structures is NP-complete [145, 146]. Hence, heuristic approaches which
compute near-optimal solutions to the energy barrier problem have to suffice for most
biological applications.

move sets and neighborhoods The most simple move set M consists of ex-
actly two reversible modifications, formation and dissociation of a single base pair. More
sophisticated move sets may also include shift-moves [66], resembling helix slipping.
Even the formation and dissociation of entire helices can be considered elementary
moves [114, 133, 111]. However, the more abstract the elementary structural changes
are, the more care must be taken to ensure ergodicity, i.e. any structure must be acces-
sible from any other structure through a series of applications of moves. Additionally,
abstract moves such as helix-moves by definition allow for simultaneous formation
or dissociation of entire sets of base pairs. Thereby, they coarse grain the underlying
physical process. Hence, optimal paths derived from abstract move sets may show en-
tirely different properties than those using formation and dissociation the most atomic
constituent, a single base pair.

Introducing a move set to the ensemble of RNA structures implicitly defines a neigh-
borhood relation. Thus, any structure sk obtained by application of a single move
m ∈M to a structure si is an element of the set of neighbors N(si) of si:

N(si) =
{
sk | sk = m(si),m ∈M

}
(28)

secondary structure folding paths Since the move set defines the number
of possible transitions an RNA undergoes during refolding, the chain of intermediate
structures forms a path. More formally, a folding path

~P = (si, si+1, . . . , si+n−2, sj). (29)

of length n = |~P| = j− i+ 1 between two secondary structures si and sj is an ordered
sequence of valid secondary structures sk, with sk ∈ N(sk−1). In the following, the
notation P[k] = si+k will be used to denote the kth intermediate structure within path
P.
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Of course the above definition leaves the path unrestricted. There is no upper limit to
the length of the path, i.e. n can be arbitrary large. On the other hand, the lower limit
for n is readily inherited from the move set M. Additionally, a path ~P may contain
cycles, i.e. it may consist of multiple occurrences of the same intermediate structure
sk = sl. Furthermore, the move-set may contain a neutral element, i.e. a move that does
not change the base pair pattern. This would result in paths where two consecutive
intermediates may be exactly the same, i.e. ∃k | sk = sk+1. In the following, I will
only consider cycle-free folding paths and move-sets without neutral elements.

direct and indirect paths As a convention, one usually distinguishes direct
paths from indirect paths. By definition, a direct path ~PD is minimal with respect to the
move set. Therefore there exists no other path ~P with shorter length, i.e. @P | |~P| < ~PD.
A direct path can be constructed from the start-structure si by either adding base pairs
not present in si but in the stop-structure sj, or by removal of base pairs not present
in sj but in si. Hence

~PD = (si, . . . , sk, . . . , sj) with (30)

sk =
{
(p,q) | (p,q) ∈

(
si ∩ sj

)
∪
(
si4 sj

)}
and

|sk ∩ si| > |sk+1 ∩ si| and

|sk ∩ sj| 6 |sk+1 ∩ sj|

where the symmetric difference si4 sj is the set of base pairs that are unique to either
si or sj (see Chapter 2.2). Since we restricted ourselves to cycle-free paths without
neutral moves, all direct paths between si and sj have the same length n = |~PD| =

|si4 sj|. Moreover, any direct path ~PD is minimal with respect to the underlying move
set, i.e. there is no other path ~P with |~P| < |~PD|. For indirect paths, there is no such
restriction, of course. Their minimal length is limited to that of a direct path with the
same start- and stop-structure. However, their maximal length is only bound by the
number of structures compatible with the same RNA sequence.

saddle points and energy barriers Any secondary structure sk of a path ~P

is associated with a free energy E(sk), according to a specific energy model for RNA
structures. Therefore, ~P represents a path through a one-dimensional space, where
each sk is a position, and E(sk) is its height. Along a path there may be mountains to
climb and valleys to descend to, in terms of free energy. Any structure that exhibits
the highest free energy along the path ~P is a saddle point S(~P)s with

E(S(~P)) = max
06l6|~P|

E(P[l]). (31)

Hence, the energy difference between the start structure and the saddle point can be
considered the amount of activation energy to allow the transition from the start- to
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the stop-structure. Finding paths where the lowest amount of activation energy is
required, i.e. paths with the lowest energy barrier

B(~P) = E(S(~P)) − E(P[0]) (32)

is of great interest in RNA structural biology. Such paths are optimal in terms of free
energy change, and therefore considered most likely. However, even finding optimal
direct refolding paths is a hard to solve problem, in fact it is NP-hard [145]. Conse-
quently, approaches are restrained to heuristic methods to avoid exhaustive enumera-
tion of all possible paths.

Below, I will present some of the most widely used heuristics that deal with the
problem of finding optimal folding paths. While most of the available methods restrict
themselves to direct folding paths, only a handful exist that lift this restriction. Yet
allowing to insert and later remove temporary stabilizing base pair not present in
either the start- or stop-structure can drastically reduce the energy barrier of a path.
The same is true for temporary removal of base pairs which later on have to be inserted
again. For this reason, it is crucial to discuss those methods as well.

4.2 prediction of direct folding paths

morgan-higgs algorithm Among the first to come up with an efficient heuris-
tic to compute near optimal direct folding paths is the work of Morgan and Higgs [164].
Their greedy algorithm creates a direct folding path between two secondary structures
si and sj. The order in which base pairs are added and removed is determined by the
number of conflicts, whereas fewer conflicts lead to earlier insertions, in particular, the
algorithm can be formulated as follows:

1. Set sA = si

2. Find (p,q) ∈ sj with least incompatible pairs (k, l) ∈ sA
3. Remove all incompatible pairs from sA, i.e. ∀(k, l) ∈ sA incompatible with (p,q),

do sA = sA (k, l)

4. Insert (p,q) into sA, i.e. sA = sA ∪ (p,q)

5. If additional pairs (r, s) ∈ sj can be inserted after removal of (k, l), insert them
as well: ∀(r, s) ∈ sj compatible with sA, do sA = sA ∪ (r, s)

6. If sA 6= sj, goto 2.

In each step of removal or addition of a base pair, the energy of sA is evaluated and
used to update the saddle point energy E(S) = maxsAE(sA). In cases where step
2. of the algorithm encounters more than one base pair (p,q) with equal number of
incompatible pairs, it chooses one randomly. For such cases, the authors suggest to
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repeat the algorithm a number of times and follow each new route only as long as
the energy of the newly computed saddle point is lower than the one obtained by a
previous random choice. While the algorithm is very fast it relies on the simplistic
assumption that each base pair can be treated the same. Therefore, it does not account
for differences in free energy change induced by addition/removal of different base
pairs and thus, tends to overestimate the energy barrier.

the findpath algorithm In 2001, Flamm et al. presented a new, breadth-first
search algorithm that computes near optimal direct folding paths based on the more
realistic nearest neighbor model of RNA secondary structures [67]. In each step of the
path construction between si and sj, the algorithm generates all neighbors N(sk) of
the current structure sk that are closer to the sj in terms of the move set distance, and
determines their free energy. From the resulting set of possible neighboring structures,
the one with lowest free energy is chosen as next intermediate and the algorithm pro-
ceeds from there until the target structure is reached. In principle, this resembles a
nearest neighbor model extension of the Morgan-Higgs algorithm, that follows only
energetically favorable paths instead of removing and adding base pairs according to
their number of collisions. However, Flamm et al. introduced a parameter m that
allows to keep track of the best m folding paths found so far. This transforms the
whole algorithm into a breadth-first search strategy controlled by m. Setting m = 1

degenerates to a greedy search for the optimal refolding path, which is essentially the
Morgan-Higgs algorithm with free energy scores for the choice of the next interme-
diate structure instead of a base pair collision list. On the other hand, the algorithm
becomes exhaustive if m = np where np is the number of possible paths. This makes
it a fast and powerful tool to determine close to optimal folding paths. Hence it yields
good approximations of energy barriers along direct paths between any two secondary
structures si and sj.

flooding algorithm of the barriers program A non-heuristic approach
that relies on an exhaustive enumeration of all secondary structures is implemented
in the barriers program [68]. Although it is actually designed to compute the barrier
tree [207] of the free energy landscape (see also Chapter 5), its algorithm is capable to
easily compute the optimal folding path between two local minima as a by-product.
Since it constitutes an exhaustive approach it will always compute the exact energy
barrier between two secondary structures. However, in general this exhaustiveness is
the actual drawback of this method, since the number of structures compatible with
an RNA grows exponentially in the sequence length. Thus, the barriers program is
limited to RNAs with lengths of about 100 nt on current computers, and, due to its
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exponentially increasing large input, is not expected to be applicable to much longer
RNA sequences in the near future2.

4.3 taking detours

Although the aforementioned algorithms to compute direct folding paths perform
quite well, they usually suffer from overestimation of the energy barrier. Since an RNA
upon refolding from si to sj does not ’know’ about being restricted to direct paths, it is
more likely that it follows the energetically most optimal. The intermediate structures
the RNA adopts during its refolding process may therefore consist of additional base
pairs, not present in either si or sj. Alternatively, base pairs present in both si and
sj may be opened during the transition to be later on inserted again. As long as
deviating from the direct path contributes favorably to the intermediates stability this
may drastically lower the predicted energy barrier. Below, two approaches on how to
compute indirect folding paths are presented. A third method can be found in Part iv,
2D Projections of RNA folding Landscapes (Chapter 9), which is described in more detail
in part v, Chapter 11.

morgan-higgs - revisited Within their publication of the direct path heuristic,
Morgan and Higgs already suggested an algorithm capable to construct indirect paths.
Using the single link cluster (SLC) method they compute optimal indirect folding
paths from si to sj that consist of concatenated optimal direct paths between pairs of
auxiliary structures sk and sl, in which the first direct path starts with si, and the last
ends with sj [164]. A problem of this approach is, however, that it is not clear which
set of auxiliary structures one should choose. The authors of this method used the
Nussinov model to sample a set of ground-state structures from the resulting partition
function. But this method suffers from the possibility to generate structures too far
away from potentially arbitrarily chosen start and stop structures si and sj. Further-
more, as shown in Part v, Chapter 11, Boltzmann sampling from the whole ensemble,
regardless of the energy model applied, does usually not give enough insight into its
structural diversity. Therefore, other strategies have to be applied. Another possibility
to obtain low free energy structure might the use of Zuker-type suboptimals or sub-
optimal structures within a specific energy band around the MFE, as introduced in 3.3.
However, again, if any of the two structures si and sj are, in terms of base pairs, suf-
ficiently far away from the generated set, the resulting paths might depart too much
from any meaningful result. In addition, the resulting set of auxiliary structures ob-
tained by such methods can grow very fast, rendering the method impractical.

2 Moore’s law predicts a doubling of computational power every two years or so. Increasing the length
of an RNA by only a single nucleotide, however, almost doubles the number of possible secondary
structures (actually its a factor of 1.8. Hence, about every two years, the RNA used as an input may grow
by one single nucleotide.
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rnatabupath A more recent method that aims to predict optimal indirect folding
paths is implemented in the RNATabuPath algorithm [58]. The algorithm is a semi-
greedy path construction between the start structure si and the stop structure sj. The
successive transitions from one structure sk to its neighbor sk+1 ∈ N(sk) are deter-
mined by a fitness function F(sk+1) = E(sk+1)+w ·dBP(sk+1, sj). The fitness function
F takes into account both, the free energy E(sk+1) of the next intermediate structure of
the path, as well as its distance to the target structure in terms of base pairs difference
dBP(sk+1, sj) = |sk+14 sj|. This latter term is further controlled by a weighting factor
w which essentially determines how far the path may deviate from a direct path be-
tween si and sj. Hence, it serves as a guiding potential that balances the importance of
choosing a low energy neighbor versus reaching the target sj. Although, low values of
w allow for paths that deviate very much from a direct path, and large values of w re-
sult in fast convergence toward sj, there is no guarantee that the algorithm eventually
reaches its stop structure sj. Therefore, the authors employed an oscillation strategy,
that adapts the value of w during path construction. In particular, w is increased if the
distance to the target has not been improved for a number of iterations, and lowered
if the distance decreases again, while it is ensured that w stays within a user-defined
range of w ∈ [wmin,wmax]. Furthermore, the algorithm utilizes a so-called tabu-list of
previously inserted or removed base pairs, mainly to avoid introducing cycles along
the path. As long as a base pair is within this list, it may not be modified, i.e. inserted
or removed again. Base pairs will be removed from the tabu-list after a certain number
of steps. Although this method seems to produce good results for the examples tested
in their publication, the initial choice of the weighting factor range [wmin,wmax] is
crucial for the algorithms performance. Furthermore, the algorithm deterministically
creates just a single trajectory, i.e. it explores only a single path. Thus, to obtain a
diverse set of near optimal solutions the algorithm has to be applied multiple times
with different initial conditions for [wmin,wmax].
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T H E B I G P I C T U R E

5.1 secondary structure free energy landscape

The entire ensemble of secondary structures of an RNA forms a high-dimensional free
energy landscape. Again, each structure si corresponds to a particular location in this
space, and the free energy E(si) determines the height. However, in contrast to paths,
as discussed in the previous chapter, each structure si has a multitude of neighbors
(see Fig. 12). Strictly speaking, a folding path ~P is a trajectory through the secondary
structure free energy landscape

L =
(
Ω,M,E

)
. (33)

Here, Ω is the set of conformations, the move set M defines the topology, and the
energy function E : si → R associates each conformation si ∈ Ω with a fitness value,
i.e. its height within the landscape.

Since each conformation may have a large number of neighbors1, the resulting land-
scape forms a high-dimensional space. Similar to paths, the resulting landscape usu-
ally consists of valleys, mountains, ridges, funnels, and plateaus.

The secondary structure free energy landscape can then be analyzed in various ways,
e.g. to extract shortest paths between two secondary structures (see previous Chapter
4), or to simulate RNA folding kinetics (see Chapter 6). However, since it is such a
high-dimensional space, this landscape can not be visualized easily. But methods exist,
that lump large portions of the landscape into a single point, i.e. a macro-state and
therefore allow to visually inspect certain aspects of the landscapes underlying prop-
erties. Prominent examples of such visualizations are the barrier tree [66] and the 2D
projection based on two reference structures, as implemented in the RNA2Dfold algo-
rithm [136]. The latter is an ab-initio method that projects the high-dimensional space
into two dimensions using two representative reference structures. It is presented in
detail in Part iv, 2D Projections of RNA folding Landscapes (Chapter 9) and will be briefly
introduced in this chapter, section 5.3.

construction of the landscape The landscape itself is usually constructed
by exhaustive enumeration methods. This means, that for a landscape analysis all sec-
ondary structures have to be generated, stored somehow, and assigned a free energy
score. But this, in turn, limits the applicability to relatively short RNAs, since even an

1 The unfolded state of an RNA with sequence length n, may have about n2/2 neighbors. Each of them
results from the formation of one of the n2/2 possible base pairs.
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Figure 12: The Neighborhood of a Secondary Structure. A Considering a single secondary
structure (in the center of this figure), each elementary move, such as the formation
and dissociation of a single base pair, transforms a structure into one of its many
neighbors. B Any neighbor, again, has neighbors itself. Consequently, the structure
ensemble Ω spans a high-dimensional space of structure conformations.

RNA with sequence length 50 may have compatible secondary structures in the order
of tens of billions. Nevertheless, most parts of the actual landscape might not con-
tribute to the solution space of a particular problem, for instance finding an optimal
refolding path. Such parts may be those, whose structures exhibit free energies above
a certain threshold, for instance positive free energy. Furthermore, structures with
so-called lonely base pairs, i.e. base pairs not surrounded by any other pair may usually
be omitted from the landscape construction, since such base pairs are widely consid-
ered unstable. Therefore, leaving out certain parts of the landscape makes exhaustive
landscape construction feasible for RNAs up to the length of 100 nt. However, omit-
ting structures with higher free energies can result in a landscape representation with
unconnected ’islands’, canceling out entire sets of solutions to particular landscape
analyses. On the other hand, limitation to canonical secondary structures, i.e. those with-
out lonely base pairs, introduces the necessity to adopt the move set. Thus, for any
restraint of the secondary structure space elaborate measures might have to be taken.
Utilization of Boltzmann sampling from the entire structure ensemble is usually not ad-
visable and even inapplicable to generate large enough parts of the landscape, even
for extremely large sample sizes. Depending on the ruggedness, and depth and distri-
bution of the local minima within the secondary structure space, this method strongly
tends to produce only spots close deep to folding funnels, since their surroundings
take up large volumes in the probability space of the ensemble (see Chapter 3.4, and
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Chapter 12 in Part v of this work). Therefore, a program often used to generate a
(reduced) set of secondary structures is RNAsubopt of the ViennaRNA package, which,
amongst others, implements the suboptimal secondary structure prediction algorithm
according to Wuchty et al. [255] (see Chapter 3.3).
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5.2 barrier trees and gradient basins

A compact and convenient, yet physically meaningful way to reduce the enormous sec-
ondary structure free energy landscape is the use of barrier trees [252]. This abstraction
consists of trees with local minima at their leaves, which form the kernel of so-called
gradient basins, and minimal saddle points as inner nodes connecting them. Thereby,
these gradient basins subsume entire sets of structures from which a gradient walk
would always end up in the local minimum that constitutes the basin. Here, a gradient
walk is the repeated application of a mapping γ : Ω → Ω, that assigns each structure
sk to its neighbor sl ∈ N(sk) with lowest free energy E(sl) < E(sk). After a finite
number t of mappings each structure sk is eventually assigned to a unique local mini-
mum z = γ∞(sk) = γt(sk). As a consequence, the local minima represent attractors of
the mapping γ, whereas the basins of attraction B(z) =

{
sk ∈ Ω | γ∞(sk) = z

}
form

a partition of Ω. The flooding algorithm implemented in the barriers program [252]
processes an energy sorted list of all suboptimal structure states. It identifies all local
minima and their connecting minimal saddle points to construct the coarse grained
representation of the landscape, the barrier tree. A visual description of the flooding
algorithm is given in Figure 13, and an example for the barrier tree representation can
be found in Figure 14.
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(A) (B)

(C) (D)

Figure 13: The flooding algorithm [68] constructs a barrier tree from an energy sorted list of
secondary structures. A Local minima, i.e. structure states where all neighbors have
a higher free energy, form the leaves of the tree. Any other structure is assigned to
the local minimum that is reachable through a gradient walk, thereby contributing
to the gradient basins B(z1), B(z2), and B(z3). B As the free energy level of the
input structures rises, saddle points appear that connect two gradient basins (S23).
The saddle points form the inner nodes of the barrier tree, connecting two gradient
basins with each other. C Structures that would be assigned to a gradient basin
that is already connected to another one, are assigned to the energetically deeper
of both. D When the input is completely processed, a compact representation of
the high-dimensional free energy landscape is available, the barrier tree, whose node
lengths represent the refolding energy barriers between the local minima, i.e. the
leaves.
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5.3 2d projections

In contrast to the aforementioned method of barrier tree construction, the RNA2Dfold
algorithm [136] allows for an ab-initio construction of a coarse grained landscape rep-
resentation. This eliminates the necessity of an exhaustive enumeration of secondary
structures. The method relies on two initially chosen reference structures si and sj
which are used to partition the secondary structure free energy landscape into dis-
tance classes with respect to the references. In detail, any structure sk is placed in
a particular κ, λ-neighborhood, where dBP(sk, si) = κ and dBP(sk, sj) = λ. A classi-
fied DP algorithm is utilized to compute specific thermodynamic properties, such as
minimum free energy and partition function, for each of the resulting distance classes.
Although the algorithm has an asymptotic time complexity of O(n7) and memory re-
quirements of O(n4), an elaborate implementation in the program RNA2Dfold exploits
the sparsity of the dynamic programming matrices, making it applicable to RNAs
with sequence lengths of up to about 400 nt. The resulting thermodynamic properties
can readily be used to depict a projection of the high-dimensional landscape into two-
dimensions, where the x-axis represents the base pair distance to reference structure
si, and the y-axis the distance to sj (see Figure 14). By carefully choosing the two
references, e.g. the MFE structure and a meta-stable state, a representation of lowest
free energy for each distance class already provides a lower-bound on the refolding
barrier between the two references.

Since this method does not enumerate all structures but uses a classified DP re-
cursion scheme, only thermodynamic properties of the distance classes are available.
However, stochastic backtracking can be used to sample structural representatives
from the distance classes according to their intrinsic equilibrium probabilities. This
allows to create structurally diverse sample sets, which would not be possible via
regular stochastic backtracking approaches. Furthermore, based on the distance class
partitioning, a method to predict indirect refolding paths between two secondary struc-
tures, as well as an approach to simulate RNA folding kinetics are presented in Part
v.
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Figure 14: Different representations of an artificially designed riboswitch taken from
Xayaphoummine et al. [258]. A Secondary structures drawings of the MFE struc-
ture (1), the meta stable state that is adopted by co-transcriptional folding (2), and
two structures similar to the MFE structure but with slightly shifted 5 ′ stem (3,4).
B The corresponding barrier tree with a resolution of 10 macro states. D The 2D
projection of the MFE representatives obtained from RNA2Dfold with the MFE struc-
ture (1) and the meta stable state (2) as reference, depicted as large blue areas in the
upper left and lower right corner, respectively.
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R N A F O L D I N G K I N E T I C S





6
R N A F O L D I N G A S A D Y N A M I C P R O C E S S

In the previous chapter, RNA folding paths and the concept of the secondary structure
free energy landscape were introduced. However, both of them only give a rather static
view on the transition space of an RNA. To provide information about the involved
dynamical behavior when an RNA consecutively adopts distinct secondary structures,
each transition has to be linked with a rate or probability. In theory, RNA folding
dynamics can be predicted using molecular dynamics (MD) simulations. Using the posi-
tions, velocities and accelerating forces of the atoms of the RNA, successive snapshots
of the changing state space can be obtained through integration of Newton’s laws
of motion [7, 226]. However, the involved computations of the interacting forces is
implementation-wise demanding and the simulation itself computationally expensive.
Furthermore, an RNA contains a large number of atoms, so does its surrounding so-
lution Hence, in most practical cases RNA folding dynamics is simulated on a much
more coarse grained level, such as the secondary structure. This is where the defini-
tion of the energy landscape comes in handy. Each point in the landscape represents
a distinct microstate of the RNAs secondary structure system. The states height in
the landscape represents their equilibrium probabilities given by each associated free
energy (see Equation 16). Transitions within this space of conformations, the canon-
ical ensemble, can now be thought of as a stochastic kinetic process [66]. Therefore,
equilibrium statistical mechanics (statistical thermodynamics) can be applied and they
can be modeled by a Markov process.

This chapter starts off with some thoughts on the assessment of transition rates
between secondary structure states, and discusses two complementary approaches on
RNA folding kinetics. The first approach uses the Markov property of the folding
process to directly compute the time evolution of the entire Markov process. For this
purpose a solution to the master equation which describes the Markov process has to
be obtained. This immediately allows for a global view on the folding dynamics over
time.

The second method, the Markov Chain Monte Carlo (MCMC) method, allows for
sampling of a single folding trajectory through the vastness of the energy landscape.
Therefore, it can be used to follow an RNA molecule along its folding path. This
unfortunately may be its weakness as well. Since the folding process is regarded as a
stochastic process many folding trajectories are required to obtain a global view of the
system, even for short RNA molecules. However, the number of folding paths grows
exponentially with sequence length. Therefore, the number of required trajectories
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grows very fast as well, rendering the total computational demands for a Monte Carlo
simulation very high.

Furthermore, coarse graining approaches for secondary structure landscapes will be
introduced in this chapter. Such methods represent a useful tool to circumvent the
issue of too many states by lumping sets of micro-states into more abstract macro-states.
Folding simulations can then be performed on the (much smaller) system of macro
states, thereby enabling application to longer RNA molecules.
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6.1 transition rates

From now on, we consider RNA folding kinetics as a stochastic process, close to con-
ventional stochastic kinetics of chemical reactions [66, 74]. In particular, it can be
modeled as a continuous-time Markov process. The population density1 Pi(t) of a
conformation si changes over time t. The rates of influx kji and outflux kij from, resp.
to another conformation sj can be used to describe the transition process with the
master equation

dPi(t)

dt
=
∑
j6=i

(Pj(t)kji − Pi(t)kij). (34)

The elementary moves within our conformation space only allow for transitions be-
tween neighboring conformations. Therefore, the transition rates between most con-
formations are zero kij = 0, if sj /∈ N(si) (see Chapter 4.1 for the definition of N),
rendering the transition rate matrix R = {kij} sparse. Since in equilibrium dPi(t)

dt = 0,
both terms on the right hand side of Equation (34) must be equal. This immediately
leads to a relation that is commonly known as detailed balance:

Pj(t)kji = Pi(t)kij. (35)

In (16) we learned that given the free energy E(si) of a secondary structure state si
and the partition function Q the states equilibrium probability is given as

Pi(t) =
e−βE(si)

Q
. (36)

Together with the criterion of detailed balance this dictates that the transition rates
between two distinct states si and sj have to be consistent with their difference in free
energy ∆Gij = E(sj) − E(si). In particular any set of transition rates satisfying the
following relation is acceptable

kji

kij
=
e−βE(si)

e−βE(sj)
= eβ(E(sj)−E(si))=e

β∆Gij . (37)

Once all kij for i 6= j are determined, the self transitions kii are computed by

kii = 1−
∑
j6=i

kij. (38)

Another crucial requirement for the transition rates is that there exists a series of
consecutive transitions that connects any state si with any other state sj. This basic
assumption of statistical mechanics, the ergodic hypothesis, not only ensures that the

1 This is the probability to observe a conformation si at time t: Pi(t) = Prob{X(t) = si}
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system contains no purely absorbing state. But it ensures, that the time a simulation
trajectory resides in a specific region of the state space is proportional to the volume
of this region, and therefore equilibrium can be reached eventually.

Still, the above preconditions leave a large number of feasible ways to compute
transition rates, of which the two most commonly used definitions will be presented
below.

metropolis rule The earliest expression to compute transition rates in statistical
physics was introduced by Metropolis et al. [158] in 1953. Here, the assumption is that
a particle within the system immediately changes it state from si to a neighbor sj if the
new state is energetically more favorable, i.e. E(sj) 6 E(si). Otherwise, the transition
is simply determined by the energy difference ∆G of both states. Of course, in the real
world it actually requires some time τ0 to physically change the configuration, but
this time is usually set to unity and therefore often not present in the expression of the
Metropolis rule: [158]

kij =

τ−10 e−β∆Gij if E(sj) > E(si),

τ−10 otherwise
. (39)

kawasaki rule In 1966, Kyozi Kawasaki presented an additional rule to calculate
the spin diffusion constant for time-dependent Ising models [121].

kij = e
− 1
2β∆G (40)

Since the stochastic characterization of RNA folding kinetics as presented in this work
follows the general theories for such Ising models2 this rule can also be applied. In
contrast to the Metropolis rule in (39), here, transitions to energetically more favor-
able states are not treated all equally. This rule rather introduces symmetry in the
forward and reverse transition rates. Applied to RNA folding kinetics, it was found
that the folding performance improved substantially without changing the character
of transition paths when the Metropolis rule is substituted by the Kawasaki rule [66].

2 Named after the German physicist Ernst Ising, these mathematical models represent the most simple
approaches to describe the kinetics of transitions between discrete states of a system. Starting with an
initial state (or a vector of population densities) the statistical mechanics behind the Ising model always
ensures relaxation towards equilibrium.
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6.2 solving the master equation

RNA folding kinetics can now be regarded as a multi-molecule system where state
transitions of the molecules are described by the master equation (34). This allows to
follow the systems relaxation towards equilibrium starting from an initial population
density of its states over time. For a system with N distinct states, the master equation
essentially describes a set of N coupled linear ordinary differential equations with
constant coefficients given by the rate matrix R = {kij}. So we can rewrite (34) in
vector form with ~p(t) =

(
P1(t) ... Pi(t) ... PN(t)

)T to obtain

d

dt
~p(t) = R~p(t), (41)

where the formal solution, given an initial population density ~p(0) follows from inte-
gration of this expression

~p(t) = ~p(0) · et·R. (42)

Looking at the above solution, the first observation that can be made is that matrix R
is in the exponent. But it is not immediately clear what the meaning of a matrix in the
exponential function is. However, using the convergent Taylor series of the exponential
function

et = 1+ t+
t2

2!
+
t3

3!
+ . . . (43)

the matrix exponential can be formally defined as

et·R = I+ tR+
t2R2

2!
+ . . . =

∞∑
i=0

Ri

i!
(44)

with identity matrix I = R0 [191, 16]. Still, application of this power series to real
data can be enormously expensive. Therefore, other numerical solutions have to be
exploited in order to efficiently compute the matrix exponential [159, 160] for a system
with N states and its constant N×N rate matrix R.

matrix decomposition method One of the most efficient methods for large
matrices and repeated evaluation of etR is based on decompositions of the rate matrix
R [160]. In cases where R is symmetric a similarity transformation of the form

R = ABA−1 (45)
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in conjunction with the power series definition of (44) leads to

etR = I+ABA−1 +
1

2
ABA−1ABA−1 +

1

6
ABA−1ABA−1ABA−1 + . . . (46)

= I+ABA−1 +
1

2
AB2A−1 +

1

6
AB3A−1 + . . .

= A(I+B+
1

2
B2 +

1

6
B3 + . . .)A−1

= AetBA−1.

The idea behind this transformation is to find a matrix A which makes etB easy to
compute. Although the transition rate matrix R itself is not symmetric, the reversibil-
ity of the Markov process, as required by the detailed balance condition, makes it
symmetrizable. In particular, a symmetric matrix S = VΛV−1 exists, where V is the
matrix of eigenvectors of S, and Λ = diag(λ1, . . . , λN) is a matrix with the eigenvalues
of S in the diagonal.3 Now, the naïve approach is to take A = V and B = Λ which
reduces the matrix exponential to the trivial case of exponentials of N scalars:

etS = AetBA−1 = VetΛV−1, with (47)

etΛ = diag(eλ1t, . . . , eλNt)

The remaining difficulty is to substitute all transformations back to successfully com-
pute ~p(t). However, a major problem with this approach is that any rounding errors
that occur during the transformations as well as the actual computations can be mag-
nified enormously. This is especially the case, if cond(V) is large, rendering V close to
singular. Thus, V has to be carefully checked to assess whether the matrix decomposi-
tion method can be applied to a particular problem or not.

With the above method in hand, Markov processes of some 10.000 states can be
handled efficiently on today’s computers, e.g. with the treekin program [252] which
implements a master equation solver according to the matrix decomposition method
presented before. But still, in the context of RNA folding kinetics where the number of
structure states grows exponentially with sequence length, only very short sequences
can be analyzed. In the following, two methods are presented which aim to solve
this problem for longer sequences by (i) approximation through sampling, and (ii)
reduction of the state space into macro states.

3 Note, that S is a symmetrized version of R and therefore, the eigenvalues and eigenvectors of S and R are
the same.
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6.3 markov chain monte carlo method

In almost all cases where stochastic simulation of the kinetics of a system is attempted,
the system is very large in terms of distinct states. This is especially true for a system of
RNA secondary structures which grows exponentially in the RNAs sequence length.
Apart from the vast number of transition rates to compute, a direct solution of the
master equation (34) for such large systems can not be obtained within reasonable
time. Furthermore, depending on the method used to compute the matrix exponential,
large transition rate matrices may introduce numerical instability. This might be the
cause why physicists deal with this problem for several decades by approximating
the global behavior of the system through averages over samples of individual states.
This sampling process is called Monte Carlo Scheme. It produces a time-ordered path
of states by performing a non-deterministic walk through the underlying landscape.
Each consecutive state is randomly selected from the set of neighbors of a previous
state according to individual acceptance probabilities. This scheme was introduced
by Metropolis et al. in 1953 [158] and later extended by W.K. Hastings in 1970 to
the general case [99]. Therefore, this method is also known as Metropolis-Hastings
algorithm4 and can be described by the following simple rules:

1. Select an initial state si

2. Choose a neighboring state sj (according to the probability distribution of all
possible neighbors)

3. compute the transition rate kij to this neighbor (e.g. with Metropolis rule)

4. generate a random number r with 0 < r < 1

5. if r < kij, set si = sj

6. proceed with 2.

The simulation ends after a certain simulation time t has passed, where the simulation
time correlates with the number of transitions that take place. Note, that a self transi-
tion, i.e. several rounds where the system does not leave si due to successive rejections
of several neighbors, is also considered a valid transition that increases simulation time.
This probability is given as

p(si → si) = 1−
∑
j6=i

p(si → sj) (48)

4 In this algorithm, the probabilities to select a specific neighbor along the path only depends on the
current state. Accordingly, the resulting set of paths are specific realizations of the underlying Markov
chain, hence the name Markov Chain Monte Carlo (MCMC) method.
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where p(si → sj) is the transition rate from si to sj. Finally, the state si obtained at the
end of the simulation is used to update the statistical average global system properties.
After multiple applications of the MCMC algorithm, the global population density is
simply derived from the arithmetic average of the obtained samples.

It can be easily seen that due to a continuous rejection of moves the MCMC algo-
rithm may be stuck in its main loop without updating its current state si for many
iterations. This can severely slow down an actual implementation of the algorithm.
More importantly, the Metropolis-Hastings algorithm as described above can only be
applied to systems where the number of neighbors stays the same for all states, since
the transition rate p(si → sj) is the product of the a priori probability to attempt the
move A(si → sj) = 1

N and the probability to accept the move P(si → sj), where N
is the number of neighbors. However, N is most likely not a constant for different
secondary structures in the RNA secondary structure landscape, therefore detailed
balance is not preserved [65]. However, the Gillespie algorithm [84] can be used to cir-
cumvent this problem, and, as a by-product, to speed up the simulation. It transforms
the simulation into a rejectionless Monte Carlo algorithm by scaling the probabilities
accordingly

p̂(si → sj) =
1∑

j p(si → sj)
· p(si → sj). (49)

In contrast to a direct solution of the master equation, the Monte Carlo approach
is very economical in terms of memory consumption. There is no need to compute
and store a transition matrix. The acceptance probabilities for a transition to any
neighboring state may be computed on-the-fly.

First computational methods aiming to predict reliable secondary structures and/or
(re-)folding paths by taking RNA folding kinetics into account date back almost as long
as thermodynamic secondary structure predictions. In 1984, Nussinov and Pieczenik [172]
already proposed a crude algorithm for secondary structure prediction that takes the
hierarchical nature of helix nucleation into account. By using a Monte Carlo simu-
lation that at any step inserts helices according to their equilibrium probability, this
simplistic method was refined and even allowed to incorporate pseudo-knot interac-
tions and folding during transcription [148, 1, 93]. However, these early approaches
considered formation of helices only, ignoring their dissociation capabilities. Incorpo-
ration of the reversibility of helix formation was first achieved in 1995 by the genetic
algorithm of Gultyaev et al. [91, 92].

In 2000, two efficient algorithms implementing Monte Carlo simulations were made
available by Flamm et al. [66] and Isambert et al. [114]. Flamm et al. considered a
structure si to have a set of neighboring states sj ∈ N(si) and transition rates kij
between them. The neighborhood relation was defined by a set of three moves: (1)
opening a base pair, (2) closing a base pair, and (3) shifting a base pair through a
helix stem. Transition rates kij were then determined by the free energy change ∆Gij
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associated with the particular move that transforms si into sj, e.g. using the Metropo-
lis rule. Isambert et al., on the other hand, coarse grained the structure space such
that any state consists of a set of compatible helices. Whereas local zipping/unzip-
ping within a helix is considered to happen extremely fast with rate k0 ' 108s−1,
transitions between the possible conformations of helices are assigned Arrhenius-like
rates k = k0 · exp(−∆G/kT) with the thermal energy kT to capture the crossing of
the energy barrier ∆G separating them. In addition to the free energy of the stacking
interactions they include the conformational entropy of the entire structure into the
energy evaluation, hence determination of ∆G, which in turn allowed them to include
pseudo-knotted interactions as well.
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6.4 coarse graining of the landscape

For biologically interesting lengths of RNAs the analysis of their folding kinetics via a
direct solution of the master equation for the complete secondary structure space is in-
feasible. Therefore, approaches that analyze kinetic effects in multi-molecule systems,
i.e. ensembles of RNAs, were usually realized by simulating a larger set of single
trajectories. However, this was about to change in 2004 when Wolfinger et al. pre-
sented their work on "Efficient computation of RNA folding dynamics" [252]. Based
on an exhaustive enumeration of secondary structures [255] they partitioned the en-
ergy landscape into (i) local minima, (ii) their basins of attraction, so-called gradient
basins, and (iii) the saddle points separating them. Using a flooding algorithm their
program barriers computes the above partitioning that can conveniently be visualized
by its corresponding barrier tree [66, 68]. While generating the coarse grained repre-
sentation, barriers already computes the exact transition rates between the resulting
macro states, i.e. the gradient basins. This enables to assess the folding behavior of
RNAs between the gradient basins instead of every possible secondary structure. The
relatively low number of macro states, again, opened computation of the kinetics by
numerical integration of the master equation.

micro and macro states In principle, any partitioning of the energy landscape
is an abstraction of the underlying state space Ω, i.e. the set of micro states si ∈ Ω, into
a smaller set of macro states A =

{
α1,α2, . . .

}
, with Ω = ∪jαj. The thermodynamic

properties of any such macro state αj are then determined by the ’atomic’ states si ∈ αj
it consists of. Hence, to each αj the partition function

Qαj =
∑
si∈αj

e−βE(si) (50)

and its corresponding free energy

G(αj) = −β−1 lnQαj (51)

can be assigned. In thermal equilibrium, the probability p(αj) of a macro state αj then
depends on the fraction of states it subsumes, and evaluates to

p(αj) =

∑
si∈αj e

−βE(si)∑
si∈Ω e

−βE(si)
=
Qαj
Q

. (52)

However, for a reasonable partitioning that can be used for RNA folding kinetics
simulation some specific assumptions have to hold. First, any macro state is assumed
to be in thermal equilibrium itself. That is, the probability to observe a specific instance
si ∈ α within a macro state α is only governed by its intrinsic equilibrium probability
and independent of any time passed

Prob[si|α] =
e−βE(si)

Qα
. (53)
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Second, it must be possible to compute effective transition rates between any two
macro states.

computing transition rates between macro states In cases where the
partitioning of the energy landscape produces macro states that introduce a kind of
neighborhood relation, the most simple model for transition rates between two neigh-
boring macro states αi and αj may be the application of transition rate rules for micro
states, e.g. the Metropolis rule. Accordingly, the rate from αi to αj only depends on
their difference in free energy ∆Gαi,αj = G(αj) −G(αi):

kαi,αj =

e
−β∆Gαi ,αj if G(αj) > G(αi),

1 otherwise
(54)

But this model certainly performs poorly, compared to folding kinetics on the full
landscape, and can only serve as a crude approximation, since it omits too many
microscopic properties captured within the macro states.

Another simple, yet straightforward approximation for the transition rate between
two macro states αi and αj directly connected by a saddle point is the Arrhenius law

k = k0e
−βEa (55)

with activation energy Ea, and a scaling factor k0. Here, Ea can be approximated
by the saddle point energy E[αi,αj]. However, in most cases two macro states may
be connected not only by a single saddle point but through a multitude of possible
paths. Therefore, this approximation inevitably neglects entropic terms arising from
the degeneracy of paths.

A more thorough approximation can be made by taking into account the micro-
scopic changes [252] during a transition. The macro state kinetics is determined by the
corresponding master equation

dPαi
dt

=
∑
αj∈A

kαj,αiPαj(t) (56)

with Pαi(t) =
∑
sx∈αi Px(t). Furthermore, the transition rate from αi to αj should

reflect transitions between their micro states

kαi,αj =
∑
sx∈αi

∑
sy∈αj

kxyProb[sx|αi] for αi 6= αj (57)

where Prob[sx|αi] is the probability to observe sx given the system is within macro
state αi, and kxy the micro-rate from sx to sy. Substitution of Prob[sx|αi], see Equation
(53), directly leads to

kαi,αj =
1

Qαi

∑
sx∈αi

∑
sy∈αj

kxye
−βE(sx). (58)
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Qαi can be easily computed during the construction of αi, rendering the computation
of the micro-rates kxy the only remaining problem. If sx and sy are direct neighbors,
i.e. sy ∈ N(sx), one of the beforementioned transition rules, e.g. Metropolis rule, can
be readily applied. For all other cases, more sophisticated methods need to be devel-
oped. The barriers algorithm presented in the publication of Wolfinger et al. elegantly
solves this issue by computing the micro-rates on-the-fly during the construction of
the barrier tree [252].

limitations and alternatives Albeit the advantage of making RNA folding
kinetics prediction feasible the drawbacks of the aforementioned methods are twofold.
First, the Monte Carlo approaches follow the trajectory of only a single molecule
through the vast space of possible conformations. Thus the simulation has to be re-
peated hundreds to thousands times to obtain an overall picture of possible structural
transformations and its transient states. Depending on the length of the RNA and the
ruggedness of the underlying energy landscape it is even possible to miss certain fold-
ing pathways despite repeating the simulation considerably often. Second, the ’global’
approach, that treats the RNA folding kinetics problem as a Markov process, is feasi-
ble only for small state spaces and, additionally, relies on a pre-computed secondary
structure free energy landscape. Even though partitioning methods exist that lump
states of the landscape into so-called macro states, they still rely on exhaustive enu-
meration of all secondary structures. And this, in turn, is only possible for small RNAs
with sequence lengths of at most up to some 100 nt, since the number of secondary
structures grows exponentially with the sequence length.

As an alternative, simulations can be performed on a representative subset of the
energy landscape. Tang et al. [217, 218] already proposed a method for ab-initio coarse
graining of the energy landscape. The resulting graph-like representation consists of
nodes representing sampled states of the free energy landscape while the weighted
edges connecting them define the neighborhood relation. Edge weight calculations
are then based on barrier height estimation, typically using the Morgan-Higgs heuris-
tics. Although these methods are usually much faster and can deal with RNAs longer
then 100 nt they still suffer from the problem of generating the right structure repre-
sentatives, a problem that gets increasingly difficult for longer RNAs.

An novel method which ab-initio partitions the secondary structure landscape to
solve the master equation of a macro state system will be presented in Part v, Unpub-
lished work, Chapter 12.1. Utilization of a classified DP approach and stochastic back-
tracking within the resulting partitions circumvents the need for exhaustive enumer-
ation of secondary structures. While the number of partitions grows only quadratic
with the RNAs sequence length, the approach also allows to limit the number of macro
states even further. By merging those states that are far away from regions of ‘inter-
est‘ in terms of base pair distance, the number of states can be kept relatively small,
making this method applicable to considerably longer RNA sequences. Additionally,
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the presented method allows the analysis of the folding behavior upon changing land-
scapes in terms of successive nucleotide addition, as required for co-transcriptional
folding.
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Abstract

Background: Secondary structure forms an important intermediate level of description of nucleic acids that
encapsulates the dominating part of the folding energy, is often well conserved in evolution, and is routinely used
as a basis to explain experimental findings. Based on carefully measured thermodynamic parameters, exact
dynamic programming algorithms can be used to compute ground states, base pairing probabilities, as well as
thermodynamic properties.

Results: The ViennaRNA Package has been a widely used compilation of RNA secondary structure related
computer programs for nearly two decades. Major changes in the structure of the standard energy model, the
Turner 2004 parameters, the pervasive use of multi-core CPUs, and an increasing number of algorithmic variants
prompted a major technical overhaul of both the underlying RNAlib and the interactive user programs. New
features include an expanded repertoire of tools to assess RNA-RNA interactions and restricted ensembles of
structures, additional output information such as centroid structures and maximum expected accuracy structures
derived from base pairing probabilities, or z-scores for locally stable secondary structures, and support for input in
fasta format. Updates were implemented without compromising the computational efficiency of the core
algorithms and ensuring compatibility with earlier versions.

Conclusions: The ViennaRNA Package 2.0, supporting concurrent computations via OpenMP, can be
downloaded from http://www.tbi.univie.ac.at/RNA.

Background
A typical single stranded-nucleic acid molecule has the
propensity to form double helical structures causing the
molecule to fold back onto itself. Simple rules of com-
plementary base pairing govern this process, which
results in a regular pattern of Watson-Crick and GU
pairings (helices) and intervening stretches of less regu-
larly ordered nucleotides (loops), collectively known as
the molecule’s secondary structure. Secondary structure
elements may be placed in close spatial proximity allow-
ing additional non-covalent interactions. These are not
as frequent and often are energetically less favorable
compared to canonical base pairs, thus rendering the 3-
dimensional tertiary structure of an RNA to be domi-
nated by the underlying scaffold of the secondary struc-
ture. The canonical base pairing governs not only the
thermodynamics but also the folding kinetics, which can

be approximated as a hierarchical process in which sec-
ondary structure is formed before tertiary structure [1].
The dominance of base pairing and the confinement

to a single interaction partner makes it possible to
model RNA (and DNA) secondary structures at a purely
combinatorial level, completely ignoring both atom-scale
details and spatial embeddings. Formally, an RNA sec-
ondary structure is a (labeled) graph whose nodes repre-
sent nucleotides. The edge set contains edges between
consecutive nodes (i, i + 1) representing the phosphate
backbone as well as edges between base pairs. For the
latter, the following conditions must hold:

1. base pair edges are formed only between nucleo-
tides that form Watson-Crick or GU base pairs;
2. no two base pair edges emanate from the same
vertex, i.e., a secondary structure is a matching;
3. base pair edges span at least three unpaired bases;
4. if the vertices are placed in 5’ to 3’ order on the
circumference of a circle and edges are drawn as
straight lines, no two edges cross.
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The last condition ensures that the graph is outerpla-
nar and therefore excludes so-called pseudo-knots.
Matching problems usually have cost functions deter-
mined by edge-weights. The earliest predictions of RNA
secondary structures in the early 1970s indeed used
such simple energy models [2]. Detailed melting experi-
ments, however, soon showed that a different, more
complex type of energy function is necessary to properly
model the thermodynamics of nucleic acid structures.
Instead of individual base pairs, the energy contributions
are dominated by base-pair stacking and the destabiliz-
ing entropic effects of unpaired “loops”. Sequence-
dependent energy parameters for these building blocks
contribute to a very good approximation additively to
the folding energy [3]. Over the last two decades, this
additive standard energy model has been repeatedly
refined and updated, see e.g. [4-9].
The RNA folding problem is solvable by means of

dynamic programming. The simplest version, known as
maximum circular matching problem, accounts for base
pairing energies only [10,11]. In the early 1980s Nussi-
nov and Jacobson [12] and Michael Zuker with colla-
borators [13,14] demonstrated that the loop-based
energy model is also amenable to the same algorithmic
ideas. Their work made computational RNA structure
prediction accurate and efficient enough for practical
use, resulting in the first versions of mfold. A decade
later, John McCaskill realized that the dynamic pro-
gramming recursions can be adapted to compute the
partition function of an equilibrium ensemble of RNA
molecules [15], paving the way for efficient computa-
tional access to accurate thermodynamic modelling
without exceeding an asymptotic time complexity of
O(n3) .
The secondary structure model of RNA perfectly fits

together with modern genomics and transcriptomics
since it works at the same level of abstraction, treating
nucleotides as basic entities. With the increasing avail-
ability of RNA sequence data, and the realization that
many of the functional RNAs have evolutionary well-
conserved secondary structures, many research groups
developed a plethora of specialized tools for various
aspects of RNA bioinformatics. As an alternative to the
direct measurement of thermodynamic parameters, for
instance, machine learning approaches employing sto-
chastic context free grammars (SCFG) were introduced
e.g. in the infernal suite [16,17]. The algorithmic
work horses of the SCFG approach, the Cocke-Younger-
Kasami (CYK), the inside and the outside algorithms,
are also dynamic programming schemes. They are, in
fact, very close cousins of the minimum free energy and
partition function folding algorithms. The contrafold
tools in fact recently bridged the apparent gap between

the thermodynamic and the machine learning approach
to RNA bioinformatics proposing to learn a parameter
set for a SCFG that structurally matches the standard
energy model [18].
Several other tools implement dynamic programming

based RNA secondary structures prediction: UNAfold
[19] is the successor of the original mfold program and
adds suppport for predicting RNA-RNA hybridization.
RNAstructure [20] started as a reimplementation of
mfold with a graphical user interface in Windows, but
is now available for other platforms and has added sev-
eral additional algorithms such as partition function
folding and suboptimal structures. The NUPACK suite
[21] focuses on folding of several interacting RNA
strands and design problems. The group around Kiyoshi
Asai developed several tools focusing the usage of cen-
troid and maximum expected accuracy (MEA) estima-
tors, see e.g. [22]. Ye Ding’s Sfold program [23] was
the first to introduce stochastic structure sampling. The
group around Robert Giegerich provides several RNA
related tools, notably the RNAshapes [24] program.
The Vienna RNA Package [25] has its roots in a

series of large-scale simulation studies aiming at an
understanding of adaptive evolution on rugged fitness
landscapes [26-28] and the statistical properties of the
sequence-structure relationships of RNA [29-31] rather
than the detailed analysis of individual RNA molecules
of biological interest. The primary design goals for its
implementation in the early 1990s, therefore, were two-
fold. First and foremost, the basic folding algorithms
were to be implemented so as to be as efficient as possi-
ble in their usage of both CPU and memory resources.
The core algorithms are accessible as a C library, which
later on was also equipped with Perl bindings to facili-
tate interoperability with this commonly used scripting
language. Secondly, the interactive programs were to be
used mostly in (shell-script) pipelines, hence they use a
simple command-line interface and, where possible, they
read from and write to a stream. This feature made it
easy to construct a suite of web services [32] providing
easy access to most functionalities of the Vienna RNA
Package. With the rising tide of first genomics and
then transcriptomics data, the need for both efficient
implementation and easy incorporation into pipelines
remained, even though the focus gradually shifted from
large-scale simulation to large-scale data analysis. Little
has changed in the core folding algorithms in the 17
years since the first publication [25] of the package. On
the other hand, a variety of variants have been included
such as consensus structure prediction from alignments
or scanning versions capable of dealing with local struc-
tures in genome-scale data sets. The systematic overhaul
of the Vienna RNA Package documented here was
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largely triggered by the publication of improved parame-
trizations of the energy model, which affected nearly
every component in the library, and by the progress in
computer technology, which led to the widespread
deployment of shared-memory multi-core processors. In
order to exploit these hardware features a restructuring
of the RNA library to make it thread-safe and hence fit
for use in concurrent computations was required.
Beyond these technical improvements, the Vienna RNA
Package 2.0 features a number of additions to its
algorithmic repertoire, an improved API to RNAlib,
and an expanded toolkit of auxiliary programs.

Interactive tools
Since its first release, the ViennaRNA Package
included interactive command-line tools which enable
users to access the high performance implementations
of the algorithms via a command-line interface. To
ensure scalability of the use-cases all programs were
developed with the objective of handling input- and out-
put-streams, facilitating their integration into UNIX
pipes. Thus pre- and post-processing of the input/output
data can proceed without the need of intermediate
input- or output-files. Most programs of the Vien-
naRNA Package furthermore are able to operate in
batch mode, handling large sets of input data with a sin-
gle call. By default, the programs of the ViennaRNA
Package generate an output that is meant to be easily
parsable while keeping it human-readable.
The core of the package provides several variants of

the RNA folding recursion: energy minimization, parti-
tion function and base pairing probabilities, backtracing
of suboptimal structures, alignment-based as well as
scanning versions. The decision whether a certain func-
tionality is implemented as a separate stand alone pro-
gram or as an optional command-line switch is based
on the compatibility of I/O formats and internal data
structures. Table 1 presents the implemented model var-
iants as well as the data formats for each program,
whereas Figure 1 illustrates example program calls
together with their corresponding output. In the follow-
ing paragraphs, we provide a comprehensive summary
of programs included in the ViennaRNA Package.

Folding
The main secondary structure prediction tool is RNA-
fold, which computes the minimum free energy (MFE)
and backtraces an optimal secondary structure. Using
the -p option, RNAfold also uses McCaskill’s algo-
rithm [15] to compute the partition function, the matrix
of base pairing probabilities, and the centroid structure.
The RNAfold output is a string representation of the
structure and the folding energy written to the standard
output stream. With the -p option, it also creates a

PostScript file containing the base pairing probability
matrix. Circular RNA sequences are rare in nature and
appear infrequently in practical applications. With the
–circ option this case is handled as a post-processing
for the forward recursion and a preprocessing of the
backward recursions without compromising the perfor-
mance of the folding algorithms for linear RNAs [33].
Constraints can be supplied to the folding algorithms
enforcing that individual positions are paired, unpaired,
or paired with specific partners.
The program RNAsubopt can be used to generate

suboptimal structures. Using command-line options, it
can switch between three different ways of generating
them: by default, it generates the complete set of subop-
timal structures within a certain energy band, the size of
which can be chosen using the -e option [34]. With the
-p option it uses stochastic backtracking [35] from the
partition function to generate a Boltzmann-weighted
random sample of structures, effectively providing the
functionality of sfold [23]. Finally, the -z option gen-
erates suboptimal secondary structures according to
Zuker’s algorithm [36]. The resulting set consists, for
each basepair (i, j) that can be formed by the input
structure, of the energetically most favorable structure
that contains the (i, j)-pair. This option implements a
feature that has been used frequently in applications of
the mfold package.
RNALfold [37] is a “scanning” version of the folding

programs that can be used to calculate local stable sub-
structures of very long RNA molecules. Local in this
context means that the sequence interval spanned by a
base pair is limited by a user-defined upper bound (set
by the -L option). Scanning versions of RNA folding
programs conceptutally perform computations for all
sequence-windows of a fixed size. Algorithmically, they
are faster than the naïve approach by re-using partial
results for overlapping windows. RNALfold does not
come with a partition function version because the glo-
bal partition function with restricted base pair span is of
limited interest in practical applications. Instead, a sepa-
rate program, RNAplfold [38], computes the base
pairing probability averaged over all sequence windows
that contain the putative pair. This tool can also be
used to compute the local accessibilities, i.e., the prob-
abilities that sequence intervals are single-stranded in
thermodynamic equilibrium (option -a).
RNA2Dfold [39] implements energy minimization,

partition function computations, and stochastic backtra-
cing for the two dimensional projection of the secondary
structure space that is defined by the base pair distances
from the two prescribed reference structures. The
restricted ensembles of secondary structures are useful
in particular for tracing refolding pathways and to com-
pute lower bounds of energy barriers between

Lorenz et al. Algorithms for Molecular Biology 2011, 6:26
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alternative conformations of an RNA molecule.
Although RNA2Dfold is based upon the usual dynamic
programming recursion of energy-directed folding, the
asymptotic time complexity is multiplied by a factor of
k2 · l2, where k and l are maximum base pair distances

to the first and the second reference structure, resp.
Hence, the overall time complexity for a sequence of
length n is O(n7) . The memory requirements of O(n4)
are also higher than for the regular secondary structure
prediction scheme. However, since the implementation

$ RNAfold -p < Example.fa

>Example1

GCGACCCAUGCGAACGCGAGCAUUUGAAGCUAGAUGCCGUUUUGAAACGAAUGGGAACGCGAACGC

(((.(((((.((((.(((.(((((((....)))))))))).))....)).)))))..)))...... (-19.50)

(((.(((((.(({{.(((.(((((((....)))))))))).}}....)).)))))..)))...... [-20.45]

(((.(((((.((((.(((.(((((((....)))))))))).))....)).)))))..)))...... {-19.50 d=2.85}

frequency of mfe structure in ensemble 0.212986; ensemble diversity 4.22

G C G A
C C C A U G

C G A A
C G C GAG C A U U U G

A A
G

CUAGAUGCCGU
UUUGAAACGA

AUGGGAA
CGC

GA
A
C
G C

$ Utils/mountain.pl Example1_dp.ps

0 10 20 30 40 50 60
0

10

20

30

base pair probability
minimum free energy
positional entropy

$ Utils/relplot.pl Example1_ss.ps Example1_dp.ps > Example1_rss.ps

0 1.5

G C G A
C C C A U G

C G A A
C G C GAG C A U U U G

A A
G

CUAGAUGCCGU
UUUGAAACGA

AUGGG
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$ RNAplfold -W 32 -L 30 < allseamp.seq

c c g g a a a c c g a a c g c a g c a c c g c g g a u c u g g a a c g c c g c u a G a a c a a c u a u c u g u a G c g c g a a a a c a u u g u g U A G c a u U A G u u u g c g u g c a a a g a a c g c a g c a c c g a a c c g c a u g c g a a c u G a g a a

$ RNALfold -L 30 < allexample.fa

.(((.((...))..))). ( -0.80) 100

.((((((........)).)))). ( -7.10) 96

.(((((.((((..........))))))))). ( -9.50) 80

.(((......))). ( -2.60) 74

.(((((((......))).)))). ( -5.80) 70

.((((((.....(((...)))....)))))). ( -6.60) 57

.(((.((((((.....)))))).))). ( -6.40) 52

.(((((.(.........).))))). ( -5.10) 36

.(((.((((.(.........).))))))). ( -7.50) 33

.(((.........))). ( -2.60) 21

.(((......))). ( -1.00) 19

.(((......))). ( -3.30) 12

.((((.(((......)))..)).)). ( -5.80) 7

ccggaaaccgaacgcagcaccgcggaucuggaacgccgcuaGaacaacuaucuguaGcgcgaaaacauugugUAGcau

UAGuuugcgugcaaagaacgcagcaccgaaccgcaugcgaacuGagaa

(-26.20)
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$ RNAalifold -p --aln --color < samples.aln
5 sequences; length of alignment 57.
__________CGCUGAA__ACCAAC___G_AGCGCGC______GG_GGCGAGAAC__
..........((((((...(((............))).......))))))....... ( -9.71 = -6.50 + -3.21)
..........((((((...(((............))).......))))))....... [ -9.99]
frequency of mfe structure in ensemble 0.636366

..........((((((...(((............))).......))))))....... -9.79 { -6.50 + -3.29}

..........((((((...(((............))).......)))))).......
Examp1 ----------CCGG-AAA-CCGAACGCAGCACCGCGG------AU-CUGGAACGC--
Examp2 ----------CGCU-AG--AACAAC-------UAUCU------GU-AGCGCGAAAAC
Examp3 ---------AUUGUGUA--GCAUU------AGUUUGC-------GUGCAAAGAACGC
Examp4 -------UGCCAUCGCAUUAGCACC---U-AGCCGCAUUUUCUGGCGAUGAUG----
Examp5 AGCACCGAACCGCAU----GCGAACUGAG-AA--CGCAACC----AUGCGCGCACC-

0 50 100 150 200 250
nt
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opening energy w=4
interaction energy

$ RNAup --interaction_pairwise < inputup

(((((((((((((..((((((&))))))....))))))))))))) 111,131 : 2,24 (-13.01 = -24.85 + 11.84)

gcaugcgaacuGagaacgcaa&uuguguagcauuaguuugcgugc

RNAup output in file: RNA_w25_u1.out
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$ RNAcofold -p < Examplecofold

>Examplecofold

CGCUAGAACAACUAUCUGUAGCGCGAAAAC&AGCACCGAACCGCAUGCGAACUGAGAACGCAACCAUGCGCGCACC

.................((.(((((.....&.((........)).((((.........))))......))))))). (-14.00)

.{{{{.,.........}|},||(((.....&..........{||{((((.........)))}...,}})))))... [-16.00]

frequency of mfe structure in ensemble 0.039241 , delta G binding= -2.19

$ RNAsubopt -s -e 1 < berni.fa

> berni [100]

AGCACCGAACCGCAUGCGAACUGAGAACGCAACCAUGCGCGCACC -700

..........((((((((.........))))....))))...... -7.00

.........(((((((((.........))))....)))).).... -6.90

..........((((((.(...((......)).)))))))...... -6.70

.........(((((((.(...((......)).))))))).).... -6.60

.((........)).((((.........((((....)))))))).. -6.50

..........((((((((.........)))....)))))...... -6.50

.........(((((((((.........)))....))))).).... -6.40

.....((...((((((((.........))))....)))))).... -6.20

..............((((.........((((....)))))))).. -6.00

$ RNAsubopt -z < peter.fa

> peter [100]

.(((...)))..... [-1.30]

.((.........)). [0.40]

(.((...)))..... [1.80]

(.(....).)..... [1.90]

((((...)))...). [2.10]

...(....)...... [2.70]

...(........).. [3.00]

........(....). [3.00]

.......(.....). [3.10]

.........(....) [4.00]

..(...........) [4.10]

...(..........) [5.00]

$ RNAsubopt -p 10 < xtof.fa

> Xtof [100]

...((((((....((........))........))))))...

...((((((...(...(......)..)......))))))...

...((((((....((.....))..((.....))))))))...

...((((((........................))))))...

(((....)))....(((...(((.........)))).))...

...((((((........................))))))...

.(.((((((...((.............))....)))))).).

...((((((....((.....))...........))))))...

...((((((....((........))........))))))...

.(.((((((....((........))........)))))).).
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Figure 1 Example calls of programs included in the ViennaRNA Package and their corresponding output. (A) Single sequence analysis
using RNAfold. (B) Locally optimal secondary structures and base pair probabilities using RNAplfold and RNALfold. (C) Interaction
thermodynamics of two RNA sequences computed by RNAup. (D) Consensus structures and base pair probabilities for RNA sequence
alignments obtained from RNAalifold. (E) Secondary structure of an RNA dimer calculated by RNAcofold. (F) Folding kinetics using
RNAsubopt in conjunction with the external programs barriers and treekin. (G) Suboptimal secondary structures generated by
RNAsubopt. For a detailed description see the appendix.
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uses a sparse matrix approach, the prefactor of time and
memory complexity is very small, making the program
applicable for RNA sequence lengths of up to about 400
- 600 nt.

RNA-RNA interactions
Several programs focus on various aspects of the hybri-
dization structure of two RNA molecules, using different
levels of detail. The programs RNAcofold [40] and
RNAup [41] are two complementary programs with the
highest level of detail available within the ViennaRNA
Package. RNAup first computes local opening energies
for both molecules and then computes interaction ener-
gies, looking for the best interaction site of two mole-
cules. RNAcofold, on the other hand, concatenates
two molecules and computes a common secondary
structure using modified energies for the loop that con-
tains the cut. RNAcofold thus can generate arbitrary
many binding sites, but does not allow pseudoknotted
configurations, while RNAup covers only a single inter-
action site, which however may form a complex pseudo-
knotted configuration. The partition function version of
RNAcofold can be used to investigate the concentra-
tion dependency of dimerization, similar to [42]. On the
other hand, RNAup is mostly geared towards investiga-
tions of the binding of regulatory RNA molecules with
their target RNAs.
RNAPKplex is at present the only component of the

Vienna RNA Package that explicitly predicts pseudo-
knotted RNA structures [43]. As an “intramolecular var-
iant” of RNAup it computes accessibilities and then
identifies regions that can form stable base pairs.
Although optimized for speed, the full-fledged folding

algorithms are not fast enough for genome-wide applica-
tions. RNAduplex, similar to Rehmsmeier’s RNAhy-
brid [44], ignores intramolecular structures and all
multi-branch loops in its search for thermodynamically
favorable interaction regions. RNAplex [45] achieves a
massive gain in speed by simplifying the energy model
for interior loops to an affine gap cost model, effectively
reducing the folding problem to a variant of local
sequence alignment. The accuracy of this approach can
be further improved by reading in accessibilities (as
computed by RNAplfold) and incorporating them into
the scoring model [46].
The specialized programs RNAsnoop [47] for the pre-

diction of target sites of H/ACA snoRNAs, and RNAL-
foldz [48] for the evaluation of predicted local
secondary structures, use SVMs to further classify the
output of the RNA folding routines.

Consensus structures and alignments
A central issue for the comparative analysis of RNA
sequences is the computation of a consensus structure.

Starting from a sequence alignment, this can be
achieved using the same algorithmic framework as fold-
ing a single sequence. More precisely, energy contribu-
tions can be added up in a columnwise manner to yield
an effective energy model for the alignment as a whole
[49]. The Vienna RNA Package provides alignment-
based variants for several of the algorithms discussed
above: RNAalifold [50] computes global consensus
structures both in MFE and partition function mode, a
scanning version of long sequence alignments is RNA-
Lalifold. RNAaliduplex is designed to facility the
search for conserved RNA-RNA interaction sites in
large alignment data sets. The alidot program [51,52],
finally, extracts local conserved structures given a
sequence alignment and secondary structure predictions
for each of the aligned sequences. By default, consensus
structure prediction is dominated by the thermodynamic
parameters and sequence covariation. Thus, phyloge-
netic support for conservation of secondary structure is
included only as a small bonus energy term. A much
more sophisticated substitution model for paired regions
based on the RIBOSUM scoring scheme [53] can be
invoked with the -R option.
The Vienna RNA Package does not contain its own

optimized implementation for the simultaneous folding
and alignment of two RNA sequences, i.e., of the Sank-
off algorithm [54]. We refer to the well-established soft-
ware tools FoldAlign [55], or DynAlign [56] for this
task. A simplified version of the Sankoff algorithm
underlies pmcomp [57,58], a facility to align pre-com-
puted base-pairing probability matrices, although this
tool is now included mostly for backward compatibility.
An improved and much more efficient implementation
is provided by the locarna package [59] developed in
cooperation with Rolf Backofen and Sebastian Will and
distributed separately.
With RNApaln and RNApdist the package also pro-

vides tools to align and compare base pair probability
patterns using modified string alignment algorithms.
Tree editing distances and corresponding pairwise align-
ments can be computed with RNAdist.

Miscellaneous tools
Concerning sequence design, we ship the program
RNAinverse [25]. It generates a sequence that folds
into the input structure by mutating a start sequence.
More efficient versions of inverse folding algorithms
have become available over the last decade, see e.g.
INFO-RNA [60], RNA Designer [61] and the recent
NUPACK design algorithms [62]. Nevertheless, RNAin-
verse remains useful for some applications as it is
designed for search for solutions as close as possible to
the starting sequence. RNAswitch [63] takes a pair of
secondary structures as input and finds a sequence that
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has both input structures as near ground states. The
possibility to design bistable RNAs may be useful e.g.
for synthetic biology.
A closer look at the dynamics of RNA folding a avail-

able through kinfold [64], a rejectionless Monte
Carlo simulation algorithm generating trajectories of
subsequent secondary structures. Kinetic information
can also be obtained from the exhaustive enumeration
of suboptimal structures using RNAsubopt in conjunc-
tion with the barriers package [64,65]. The latter is
not restricted to RNA landscapes and hence distributed
separately from the Vienna RNA Package.

Auxiliary Programs
In addition to the prediction and analysis tools, the
ViennaRNA Package provides utility programs and
scripts that mainly assist in processing input- and out-
put data. RNAeval computes the energy of a given
structure formed by a given sequence and can in parti-
cular be used to re-compute energies for a given pair of
sequence and structure with different energy models.
The Perl script refold.pl generates single structure
predictions using a previously computed consensus
structure as constraint.
RNAplot can be used to generate a graphical repre-

sentation of the an input sequence/structure pair [66].
Several Perl scripts can be used to further manipulate
PostScript output produced by the various components
of the Vienna RNA Package. Conventional structure
drawings can be rotated with rotate_ss.pl. The
relplot.pl script includes reliability annotation into
secondary structure plots, colorrna.pl uses the con-
servation of alignments for coloring consensus structure
plots, while coloraln.pl does the same with an
alignment. Mountain plots can be produced with moun-
tain.pl and cmount.pl from single and consensus
structures, respectively.
Many tools in RNA bioinformatics use mfold’s “con-

nectivity” (.ct) file format. The dot-bracket representa-
tion used consistently by the Vienna RNA Package
can converted into this format using b2ct and ct2b.
pl, resp.

The ViennaRNA Webserver
The ViennaRNA Webserver [32] facilitates an easy to
use form based web browser interface to most of the
programs included in the ViennaRNA Package and addi-
tional tools. It combines the call of the appropriate com-
mand-line tools with post-processing steps to obtain a
visualization of the output. The webtools echo the com-
mand-lines used to call components of the Vienna
RNA Package; this feature can be used to get more
familiar with the individual tools. The webserver also
provides an interface to the barriers and treekin

program allowing the analysis of folding landscapes and
structural refolding kinetics. The backbone of the
ViennaRNA Webserver has been upgraded so that all
calculations with the webserver profit from the
increased performance of the new ViennaRNA
Package.

Modifying the energy parameters of the model
The energy model implemented in ViennaRNA Pack-
age 2.0 follows the structure of the Turner 2004
energy parameters as described in [9] with a few very
minor deviations. Compared to previous parametriza-
tions, the Turner 2004 model introduced additional
look-up tables for certain free energies and for loop
entropies in response to more precise measurements of
certain loop types. For the sake of computational effi-
ciency a few peculiar rules were deliberately ignored,
however. Details on these discrepancies, which do not
affect the overall accuracy of predictions (see below), are
provided in the appendix.
All programs of the ViennaRNA Package can read

in energy parameters from a human-readable text file
allowing the user to replace the default Turner 2004
parameter set. This can either be a user-supplied para-
meter file or one of several parameter compilations that
are shipped with the package. Of particular interest are
parameters for DNA folding. Here we provide a para-
meter set compiled by Douglas Turner and David Math-
ews [67] from published data, incorporating in particular
earlier work by the group of John SantaLucia [68].
While the Turner parameters are based almost exclu-
sively on thermodynamic measurements, there has been
increasing interest in optimizing parameters such as to
maximize prediction accuracy, see e.g. [69]. As an exam-
ple for such trained parameters we provide the Andro-
nescu parameter set from ref. [70].
To maintain backward compatibility we also ship

Turner ‘99 energy parameter files containing the basic
contributions used in previous versions of the Vien-
naRNA Package. These parameter files, however, will
not always produce results identical to earlier versions
of the package. Affecting mainly the computation of
consensus structures, these differences are mainly owed
to a different handling of non-standard base pairs (i.e.,
base pairs other than Watson-Crick and GU). The cur-
rent implementation assumes that the energy contribu-
tion of a loop with non-standard base pairs or non-
standard nucleotides equals the least stabilizing contri-
bution from the same loop type with canonical nucleo-
tides and pairs only. Small differences may also appear
in partition function computations as a consequence of
round-off errors.
Since the structure of the energy model has changed

in ViennaRNA Package 2.0, energy parameter files for
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versions 1.8.5. and earlier will not work with the new
version of the package. Such old-style user-supplied
parameter files can be converted to the new file format
using the RNAparconv utility.
Additional output options
More information gathered through the course of the
folding algorithms can be included in the output. RNA-
fold and RNAalifold, for instance, optionally pro-
vide further information about the reliability of folding
results. When evaluating ensemble properties with the
partition function, most programs now also compute
the centroid structure [71], i.e., the structure with the
smallest average base pair distance to all other struc-
tures in the ensemble. When base pair probabilities are
computed, the maximum expected accuracy (MEA)
structure [18,72] is also available. The RNALfold/
RNALfoldz program now features an add-on to calcu-
late the z-score for the predicted local secondary struc-
tures [48]. This makes results comparable between
sequences with different nucleotide compositions and
facilitates the choice of a reasonable cutoff thresholds to
decrease the number of structure hits.

Program options and documentation
Each of the command-line tools provides the option -h
or –help to print a brief overview of its general beha-
vior as well as a list of all available parameter options
including their description. To obtain more detailed
information or even exemplary use-case scenarios for a
certain program of the ViennaRNA Package, a UNIX
manpage is provided for each of them.
An important change in the new release is the compli-

ance to the GNU standard regarding the format of com-
mand-line options. Short options consist of a single
character preceded by a minus sign, e.g. -p, while long
options are strings of two or more characters preceded
by two minus signs, e.g. –noLP. This change will break
backward compatibility wherever command-line tools
from older versions of the package were used. This can
be easily fixed by inserting the second dash in long
options.

Input file formats
A plethora of different file formats have been introduced
by the many tools and databases relevant to RNA bioin-
formatics. The ViennaRNA Package has also contrib-
uted to this unpleasant diversity with its own native
formats. Originally designed for simulation pipelines in
which no meta-data is attached to sequence or structure
data, it expects input items (sequences and/or struc-
tures) as single strings uninterrupted by white spaces or
line breaks. FASTA-like headers can optionally be used
to specify an identifier for the data item(s). Secondary
structures are also specified as strings, using the three

characters (, ), and. to denote nucleotides that are paired
with a partner upstream or downstream, or that are
unpaired, resp. In addition to uniquely determining a
pseudoknot-free secondary structure, this notation has
the advantage of providing a compact annotation of the
sequence or alignment to which the structure refers.
The dot-parentheses-format is meanwhile used
also in many unrelated tools e.g. [18,21,61,73-79]. Simi-
lar annotation strings are used to specify constraints as
input to folding algorithms.
The requirement to write input items on a single line

usually requires data format conversions for the interac-
tions with most other bioinformatics tools. These
usually read and write FASTA format [80], which allows
white spaces and line breaks arbitrarily interspersed
within a sequence. An improved handling of data input
now provides full FASTA support for all tools that
require only sequences or sequence alignments as input.
This should considerably facilitate the use of the Vien-
naRNA Package. More complex input structures are
still required for the tools that compute RNA-RNA
interactions, in particular RNAup and RNAcofold.
Programs that process alignment data used clustal

format [81] in previous versions of the package. Due to
the wide-spread use of the STOCKHOLM format in RNA
bioinformatics, e.g. in the Rfam - RNA family data-
base [82]), support for *.stk files has been added.
There are currently no plans to include support for

input formats that use heavy markup such as Genbank
[83] files or XML-based formats such as BioXSD [84]
or RNAML [85].

RNAlib -

API to fast and reliable algorithms
The algorithms implemented in the ViennaRNA Pack-
age are not only accessible by means of the interactive
programs outlined in the previous section but also
directly in the form of a C/C++ library. This makes
them readily available for third-party programs and,
with the help of included Perl-interface, to elaborate
scripting pipelines.

OpenMP thread-safe C/C++ API
Multi-core CPUs have become standard components in
off-the-shelf PC hardware. In order to allow the Vien-
naRNA Package to make use of this increase of com-
putational power, several changes had to be introduced
into the API functions of the RNAlib. Although it is
possible to parallelize the core folding algorithms
[86,87] this requires substantial overheads so that the
gain is small unless massively parallel architectures are
used. On the other hand, computationally demanding
applications of RNA folding typically require the
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processing of large numbers of input sequences, a task
that trivially can be parallelized. The only requirement
for enabling concurrent computation on shared memory
multi-core systems using OpenMP [88] is that the core
algorithms are independent of shared global variables
and thus thread-safe. In particular the variables referring
to the energy parameters are now deprecated and
replaced by additional functions or parameters which
have to be passed to functions. A few remaining global
variables, which are inaccessible through RNAlib, were
made thread-private using OpenMP, allowing simulta-
neous function calls to operate on private copies of
these variables. Using the OpenMP framework, third
party applications are therefore now able to call RNA-
lib interfaces, such as MFE or partition function algo-
rithms, in parallel. Limitations concerning the use of
different energy models used in concurrent computa-
tions are described in detail in the API reference man-
ual. For backward compatibility, the old functions of the
previous API remain included in RNAlib but are
marked as deprecated. Thus, programs which were
developed for binding against the previous versions of
RNAlib up to 1.8.5 are still working without limitations
when linked against the new library.

The reference manual
Documentation is an important issue for the usability of
the RNAlib API. In previous versions of the Vien-
naRNA Package, this was addressed by maintaining, in
addition to the source code, a texinfo-based reference
manual containing introductions into the particular pro-
blem sets and describing the related library functions. In
order to keep this documentation up to date and to
decrease the developers’ effort in maintaining the man-
ual, we opted to use in-source documentation that (a)
helps developers who interact with the source code
directly and (b) enable to use the doxygen documenta-
tion program to generate a comprehensive and always
up-to-date reference manual automatically. An HTML
and a PDF version are included in the package.

PERL bindings
Scripting language bindings to the C functions in the
RNAlib are made using the SWIG interface compiler.
With the ViennaRNA Package, we include bindings
for the most important library functions made accessible
for the script language Perl. This allows a very easy
access to e.g. the folding functions and thus a rapid
design of functional pipelines or small programs that
exploit the potential of the ViennaRNA Package.
Using the SWIG environment bindings for other (script-
ing) languages including Python and JAVA can be
implemented quite easily.

Performance
We assess the performance of the ViennaRNA Pack-
age 2.0 both in terms of computational efficiency and
in terms of prediction accuracy. We emphasize that it is
not the purpose of this contribution to compare ther-
modynamics-based prediction algorithms against other
approaches to RNA structure prediction. For such a
benchmark we refer to the literature, e.g. [18,89,90].
In order to investigate the impact of the energy para-

meters, and in particular of our small changes to the
Turner 2004 model, we use a test set comprising all 1817
non-multimer sequence/structure pairs in the RNAstrand
database [73] without pseudoknots in the reference struc-
ture. For each sequence, the MFE secondary structure was
calculated with RNAfold 2.0, RNAfold 1.8.5, UNAFold
3.8 [19], and RNAstructure 5.2 [20]. All use a nearest
neighbor energy model and a variant of Zuker’s dynamic
programming algorithm. As expected, the new version of
RNAfold performs better than the old one. Somewhat sur-
prisingly, however, RNAfold 2.0 also performs slightly
better than RNAstructure 5.2 and UNAFold 3.8,
despite the fact that we neglected a few peculiarities of the
most recent energy model, see Figure 2, Additional File 1
and the implementation details in the appendix. The aver-
age performance indicators are compiled in Table 2. We
emphasize, however, that the performance of the algo-
rithms differs widely across RNA families and no single
implementation provides consistently superior results.
Detailed data can be found in Additional File 2.
Despite the increase in the number of parameters from
Turner ‘99 to Turner 2004 we observe virtually no dif-
ference in the runtime and memory consumption
between RNAfold 1.8.5 and RNAfold 2.0. Similar
comparisons can be made for other components of the
ViennaRNA Package. The computational speed of
RNAfold compares quite favorably to that of the com-
peting implementations, Figure 2B, although all the
implementations of thermodynamic folding algorithms
use essentially the same energy model and algorithmic
framework, and hence have the same asymptotic run-
time and memory consumption.

Discussion
The ViennaRNA Package has been a useful tool for the
RNA bioinformatics community for almost two decades.
Quite a few widely-used software tools and data analysis
pipelines have been built upon this foundation, either
incorporating calls to the interactive programs or directly
interfacing to RNAlib. Numeric characteristics of second-
ary structures, such as Gibbs free energy ΔG, Minimum
free energy (MFE), ensemble diversity or probabilities of
MFE structures in the ensemble, have been widely used as
features for machine learning classification, e.g. in
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microRNA precursor and target detection [91-94]. The
non-coding RNA gene finder RNAz [95,96], the snoRNA
detector snoReport [97], and RNAstrand [98], a tool
that predicts the reading direction of structured RNAs
from a multiple sequence alignment, combine thermody-
namic properties computed with RNAlib functions and a
machine learning component. RNAsoup [99] takes advan-
tage of the programs RNAfold, RNAalifold and some
other tools provided by the ViennaRNA Package for a
structural clustering of ncRNAs. The siRNA design pro-
gram RNAxs [100] employs the site accessibility predic-
tions offered by RNAplfold, as does IntaRNA [60], a
program to predict RNA interaction sites. Several second-
ary structure prediction tools, such as CentroidFold
[22], McCaskill-MEA [101], or RNAsalsa [102], use
base pair probabilities predicted by RNAfold -p as input,

while the LocARNA package [59] uses them for structural
alignment. The motif-based comparison and alignment
tool ExpaRNA [103] and the tree alignment program
RNAforester [75] also rely on the algorithms provided
by RNAlib. Since its initial publication [25], no compre-
hensive description [104] of the ViennaRNA Package
has appeared. Release 2.0 now implements the latest
energy model, provides many new and improved function-
alities, and - as we hope - is even easier and more efficient
to use due to a thread-safe architecture, an improved API,
a more consistent set of options, and a much more
detailed documentation. Care has been taken to ensure
backward compatibility so that ViennaRNA Package
2.0 can be readily substituted for earlier versions.

Availability and Requirements
The source code of the ViennaRNA Package as well
as the current reference manual can be downloaded
from http://www.tbi.univie.ac.at/RNA.

Appendix
Energy model implementation details
The most important technical innovation is the use of
the 2004 - improved nearest neighbor model by
Mathews et al. [9] as the default parameter set in all
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Figure 2 Performance comparison of RNAfold 2.0 to other secondary structure prediction software. (A) Accuracy of thermodynamic
folding programs in terms of cumulative distribution of the Matthews correlation coefficient (MCC). RNAfold 2.0 outperforms the other
secondary structure prediction programs on the RNAstrand dataset: more of its predictions fall into the region of higher performance values.
Both versions of RNAfold were run with -d2 option. For UNAFold and RNAStructure default options were used. Performance
distributions of Sensitivity, Positive predictive value (PPV) and F-measure are shown in Additional File 1. The averaged overall accuracies can be
taken from table 2. (B) Comparison of runtimes for MFE structure predictions. Measurement was performed on an Intel® Core™ 2 6600 CPU
running at 2.4 GHz. Shown are averaged running times for random sequences of lengths 100 nt (100 samples), 500 nt (100 samples), 1000 nt
(100 samples), 2500 nt (20 samples), 5000 nt (16 samples) and 10000 nt (16 samples). While the compared programs RNAfold 2.0, RNAfold
1.8.5 and UNAfold 3.8 were capable of predicting an MFE structure for all tested samples in a relatively small time frame,
RNAstructure 5.2 was omitted from predictions for the 10000 nt sample set due to its time requirements.

Table 2 Averaged performance measures for
thermodynamic folding algorithms

Sensitivity Specificity MCC F-measure

RNAfold 2.0 0.739 0.792 0.763 0.761

RNAfold 1.8.5 0.711 0.773 0.740 0.737

UNAFold 0.692 0.766 0.727 0.724

RNAStructure 0.715 0.781 0.745 0.742
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free energy calculations. This entails not only an update
of all free energy evaluating sections in each affected
program, but also major changes in the structure of the
parameter sets. In particular, several additional energy
parameters for the different loop types (hairpin loops,
interior loops and multi-branch loops) were introduced.
In order to keep the number of energy parameters and

thus the complexity of the energy model small, we
refrained from implementing exceptional contributions
for some highly specialized configurations. In particular
the following special cases are not incorporated in our
folding recursions:

1. All-C loop penalty, i.e., a penalizing contribution
for loops consisting of unpaired cytosine only;
2. Additional stabilizing GU-closure term that is
applied only in the context of hairpin loops, enclosed
by a GU (not UG) base pair which is preceded by
two Gs;
3. A special intramolecular helix formation of the
four consecutive base pairs GC, GU, UG and CG,
which has a single tabulated contribution of -4.12
kcal/mol.
4. Consideration of an auxilary contributing factor
that reflects the number of states of a bulge loop, i.e.
the number of all possible bulges with identical
sequence.
5. Average asymmetry correcting penalty in multi-
branch loops which constitutes the mean difference
in unpaired nucleotides on both sides of the branch-
ing stems;
6. Extra penalty for three-way branching loops with
less then two unpaired nucleotides;

Adapting the dynamic programming recursions to also
take into account these loop configurations resulted in
an increase of time and memory requirements without a
compensating benefit in terms of prediction accuracy.
The data-set we used for measuring the prediction per-
formance also did not reveal any significant unfavorable
effect of our simplification of the model. However, free
energy evaluation of a given sequence/structure pair, as
done by RNAeval, may introduce these extra cases in
the near future as an additional parameter, such as loga-
rithmic multi-branch loop evaluation.
All our folding algorithms assume -d2 as the default

dangling-end model, allowing a single nucleotide to con-
tribute with all its possible favorable interactions. The dan-
gling-end/helix-stacking model suggested by the Turner’04
parameters is realized with the -d3 option. An additional
model allowing a single nucleotide to be involved in at
most one favorable interaction but ignoring helix-stacking
can be chosen with -d1, while -d0 deactivates dangling-
end and helix-stacking contributions altogether.

Performance
The base pair positions along the RNA sequence were
taken as predicted properties for all of the performance
measurements. Thus, all base pairs in the reference
structure contribute to the number of true positives
(TP). The number of false positives (FP) is obtained by
counting all base pairs that are in the predicted but not
in the reference secondary structure. Along with that, all
base pairs present in the reference but not in the predic-
tion result are regarded as false negatives (FN). These
numbers are then used to compute the sensitivity, also
known as true positive rate (TPR), and precision, also
known as positive predictive value (PPV) [105].

TPR =
TP

TP + FN

PPV =
TP

TP + FP

To combine these performance measures into one sin-
gle value, we used the Matthews Correlation Coefficient
(MCC) [106] and the F1-score (F-measure), i.e. the har-
monic mean of precision and true positive rate.

MCC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

F1 = 2 · PPV · TPR
PPV + TPR

Since the total number of possible base pairings is

bound by
1
2

· n · (n − 1) , with sequence length n, we

estimated the number of true negative (TN) which is
required for calculating the MCC by its upper bound of

TN =
1
2

· n · (n − 1) − TP .

Detailed description of Figure 1
Example calls of programs included in the ViennaRNA
Package and their corresponding output. (A) RNA-
fold output on a small example sequence. Top: On-
screen output - mfe, ensemble representation, and cen-
troid structure as dot-parenthesis (Vienna) representa-
tions. Numbers in brackets denote the energies, and the
centroid’s mean distance to the ensemble. Below: post-
script output as generated by the above programm call.
The mountain plot and the generating program call are
in the center of the sub figure. The bottom shows posi-
tional entropy derived reliabilty information color coded
into the secondary structure drawing.
(B) Example output of programs for local folding.

Top: Dot plot as generated by RNAplfold. The plot is
a cut out along the diagonal of a quadratic dot plot (see
e.g. part (D) of this figure). At the bottom, an example
output of RNALfold is shown. Local optimal
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substructures are shown in dot-parenthesis notation
together with their energy and the index of their first
base.
(C) Example output of RNAup. At the bottom the best

interacting site between the two input molecules is
shown. The xmgrace generated picture above shows the
energy necessary to open a window of 4 consecutive
bases and the interaction energy that can be achieved
when the probe molecule is bound to the target mole-
cule in black and red, respectively.
(D) RNAalifold output. At the top and bottom pic-

tures generated by RNAalifold are shown. The con-
servation of the base pairs is encoded in a color scheme.
Red means only one of the 6 possible base pairs is pre-
sent, ochre means two, green 3 and so on. Paler colors
indicate that some of the sequences cannot form a base
pair at the respective position in the alignment. The top
right corner shows a dot plot. Every dot symbolizes a
base pair, the size of the dots at the upper right triangle
is proportional to the respective base pair probabilities,
while on the lower left triangle the mfe structure is
depicted. On the top right the conservation annotated
consensus structure drawing can be seen, while on the
bottom the annotated alignment is shown. The center of
the subfigure shows the on-screen output of RNAali-
fold. As in the ordinary fold case, the minimum free
energy structure, a representation of the ensemble struc-
ture and the centroid structure are shown. The energies
are split into a thermodynamic part (first) and the con-
servation part, which are summed to give the total pre-
dicted score.
(E) RNAcofold output. At the top the secondary

structure drawing of the minimum free energy folding
of the two molecules is shown. The molecules are color
coded to make it easier to tell them apart. The “&”
character in the on-screen output below is the separator
between the two sequences. In addition to the mfe and
the ensemble representation with their energies, the
binding energy is shown.
(F) Output for kinetics (using RNAsubopt output fed

into the external programs barriers and treekin).
The diagram shows the change in population from the
start, where state 20 is populated, towards the equili-
brium state 1. The inner picture shows the barrier tree
upon which the relative concentrations of the diagram
are based. The 20 lowest suboptimal structures and the
paths connecting them are depicted, together with the
barrier heights.
(G) Output of the three versions of RNAsubopt. Left:

Output of the Wuchty algorithm, all structures within a
certain energy band are shown. Right: Zuker algorithm,
showing the best structures for every possible base pair.
Bottom: Stochastic backtracking, random structures
drawn according to their probability in the ensemble.

Additional material

Additional file 1: Performance comparison (Sensitivity, PPV, F-
measure).

Additional file 2: Detailed performance comparison.
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ABSTRACT

Motivation: While there are numerous programs that can predict RNA

or DNA secondary structures, a program that predicts RNA/DNA

hetero-dimers is still missing. The lack of easy to use tools for predict-

ing their structure may be in part responsible for the small number of

reports of biologically relevant RNA/DNA hetero-dimers.

Results: We present here an extension to the widely used

ViennaRNA Package (Lorenz et al., 2011) for the prediction of the

structure of RNA/DNA hetero-dimers.
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1 INTRODUCTION

Nucleic acids have many important functions in biological sys-

tems, such as information carriers, catalysts and regulators. Both
variants, DNA and RNA, can form complex structures by base
pair interactions. The pattern of Watson–Crick or wobble base

pairs a molecule forms is called the secondary structure. A main
difference between RNA and DNA is due to their usage in bio-

logical systems: while DNA builds a dimer with its reverse com-
plement almost all the time, RNA, being mostly single stranded,
is more prone to fold back onto itself. However, if DNA is single

stranded (e.g. during replication, transcription, repair or recom-
bination), it will also form intramolecular base pairs. There are
several examples where RNA and DNA interact via base pairing,

generating a structure called R-loop. They protect CpG (CG
dinucleotide regions in the genome) islands from being
methylated (Ginno et al., 2012). The stability of DNA/mRNA

hybrids is reported to have an influence on the copy number
of repeats (McIvor et al., 2010) and can impair transcription
elongation, promoting transcription-associated recombination

(Huertas and Aguilera, 2003). Moreover, during the intensive
search for new functional transcripts, rendered possible by
next-generation sequencing technology, at least 1000 novel

lincRNAs were identified that may act as regulators of transcrip-
tion, and one possibility to do this is via base pairing between
RNA and DNA (see Guttman and Rinn, 2012 for a recent

review). As a final biological example, DNA/RNA hybrids
play a role within the CRISPR pathway in bacteria and

archaea (Howard et al., 2011). On a technical side, RNA/DNA

dimers are often used in micro-array or PCR experiments.

The ability to computationally investigate the properties of the

structures of interacting RNA and DNA molecules would help

in the analysis of these dimers. While a number of programs exist

that can predict RNA or DNA secondary structures (For a

review, see e.g. Reeder et al., 2006) or even their dimers, there

is, to our knowledge, no program that also includes the possibil-

ity to predict the full secondary structure of RNA/DNA

hetero-dimers. This may be due to the lack of compiled energy

parameters, as there are only stacking energies available today.

We introduce here a possibility to predict the secondary structure

of such hetero-dimers within the widely used ViennaRNA
Package.

2 APPROACH

2.1 Adaptation of the ViennaRNA package

For the prediction of RNA/DNA hetero-dimers, three distinct

energy parameter sets (RNA, DNA and mixed) are necessary. In

order to keep the changes within the inner recursions of the al-

gorithm minimal, we use 8 instead of 4 bases and 24 instead of

6 types of Watson–Crick or wobble base pairs for the energy

computations. The look-up tables for the energy parameters

grow accordingly. However, this does not significantly contribute

to memory consumption. Finally, we demand a fixed order for

the input sequences: RNA first, DNA last.

2.2 Energy parameters

Since we are only considering RNA/DNA hetero-dimers, not

co-polymers, we only need a subset of the energy parameters

necessary for the full computations in the RNA or DNA case:

we do not encounter stacking of a RNA on a DNA base, for

example. In contrast, stacking parameters of RNA/DNA base

pairs, multi-loop penalties and the interior loop parameters are

needed. For stacked pairs, i.e. perfect helices, the parameters

have been determined experimentally (Martin and Tinoco,

1980; Sugimoto et al., 1995). Stacking parameters are the most

important part of the energy model, as they account for the

majority of RNA/DNA binding free energy. Unfortunately, for

other mixed RNA–DNA loops no experimental data are

available.

As no high-quality dataset of RNA/DNA structures exists,

parameters cannot be trained, and the performance of different

parameter sets cannot be evaluated. The data we have are not

sufficient to chose a function for the derivation of the energy*To whom correspondence should be addressed.
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parameters (Supplementary Fig. S1), so we simply use the aver-

age of RNA and DNA ER=D ¼ ER þ EDð Þ=2 for all missing

values. We are aware that this formula gives an at best crude

approximation of the actual folding energies, but note that new

parameters can easily be incorporated. We hope that the

availability of prediction tools for RNA/DNA hetero-dimers

will encourage experimentalists to provide the missing energy

parameters.

2.3 Inclusion into the ViennaRNA package

Our approach to just adapt the energy computations enabled us

to easily include the RNA/DNA hetero-dimer support into all

parts of the ViennaRNA Package that compute dimer struc-

tures, namely, RNAcofold (Bernhart et al., 2006),

RNAup (Mückstein et al., 2008) and RNAduplex (Tafer and

Hofacker, 2008). RNA/DNA hetero-dimers are supported for

both the minimum free energy as well as the partition

function-based calculations. Furthermore, all programs can

read in user-supplied energy parameters. In particular, this

allows to make immediate use of any newly determined param-

eters for mixed RNA–DNA loops, or enables scientists to easily

evaluate different energy models as soon as sufficient RNA/

DNA structure data are available.

3 RESULTS

In the absence of programs that can deal with RNA/DNA

dimers, researchers have resorted to simply treating both parts

of the dimer as RNA. To test the effect of applying the right

(DNA or RNA) parameters to the single molecules and using

explicit RNA/DNA interactions, we chose ANRIL, a long

non-coding RNA that is suspected to have a DNA target

sequence, and one of its putative targets. In order to simulate

the size of the transcription bubble, we chose a sliding window

approach with DNA pieces of length 50, step size 25 for our

computations. Even though ANRIL (1500 nt) is much longer

than the pieces of DNA bound to it, we sometimes observe a

dramatic effect on the structure of the hybrid molecule. The tree

edit distance of the hybrid structures predicted with RNA par-

ameters and with our hybrid approach rises up to 900, and the

structure of the binding site can vary greatly (Fig 1).

Another example for the usefulness of the mixed parameters is

the strand dependency of R-loop formation (Reddy et al., 2011).

A r GAAð Þn trinucleotid repeat can form R-loops while its reverse

complement r UUCð Þn cannot. The non-symmetric mixed

parameters can explain that: addition of another trinucleotid

will give –4.1 kcal/mol for r GAAð Þ, but only –2.6kcal/mol for

r UUCð Þ. In contrast to RNA or DNA parameters, the mixed

parameters can also explain the changes in R-loop formation

of other trinucleotides investigated (see Supplementary Fig. S2).
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Abstract: The analysis of RNA folding landscapes yields insights into the kinetic fold-
ing behavior not available from classical structure prediction methods. This is espe-
cially important for multi-stable RNAs whose function is related to structural changes,
as in the case of riboswitches. However, exact methods such as barrier tree analysis
scale exponentially with sequence length. Here we present an algorithm that com-
putes a projection of the energy landscape into two dimensions, namely the distances
to two reference structures. This yields an abstraction of the high-dimensional energy
landscape that can be conveniently visualized, and can serve as the basis for estimating
energy barriers and refolding pathways. With an asymptotic time complexity of�(n7)
the algorithm is computationally demanding. However, by exploiting the sparsity of
the dynamic programming matrices and parallelization for multi-core processors, our
implementation is practical for sequences of up to 400 nt, which includes most RNAs
of biological interest.

1 Introduction

Structure formation of RNA molecules is crucial for the function of non-coding RNAs

(ncRNAs) as well as for coding mRNAs with regulatory elements like riboswitches and

attenuators. Some RNAs possess distinct meta-stable structures with different biological

activity. A prime example are riboswitches that regulate gene expression depending on

the presence or absence of a small ligand molecule. The pathogenity of viral agents like

viroids is achieved by distinct meta stable structures of their ’genome’. While efficient

RNA folding algorithms such as mfold [Zuk89] or the Vienna RNA package [HFS+94]

can be used to compute most equilibrium properties of an RNA molecule, they provide

little information on folding dynamics. In this case one has to resort to either stochas-

tic simulation of the folding process [FHMS+01, IS00, GFW+08] or analysis of the en-

ergy landscape based on enumeration or sampling. In particular the barriers program

[FHSW02] is used to find all local minima in the energy landscape and their connecting

transition states and energy barriers. The algorithm is based on a complete enumeration of

all low-energy conformations [WFHS99] in the landscape and therefore scales exponen-

tially with sequence length. In contrast, the paRNAss tool [GHR99] relies on sampling

structures and clustering in order to detect multi-stable RNAs but gives no information on

energy barriers.

The dynamic programming (DP) approach to RNA folding can also be extended to obtain

Lorenz et al. 11
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more information on the energy landscape: Cupal et al. [CHS96] proposed an algorithm

that computes the density of states, i.e. the number of structures that fall into a particular

energy bin, by extending the usual DP table into a third dimension corresponding to the

energy bins. The RNAbor algorithm [FMC07], uses the base pair distance to a reference

structure as the additional dimension and computes the optimal secondary structure as well

as partition function for each distance class (δ-neighborhood).

Both approaches can be viewed as a one-dimensional projection of the high dimensional

energy landscape, which however results into a drastic loss of information. Here, we

describe a related method that employs the distances to two reference structures in order

to compute a 2D projection which retains enough information to predict qualitative folding

behavior and is easy to visualize. In particular, we define a κ� λ - neighborhood to be all

secondary structures s with dBP(s1� s) = κ and dBP(s2� s) = λ, where dBP(sa� sb) is the
base pair distance of sa and sb, and proceed to compute minimum free energy (MFE)

structure, as well as partition function and Boltzmann weighted structure samples for each

κ� λ - neighborhood .

2 Methods

2.1 Minimum free energy algorithm

In the following we will write (i� j) to denote a base pair between the ith and jth nu-

cleotide. A secondary structure s is regarded as a set of base pairs, the base pair dis-

tance between two structures is defined as dBP(s1� s2) = |s1 ∪ s2| − |s1 ∩ s2| and
equals the number of base pairs present in either but not both structures. We will write

s[i� j] = {(p� q) ∈ s : i ≤ p < q ≤ j}, to identify the substructure on the sequence
interval [i� j]. E(s) denotes the free energy of structure s.

For reference, we reproduce below the classic recurrences for MFE folding, which we

will extend to the κ� λ - neighborhood in the following section. Note that the recursions

employ an unambiguous decomposition of secondary structures as implemented in the

Vienna RNA package [HFS+94].

Fi�j = min

�

Fi�j−1� min
i<k≤j

Fik + Ck+1�j

�

Ci�j = min

�

H(i� j)� min
i<k<l<j

Ckl + I(i� j; k� l)� min
i<u<j

Mi+1�u + M̂u+1�j−1 + a

�

Mi�j = min

�

min
i<u<j

(u− i− 1)c + Cu+1�j + b� min
i<u<j

Mi�u + Cu+1�j + b� Mi�j−1 + c

�

M̂i�j = min
�

M̂i�j−1 + c� Cij + b
�

(1)

The upper triangular matrices Fi�j , Ci�j ,Mi�j and M̂i�j contain the optimal folding energy

on the sequence interval [i� j], optimal energy given that (i� j) form a pair, given that i and j

12 Lorenz et al.

2d projections of rna folding landscapes 109



reside in a multi-loop, and for multi-loop components with exactly one stem in the interval

[i� j], respectively. H(i� j) denotes the energy of a haipin-loop closed by (i� j), I(i� j� p� q)
the energy of an interior-loop closed by (i� j) and (p� q). The parameters a, b, and c contain

the penalties for closing a multi-loop, for adding a multi-loop component, and enlarging a

multi-loop by one unpaired base. We use the energy parameters as tabulated by the Turner

group [MSZT99]. After filling the matrices the MFE structure is found by backtracking in

the usual manner.

2.2 Minimum free energy κ� λ-neighbors

For a given RNA sequence S and two fixed reference structures s1 and s2, the MFE version

of the κ� λ - neighborhood algorithm computes energetically optimal structures s
κ�λ
opt ∈

Sκ�λ where Sκ�λ = {s | dBP(s1� s) = κ ∧ dBP(s� s2) = λ} is the κ� λ - neighborhood of

reference structure s1 and s2. We extend the recursions (1) such that for each entry of the

energy matrices F ,C,M and M̂ the optimal energy contribution of substructures s[i� j]
with dBP(s1[i� j]� s[i� j]) = κ and dBP(s2[i� j]� s[i� j]) = λ are computed. This leads to

two additional dimensions in the energy matrices denoted by F κ�λ,Cκ�λ,Mκ�λ and M̂κ�λ.

Since closing base pairs may lead to an increase of the base pair distance to both reference

structures s1 and s2, additional decomposition constraints have to be introduced in the

recurrences.

A hairpin loop closed by (i� j), for example, contributes to C
κ�λ
i�j only if the substructure

s[i� j] consisting of the single pair {(i� j)} only has distances κ and λ to the two substruc-

tures s1[i� j] and s2[i� j], respectively. Thus, we introduce the shorthand

�(i� j� κ� λ) =

�
H(i� j) if dBP(s1[i� j]� {(i� j)}) = κ� dBP(s2[i� j]� {(i� j)}) = λ

∞ else

(2)

For non-hairpin loops, we introduce five terms δx
1 − δx

5 , where the superscript x is either 1
or 2, denoting the reference structure.

δx
1 (i� j) = dBP(sx[i� j]� sx[i� j − 1]) (3)

δx
2 (i� j� u) = dBP(sx[i� j]� sx[i� u− 1] ∪ sx[u� j]) (4)

δx
3 (i� j� p� q) = dBP(sx[i� j]� {(i� j)} ∪ sx[p� q]) (5)

δx
4 (i� j� u) = dBP(sx[i� j]� {(i� j)} ∪ sx[i + 1� u] ∪ sx[u + 1� j − 1]) (6)

δx
5 (i� j� u) = dBP(sx[i� j]� sx[u� j]) (7)

Each of the δ in eqs. (3-7) covers a distinct case in the energy minimization recursions,

and denotes the minimal distance to the reference structure incurred when decomposing a

substructure into two parts (since base pairs in the reference structure crossing the decom-

position splitting positions j, u, p and q must be opened). For example δx
1 (i� j) equals 1,

if j is paired in the structure interval sx[i� j] of the reference structure sx and 0 otherwise.

Decompositions into more than one substructure lead to additional combinatorial possibil-

ities. They are taken into account by minimizing over (ω� ω̂) pairs, where the sum (ω + ω̂)

Lorenz et al. 13
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reflects the residual of the base pair distance between the substructures and the references.

Thus, the recursions to compute E(sκ�λ
opt ) = F

κ�λ
1�n are:

F
κ�λ
i�j = min

�




F
κ−δ1

1
(i�j)�λ−δ2

1
(i�j)

i�j−1 �

min
i≤u<j

min
ω1+ω̂1=κ−δ1

2
(i�j�u)

ω2+ω̂2=λ−δ2

2
(i�j�u)

F
ω1�ω2

i�u−1 + C
ω̂1�ω̂2

u�j

C
κ�λ
i�j = min

�




�(i� j� κ� λ)�

min
i<p<q<j

�
C

κ−δ1

3
(i�j�p�q)�λ−δ2

3
(i�j�p�q)

p�q + I(i� j� p� q)
�

�

min
i<u<j

min
ω1+ω̂1=κ−δ1

4
(i�j�u)

ω2+ω̂2=λ−δ2

4
(i�j�u)

�
M

ω1�ω2

i+1�u + M̂
ω̂1�ω̂2

u+1�j−1 + a
�

M
κ�λ
i�j = min

�




M
κ−δ1

1
(i�j−1)�λ−δ2

1
(i�j)

i�j + c

min
i≤u<j

�
(u− i) · c + C

κ−δ1

5
(i�j�u)�λ−δ2

5
(i�j�u)

u�j + b
�

�

min
i≤u<j

min
ω1+ω̂1=κ−δ1

2
(i�j�u)

ω2+ω̂2=λ−δ2

2
(i�j�u)

�
M

ω1�ω2

i�u−1 + C
ω̂1�ω̂2

u�j + b
�

�

M̂
κ�λ
i�j = min

�
C

κ�λ
i�j + b

M̂
κ−δ1

1
(i�j)�λ−δ2

1
(i�j)

i�j−1 + c�
(8)

2.3 Time and memory complexity

Regarding the time complexity of the algorithm, a contribution ofO(n3), where n denotes

RNA sequence length is implicit due to the underlying MFE folding algorithm. The ad-

ditional degrees of freedom of the multi-loop decompositions in C
κ�λ
i�j and M

κ�λ
i�j increase

the complexity by a factor of κ · λ. The extension of the dynamic programming matrices

by two further dimensions κ and λ additionally requires quadratically more effort. If the

maximum distance values of κ and λ is limited to κ ≤ d1 and λ ≤ d2, the time complex-

ity becomes O(n3 · d2
1 · d2

2). Since the maximum number of base pairs on a sequence of
length n is ∼ n

2 , the maximum achievable base pair distance between any two structures

is bounded by n. Thus, the total asymptotic time complexity of the κ� λ - neighborhood

algorithm results in O(n7) for any distance boundaries d1 and d2.

A similar argument holds for the memory complexity which is O(n2 · d1 · d2) = O(n4).
Thus, the memory increase compared to regular MFE folding is d1 · d2 ≤ n2.

14 Lorenz et al.
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2.4 Partition function of the κ� λ  neighborhood

A modification of algorithm (8) to compute the partition function

Qκ�λ =
�

sx∈Sκ�λ

e−E(sx)/kT (9)

for each κ� λ - neighborhood according to the algorithm of McCaskill et al. [McC90] is

straight forward. The energy contributions are Boltzmann weighted and all sums/minimi-

zations are replaced by products/sums. This can be done, as the recursions (8) perform

unique decompositions and therefore already constitute a partitioning.

Since clustering of the complete secondary structure space into κ� λ - neighborhoods is a

partitioning too,
�

κ�λ Qκ�λ = Q, where Q =
�

s e−E(s)/kT is the partition function of

the complete ensemble of all secondary structures.

The Boltzmann probabilities of a κ� λ - neighborhood in the complete ensemble and for a

structure sx ∈ Sκ�λ inside a κ� λ - neighborhood become

P (Sκ�λ) =
Qκ�λ

Q
and P (sx ∈ Sκ.λ) =

e−E(sx)/kT

Qκ�λ
(10)

Stochastic backtracking yields a Boltzmann weighted sample of representative structures.

2.5 Sparse matrix approach and Parallelization

Some properties of the κ� λ - neighborhood can be used to improve the runtime and re-

duce memory requirements. Due to the definition of the κ� λ - neighborhood of two struc-

tures s1 and s2, there exist combinations of κ� λ distance pairs which do not contribute

to any solution. For example, there is no κ� λ-neighbor with κ + λ < dBP(s1� s2). An
increase or decrease of the base pair distance of a structure s to one of the reference struc-

tures implicitly changes the base pair distance to the other reference. In particular, if

dBP(s1� s2) = even (resp. odd), then κ + λ = even (resp. odd). This checkerboard-like

pattern of the κ� λ - neighborhood roughly halves the number of entries in the extended

dimensions κ and λ actually needed for the calculations. Furthermore, the maximum dis-

tance dmax to any reference structure in any substructure s[i� j] of length m = j − i + 1
is constrained to dmax < m. These observations introduce sparsity in the dynamic pro-

gramming matrices. Hence, two-dimensional matrices F� C� M� M̂ with lists of triples,

containing energy E, distance κ and distance λ at each matrix entry can be used. By it-

erating over the list instead of all κ� λ combinations, impossible structure formations are

avoided.

Further runtime improvements can be obtained through parallelization by noting that all

entries of the matrices F , C,M and M̂ with j − i = const. can be computed concurrently

if the matrices are filled in diagonal order, see [FHS00].

Lorenz et al. 15
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Figure 1: Runtimes of MFE calculation for the complete κ� λ - neighborhood . Timings are given for
naı̈ve approach (1st implementation) and the sparse matrix approach (SMA) using 1, 4 and 8 threads
on a dual quad-core Intel R� Xeon R� E5450 @3.00GHz with 32GB RAM. Runtimes are means of 15
random sequences. Reference structures used were the MFE structure and the open chain. With 8
processor cores, a sequence of 400 nt can be processed in about 5.8h.

3 Results

3.1 Implementation

The partition function as well as theMFE version of the κ� λ - neighborhood algorithmwas

implemented in ISO C and will be available as a stand-alone program RNA2Dfold in

one of the next releases of the Vienna RNA Package. A release candidate is available from

http://www.tbi.univie.ac.at/˜ronny/RNA/. The implementation provides

most of the command line options of RNAfold such as different dangling end models

and temperature. Given an RNA sequence S and two reference structures s1 and s2,

RNA2Dfold computes for each κ� λ - neighborhood the MFE structure s
κ�λ
opt and its free

energy, the probabilities P (Sκ�λ), P (sκ�λ
opt ∈ Sκ.λ), the probability of s

κ�λ
opt in the complete

ensemble and the Gibbs free energyΔGκ�λ. The maximum values d1 and d2 with κ ≤ d1

and λ ≤ d2 can be specified by the user.

For parallelization we used OpenMP which allows efficient use of modern multi-core sys-

tems while requiring only small changes to the serial version of the source code. The

performance gain from exploiting sparsity as well as parallelization is demonstrated in

Fig. 1. The resulting speedups for 4 and 8 cores were 2.0 and 2.9, respectively. On mod-

ern multi-core systems RNA2Dfold can easily compute the MFE structures and partition

functions for all κ� λ - neighborhoods for RNA sequences up to about 400 nt. This length

range covers functional RNAs such as riboswitches and viroids.

16 Lorenz et al.
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3.2 2D Projection of the energy landscape

The probability densities and partition functions calculated by RNA2Dfold can be used

for several secondary structure space analysis. One of the possible applications of the κ� λ -

neighborhood algorithm is the prediction of metastable structure states and the detection of

bi-stable RNA switches. Typically, theMFE structure is used as the first reference structure

s1. A meta-stable state, suitable as second reference structure s2, can be obtained e.g. from

a first run of RNA2Dfold using the open chain as second reference, and selecting s2 from

the s
κ�λ
opt . We note that this provides an alternative to the paRNAss approach for detecting

RNA switches that avoids sampling errors. Computing the κ� λ - neighborhood of s1 and

s2 and plotting the MFE values, probability densities and/or the Gibbs free energy of the

partitioned landscape as a two dimensional height map reveals a qualitative picture of the

roughness of the landscape. In the examples of Fig. 2 both RNAs can be clearly recognized

as bi-stable switches. Molecules with more than 2 long-lived meta-stable states should

exhibit additional minima in the interior of the height map. Furthermore, the height map

yields a lower bound on the energy barrier between s1 and s2, and indicates the difficulty

of refolding from s1 to s2 and vice versa.

3.3 A heuristic for finding non direct refolding paths

Most existing approaches utilize heuristics that consider only direct (minimal length) re-

folding paths between two states [MH98, FHMS+01]. Since direct paths allow no detours,

potentially stabilizing base pairs which are not in either of the two ground states cannot

be formed. This can lead to intermediate structures with energetically unfavorable loop

motifs and thus unnecessarily high energy barriers. In contrast, a refolding path with guar-

anteed minimal barrier can be obtained from the barriers program [FHSW02]. Since

the approach is based of exhaustive enumeration of the energy landscape, it is limited to

short sequences, typically less than a 100 nt.

The κ� λ - neighborhood can be used as base for various heuristics estimating the refolding

path and energy barrier. Note however that taking the representatives s
κ�λ
opt from a series

of adjacent κ� λ-neighbors does usually not yield a continuous path of adjacent structures.

Nevertheless, the height map already provides a lower bound for the height of the transis-

tion state and therefore for the energy barrier too. Direct path heuristics perform poorly

when the two structures are far apart. Therefore, a natural extension is to construct an

intermediate structure sm, termed mesh-point, thus splitting the path construction problem

between the two reference structures s1 to s2 into two path constructions from s1 to sm

and from sm to s2. The problem is of course to find suitable mesh points, and the κ� λ -

neighborhoods turn out to be an excellent starting point for this. The Pathfinder al-

gorithm given below (3.1) connects such mesh points using the direct path heuristic from

[FHMS+01]. The method produces indirect paths, since the mesh points need not lie on a

shortest path between s1 and s2.

After computing the κ� λ - neighborhood of the start (s1) and target (s2) structure, we test

Lorenz et al. 17
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Algorithm 3.1 Pseudo-code of the Pathfinder(sa, sb, iter) algorithm where sa is the start

structure, sb is the stop structure, iter is the maximal number of iterations

MeshpointHeap← ∅ /∗ initialize min-order mesh-point heap ∗/
bestpath← DirectPath�sa� sb) /∗ get best refolding path so far ∗/
whileMeshpoints available ∧ |MeshpointHeap| < m do

s ← Meshpoint structure /∗ sample a mesh point structure ∗/
path← DirectPath�sa� s) + DirectPath�s� sb)
if Barrier�path) < Barrier�bestpath) then
insert�MeshpointHeap� �s� path�Barrier�path)))

end if

end while

if iter > 0 then

for 0 . . . m do

�s� path) ← pop�MeshpointHeap)
path← Pathfinder�sa� s� iter − 1) + Pathfinder�s� sb� iter − 1)
if Barrier�path) < Barrier�bestpath) then
bestpath← path

end if

end for

else

�s� path) ← pop�MeshpointHeap)
bestpath← path

end if

return bestpath

as mesh-points all MFE structures s
κ�λ
opt where κ+λ ≤ γ with a constant γ. This constraint

limits the maximal deviation from a direct path and allows an adjustable exploration of the

underlying energy landscape. Clearly, it is possible to recursively subdivide the problem

further if required (see Pseudocode). With this simple approach the Pathfinder algo-

rithm is able to find refolding paths with energy barriers very close or identical to those of

an exhaustive search using the barriers program [FHSW02]. Results for an artificially

designed RNA switch of 45 nt length revealed a barrier height of 10.7 kcal/mol (see Fig.
2A) which is the same as found with a barrier tree analysis. In contrast to that, a direct

path generated according to [FHMS+01] predicts an energy barrier of 13.33 kcal/mol.
As mentioned before, the heightmap already provides a lower bound for the energy bar-

rier. Here, direct paths are bounded by at least 13.3 kcal/mol, while indirect paths are
bounded by 10.0 kcal/mol. Refolding between the aptamer- and non-aptamer fold of the
add-riboswitch [RLGM07] (Fig. 2B) also shows the same energy barrier of 6.77 kcal/mol
for both, Pathfinder and barrier tree analysis, while a direct path exhibits 7.28 kcal/mol.

4 Conclusion

We introduced a method for a unique partitioning of the RNA secondary structure space,

in which structures are lumped together according to their base pair distances to two ref-

erence structures. In effect, this provides a 2D projection of the high-dimensional folding

space. To overcome the high time complexity of O(n7) our implementation exploits the
sparseness of the dynamic programming matrices as well as OpenMP parallelization. The

18 Lorenz et al.
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Figure 2: Gibbs free energy height map of all κ� λ - neighborhoods and projection of the re-
folding paths generated by barriers (red line) and the Pathfinder (blue dashed line)
without recursive refinement. Mesh-points are taken from the κ� λ - neighborhood of both
reference structures. A: MFE- and alternative structure of an artificial RNA switch with
sequence GGGCGCGGUUCGCCCUCCGCUAAAUGCGGAAGAUAAAUUGUGUCU and meta stable structure
conformations (((((.....)))))(((((.....)))))(((((.....))))) (MFE structure) and
((((((((((.....(((((.....))))).....)))))))))) (alternative structure). B: Aptamer-
and non-aptamer fold of an add-riboswitch [RLGM07]. In contrast to direct paths (straight diagonal
green line), the Pathfinder solution is as good as the (optimal) solution generated by barriers
in both cases. In B, identical refolding paths are obtained for Pathfinder and barriers anal-
ysis.

resulting program is fast enough to treat RNA molecules up to 400 nt which covers most

biologically interesting cases such as riboswitches and viroids.

The κ� λ - neighborhoods provide both a qualitative picture of the energy landscape, as

well as a convenient starting point for more detailed exploration. As an example we show

that it can be used to suggest excellent intermediate nodes for the construction of refolding

paths, resulting in a fast heuristic that often gives optimal results. Such heuristics are

needed e.g. for kinetic folding strategies like Kinwalker [GFW+08]. Furthermore, the

height maps could provide the starting point for methods that recognize RNA switches or

for coarse grained folding simulations.
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2D Meets 4G: G-Quadruplexes in RNA
Secondary Structure Prediction

Ronny Lorenz, Stephan H. Bernhart, Jing Qin, Christian Höner zu Siederdissen,

Andrea Tanzer, Fabian Amman, Ivo L. Hofacker, and Peter F. Stadler

Abstract—G-quadruplexes are abundant locally stable structural elements in nucleic acids. The combinatorial theory of RNA

structures and the dynamic programming algorithms for RNA secondary structure prediction are extended here to incorporate G-

quadruplexes using a simple but plausible energy model. With preliminary energy parameters, we find that the overwhelming majority

of putative quadruplex-forming sequences in the human genome are likely to fold into canonical secondary structures instead. Stable

G-quadruplexes are strongly enriched, however, in the 50UTR of protein coding mRNAs.

Index Terms—Dynamic programming, RNA folding, ViennaRNA Package

Ç

1 INTRODUCTION

GUANOSINE-RICH nucleic acid sequences readily fold into
four-stranded structures known as G-quadruplexes.

DNA quadruplexes are, for instance, an important compo-
nent of human telomeres [1], they appear to be strongly
overrepresented in the promoter regions of diverse organ-
isms, and they can associate with a variety of small molecule
ligands, see [2], [3] for recent reviews. SNPs in G-quad-
ruplexes, finally, have been implicated as a source of
variation of gene expression levels [4]. RNA quadruplexes

have also been implicated in regulatory functions. Conserved
G-quadruplex structures within the 50UTR of the human
TRF2 mRNA [5] and eukaryotic MT3 matrix metalloprotei-
nases, for example, repress translation [6]. Another well-
studied example is the interaction of the RGG box-domain
fragile X mental retardation protein (FMRP) to a G-quartet-
forming region in the human semaphorin 3F (S3F) mRNA [7],
[8]. A recent review of G-quadruplex-based translation
regulation is [9]. A functional RNA G-quadruplex in the
30UTR was recently described as a translational repressor of
the proto-oncogene PIM1 [10]. A mechanistic study of this
effect, which seems to be widely used in the cell [11], [12] can
be found, e.g., in [13]. Most recently, G-quadruplexes were
also reported in several long non-coding RNAs [14]. G-
quadruplexes are potentially of functional importance in the
100 to 9,000 nt G-rich telomeric repeat-containing RNAs
(TERRAs) [15].

Quadruplex structures consist of stacked associations of
G-quartets, i.e., planar assemblies of four Hoogsteen-bound
guanines. As in the case of base pairing, the stability of
quadruplexes is derived from �-orbital interactions among
stacked quartets. The centrally located cations that are
coordinated by the quartets also have a major influence on
the stability of quadruplex structures.

DNA quadruplexes are structurally heterogeneous:
Depending on the glycosidic bond angles, there are 16
possible structures and further combinatorial complexity is
introduced by the relative orientations of the backbone
along the four edges of the stack [17]. RNA quadruplexes, in
contrast, appear to be structurally monomorphic forming
parallel-stranded conformations (Fig. 1, left) independently
of surrounding conditions, i.e., different cations and RNA
concentration [18]. Here, we restrict ourselves to the simpler
case of RNA quadruplexes.

From a bioinformatics perspective, G-quadruplex struc-
tures have been investigated mostly as genomic sequence
motifs. The G4P Calculator searches for four adjacent
runs of at least three Gs. With its help, a correlation of
putative quadruplex forming sequences and certain func-
tional classes of genes was detected [19]. Similarly,
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quadparser [20] recognizes the pattern (1) below. It was
used, e.g., in [21] to demonstrate the enrichment of
quadruplexes in transcriptional regulatory regions. A
substantial conservation of such sequence patterns in
mammalian promoter regions is reported in [22]. The web
service QGRS Mapper uses a similar pattern and imple-
ments a heuristic scoring system [23], see also [24] for a
review. A Bayesian prediction framework based on
Gaussian process regression was recently introduced to
predict melting temperatures of quadruplex sequences [25].

The formation of RNA quadruplexes necessarily com-
petes with the formation of canonical secondary structures.
Hence, they cannot be fully understood in isolation. In this
contribution, which is a revised and expanded version of
[26], we describe how G-quadruplex structures can be
incorporated into RNA secondary structure prediction
algorithms and survey the genomic distribution of stable
G-quadruplex structures.

2 ENERGY MODEL

Thermodynamic parameters for RNA quadruplexes can be
derived from measurements of UV absorption as a function
of temperature [27], analogous to melting curves of
secondary structures. While the stability of DNA G-
quadruplexes strongly depends on the arrangement of
loops [28], [29], this does not appear to be the case for RNA.
RNA not only forms mostly parallel-stranded stacks for G-
quartets but their stability also exhibits a rather simple
dependence of the loop length [16]. In further contrast to
DNA [30], they appear to be less dependent on the
nucleotide sequence itself.

A G-quadruplex with 2 � L � 5 stacked G-quartets and
three linkers of length l1; l2; l3 � 1 has the form

GLNl1GLNl2GLNl3GL: ð1Þ

It is commonly assumed that 1 � li � 7 [25], although in vitro
data for DNA suggest that longer linkers are possible [31].
For L ¼ 2, the existence of quadruplexes with 1 � ‘i � 2 was
reported [32]. For L ¼ 3, detailed thermodynamic data are
available only for the 27 cases with 1 � l1; l2; l3 � 3 and for
some longer symmetric linkers l1 ¼ l2 ¼ l3 [16], see Fig. 1b.

To our knowledge, no comprehensive data are available for
L � 4. It appears reasonable to assume that the stacking
energies are additive. The energetic effect of the linkers
appears to be well described in terms of the total linker
length ‘ [16]. As shown in Fig. 1b, the free energy depends
approximately logarithmically on ‘. In this contribution, we
are mostly concerned with the algorithmic issues of
including G-quadruplexes into thermodynamic folding
programs. In particular, we ignore here the strong depen-
dence of quadruplex stability on the potassium concentra-
tion, see, e.g., [33]. We thus resort to the simplified
temperature-dependent energy function

E½L; ‘; T � ¼ aðT ÞðL� 1Þ þ bðT Þ lnð‘� 2Þ
aðT Þ ¼ Ha þ TSa
bðT Þ ¼ Hb þ TSb;

ð2Þ

if the pattern (1) is matched and E ¼ 1 otherwise. The
parameters are fitted to match the free energies in Fig. 1,
i.e., að37 �CÞ ¼ �18 kcal/mol, and bð37 �CÞ ¼ 12 kcal/mol.
The enthalpy Ha ¼ �119:34 kcal/mol is estimated from the
melting experiments reported in [16]. Furthermore, we
assume that the contribution of the linkers is purely
entropic, i.e., Hb ¼ 0 kcal/mol. To test the consistency of
the parameters, we compare in Fig. 2 the measured melting
temperatures of 27 sequences reported in [16] with melting
temperatures predicted by RNAfold, i.e., the temperature
at which the probability of the G-quadruplex equals 0.5. We
observe an excellent agreement and conclude that the
simple energy model here is adequate. Not surprisingly,
reducing the estimates for the quadruplex stacking energy a
and the entropic penalty b for the linker sequences favors
the prediction of quadruplexes over alternative secondary
structures. A quantitative sensitivity analysis can be found
in the electronic supplement.

G-quadruplex structures can be located within loops of
more complex secondary structures. Fig. 3, for instance,
shows the L ¼ 2, l1 ¼ l2 ¼ l3 ¼ 2 quadruplex in a hairpin
of the semaphorin 3F RNA [7]. It seems natural to treat G-
quadruplexes inside multiloops similar to their branching
helices: Each unpaired base incurs a penalty a and each
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Fig. 1. RNA quadruplexes form parallel arrangements with L ¼ 2:::5
layers. Folding energies for L ¼ 3 depend mostly on the total length ‘ of
the linker sequences: The data from [16] fit well to an energy model of
the form �G ¼ aþ b ln ‘ (solid line). Spearman’s rank correlation for the
fit is � � 0:972, mean square error 4.2 kcal/mol.

Fig. 2. Melting temperatures as a function of the total linker length for

three-layer G-quadruplexes. Experimentally determined melting tem-

peratures from [16] (circles) are compared with the predictions made

with the G-quadruplex aware version of RNAfold (dash-dotted line).
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G-quadruplex within a loop is associated with an

additional “loop strain” b. For the interior-loop case in

Fig. 3, only stabilizing mismatch contributions of the
enclosing pair and a penalty for the stretches of unpaired

bases are used. Sterical considerations for this case

suggest that a G-quadruplex is flanked by a stretch of at

least three unpaired nucleotides or has at least one
unpaired nucleotide on either side.

3 COMBINATORICS

RNA secondary structures consist of mutually noncrossing

base pairs and unpaired positions. Thus, they can be

represented as strings composed of matching parentheses
(base pairs) and dots. This “dot-parenthesis” notation is

used by the ViennaRNA Package [34]. G-quadruplexes

constitute an extra type of structural element. The sema-

phorin hairpin, Fig. 3, can therefore be written as

using the symbol þ to mark the bases involved in G-

quartets. This string representation uniquely identifies all

G-quartets since the first run of þ symbols determines L for
the 5’-most quadruplex, thus determining the next three G-

stacks that are separated by at least one “.” and must have

the same length. It follows immediately that the number of

secondary structures with G-quadruplexes is still smaller
than 4n, an observation that is important, e.g., for the

evolvability of RNAs [35].
Combinatorial model: G-structure. A more detailed estimate

can be obtained from a detailed combinatorial model of

secondary structures with G-quadruplexes. This model also

forms the basis for folding algorithms outlined in the
following section.

For simplicity, any quadruplex with L � 2 stacked G-

quartets and three linkers of length l1, l2, and l3 � 1 are

allowed in any context with the following exception: If ði; jÞ
is a base pair that encloses a sequence of quadruplexes, then
at least one of three conditions is satisfied: 1) iþ 1 and j� 1

are both unpaired; 2) iþ 1, iþ 2, and iþ 3 are unpaired or

3) j� 3, j� 2, and j� 1 are unpaired. A secondary structure

of length n is modeled as a noncrossing partial matching
(matching with isolated vertices) on n vertices such that

each base pair is of length at least 3. A G-structure is a

secondary structure with quadruplexes as defined above.

We say that a G-structure is �-canonical if all stacks consist
of at least � arcs.

Generating functions. The enumeration of G-structures is
based on the notion of shapes, that is, noncrossing
matchings in which each stack consists of exactly one
arc. The shape of an arbitrary G-structure s is obtained by
1) contracting each G-quadruplex to a single vertex
labeled “G,” and 2) iteratively collapsing each stack to
a single arc and then removing any unpaired bases
from the resulting structure as illustrated in Fig. 4. It
corresponds to the coarsest shape abstraction in the sense
of [36].

The central objects of interest are the noncrossing shapes
over 2n vertices with t “1-arcs” that link adjacent points,
i.e., t hairpin loops. Their number sn;t can be expressed in
terms of the number mt of noncrossing matchings with t

arcs, where m2t is the tth Catalan number. The well-known
generating function for these matchings is MðuÞ ¼ ð1 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4u
p

Þ=ð2uÞ, yielding

Sðu; eÞ ¼
X
n;t

sn;tu
n et ¼ 1þ u

1þ 2u� ueM
uð1þ uÞ

ð1þ 2u� ueÞ2

 !

ð4Þ

for the shapes. For each shape, we can count the number of
all possible G-structures with this shape by “inflating” the
shape in a controlled manner Fig. 5.

To obtain an arbitrary �-canonical G-structure with a
given shape, we first insert at most one red isolated vertex
into each interval with the exception of the 1-arcs. The
allowed insertion points are marked in the first diagram in
Fig. 5. Next, one green vertex is inserted within each of the
1-arc. The next step is to expand each arc into a stack by
adding t � 0 parallel arcs. If t � 1, a blue vertex is inserted
immediately before, immediately after, or on both sides of
each inserted arc to separate the original arc and the newly
inserted ones from each other. Finally, each arc is inflated to
a stack of at least � arcs. Each of the insertion steps is
associated with determining for a known number of
possible positions whether or not a colored vertex is
inserted. Thus, each step corresponds to simple substitution
in the generating function.

834 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 4, JULY/AUGUST 2013

Fig. 3. Structure of the G-quadruplex in a hairpin of human semaphorin

3F RNA that binds the RGG box domain of fragile X mental retardation

protein (FMRP). Redrawn based on [7]. Fig. 4. Extraction of a shape from a G-structure. The shape of a given G-
structure is obtained by (P1) contracting each G-quadruplex into a single
vertex labeled “G,” and (P2) iteratively collapsing each stack to a single
arc and removing any isolated vertices from the resulting structure.
Procedure (P2) is applied when neither isolated vertices nor stacks with
more than one arc are left.
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The colored vertices correspond to substructures that
entirely consist of G-quadruplexes and unpaired bases. The
colors encode additional restrictions. The basic building
block in each colored vertices is a P0-structure that entirely
consist of G-quadruplexes and unpaired bases such that
1) its leftmost and rightmost bases are contained in some
quadruplex (could be the same) and 2) any two consecutive
quadruplexes, if exist, are separated by at least one unpaired
base. Red vertices are replaced by either 1) a sequence of at
least one unpaired base, 2) a P0 structure with two possibly
empty of unpaired bases attached at both ends. Green
vertices become either 1) a sequence of at least three
unpaired bases or 2) a P0 with nonempty sequences of
unpaired bases attached to both ends, or 3) a P0 structure a
sequence of at least three unpaired bases attached at exactly
one end. Blue vertices, finally, are replaced by either 1) a
nonempty sequence of unpaired bases, or 2) a P0 with
possibly empty sequences of unpaired bases attached at both
ends. It suffices, therefore, to derive the generating function
P0 for P0. It is straightforward to express P0 in terms of the
generating function Q for the individual G-quadruplexes.

Making these ideas precise, we obtain

Theorem 1. The generating function of �-canonical G-structures
is

G� ðxÞ ¼
X
n

g�nx
n

¼ P3ðxÞS
x2� �P2

3ðxÞ
ð1� x2Þ � x2�ð2P1ðxÞ þP2

1ðxÞÞ
;

P2ðxÞ
P3ðxÞ

� � ð5Þ

with the auxiliary functions

QðxÞ ¼ x11

ð1� x4Þð1� xÞ3
P0ðxÞ ¼

ð1� xÞ QðxÞ
1� x� xQðxÞ

P1ðxÞ ¼
x

1� xþ
P0ðxÞ
ð1� xÞ2

P3ðxÞ ¼
1

1� xþ
P0ðxÞ
ð1� xÞ2

P2ðxÞ ¼
x3

1� xþ
x2 þ 2x3 � 2x4

ð1� xÞ2
P0ðxÞ:

Asymptotic results for the sequence g�n can be obtained
from an analysis of the singularities of gðxÞ, see [37] and the
online material1 for details. For � ¼ 1; 2, we obtain

g�n 	 k� n�3=2 ð��1
� Þ

n: ð6Þ

We used Maple, version 11, to obtain the numerical
values ��1

1 � 2:2903 and ��1
2 � 1:8643. The same functional

form is obtained for structures without G-quadruplex by
simply setting QðxÞ ¼ 0. This recovers earlier results �̂�1

1 �
2:2887 and �̂�1

2 � 1:8489 [38]. The shape spaces of RNAs
with and without G-quadruplexes, thus, are quite similar.
In particular, we can conclude that the inclusion of
quadruplexes does not affect qualitative properties of
the sequence-structure map such as the existence
of extensive neutral networks, or the shape-space covering
property [35].

4 RNA FOLDING ALGORITHMS

Energy minimization. Dynamic programming algorithms for
secondary structure prediction are based on a simple
recursive decomposition: Any feasible structure on the
interval ½i; j� has the first base either unpaired or paired
with a position k satisfying i < k � j. The condition that
base pairs do not cross implies that the intervals ½iþ 1; k�
1� and ½kþ 1; j� form self-contained structures whose
energies can be evaluated independent of each other. In
conjunction with the standard energy model [39], which
distinguishes hairpin loops, interior loops (including
stacked base pairs), and multiloops, this leads to the
recursions diagrammatically represented in Fig. 6 (ignoring
the cases involving black blocks). This algorithmic approach
was pioneered, e.g., in [40], [41] and is also used in the
ViennaRNA Package [34].

G-quadruplexes form closed-structural elements on well-
defined sequence intervals. Thus, they can be treated just
like substructures enclosed by a base pair so that the
additional ingredients in the folding algorithms are the
energies Gij (free energy of the most stable quadruplex so
that the pattern (1) exactly matches the interval ½i; j�) and the
partition functions ZGij (defined as the sum of the Boltzmann
factors of all distinct quadruplexes on the interval ½i; j�). As a
consequence of (1), we have Gij <1 and ZGij > 0 only if
jj� ij < 4Lmax þ ‘max. All possible quadruplexes on the
interval ½i; j� can be determined and evaluated in
OðL2

max‘
2
maxÞ time so that these arrays can be precomputed

in OðnðLmax þ ‘maxÞL2
max‘

2
maxÞ, i.e., in linear time.

The standard recursions for RNA secondary structure
prediction can now be extended by extra terms for
quadruplexes, see Fig. 6. The simplest strategy would be
to add G-quadruplexes as an additional type of base-pair
enclosed structures. This would amount to using standard
interior loop parameters also for cases such as Fig. 3. Hence,
we use the somewhat more elaborate grammar of Fig. 6,
which introduces the quadruplexes in the form of addi-
tional cases into the multiloop decomposition. An advan-
tage of this method is that one can use different parameter
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1. For a complete formal proof, see http://www.bioinf.uni-leipzig.de/
Publications/SUPPLEMENTS/12-006/.

Fig. 5. From a shape to a �-canonical G-structure. Each G-quadruplex is

shown as a vertex labeled by G. Three different symbols represent the

red, green, and blue vertices, respectively. In the online version, the

figure will appear in color.
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values to penalize the inclusion of quadruplexes and helical
components into a multiloop. Clearly, the grammar is still
unambiguous, i.e., every structure has an unique parse.
Thus, it can be used directly to compute partition functions.

Base pairing probabilities. A straightforward generalization
of McCaskill’s algorithm can be used to compute the
probabilities Pij of all possible base pairs ði; jÞ. The
probability PG

ij of finding a G-quadruplex delimited by
positions i and j can then be written as

PG
ij ¼

Z1;i�1Z
G
ijZjþ1;n

Z
þ
X
k<i�1
l>jþ1

PklIP quadruplex½i; j�
��ðk; lÞ� �

: ð7Þ

The conditional probabilities IPf� � �g in turn are composed
of the four individual cases depending on the placement of
the components of the generalized multiloop enclosed by
ðk; lÞ relative to the interval ½i; j�.

This decomposition translates to the recursion

IPfquadruplex½i; j�
��ðk; lÞg

¼
ZMkþ1;i�1Z

G
ijZ

M
jþ1;l�1

ZBkl
þ
ZMkþ1;i�1Z

G
ij b̂

l�j�1

ZBkl

þ
b̂i�k�1ZGijZ

M
jþ1;l�1

ZB
kl

þ
b̂i�k�1ZGij b̂

l�j�1

ZBkl
;

ð8Þ

where b̂ ¼ expð�b=RT Þ. From the PG
ij , it is straightforward

to compute the probability of a particular quadruplex as

pð½i; L; l1; l2; j�Þ ¼
expð�E½L; ‘�Þ

ZGij
PG
ij ; ð9Þ

where l3 ¼ j� iþ 1� 4L� l1 � l2. Summing up the prob-
abilities of all quadruplexes that contain a particular contact
i0 : j0 of two guanosines in a layer finally yields the
probability of the G:G contact i0 : j0.

Fig. 7 shows an example of the graphical output of
RNAfold. In the minimum energy case, we use a very
simple modification of the standard layout [42] treating
each quadruplex like a local hairpin structure, explicitly
indicating the G-G pairs. Quadruplexes are shown in
addition to the individual G-G pairs as shaded triangles

in the base pair probability dot plots. From the base
pairing probabilities, we also compute MEA [43] and
centroid structures.

By definition, the centroid structure X minimizes the

expected base pair distance to the other structures within the

Boltzmann-weighted ensemble. In the absence of G-quad-

ruplexes, X consists of all base pairs ði; jÞ with pij > 0:5. A

certain ambiguity arises depending on whether X is inter-

preted as a list of base pairs that may contain incomplete

quadruplexes, or whether quadruplexes are treated as units.

Here, we insert a quadruplex if PG
ij > 0:5, and represent it by

the most stable quadruplex with endpoints i and j. The same

representation is used for MEA structures where we extend

the maximized expected accuracy to EA ¼
P
ði;jÞ2S 2�ðPi;j þ

PG
ij Þ þ

P
i P

u
i withPu

i ¼ 1�
P

j Pij �
P

k�i�l P
G
kl , accordingly.

Scanning variants. For large RNA molecules with a length

of more than, say, 500 nt it is often more useful to consider

locally stable secondary structure elements than to compute

globally optimal structures. The most straightforward

approach to this end is to simply restrict the base pair

span, i.e., to omit all base pairs with a span j� i larger than

some threshold S. This generates a global structure with

local base pairs only. In the ViennaRNA Package,

variations of this approach are used. In RNALfold [45],

structures of local minimum free energy are computed. In

essence, the energy of these structures can not be lowered

by adding another base 50 or 30. The partition function
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Fig. 6. Extension of recursions of the ViennaRNA Package to accommodate G-quadruplexes. This grammar treats G-quadruplexes with multiloop

like energies also in an interior-loop-like context.

Fig. 7. Representation of minimum free energy structure (l.h.s.) and
base pairing probability matrix (r.h.s.) of the semaphorin hairpin (see
Fig. 3), respectively. The probabilities of the two possible G-quadruplex
conformations are indicated by triangles with low probability in light and
high probability in dark gray.
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prediction in RNAplfold [46] conceptually uses a sliding
window approach with step size 1 and averages the base

pair probabilities over all windows in which a base pair can
appear. Since G-quadruplexes are inherently local, it is
straightforward to include them in the same way as in the

global folding algorithms.
RNA dimers. The intermolecular interactions involved in

the hybridization of two RNA molecules are governed by
the same rules that determine the secondary structure of a
single RNAs. Several distinct approaches are used depend-
ing on the types of RNA-RNA interactions that are to be
included. The most straightforward solution is to concate-
nate the two RNA sequences (with lengths n1 and n2) and to
use the same dynamic programming recursions as for a
single sequence. Only the energy contributions are modified
for all loops that involve the cut between the two molecules
[47]. The result is a common secondary structure that may
contain arbitrary many intermolecular interactions and can
be computed in Oððn1 þ n2Þ3Þ time. Intramolecular G-
quadruplexes are straightforward to include. However,
separate energy contributions have to be assigned to
intermolecular G-quadruplexes; these may depend on the
linker that contains the cut.

RNA-RNA hybrids with a single interaction region can
be handled by decomposing the interaction energy into
three components: The energies used to make the interac-
tion region unpaired in each of the two partners and the
energy gained from the hybridization itself. The unpairing
energies can be computed efficiently by a modified version
of McCaskill’s algorithm implemented in RNAup [48] and
intaRNA [49]. The computation of the hybridization
energies is analogous to RNAhybrid [50] for regular base
pairs. It can be easily extended to intermolecular G-
quadruplexes by direct enumeration of quadruplexes that
can be formed by combining sequence windows from both
partners. Such “2-component” quadruplexes are of practical
interest because it has recently been shown that the binding
of G-rich small RNAs to G-rich regions in reporter mRNAs
can lead to the formation of an intermolecular RNA G-
quadruplex that inhibits translation in living cells [51].

A much more general, but also computationally more
expensive approach to treat RNA-RNA interactions is the
RNA-RNA interaction prediction (RIP) model [53], [54],
which allows arbitrary secondary structures of both
interaction partners and any crossing-free set of intermo-
lecular base pairs that avoids the so-called tangle config-
urations. The most convenient starting point to include
quadruplexes into this type of algorithms is the unambig-
uous grammars for the RIP problem that are required to
compute the partition function [55], [56], [57]. First, we
observe that quadruplexes that are entirely formed by one
of the two interacting sequences (i.e., intramolecular
structures) are subsumed by the terms for noninteracting
secondary structures, which we have seen how to compute
in Fig. 6. Intermolecular quadruplexes are again local in
each of both sequences and conceptually analogous to
intermolecular base pairing interactions. Thus, they can be
included as an additional alternative in all productions that
expose an intermolecular base pair (symbol K in [56,
Fig. 7]). In the modified grammar of [57, Fig. 4], it is most

natural to include the intermolecular quadruplexes into the
decomposition of the intermolecular hybrids (symbol K in
[57], symbol E in Fig. 9), where quadruplexes again appear
as additional alternatives to the single intermolecular base
pairs. As in the case of single-sequence folding, the possible
intermolecular quadruplexes can be precomputed so that
the computational complexity of these algorithms stays
Oðn4Þ in memory and Oðn6Þ in time. A simple version of
RIP grammar with pseudoknots is sketched in the
appendix. We note, however, that the inclusion of inter-
molecular quadruplexes in this way leads to several new
types of loops partially delimited by quadruplexes for
which parameters would need to be estimated. We have not
attempted to provide an implementation of a RIP algorithm
with quadruplexes.

Consensus structures. Can be readily obtained for a given
multiple sequence alignment. The idea is to apply the
dynamic programming recursions to alignment columns.
The energy contributions are determined as the average of
the corresponding contributions to the individual sequences
[58]. In addition, small contributions are added to favor
pairs of columns with consistent (e.g., GC! GU) and
compensatory mutations (AU! GC) because these provide
direct evidence for selection acting to preserve base pairing.
Similarly, penalties are added if one or a few sequences
cannot form a base pair. We refer to [59] for details of the
scoring model implemented in RNAalifold. Here, we
extend it by a simple system of penalties for mutations that
disrupt quadruplexes. Non-G nucleotides incur an energy
E0 in the outer layers of the quadruplex and 2E0 in the inner
layers as they affect one or two stacking interactions,
respectively. An example of a consensus structure predic-
tion is shown in Fig. 8.

Implementation details. The implementation of G-quad-
ruplex folding in RNAfold, RNAalifold, RNAcofold, and
RNALfold essentially follows the extended grammar
shown in Fig. 6, distinguishing the energy contribution of
G-quadruplexes and their adjacent unpaired nucleotides in
the external loop from those enclosed by base pairs. Here,
we restricted the algorithms to consider G-quadruplexes
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Fig. 8. Consensus structure of the 50-most part of the 50UTR of the
NRAS mRNA, exhibiting a conserved G-quadruplex with L ¼ 3 that
modulates translation of the NRAS proto-oncogene [44]. Shades of gray
indicate the number, from light gray (1) to dark gray (3), of different base
pair types in the alignment. Substitutions in stem regions are indicated
by circles in the secondary structure drawing.
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with a maximum layer size of L ¼ 7 and a maximum total

linker length of ‘ ¼ 15 only. The energies of all possible G-

quadruplexes are precomputed, storing the energy of the

most stable quadruplex for each pair of endpoints in the

triangular matrix G. As this matrix will be very sparse for

most inputs, a sparse matrix optimization is possible, but

not yet implemented. In the backtracing part, we re-

enumerate quadruplexes with given endpoints whenever

necessary. Base pairing probabilities are computed as

outlined above. Since there cannot be a conflict with

canonical base pairs, we store PG
ij as part of the base pairing

probability matrix. The probabilities of individual G-G

contacts are computed by enumeration as a postprocessing

step. We also adapted the RNAeval and RNAplot

programs so that sequence/structure pairs can be parsed

and re-evaluated according to the extended grammar.
Runtime performance. The runtime of RNAfold with the

extended grammar of Fig. 6 was compared to the

implementation of the standard model. For both, energy

minimization and partition function, virtually no difference

was observed. For short sequences of about 200 nt,

the additional preprocessing steps incur a minor but
negligible runtime overhead.

Accuracy. Unfortunately, no large-scale set of benchmark
data is available for RNA quadruplexes. Thus, to estimate
our false-positive prediction rate, we use the Rfam

database, version 11.0 [60]. This large set of structured
RNAs can be assumed to be mostly free of G quartets,
although quadruplex structures are not annotated at all in
this resource so that a few unknown and/or unannotated
may be hidden. For the 45,511 sequences in the seed
alignments RNAfold predicted 640 quadruplexes, giving
an upper bound on the false-positive rate of 1.4 percent.
Using RNAalifold, we predict a consensus G-quadruplex
for 17 of 2,185 Rfam seed alignments, which corresponds to
a false-positive rate of 0.7 percent. We will discuss some of
these “false positives” together with a set of RNA
quadruplexes described in the literature at the end of
the next section. Although the number of the known
positive examples is too small to derive a meaningful
quantitative estimate for the sensitivity, we will see that
the thermodynamic predictions are in excellent agreement
with the available experimental data.

5 GENOME SCREENING

Occurrence and stability of G-quadruplexes in genomes.
Sequence motifs of the form (1) that can in principle form
quadruplex structures are very abundant in most gen-
omes, see, e.g., [19], [20], [21]. Distinct G-quadruplexes can
have substantial overlaps. Each quadruplex with L > 2
layers, for instance, contains 24 distinct quadruplexes with
L� 1 layers. Additional variants can be formed when a
linker sequence begins or ends with one or more Gs. In a
genomic context, we are interested primarily in the
number of loci that can harbor a quadruplex rather than
their local diversity. We therefore count only quadruplex
structures that cannot be embedded into a larger quad-
ruplex. Equivalently, we count multiple overlapping
quadruplexes of the same or smaller linker length as one
quadruplex, represented by the one with most layers and
the largest extent. Note that this still allows partial
overlaps among quadruplexes.

The possible G-quadruplex loci were surveyed using the
counting rules detailed above for several large genomic
data sets: all bacterial (n ¼ 1;867) and archaea (n ¼ 129)
genomes from the NCBI RefSeq database, all genomes
provided by wormbase [61] (n ¼ 19) and flybase [62]
(n ¼ 12) and all primate genomes hosted by Ensembl [63]
(n ¼ 10). To make the results comparable to each other, we
normalized them to obtain the number of putative sites per
Megabase (Fig. 10A). The majority (>90 percent) of putative
sites for any of the screened genomes were two-layer G-
quadruplexes (data not shown).

Since the pattern scan method does not score the G-
quadruplexes according to their stability and sequence
context, it results in a large number of potentially unstable
G-quadruplexes with very long linker lengths and a small
number of layers. Biologically, these are probably not
relevant. We, therefore, investigated for which of these loci
a quadruplex is more stable than alternative secondary
structures. To this end, we used all putative sites of the
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Fig. 9. RIP grammar with quadruplexes. Large rectangular symbols refer
to different types of interaction structures. Outer arcs indicate enclosure
by a base pair in one or both interacting subsequences. Flat rectangles
are secondary structures with intramolecular quadruplexes in one of the
two interacting molecules. The shaded versions (light for the first, dark
for the second interaction partner) are nonempty, while the unshaded
ones in production G may also be empty. Shaded squares denote
intermolecular quadruplexes. After removing terminal secondary struc-
tures (productions A and B), the remainder is a tight structure of type C
and D. The “doubletight” structure (C) is included by an intermolecular
base pair. Otherwise, the absence of tangles allows to split of either a
“doubletight” structure (C) or a maximal intermolecular stem-loop region
without any intramolecular base pairs. This maximal structure E is
further deconstructed analogous to a simple, unbranched stem-loop
structure following the lines of RNAhybrid [50] or RNAplex [52]. The
intermolecular quadruplexes are included at the stage like a single
intermolecular base pair.
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pattern scan as input for an RNALfold screen. We extended
each putative quadruplex locus by 250 nt of flanking
sequence on both the 50 and the 30 side. A pattern scan locus
was considered “confirmed” if at least one stable G-
quadruplex was predicted by RNALfold. These predictions
were used to create annotation files for potentially stable G-
quadruplexes and to count the number of pattern scan sites
that are supported by the thermodynamic stability predic-
tion. The average confirmation rates of 1:96 percent
(bacteria), 2:38 percent (archaea), 3:92 percent (wormbase),
4:79 percent (flybase), and 4:91 percent (primates) show that
the majority of the putative quadruplex loci are more
likely to form canonical secondary structures than G-
quadruplexes. Not surprisingly, the confirmation rate is
very small, in particular, for G-quadruplexes with only L ¼
2 layers. In contrast, the rates rapidly increase for > 2 layers
(Fig. 10B) due to their increased stability gained through
additive stacking interactions in our energy model. These
contribute little to the overall density of quadruplexes
because they are much rarer than the L ¼ 2 candidates.

Enrichment analysis. Our genome-wide surveys compute
potential RNA G-quadruplexes throughout the entire
genomic DNA sequence. To determine whether there is
evidence for a widespread function of G-quadruplexes in
transcripts, we investigated in detail the distribution of
putative and confirmed quadruplexes relative to the
annotation of bacterial, archaeal, and primate genomes.

More precisely, we considered the enrichment of G-
quadruplexes in subsets of the genome relative to the
genomic average. To this end, we partitioned the genome
into “genic” regions (annotated genes) and the “intergenic”
regions between them. For primates, the genic partition is
further split into “exonic” and “intronic” regions. The
protein coding “exonic” partition is again divided into
“coding,” “5UTR,” “3UTR,” and the remaining “exonic”
regions are labeled as “nc-exonic.” Since G-quadruplexes

are directional, we considered the annotation also in
a strand-specific manner. The total length of all items in a
genomic partition is therefore twice the genome size.

Due to extensive overlap of transcripts and thus different
transcript elements, e.g., exon-exon, intron-exon, or intron-
intron overlap, we project annotations onto the genome in a
hierarchical fashion: “coding,” “5UTR,” “3UTR,” “nc-
exonic,” “intronic.” If, for instance, five transcripts overlap
on the same strand and the first nucleotide they have in
common resides in a 50 UTR of one transcript, a coding
region of the second one and in introns of the remaining
three, then this base is labeled “coding” according to our
hierarchy rule. For labeling all nucleotides following this
procedure, we used the tool multiIntersectBed of the
BedTools suite [64]. We then intersected the G-quadruplex
predictions from both the pattern scan and the subsequent
RNALfold screen with the genomic partitions using
intersectBed [64] and calculated nucleotide-based cov-
erages for each partition. Enrichment or depletion of a
partition was calculated by normalizing the coverage to
global genome coverage.

Fig. 12 summarizes the results. In bacteria, G-quadru-
plexes are enriched in the genic regions and depleted in the
intergenic regions. This pattern was observed for the
RNALfold results as well as the pattern scan results. For
the latter, the effect seems to be slightly less pronounced.

In primates, we observe the same trend. Intergenic
regions, which are the biggest fraction of the genome, are
slightly depleted in G-quadruplexes, whereas genic regions,
the complement to intergenic, are slightly enriched.

Within the genic partition, exonic regions are enriched
further, whereas introns are only slightly above genomic
background. This can be explained by the higher GC
content of protein coding exons which lead to an increased
probability for forming G-quadruplexes in the exons. The
exonic partition is enriched by a factor 2.04 (median) in the

LORENZ ET AL.: 2D MEETS 4G: G-QUADRUPLEXES IN RNA SECONDARY STRUCTURE PREDICTION 839

Fig. 10. Abundance and stability of putative G-quadruplexes. (A) Boxplot showing the number of putative G-quadruplex clusters/islands (PQS)
identified by the pattern scan approach, number of clusters confirmed by RNALfold evaluation (confirmed PQS) and the total number of unique
thermodynamically stable G-quadruplexes obtained by the RNALfold screening. Mean values are depicted by symbols. (B) Confirmation rates of
the putative sites, i.e., ratio of confirmed and total number of putative sites. Each PQS that contains at least one thermodynamically stable G-
quadruplex according to the RNALfold results is considered to be confirmed. Data are split to visualize the different rates for each layer size.
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pattern scan, but only 1.49 fold (median) in the RNALfold

screen. This is indicative of a selection pressure against

stable G-quadruplex structures within the coding regions,

presumably because these could interfere with the ribosome

during translation. The discrepancy between the abundance

of quadruplex patterns and stable quadruplexes is slightly

more pronounced in coding exons compared to noncoding

exons. The median enrichment factor drops from 2.18 to

1.33 (difference of 0.85) for coding exons and from 1.71 to

1.00 (difference of 0.71) in noncoding exons.

As expected, the enrichment of quadruplex patterns is

even higher in 50UTR (median: 3.37-fold) and increases

further among the thermodynamically stable G-quadru-

plexes identified by RNALfold (median: 5.12-fold). This

finding is in agreement with numerous previously re-

ported examples, e.g., the G-quadruplexes in the 50UTR of

TRF2 [5], the eukaryotic MT3 matrix metalloproteinases

[6], and the human telomerase RNA hTERC [65]. The

strong enrichment of stable G-quadruplexes in 50UTRs

strongly suggests that they are an abundant functional

feature of mRNAs.

The occurrence and abundance of both G-quadruplexes

and stable RNA secondary structures strongly depend on

the GC content of the sequences analyzed. To assess this

effect, we calculate the GC enrichment for each partition in

each genome as the ratio of local GC content of the

respective partition to the genome wide GC content and

compared the results to pattern scan and RNALfold screen.

The enrichment of possible G-quadruplexes increases

systematically with the GC content across all partitions

(Fig. 13). This effect is much smaller for the RNALfold

predictions. It is well known that GC content is indicative of

a variety of biological functional genome elements, such as

DNA-protein interaction, promoter function and epigenetic

controlled gene regulation [66], which fulfill their function

on the DNA level rather then on the RNA level. The

observation that the density of thermodynamically stable G-

quadruplexes is less dependent of GC content, i.e., that they

are found abundantly over a wide range of GC contents,

lends further support to the statement that G-quadruplexes

frequently exert their function at the RNA level.

Specific examples. Several experimentally known RNA G-

quadruplexes are predicted by the current version,

including the semphorin hairpin of Fig. 7 and the

quadruplex in human telomerase RNA [65], Fig. 11. A

G-quadruplex in the 50- terminal region of human

telomerase RNA hTERC appears to obstruct the formation

of the P1 helix, which is essential as boundary of the

template. Hence, the quadruplex impairs the telomerase

activity. Our computational results clearly reflect both the

formation of the G-quadruplex in the 50- part and its

conflict with the P1 helix (see Fig. 11). In addition, the

probability that the template nucleotides are unpaired is

reduced when the G-quadruplex is included, suggesting

that the effect of quadruplex formation at least in part is

explained by inaccessibility of the template sequence.

We furthermore reinvestigated 17 mRNA sequences for

which the effect of putative quadruplexes on protein

expression has been determined by means of a luciferase

luminescence assay or circular dichroism measurements,

see Table 1 for the references. We predicted the MFE
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Fig. 11. Secondary structure predictions for RNA component of human
telomerase (acc no. AF221907) with (l.h.s., computed with RNAfold
2.0g) and without (r.h.s., computed with RNAfold 2.0) quadruplexes.
The template (medium gray), the 50 � part of P1 helix (dark gray), and
the G-quadruplex forming sequence (light gray) are marked.

Fig. 12. Boxplot comparing the enrichment of predicted G-quadruplexes for sequence pattern search and RNALfold, and between different genomic

partitions. Genic regions are enriched in G-quadruplexes compared to the genomic background, for the most bacteria and primates.
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structure with RNAfold of both the full-length mRNA and

the putative G-quadruplex site PQS listed in the literature

only. In addition, we used RNALfold to determine whether

the quadruplex appears in a locally stable secondary

structure and hence can be identified, e.g., in a genome-

wide screen. With the exception of NCAM2 and THRA, the

predictions for the PQS only and for locally stable

secondary structures completely agree with the experi-

ments. The misprediction of a two-layered instead of a

three-layered G-quadruplex can be explained 1) by the very

large total linker length of 16 in the case of NCAM2 that

makes this structure undetectable for RNAfold and

RNALfold and 2) large total linker lengths in combination

with a concurrent canonical structure within the PQS of

THRA. Even the MFE predictions for the full length mRNA

transcripts agree well with the experimental data. Since

mRNAs are packed with protein, in vivo long-range

structures can be expected to be suppressed in mRNAs in

general; hence, we already expect a priori that the local

structures predicted by RNALfold gives better results than

the global structures computed by RNAfold. Our model

also clearly predicts that canonical base pairs dominate in

the three negative examples (TNFSF12, MAP3K11, DOC2B).

A simple scan for G-rich sequence motifs thus will

overpredict RNA quadruplex structures.

Regarding the Rfam prediction set used above to assess

accuracy, at least some of the putative false positive

predictions might be real, however. The best example is

the family RF00523 of prion protein (PrP) mRNA pseu-

doknots, which was predicted to play a role in PrP

translation [72], [73]. Quadruplex forming nucleic acids

are known to bind to PrP [74], suggesting that there could

be a direct feedback between PrP and its mRNA via the

predicted quadruplex.
Other true positives include the quadruplexes in some of

the mammalian telomerase RNAs as discussed above, and

the IRES (internal ribosomal entry site) in the VEGF mRNA

IRES [71]. The latter suggests that the quadruplexes

predicted in the n-myc IRES (RF00226) and in several viral

IRES elements might also be true positives. We suspect that

the quadruplex structure is not predicted from the Rfam

alignment in these examples because quadruplexes are not

part of Rfam models and hence the manually curated

alignments have been built to favor alternative, conven-

tional secondary structures. The XIST intron (RF02266) is

likely a true positive. It features a conserved quadruplex

that does not interfere with the annotated structure.

Another likely case is the antisense transcript FMR1-AS1

(RF02118), as it is suspected that FMR1 itself is regulated by

a G-quadruplex [9]. Additionally, possible quadruplex

structures in rRNA genes have been described for yeast
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Fig. 13. Scatterplot of G-quadruplex versus GC-content enrichment.
Enrichment was calculated as G-quadruplex density and GC-content for
each genomic partition in relation to the complete genomic sequence
background. The pattern scan results are more dependent on GC
content compared to the RNALfold results.

TABLE 1
Comparison of Experimental and Computational Results for mRNA Sequences with PQS in Their 50UTR

The column “Experiment” refers to the presence of a G-quadruplex in vivo. The symbols þþþ;þ, and � indicate the presence of a G-quadruplex,
the formation of a G-quadruplex under sufficiently large potassium concentration, and the absence of a quadruplex, respectively. The prediction
results of RNAfold and RNALfold display the layer size of a predicted G-quadruplex within the PQS or—if none was predicted.
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[75] and a significant enrichment has been reported for long

noncoding RNAs [14].

6 DISCUSSION

We have shown in this contribution that structural elements

such as G-quadruplexes that correspond to uninterrupted

sequence intervals can be included in a rather straightfor-

ward way into the standard dynamic programming

recursions—provided a corresponding extension of the

energy model can be devised. We describe here an

extension of the most important and widely used RNA

secondary structure prediction. This includes in particular

energy minimization and the computation of the partition

function. Extensions to local folding algorithms and to the

computation of consensus structures from sequence align-

ments are also straightforward applications of the modified

grammar (Fig. 6). It is less obvious how to handle

quadruplexes in RNA-RNA interactions since our recur-

sions consider local G-quadruplexes only. A simple

adaptation of the RNAup approach, however, also covers

such situations of trans-G-quadruplexes.
A survey of G-quadruplexes in genomic sequence data

shows that thermodynamically G-quadruplexes are sub-
stantially enriched in exonic regions and in particular in
5’UTRs. At the same time, the stability of G-quadruplexes is
reduced in protein-coding sequences. Taken together, these
observations strongly suggest that stable G-quadruplexes in
5’UTRs are abundant features of mRNAs. Most likely, they
function as regulators of translation.

The G-quadruplex-aware programs are currently avail-
able as a separate branch (version number with the suffix
“g”) of the ViennaRNA Package using a very simple
energy function for the quadruplexes that reproduces the
few available experimental data at least semiquantitatively.
Following further optimization of the code, the algorithmic
extensions will be integrated in the main version of the
package in the near future. The main problem for practical
applications of quadruplex-aware RNA folding tools is our
limited knowledge of the energy function in particular for
L 6¼ 3 and for asymmetric linkers. Even with the crude
energy function employed here, it becomes clear that the
overwhelming majority of putative genomic quadruplex
sequences will fold into a canonical secondary structure
rather than G-quadruplex structures.

ONLINE SUPPLEMENT

Supplemental data and source code are available from
http://www.bioinf .uni- le ipzig.de/publicat ions/
supplements/12-025 and www.tbi.univie.ac.at/RNA/.

ACKNOWLEDGMENTS

This work was supported in part by the German Research
Foundation (STA 850/7-2, under the auspices of SPP-1258
“Sensory and Regulatory RNAs in Prokaryotes”), the
Austrian GEN-AU projects “regulatory non coding RNA,”
“Bioinformatics Integration Network III,” and the Austrian
FWF project “SFB F43 RNA regulation of the transcriptome.”

REFERENCES

[1] K. Paeschke, T. Simonsson, J. Postberg, D. Rhodes, and H.J. Lipps,
“Telomere End-Binding Proteins Control the Formation of G-
Quadruplex DNA Structures in Vivo,” Nature Structural Molecular
Biology, vol. 12, pp. 847-854, 2005.

[2] J.E. Johnson, J.S. Smith, M.L. Kozak, and F.B. Johnson, “In Vivo
Veritas: Using Yeast to Probe the Biological Functions of G-
Quadruplexes,” Biochimie, vol. 90, pp. 1250-1263, 2008.

[3] H.M. Wong, L. Payet, and J.L. Huppert, “Function and Targeting
of G-Quadruplexes,” Current Opinion Molecular Therapeutics,
vol. 11, pp. 146-155, 2009.

[4] A. Baral, P. Kumar, R. Halder, P. Mani, V.K. Yadav, A. Singh,
S.K. Das, and S. Chowdhury, “Quadruplex-Single Nucleotide
Polymorphisms (Quad-SNP) Influence Gene Expression Differ-
ence among Individuals,” Nucleic Acids Research, vol. 40,
pp. 3800-3811, 2012.

[5] D. Gomez, A. Guédin, J.L. Mergny, B. Salles, J.F. Riou, M.P.
Teulade-Fichou, and P. Calsou, “A G-Quadruplex Structure
within the 5’-UTR of TRF2 mRNA Represses Translation in
Human Cells,” Nucleic Acids Research, vol. 38, pp. 7187-7198, 2010.

[6] M.J. Morris and S. Basu, “An Unusually Stable G-Quadruplex
within the 5’-UTR of the MT3 Matrix Metalloproteinase mRNA
Represses Translation in Eukaryotic Cells,” Biochemistry, vol. 48,
pp. 5313-5319, 2009.

[7] L. Menon and M.R. Mihailescu, “Interactions of the G Quartet
Forming Semaphorin 3F RNA with the RGG Box Domain of the
Fragile X Protein Family,” Nucleic Acids Research, vol. 35, pp. 5379-
5392, 2007.

[8] M. Bensaid, M. Melko, E.G. Bechara, L. Davidovic, A. Berretta,
M.V. Catania, J. Gecz, E. Lalli, and B. Bardoni, “FRAXE-
Associated Mental Retardation Protein (FMR2) Is an RNA-
Binding Protein with High Affinity for G-Quartet RNA Forming
Structure,” Nucleic Acids Research, vol. 37, pp. 1269-1279, 2009.

[9] A. Bugaut and S. Balasubramanian, “5’-UTR RNA G-Quadru-
plexes: Translation Regulation and Targeting,” Nucleic Acids
Research, vol. 40, pp. 4727-4741, 2012.

[10] A. Arora and B. Suess, “An RNA G-Quadruplex in the 3’ UTR of
the Proto-Oncogene PIM1 Represses Translation,” RNA Biology,
vol. 8, pp. 802-805, 2011.

[11] J.L. Huppert, A. Bugaut, S. Kumari, and S. Balasubramanian, “G-
Quadruplexes: The Beginning and End of UTRs,” Nucleic Acids
Research, vol. 36, pp. 6260-6268, 2008.

[12] J.D. Beaudoin and J.P. Perreault, “5’-UTR G-Quadruplex Struc-
tures Acting as Translational Repressors,” Nucleic Acids Research,
vol. 38, pp. 7022-7036, 2010.

[13] M. Wieland and J.S. Hartig, “RNA Quadruplex-Based Modulation
of Gene Expression,” Chemistry Biology, vol. 14, pp. 757-763, 2007.

[14] G.G. Jayaraj, S. Pandey, V. Scaria, and S. Maiti, “Potential G-
Quadruplexes in the Human Long Non-Coding Transcriptome,”
RNA Biology, vol. 9, pp. 81-86, 2012.

[15] B. Luke and J. Lingner, “TERRA: Telomeric Repeat-Containing
RNA,” EMBO J., vol. 28, pp. 2503-2510, 2009.

[16] A.Y. Zhang, A. Bugaut, and S. Balasubramanian, “A Sequence-
Independent Analysis of the Loop Length Dependence of
Intramolecular RNA G-Quadruplex Stability and Topology,”
Biochemistry, vol. 50, pp. 7251-7258, 2011.

[17] M. Webba da Silva, “Geometric Formalism for DNA Quadruplex
Folding,” Chemistry, vol. 13, pp. 9738-9745, 2007.

[18] D.H. Zhang and G.Y. Zhi, “Structure Monomorphism of RNA G-
Quadruplex That Is Independent of Surrounding Condition,”
J. Biotechnology, vol. 150, pp. 6-10, 2010.

[19] J. Eddy and N. Maizels, “Gene Function Correlates with Potential
for G4 DNA Formation in the Human Genome,” Nucleic Acids
Research, vol. 34, pp. 3887-3896, 2006.

[20] J.L. Huppert and S. Balasubramanian, “Prevalence of Quadru-
plexes in the Human Genome,” Nucleic Acids Research, vol. 33,
pp. 2908-2916, 2005.

[21] Y. Zhao, Z. Du, and N. Li, “Extensive Selection for the Enrichment
of G4 DNA Motifs in Transcriptional Regulatory Regions of Warm
Blooded Animals,” FEBS Letters, vol. 581, pp. 1951-1956, 2007.

[22] A. Verma, K. Halder, R. Halder, V.K. Yadav, P. Rawal, R.K.
Thakur, F. Mohd, A. Sharma, and S. Chowdhury, “G-Quadruplex
DNA Motifs as Conserved Cis-Regulatory Elements,” J. Medicinal
Chemistry, vol. 51, pp. 5641-5649, 2008.

[23] O. Kikin, L. D’Antonio, and P.S. Bagga, “QGRS Mapper: A Web-
Based Server for Predicting G-Quadruplexes in Nucleotide
Sequences,” Nucleic Acids Research, vol. 34, pp. W676-W682, 2006.

842 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 4, JULY/AUGUST 2013

130 2d meets 4g : g-quadruplexes in rna secondary structure prediction



[24] A.K. Todd, “Bioinformatics Approaches to Quadruplex Sequence
Location,” Methods, vol. 43, pp. 246-251, 2007.

[25] O. Stegle, L. Payet, J.-L. Mergny, D.J.C. MacKay, and J.L. Huppert,
“Predicting and Understanding the Stability of G-Quadruplexes,”
Bioinformatics, vol. 25, pp. i374-i382, 2009.

[26] R. Lorenz, S.H. Bernhart, F. Externbrink, J. Qin, C. Höner zu
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Part V

U N P U B L I S H E D W O R K





11
F I N D I N G O P T I M A L R E F O L D I N G PAT H S

As pointed out in Chapter 4, the prediction of optimal refolding paths between two
secondary structures is an important challenge. Intermediate structures of a path may
point into directions that lead to a better understanding of the functional role of an
RNAs structure. More importantly, the saddle point, i.e. the structure with highest
free energy along the path, yields the energy barrier that separates both structures.
This in turn determines the folding rate required for RNA folding kinetics, cf. Chapter
6.1. Since the prediction of optimal refolding paths is an NP-complete problem [145],
heuristic approaches are used instead of exhaustive ones. Yet, there is only a handful
of such algorithms, and most often they only consider direct paths. Therefore, they
tend to overestimate actual refolding energy barriers, and consequently predictions
based thereof are most likely at odds with each other.

In this chapter, I discuss a generic iterative algorithm for near optimal indirect re-
folding path prediction. Based on supporting points in the secondary structure free
energy landscape, the algorithm aims to minimize the refolding barrier by construct-
ing indirect paths between two secondary structures out of direct paths between those
structures and the supporting point. By keeping the generation of supporting points
flexible, this algorithm enables a variety of applications where a compromise between
optimality of the prediction and computation speed is required. Although many of
the following ideas were already mentioned briefly in Chapter 9, I want to emphasize
here the potential of distance class partitioning of RNA secondary structure free en-
ergy landscapes, especially for refolding path prediction. Therefore, the first section
starts with a recapitulation of the idea behind distance class partitioning, followed by
a description of the possibilities it opens. Finally, the indirect refolding path construc-
tion of Chapter 9 is presented from a more generalized point of view in the second
part of this chapter.

11.1 distance class partitioning revisited

The set of secondary structures which is compatible with an RNA sequence, the struc-
ture ensembleΩ, spans a hyperdimensional space, the secondary structure free energy
landscape. Here, each secondary structure s ∈ Ω represents a point in the landscape,
its free energy E(s) determines its height, and finally two structures si and sj are
considered neighbors if they differ in exactly one base pair, i.e. they have base pair
distance dBP(si, sj) = 1. Ordinary MFE structure prediction, as introduced in Chapter
3.2 determines the global minimum of this landscape, i.e. the deepest point. However,
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alternative low free energy structures with distinct structural features are generally of
interest as well, as they provide understanding of the potential role of an RNA. For
this purpose, the generation of suboptimal secondary structures within a certain en-
ergy band around the MFE proves useful. Still, once structural alternatives are known,
it needs to be investigated whether or not they are easily adopted, and how likely
a switch from one into another is. For most RNAs with sequence length of biologi-
cal importance, it is infeasible to enumerate relevant suboptimal structures, since |Ω|

grows exponentially with sequence length n. Even partition function computation
intertwines all the information of alternative structures with the complete ensemble,
such that refolding barriers can not be derived from it.

This is where classified DP comes into play, in particular distance class partitioning.
This method projects the high-dimensional energy landscape into lower dimensions
using a partitioning of structures with respect to their base pair distance to a set of ini-
tially chosen reference structures. The number of references therefore determines the
dimensionality of the projection of the energy landscape. Within each partition ther-
modynamic properties are determined, such as MFE representative, partition function,
and so on. An algorithm that implements the idea of distance class partitioning with
one reference structure is RNAbor [72], whereas RNA2Dfold, as presented in Chapter 9,
uses two references to obtain a 2D projection. Nevertheless, the following ideas can be
easily applied to projections of higher dimensionality, i.e. distance class partitionings
with more than 2 reference structures, as well. In fact, increasing the number of ref-
erences has a large impact on a number of applications, since it allows to triangulate
certain areas of interest within the energy landscape. Though, increasing the number
of reference structures just by one results in an increase of the algorithms asymptotic
time complexity in the order of n2, which is why I restrict the description below to 2D
projections.

detecting alternative low free energy structures As mentioned before,
low free energy states within the ensemble of all secondary structures compatible with
a particular sequence can be obtained from suboptimal structure prediction. However,
the resulting set of meta-stable structures alone is not sufficient to decide whether or
not the RNA is likely to ever adopt them. Distance class partitioning, on the other
hand, also enables the determination of low free energy states. Using a single refer-
ence structure, for instance the MFE structure, a classified MFE prediction produces a
set of m optimal structure representatives which differ in exactly 1, 2, . . . ,m base pairs,
i.e. there is no other structure with the same base pair distance to the reference and
lower free energy. This immediately yields a set of candidate structures that can be
filtered according to their free energy and distance to the MFE structure. Here, one
would assume that a meta-stable state of biological importance differs from the MFE

in some more or less complex structure motifs, i.e. its distance to the MFE needs to
be sufficiently large. Furthermore, a candidate should exhibit a low free energy, and
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needs to be sufficiently separated from its neighborhood. Hence, it should be sur-
rounded by representative structures with higher free energy. Of course, each MFE

representative of a particular distance class can not provide a complete picture of all
the alternatives the distance class subsumes. It just provides the most probable struc-
ture within the distance class. However, the addition of further reference structures,
such as candidates obtained from a projection with lower dimensionality, leads to a
more fine grained characterization of their structural environment.

An example for such a procedure is provided with an artificial RNA sequence
known to form two stable secondary structures [258]. This particular 73 nt long switch-
ing RNA molecule was designed such that it adopts a meta-stable secondary structure
(Figure 15B) right after transcription, and only refolds into its ground state (Figure
15A) after a long period of time. As depicted in Figure 15, two alternative meta-stable
states can already be identified by visual inspection of the results from a distance class
partitioning with respect to the MFE structure. The most distant of them happens to
be the meta-stable structure the RNA was designed to form. Using this structure as
a second reference for a 2D projection then clearly reveals its separation from from
the remaining low free energy conformations Still, this projection is hiding other al-
ternatives, since each spot in the 2D landscape constitutes just one of many possible
structures in the corresponding distance class. Therefore, either additional reference
structures are necessary to obtain a more fine grained projection of the energy land-
scape, or the set of potentially interesting candidates can be iteratively extended with
results from 2D projections using the MFE structure and previous candidates. Here,
the latter approach is considered the more useful, since additional reference structures
render the distance class partitioning method almost infeasible.

distance classes and energy barriers In the previous paragraph, I already
made use of a measure of separation for distance classes. In particular, meta-stable
structures were identified as such if their neighborhood consists of high free energy
structures. But no rationale for this assumption has been provided yet. Since a meta-
stable structure can be considered of biological importance if it is not too easily trans-
formed into the MFE structure (or another meta-stable state), refolding energy barriers
are of utmost importance. Energy barriers again can be extracted from (near) op-
timal refolding paths, but their prediction is NP-complete even when restricting the
problem to direct paths. Consequently, to support the assumption that meta-stable
candidate structures derived from the method discussed above are indeed meta-stable,
additional computational effort seems to be necessary. However, a closer look at the
properties of distance classes reveals that they already provide a lower bound on the
refolding energy barrier. This can be easily realized by the fact that the intermediate
structures of any refolding path between two structure representatives in the projec-
tion must either be a structure representatives themselves, or they have a higher free
energy compared to the representative of the distance class they belong to. Therefore,
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replacing the intermediate structures by their corresponding distance class MFE rep-
resentative yields a lower bound on the actual refolding barrier. Any distance class
partitioning can be considered a graph, where MFE representatives represent the nodes,
and edges are drawn between neighboring distance classes. A shortest path algorithm
can then be used to extract the lower bound of the energy barrier between any pair of
representatives, see Figure 16 for an example.

11.2 the pathfinder algorithm

Although heuristic methods that predict optimal direct refolding paths are relatively
fast, they perform poorly when the two structures are far apart. This is mainly due to
the fact that the direct, i.e. shortest, paths are not necessarily the most optimal. In fact,
in almost all cases where an RNA refolds from one structure into another, base pairs
have to be opened before others can effectively form. Therefore, the RNA structure
first has to loose stability in terms of free energy, before free energy can be gained
again from newly formed structural elements. The intermediate loss determines the
energy barrier that separates both structures. However, the RNA tends to compensate
for the loss of free energy by forming intermediate base pairs that only exist during
the transition process. Refolding paths that consider these additional base pairs are
termed indirect paths, and lead to much more realistic estimates of the actual refolding
energy barrier, cf. Chapter 4.3.

In the following, I describe a heuristic method that allows to predict near optimal
(indirect) refolding paths between two secondary structures s1 and s2 in an iterative,
flexible manner, the Pathfinder algorithm. In particular, I want to stress here the
flexibility it provides, since the core algorithm itself was already presented, though in
combination with distance class partitioning, as part of Chapter 9. Thus I will first
briefly introduce the general idea of the method, before proceeding to its variations
that constitute its flexibility.

the pathfinder algorithm The algorithm is initialized with a guess for an op-
timal folding path between s1 and s2, e.g. obtained from a direct path heuristic. Using
this guess as the best refolding path known so far, the algorithm extracts the saddle
point sb, i.e. the structure with highest free energy along the path. Then it proceeds by
generating a set of stabilizing points s ∈ S in order to split the path construction prob-
lem into two direct path constructions, one from s1 to s, and the other from s to s2. Of
course, the free energy of the stabilizing points s has to be lower than that of sb of the
best refolding path known so far, i.e. E(s) < E(sb). The method(s) how to generate S
will be discussed further below. If the concatenation of both direct paths yields a sad-
dle point with lower free energy, hence lower refolding energy barrier, it is accepted as
a new optimal path, and s becomes a member of the set of optimal stabilizing points
Ŝ. The number of memorized optimal stabilizing points can furthermore be limited
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by a constant |Ŝ| < m if |S| becomes large. The algorithm proceeds for the remaining
stabilizing points in S until all of them are tested, and returns the stabilizing point
that results in best refolding path among all constructions. If required, an iterative
refinement can be applied that uses each optimal stabilizing point ŝ ∈ Ŝ to refine the
direct paths connecting it to s1 and s2. Therefore, the Pathfinder algorithm is applied
again on both subpaths from s1 to ŝ, and ŝ to s2, respectively. The pseudocode for
the Pathfinder heuristic that utilizes a min-order heap data structure for Ŝ is given in
Algorithm 1.

Algorithm 1 Pathfinder(s1, s2, i, m):
Pseudo-code of the Pathfinder algorithm, where s1 is the start structure, s2 is the
stop structure of the predicted path, i the maximum number of iterations, and m the
number of best solutions kept in each iteration.

bestpath← DirectPath(s1, s2) /∗ get initial guess of an optimal refolding path ∗/
S← GetStabilizingPoints(bestPath) /∗ initialize the set of stabilizing points ∗/
Ŝ← ∅ /∗ initialize min-order stabilizing point heap ∗/
while (|S| > 0)∧ (|Ŝ| < m) do
s← pop(S) /∗ draw a stabilizing point and remove it from S ∗/
path← DirectPath(s1, s) + DirectPath(s, s2)
if Barrier(path) < Barrier(bestpath) then

insert(Ŝ, (s, path, Barrier(path)))
end if

end while
if i > 0 then

for 0 . . .m do
(s, path)← pop(Ŝ)
path← Pathfinder(s1, s, i− 1,m) + Pathfinder(s, s2, i− 1,m)

if Barrier(path) < Barrier(bestpath) then
bestpath← path

end if
end for

else
(s, path)← pop(Ŝ)
bestpath← path

end if
return bestpath

So far, it has not been mentioned how stabilizing points in S are generated in the
first place (see above). This is because it constitutes the flexible part of the algorithm,
i.e. stabilizing point generation is independent of the path construction algorithm1. In
Chapter 9, I used the MFE representatives of the distance class partitioning derived
from taking s1 and s2 as reference structures. However, any other method that is able
to generate alternative local minima of the secondary structure free energy landscape

1 In principle, using a fixed set of near ground state structures for S, and omitting the iterative refinement
part, the Pathfinder algorithm is similar to the indirect path construction algorithm of Morgan and
Higgs, presented in Chapter 4.3
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may suffice. Boltzmann sampling from (possibly a different set of) distance classes,
for instance can be used instead of using MFE representatives. Below, I introduce some
additional variations for the generation of S, that constitute a computationally less
expensive alternative to the distance class approach. All the presented methods have
in common, that they use the saddle point sb of the currently known best refolding
path as a source for energy directed routes ~P(sb) through the energy landscape. The
destinations of these routes then provide structures suitable for stabilizing points of
the Pathfinder algorithm.

gradient walks The most straight-forward approach of an energy directed route
through the secondary structure free energy landscape is to perform a gradient walk
~PG(s1). Starting at structure s1, subsequent structures si+1 of the route are selected
from the set of neighbors N(si) of their predecessor si, if they constitute the neighbor
with lowest free energy, i.e.

~PG(s1) = (s1, . . . , si, si+1, . . . , sn) where si+1 ∈ N(si) (59)

and

E(si+1) < E(si)∧ E(si+1) = min
s∈N(si)

E(s)

The last structure sn obtained by a gradient walk ~PG(s1) is finally used as supporting
point in the Pathfinder algorithm. If the choice of si+1 is ambiguous, one of the lowest
free energy neighbors of si is selected randomly, for instance by taking the first in
lexicographical order of the corresponding dot-bracket string [68]. Alternatively, the
gradient walk can be branched at this point to consequently yield a set of solutions
instead of a single one.

energy directed random walks Since the previously mentioned method is
de facto deterministic, and in most cases leads to only a single solution, an energy
directed random walk poses a more sophisticated approach. Therefore, a Monte Carlo
scheme can be applied, similar to the Gillespie algorithm, as discussed in Chapter 6.3.
As a result, the obtained route ~PM(s1) consists of intermediate structures, where an in-
termediate structure si+1 is selected randomly from the neighborhood of si according
to its proportional weight among all alternative neighbors s ∈ N(si). Here, the weight
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is determined by the free energies E(s) of the structures s. Hence, the probability
p(si → s) to accept a particular s ∈ N(si) as successor of si is

p(si → s) =
1∑

sj∈N(si)
p̃(si → sj)

· p̃(si → s) (60)

with

p̃(si → s) =
1

|N(si)|

e−β·(E(s)−E(si)) if E(si) < E(s)

1 else.

In order to avoid cycles in the resulting route ~PM(s1), previously visited structures
can be penalized with a pseudo energy ε, e.g. ε = 2 · kT , to weaken their acceptance
probability. The energy directed random walk ends at structure sn, as soon as a
certain stop criterion is fulfilled, for instance the length of the route reached a size
limit |~PM(s1)| = l. Alternatively, the random walk can be finalized if sn represents a
local minimum, i.e. ∀s ∈ N(sn) : E(s) > E(sn), and the probability to reject any of its
neighbors

pR(sn) = 1−
∑

s∈N(sn)

p̃(sn → s) (61)

surmounts a certain threshold pR(sn) > µ. Accordingly, the local minimum sn is
considered deep enough with respect to its neighbors. Again, sn is used as an ade-
quate stabilizing point for the Pathfinder algorithm, and repeated realizations of the
random walk may be used to produce a whole set of solutions.

simulated annealing Optionally, the previously described energy directed ran-
dom walk can be transformed into a simulated annealing approach [123, 37]. Therefore,
the acceptance probabilities p(si → s) are initially computed using a high thermody-
namic temperature T = Tmax, and with each Monte Carlo step the system is succes-
sively cooled down with rate 0 < rT < 1. Once the thermodynamic temperature falls
below a minimum value T < Tmin the Monte Carlo simulation is stopped, and the last
structure visited is used as stabilizing point. Of course, this stop criterion overrules
those of the regular random walk without simulated annealing described above.

The acceptance probability of a neighboring structure is essentially determined by
the factor exp(−∆G/RT), where ∆G is the change in free energy between the current
structure and the neighbor, R is the Gas constant and T the thermodynamic temper-
ature of the state system. Thus, the probabilities for energetically good and poor
neighbors are aligned with higher T , and, as a consequence, the simulated annealing
approach allows for faster exploration of the state space compared to a regular random
walk.

results
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Figure 15: Distance class partitioning of secondary structure free energy landscapes, exemplar-
ily depicted for an RNA sequence, taken from Xayaphoummine et al. [258], that
was deliberately designed to adopt more than on stable low free energy structure.
A and B, show both secondary structure states of interest, the MFE structure, and the
meta-stable state, respectively. In C, a plot of the MFE representatives for a distance
class partitioning with one reference structure is shown. Here, the structure with
lowest free energy among the entire ensemble Ω, the ground state, is used as a ref-
erence. Apart from the ground state, two additional low free energy states become
visible. D Shows the MFE representatives of a 2D projection of the landscape into
distance classes with respect to two initially chosen references. For this purpose, the
ground state and the completely unfolded chain are taken as reference structures.
As in the case of a single reference, the auxiliary low free energy structures can be
identified, though with a better resolution. E Substitution of the unfolded chain
with the most distant meta stable state obtained from the analysis in D, reveals the
separating structure of the landscape between both reference structures. F The num-
ber of secondary structure for each distance class derived from taking the ground
state and the meta stable state as reference structures.
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Figure 16: Barrier estimation and prediction of near optimal refolding paths. Using the same
example as in Figure 15, two modes of near optimal refolding path predictions
using distance class partitioning, and the more general variant of the Pathfinder al-
gorithm are compared against an exhaustive method that finds the global optimum
utilizing the barriers program [68], shown as a black line. A Distance class parti-
tioning. The red dashed line is reflects the estimate by application of a shortest-path
algorithm on the graph of MFE representatives. The blue line shows a near optimal
path obtained from the Pathfinder algorithm using distance class partitioning with-
out iterative refinement. Although the paths take distinct routes through the actual
landscape, all of them correctly predict the limiting saddle point that separates both
states with an energy barrier of 19.70 kcal/mol. B The Pathfinder algorithm using
a energy directed random walks. Here, many iterations (i = 50) are necessary for
the approach to find the correct saddle point of the transition. This behavior was ob-
served by using the regular Gillespie scheme and keeping the best s = 50 solutions
in each iteration (red curve), as well as for the simulated annealing approach, with
the same number of s and an initial temperature of T = 353.15K, a stop temperature
of 283.15, and a cooling rate of 0.99 per simulation step. Within this setting, both
methods find the same near optimal refolding path.
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F O L D I N G K I N E T I C S O N C O A R S E G R A I N E D L A N D S C A P E S

As pointed out in Chapter 6.4, prediction of folding kinetics by a direct solution of
the master equation is feasible only for systems with a low number of states. The
RNA secondary structure free energy landscape is not such a system. Coarse graining
approaches can be used to lump sets of related secondary structures into so called
macro-states. Using sophisticated transition rates between the macro-states, the result-
ing partition of the huge structural ensemble becomes manageable again. Though,
details may be lost due to the abstraction. Still, Wolfinger et al. [252] successfully ap-
plied a coarse graining in terms of gradient basins to enable the prediction of RNA
folding kinetics by solving the corresponding master equation.

In this chapter, I present an alternative to the coarse grained RNA folding kinetics
approaches discussed so far, the 2Dkin algorithm. Utilizing the distance class parti-
tioning of the RNA energy landscape as presented in Chapter 9, the thermodynamic
properties of the distance classes will be used to effectively predict folding dynamics in
the coarse grained partitioning. Thus, in contrast to many other methods, an exhaus-
tive enumeration of structure states to generate the landscape before lumping states
together is not required. The coarse graining is rather constructed ab-initio, where
Boltzmann weights of the resulting macro states are computed via DP. Transition
rates between any two neighboring macro states are then estimated from Boltzmann
weighted sampling. This renders this approach applicable to RNAs with much larger
sequence length, compared to existing methods. Furthermore, the distance class par-
titioning also allows for a straightforward application to chain growth scenarios, such
as co-transcriptional folding, which will be discussed in Section 12.2.

12.1 kinetics on 2d projections of the energy landscape

Before introducing the ideas behind the 2Dkin approach, let me recapitulate the idea
of distance class partitioning into κλ-neighborhoods (again). Given an RNA sequence
S and two compatible reference secondary structures s1, s2, all structures si sharing
the same pair distances κ = dBP(s1, si) and λ = dBP(s2, si) are grouped together
into class ακλ. The RNA2Dfold algorithm as presented in Chapter 9 can be used to
effectively compute thermodynamic properties of such a partitioning. In particular, its
classified DP approach allows for computation of the volume of each class α, i.e. their
partition functions Qα and corresponding free energy Gα = −1/βlnQα. Furthermore,
structural representatives can be obtained from each class α via stochastic sampling,
see 3.4.

145
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transition rates between distance classes To obtain transition rates be-
tween any two macro states, i.e. distance classes, is the most difficult part of any coarse
graining approach. As discussed in Chapters 6.1 and 6.4, the rate is essentially deter-
mined by the energy barrier along an optimal refolding path between two structures.
Therefore, the simplest ansatz for the distance class partitioning is to consider the
MFE representatives of each class only, and compute pairwise refolding paths between
them. The saddle point, i.e. the intermediate structure with highest free energy, along
the resulting paths then determines the separating energy barrier, and transition rates
can be derived, e.g. from Arrhenius law. However, such an approach unavoidably ne-
glects all other micro states within the distance class, and the multitude of transitions.
Of course, the other extreme would be to compute transition rates from exhaustive
enumeration of micro states. However, this would eliminate the benefit of the ab-
initio partitioning and turn the approach presented below quite inefficient. Instead, I
suggest to estimate transition rates from micro rates between stochastically sampled
structural representatives of the distance classes and their corresponding neighbors.
Therefore, I adapt the gradient basin rates computation of Wolfinger et al. [252] pre-
sented in Chapter 6.4. Given a large enough sample size, the resulting estimates are
assumed to converge to the actual rates between the partitions.

In detail, for each distance class ακλ, a set of representative structures Sακλ is sam-
pled according to their equilibrium probabilities. For the micro states si ∈ ακλ in the
sample set, transition rates kij to their individual neighbors sj ∈ N(si) are computed.
Using a move set that consists of formation and dissociation of a single base pair, we
again use the Metropolis rule for micro rates computation (see also Chapter 6.1)

kij =

e−β(E(sj)−E(si)) if E(si) < E(sj)

1 otherwise.
(62)

Because each neighbor sj ∈ N(si) differs from si ∈ ακλ in exactly one base pair, it
is immediately clear which distance class it belongs to. For instance, if sj originated
from si by the insertion of a base pair (p,q) there are only two scenarios regarding its
distance κ to reference structure s1 compared to that of si. If (p,q) ∈ s1 sj is ’one step
closer’ to s1, hence compared to si its κ is smaller by 1. Otherwise, the insertion of
base pair (p,q) /∈ s1 increases κ by 1. The same is true for removal of a base pair, and
the distance λ to the second reference s2. Therefore, each structure si ∈ ακλ has at
most 4 neighboring distance classes ακ±1λ±1 where its structural neighbors sj ∈ N(si)

belong to. For the sake of readability of the equations, I reduce the κλ subscript of
distance classes ακλ to a single value i, i.e. αi, below. Furthermore, the notion N(αi)

will be used to represent the set of macro states αj in the direct neighborhood of macro
state α, i.e.

N(ακλ) =
{
ακ ′λ ′ | κ

′ = κ± 1∧ λ ′ = λ± 1
}

(63)
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Using the ideas presented in Chapter 6.4, the actual macro rate from distance class
α1 to one of its neighbors α2 ∈ N(α1) can be written as

kα1,α2 =
∑
si∈α1

Prob[si|α1] ·
∑
sj∈α2
sj∈N(si)

kij. (64)

Here, Prob[si|α1] is the probability to observe micro state si given the system is in
macro state α1. Unfortunately, this conditional probability can not be easily computed
for arbitrary conditions. However, assuming equilibrium within each macro state,
this probability is known to be exp(−βE(si))/Qα1 , with the partition function of the
macro state Qα1 =

∑
s∈α1 exp(−βE(s)), cf. Chapter 3.4. Of course, this assumption

may be problematic, especially for the distance class partitioning. There are no direct
neighbors sj of a micro state si ∈ α that reside in α themselves. Still, the structural
relationship between micro states taken from distance classes with low-numbered κλ
pairs can be considered close, thus equilibrium may be assumed within clusters of
neighboring distance classes.

Nevertheless, Equation (64) assumes an exhaustive summation over all members of
α1. Thus, some modifications are necessary to consider the samples si ∈ Sα1 drawn
from stochastic backtracking within α1 instead. The first key observation is that each
structure si ∈ Sα1 was already sampled according to its equilibrium probability within
macro state α1. Therefore, a substitution of α1 with its corresponding sample set Sα1
leads to

k̂α1,α2 ≈
1

|Sα1 |

∑
si∈Sα1

∑
sj∈α2
sj∈N(si)

kij (65)

Of course, the quality of the resulting macro rate k̂α1,α2 now heavily depends on the
quality and size of the sample set Sα. But, regardless of the sample size, Equation (65)
still lacks an important feature for successfully modeling the macro state kinetics of
the system, namely reversibility. On average, the rate k̂α1,α2 results in a good approx-
imation, but sampling errors can easily break detailed balance. This becomes clear if
the macro rate from α1 to its neighbor α2 ∈ N(α1) is formulated in terms of Sα2

k̃α1,α2 ≈
1

|Sα2 |

∑
sj∈Sα2

∑
si∈α1
si∈N(sj)

πα2
πα1

kji (66)

where παx is the equilibrium probability of the macro state αx and kji the micro rate
from sj to si. Since both sample sets Sα1 and Sα2 are independent from each other, it
is not guaranteed that for any si ∈ Sα1 , its neighbor sj ∈ α2 is within Sα2 , too, and
vice versa.

A simple, yet effective, solution is to take the weighted average of both rate approx-
imations to derive the transition rates from the union of both sample sets Sα1 ∪ Sα2 .
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Consequently, any pair of structures si ∈ Sα1 and sj ∈ α2 is used to compute the back
and forth transition rate, and detailed balance is restored. The total transition rate
kα1,α2 between any two macro states α1 and α2 of the (κ, λ)-partitioning can finally
be written as

kα1,α2 ≈
|Sα1 | · k̂α1,α2 + |Sα2 | · k̃α1,α2

|Sα1 |+ |Sα2 |
(67)

≈ 1

|Sα1 |+ |Sα2 |


∑
si∈Sα1

∑
sj∈α2
sj∈N(si)

kij +
∑
sj∈Sα2

∑
si∈α1
si∈N(sj)

πα2
πα1

kji


with

kα1,α1 = −
∑
αi 6=α1

kα1,αi .

comparison to gradient basin kinetics Comparison of folding kinetics pre-
dictions between two different coarse graining approaches can be rather difficult. While
the qualitative picture of the corresponding simulations definitely should agree with
each other, the actual population densities of the macro states, i.e. the quantitative pic-
ture, may be very distinct. This is due to the different partitionings of the landscape.
Some macro states that subsume a large volume of the secondary structure free energy
landscape in one approach may correspond to such with small volumes in the other,
and vice versa. To test the predictive power and potential of the 2Dkin approach, I
exemplarily use an artificially designed RNA with distinct low free energy states from
Xayaphoummine et al. [258]. Starting with an initial population density of 100% for
3 local minima of the state space, a folding kinetics simulation is performed with the
well established Gradient basin approach of Wolfinger et al. [252], and 2Dkin. Results
are depicted in Figure 17. As can be seen by comparing the barrier tree with the 2D
projection, one deep local minimum is missing in the distance class approach. This is
due to the fact that the ensemble consists of two structures similar to the MFE struc-
ture but with a 3 nt shift in the 5 ′ stem. Coincidentally, both are members of the same
distance class. Thus, only the one with lower free energy is visible in the 2D projection.
However, as can be seen in the folding simulations, both methods compare well. The
same is true for other examples that are small enough to be feasible with the Gradient
basin method (data not shown).
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Figure 17: Folding dynamics prediction using distance class partitioning of the 2Dkin algo-
rithm, compared to the well established Gradient basin approach of Wolfinger et al.
[252]. The RNA sequence is taken from Xayaphoummine et al. [258]. A Secondary
structure plots of (1) the MFE structure, (2) the meta stable state that consitutes a
cotranscriptionally active kinetic trap, and (3,4) both shifted versions of the MFE
structure (see text). B The barrier tree representation of the corresponding landscape.
C The distance class representation of the landscape. D-E Simulation results for the
Gradient basin approach versus the 2Dkin method starting with an initial popula-
tion density of 100% for the MFE structure (D), the metastable state (E), and finally
the shifted MFE structure (F), respectively. Red, green, and blue curve depict the
population density of distance classes containing the MFE structure, the meta stable
state, and the shifted MFE structure, respectively. Although quantitatively different,
both methods compare very well in terms of quality.
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12.2 folding kinetics on varying landscapes

As shown in the previous section, the distance class partitioning can be used to ef-
ficiently predict coarse grained RNA folding kinetics. Nonetheless, the approaches
presented so far only consider static secondary structure energy landscapes, i.e. the
landscape does not change. Though, in their native environment an RNA certainly un-
dergoes specific changes that reshapes its corresponding secondary structure energy
landscape. The most prominent example of such a change that even accounts for all
RNAs produced in any living cell is its fabrication, better known as Transcription. Here,
the RNA immediately starts folding back on itself as soon as it leaves the transcription
bubble. Each nucleotide that is added to the nascent RNA results in a growth of the set
of compatible secondary structures Ω. Hence, the induced landscape grows with any
nucleotide added as well. The same is true for processes where the RNA is degraded.
Any nucleotide removed from the polymers ends removes certain states in the land-
scape. Another example is the change of the environmental temperature. Since the
free energy ∆G = ∆H− T∆S of a loop in a secondary structure consists of an enthalpic
part H and a temperature dependent entropic part S, the free energy E(s) of any entire
secondary structure s changes with temperature as well, lifting or deepening its corre-
sponding spot within the landscape. Further examples of environmental changes that
induce a change in the underlying energy landscape of an RNA include the binding of
small molecules which stabilize a particular structure or structural motif, or the force
of unpairedness of certain stretches of the RNA, e.g. caused by the elongation of the
ribosome during translation.

Computational tools for the above mentioned scenarios are very limited. This may
be due to the fact that even for the analysis and prediction of RNA folding kinetics
on static landscapes, only a handful of computational methods exist (reviewed in [65,
125]). Nevertheless, to date, a few implementations of algorithms to predict the co-
transcriptional folding of an RNA are available [257, 77, 182]. Additionally, some of
the Monte-Carlo scheme based RNA folding kinetics approaches explicitly included
chain growth in their algorithms by restricting the set of possible transitions according
to their availability during RNA polymerization (see Chapter 6.3). However, these
methods are limited since they either provide only a single co-transcriptional folding
trajectory, or require a large amount of repeated executions of the simulation to achieve
an over-all picture of the co-transcriptional folding process.

A generalized method that allows the prediction of RNA folding kinetics on vary-
ing energy landscapes was presented by Hofacker et al. in 2010 [106]. For each dis-
crete environmental setting, their BarMap approach generates a corresponding energy
landscape, or a coarse grained partition thereof. Transition rate matrices are then com-
puted for each of these settings to allow for a direct solution of the master equation
(see Chapter 6.2). Furthermore, a sophisticated mapping function M is used to map
states between consecutive energy landscapes. The actual folding simulation for the
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dynamic energy landscape finally is constructed of short simulations on the individual
landscapes, where the initial conditions of a simulation are derived from the final con-
ditions of its predecessor utilizing M. Still, the BarMap approach relies on exhaustive
enumeration of the energy landscapes, and is therefore applicable only to RNAs of
short sequence length.

In the following, I present two new methods that approach the problem of co-
transcriptional folding using distance class partitioning. While the first provides a static
view on the growing transcript in terms of MFE predictions, the second approach is
based on the ideas in the previous section 12 and allows for the prediction of RNA
folding kinetics of the growing transcript.

co-transcriptional folding To predict the secondary structure an RNA adopts
after being released from the transcription bubble is a difficult task. It requires to
consider the interplay between transcript extension by the RNA polymerase and the
refolding kinetics of the nascent transcript towards its (new) equilibrium state. If a
small energy barrier separates a structure from the ground state of the partial tran-
script, refolding is fast and the transcript will permanently stay in equilibrium. In this
case, a regular MFE structure prediction would be sufficient. For high barriers, on the
other hand, refolding may take much longer than the elongation of the polymerase,
and the RNA gets trapped in a non-equilibrium state. As a consequence, the transcript
can reside in a non-equilibrium state for timespans that easily exceed that of a typical
RNA molecule in the cell, which is in the range of 1 minute to 1 hour. Therefore, MFE

structure prediction leads to an erroneous result and a potential function of the RNA
can be misinterpreted.

Since RNA secondary structure folding kinetics requires much more computational
effort compared to a DP secondary structure prediction, several methods exist that
try to circumvent the kinetics part with clever heuristics. The CoFold algorithm, for
instance, uses Zuker’s algorithm for MFE structure prediction, but penalizes long range
base pairs with a pseudo energy term that grows logarithmically with the distance of
the nucleotides involved [182]. This idea is based on the fact that hairpin helices form
first, due to their close proximity of base pairs. Many of these short-range base pairs
may then be kinetically trapped in local structures, and are therefore not available
for long-range interactions in a more complex structure. However, to date a wide
variety of functionally important long-range interactions are known, hence such a
simple modification of the energy model appears to be at odds with that [8]. A more
elaborate approach was presented with the Kinwalker algorithm in 2008 by Geis et al.
[77]. Utilizing the DP matrices of Zuker’s MFE algorithm, their method constructs a
folding trajectory of intermediate structures. Therefore, optimal helices obtained from
partial backtracking in the MFE matrices are inserted in structure intermediates if (i)
they decrease the structures free energy, and (ii) the involved refolding energy barrier
allows them to form before more favorable helix alternatives appear due to transcript



152 folding kinetics on coarse grained landscapes

elongation. Furthermore, the algorithm extends helical regions whenever possible.
Energy barriers are estimated from direct refolding paths between an intermediate
structure and the next structure candidate. This renders Kinwalker a fast tool applicable
to RNAs with sequences length of up to about 1000 nt. However, this heuristic has its
drawbacks, too. When the algorithm constructs more complex intermediate structures,
backtracking in the MFE matrices is likely to yield structural elements which induce
high refolding barriers, although suboptimal alternatives with a much lower barrier
might exist. But these alternatives can not be easily generated from the MFE matrices.
Additionally, the usage of direct refolding paths for energy barrier estimation tends
to overestimate the actual refolding barrier (see Chapter 4.1). Hence, the derived
refolding time gets overestimated as well, and substructures are not incorporated into
the intermediate structure although they could be.

Here I suggest an alternative to the above approaches, based on classified DP MFE

predictions. Simple MFE predictions for each step of the consecutively growing tran-
script per se do not reveal much insight, except for a consistent decrease in free energy
(see Figure 18A) and possibly a very diverse set of intermediate structures. A classi-
fied DP approach with distance class partitioning, on the other hand, can help to follow
low free energy structure representatives in the energy landscape while the transcript
grows. For the above purposes, the (classified) DP matrices have to be filled only once,
using the full length sequence. Predictions for the shorter intermediate subsequences
can then be readily obtained from optimal subsolutions. As shown in Figure 18B,
using a single reference structure already reveals alternative low free energy states.
Though, it is almost impossible to infer likely refolding events between the developing
distance classes. However, the addition of another reference structure already yields a
pretty good picture of which distance classes might be populated the most throughout
transcription.

A simple inspection of the MFEs for each distance class in the 2D projection may be
sufficient, see Figure 18C, since the distance class partitioning already yields a lower
bound on the refolding energy barrier between any two partitions, and the assignment
of distance classes between two consecutive transcription steps is straight-forward.
With full details, the mapping M of partitions ακ,λ obtained for a transcript of length
i onto partitions for the transcript of length i+ 1 is

Mi→i+1(ακ,λ) = ακ+δ1,λ+δ2 (68)

with

δx = sx[1 : i+ 1] − sx[1 : i]

where sx[1 : i] is the set of base pairs (p,q) in reference structure sx with 1 6 p <

q 6 i. A stack of resulting consecutive MFE predictions of the distance classes can also
conveniently be visualized in form of a video.
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co-transcriptional folding kinetics As shown in the previously described
method, the mapping between distance class partitions of a growing transcript can be
obtained simply from counting base pairs in parts of the reference structure. This ob-
servation can be employed to extend the RNA folding kinetics approach presented in
Section 12 in order to take a growing RNA chain into account. Therefore, the classified
DP matrices only need to be filled once for the full length transcript. This yields all
partition functions of the partial transcripts as well, hence all requirements for Boltz-
mann sampling of substructures are already set. The only computational overhead to
extend the RNA folding kinetics approach towards co-transcriptional folding is the ac-
tual sampling procedure to obtain transition rate matrices of the intermediate distance
class partitionings. Folding kinetics upon chain growth is then predicted according to
the BarMap approach [106]. Starting with a short transcript, the system is initialized
with 100% population density for the unfolded state, and the simulation is performed
for the equivalent time the RNA polymerase needs to add a further nucleotide. The
population densities of the distance classes derived from a preceding simulation are
then mapped to the next partitioning to provide a reasonable start condition. Once the
full length transcript is reached, no further mapping is required and the system can
be simulated until it eventually reaches equilibrium.

Exemplarily, I show different folding dynamics predictions for an artificially de-
signed short RNA sequence of 73 nt length [258] in Figure 19. This RNA was specif-
ically created and experimentally validated to encode a particular cotranscriptional
folding path that leads into a kinetic trap, i.e. a meta stable non-equilibrium structure
that is structurally very different to the MFE structure. The cotranscriptional folding
simulation using 2Dkin was performed with constant transcription speed, and 1, 000
samples were drawn from each κλ-neighborhood. Mapping of the arbitrary time units
(τ) that are introduced by solving the master equation to physical time scales is difficult,
and needs to be calibrated against experimental data. Therefore, the simulation was
repeated with 3 different transcription speeds of 100 nt/τ, 10−1 nt/τ, and 10−2 nt/τ,
respectively. For comparison, the simulation was also repeated for the full length tran-
script, with the complete initial population ~p(0) being concentrated in the distance
class that subsumes the unfolded state. An analysis of the folding dynamics starting
with the MFE structure, and the meta stable structure that constitutes the kinetic trap
for cotranscriptional folding, has been shown above in Figure 17, accompanied by the
corresponding 2D projection of the secondary structure free energy landscape.

The cotranscriptional version of 2Dkin correctly predicts the kinetic trap for rela-
tively slow transcription speed up to 10−2 nt/τ. Here, the meta stable state appears as
a long-lived non-equilibrium state. The strong dependence on the transcription speed
was expected, since the formation of the central hairpin helix of the structure that con-
stitutes the kinetic trap involves exchange of base pairs with other, initially forming
helices. The time required to exchange the base pairs has therefore be taken into ac-
count. On the other hand, superslow transcription speeds would of course not reveal
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the kinetic trap, as the RNA would have enough time to adopt its current equilibrium
state within each transcription step (data not shown).
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Figure 18: Cotranscriptional folding and the potential of distance class partitioning to detect
the kinetically trapped non-equilibrium state of the artificially designed RNA from
Xayaphoummine et al. [258]. While regular MFE prediction for each stage of the
transcription process (A) only shows the obvious drop in MFE, distance class parti-
tioning with respect to the full length MFE structure (B) already reveals at least two
further low free energy states and some energy barriers separating them. As shown
with the sequence of six transcription stages in steps of 10 nt starting with a partial
transcript of length 25 nt, the cotranscriptional folding path can be deduced from
visual inspection. While initially (35 nt) the most probable structure is very close to
the full length MFE structure, an alternative state closer to the kinetic trap emerges
(45 nt). At this time the separating energy barrier between both local minima is
relatively small with just about 4.9 kcal/mol. Thus, rapid exchange between both
local minima can be assumed. After further 10 nt of transcription, the kinetic trap is
energetically much more favorable than any other alternative. The longer the tran-
script becomes, the higher the energy barrier that separates the kinetic trap from the
rest of the structure space (65 nt). Finally, the full length transcript gives rise to the
actual equilibrium structure that is, however, energetically well separated from the
kinetic trap.
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Figure 19: Cotranscriptional folding kinetics using 2Dkin, exemplarily shown for an artificially
designed RNA with encoded kinetic trap taken from Xayaphoummine et al. [258].
A The secondary structures of interest: MFE structure (top), and meta stable state
that is adopted right after transcription (bottom). B 2Dkin simulation of the full
length transcript. Starting with 100% population density for the distance class that
subsumes the unfolded state.
The remaining plots show the cotranscriptional folding kinetics as predicted with
2Dkin for transcription speeds of 100 nt/τ (D), 10−1 nt/τ (E), and 10−2 nt/τ (F),
respectively. The meta stable state that consitutes the kinetic trap becomes clearly
visible as a very long-lived non-equilibrium state in the last two simulations (see
also text).
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13
C O N C L U S I O N S A N D O U T L O O K

The long term goal of computational RNA structure prediction is to deduce three
dimensional structures and tertiary interactions, to realistically test biological and bio-
chemical hypotheses. Current methods are either very demanding in terms of compu-
tational complexity, or do not provide sufficient parametrization yet [175, 203, 94, 263].
Since RNA folding is generally considered a hierarchical process, where canonical base
pairs form first and tertiary interactions appear later, most of tertiary structure predic-
tion approaches still depend on secondary structure predictions. Since it is unlikely
that algorithms appear that deduce the 3D conformation of RNAs directly from the
primary structure, i.e. the RNA sequence, it remains crucial to provide adequate and
reliable tools for the prediction of secondary structures.

In this thesis I presented a broad overview of stat-of-the-art DP algorithms for pre-
diction of both RNA secondary structure and folding dynamics. The related work
done by me and my colleagues was extensively described in Parts iv and v. This in-
cludes the reimplementation of major parts of the ViennaRNA Package [137], which is
a fast and comprehensive toolbox for almost all secondary structure prediction related
problems.

Furthermore, the development of the classified DP algorithm RNA2Dfold [136], opens
up a variety of perspectives on future research, that would otherwise be infeasible.
Its application to predict near optimal refolding paths, and therefore near optimal es-
timations energy barriers is described in much detail in Chapter 11. Additionally, the
potential to use ab initio distance class partitioning to predict coarse grained RNA
folding dynamics was discussed in the previous Chapter 12. This allows in silico in-
vestigation of conformational changes of RNAs with biologically meaningful sequence
lengths of up to 400 nt. Here, not only full length transcripts are considered, but the
growing chain of the nascent RNA during transcription is taken into account as well.

The work on RNA/DNA hybrid structure prediction, as presented in Chapter 8,
opens up new vistas for the understanding of the interplay between RNA and DNA.
Previous approaches were limited to predict (hybrid) structures for only a single
species of nucleic acid. With the extension of the nucleotide and base pair sets of
state-of-the-art secondary structure prediction DP algorithms, this new method allows
one to predict co-transcriptionally occurring RNA/DNA hybrids known as R-loops.
First thought of as by-products of the transcription process, these hybrid structures
appear to be involved in DNA damage and genome instability [3]. The incorporation
of all types of intramolecular and intermolecular base pairs between RNA and DNA
can be used to develop elaborate simulation tools modeling the transcription process

159
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itself. For that purpose, the transcription speed can be controlled through intrinsic
properties of RNA/DNA intermolecular base pairs, taking the whole interplay be-
tween intramolecular and intermolecular pairs into account, whereas today’s methods
simply assume a constant speed of RNA chain elongation [66, 114, 257, 77].

With the advent of tools, such as the MC-fold/MC-sym pipeline [175] and RNA-
wolf [263], secondary structure prediction became more and more intertwined with
tertiary structure prediction. Thus, any improvement made in secondary structure
prediction leads to a beneficial contribution to predict tertiary interactions. On the
other hand, some ideas taken from 3D approaches can be readily incorporated into
existing secondary structure prediction methods, as presented for the non-canonical
G-Quadruplex motif in Chapter 10.

Below, some of the most urgent remaining problems concerning structure prediction
and RNA folding dynamics will be discussed.

13.1 the future of secondary structure prediction

tertiary structure motifs As mentioned in Chapter 3.8, RNA secondary struc-
ture prediction is by definition very much limited in terms of predictive power. This
is mainly due to the fact that it neglects loops that arise through non-canonical base
pairing, although they are present in almost every native tertiary RNA structure and
can make up about 1/3 of all base pairs [129]. However, the extension of existing
secondary structure prediction algorithms to non-canonical base pairs is not straight-
forward. Some of them require distinct spatial orientations of the nucleobases, that are
only possible if the nucleotides in their vicinity are arranged properly. But spatial prop-
erties are omitted from secondary structure prediction algorithms entirely. Recently
developed algorithms that aim to predict non-canonical base pairs therefore abstract
from small loops up to a size of 4 that may contain base triples and are enclosed by
base pairs of any kind to entire modules of non-canonical motifs (NCM) [175, 263, 221].
These modules are then combined into more complex structures, analogous to loops
in secondary structure prediction algorithms. Therefore, such algorithms can be con-
sidered 2.5 dimensional structure prediction algorithms, as the results are somewhere
between secondary (2D) and tertiary (3D) structures. The bonus of such an approach
is that it can be easily extended to variations of the secondary structure MFE algo-
rithm, such as RNA-RNA interaction prediction, suboptimal structure prediction, and
consensus structure prediction.

Unfortunately, the parametrization of a scoring function for the individual motifs
is very difficult. Only a very limited set of actual free energies of tertiary structure
motifs is available [205, 261, 100, 231]. Therefore, these algorithms rely on statistical
properties drawn from the frequency to observe a motif within a given context, e.g. in
available 3D structures taken from various databases such as the PDB [17]. Although
for some examples this so-called extended secondary structure model increases prediction
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accuracies, it still performs unsatisfactory for the general case [175, 263]. Neverthe-
less, by taking structure probing data, such as SHAPE reactivity [157], or constraints
of already formed canonical pairs as additional input, the prediction accuracies can
be increased substantially. For the latter non-canonical motifs have to be predicted
in unpaired regions of the structure constraint only, while probing data allows to
add favorable(unfavorable) scores to motif configurations that agree(disagree) with
the particular probing procedure. This method has already been successfully applied
to regular secondary structure prediction algorithms [151, 49, 239].

While presumably some time needs to pass until a larger set of training data for a
proper parametrization of the extended secondary structure model is available, conser-
vative methods that include only a limited number of non-canonical tertiary structure
motifs into regular secondary structure prediction methods may be a good choice.
This method already lead to various specifications of secondary structure loops, such
as hairpins of size 3, 4, and 6, and small interior loops. The energy parameters utilized
in today’s secondary structure prediction algorithms explicitly tabulate the sequence
variations of these small loops to assign energy contributions that do not fit the simple
loop model [228, 39].

The inclusion of motifs as completely separate self-contained loop was already pre-
sented for the G-Quadruplex motif in Chapter 10. Although this motif is much larger
than the NCMs of the extended secondary structure model, thermodynamic data from
melting experiments is available that allows to model its free energy contribution in
terms of layer size and linker length [135]. The same approach might be possible for
other self-contained, i.e. local, tertiary motifs with a relatively low variation in the nu-
cleotide sequence, such as C-loops, T-loops, and kink-turns [205, 131, 262, 248, 180, 221].
However, to date only a handful of thermodynamic parameters for tertiary structure
motifs are available [156, 205, 261, 100, 231], which hopefully will be extended in the
near future.

base pairs with extended nucleotide alphabet An additional difficulty
for RNA structure prediction poses the existence of non-standard nucleotides. It is
well known that structural RNAs may contain modified nucleotides, created by post-
transcriptional processing such as RNA editing and pseudouridylation, that usually come
with a distinct pairing behavior [61, 118, 143, 76]. These modifications extend the
RNA alphabet of the standard nucleotides Σ = {A,G,C,U}, and give rise to a large va-
riety of new (non-)canonical base pairs. However, most implementations of secondary
structure prediction algorithms simply ignore modified nucleotides and treat them as
special nucleotides that stay unpaired in all decompositions. This, of course impairs
the outcome of the prediction, since these nucleotides may very well form base pairs
with other nucleotides. On the other hand, if the input data lacks an indication of
a nucleotide modification the outcome of a secondary structure prediction may also
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be heavily distorted, for instance a modified U often found in tRNAs is pseudouridine,
which is known to form base pairs with any other nucleotide A, G, C, and U [122].

Since thermodynamic parameters for some of them emerged within the past years [250,
254, 112, 122], it might be worthwhile to include these additional base pairs in re-
cent secondary structure prediction algorithms to augment the prediction accuracy
for RNA sequences with known nucleotide modifications. In Chapter 8 I already
presented an extension for RNA structure prediction algorithms alphabet Σ. Here,
the additional nucleotides originate from the DNA alphabet, and the loop type de-
pendent energy contributions of all possible base pairs, RNA-RNA, RNA-DNA, and
DNA-DNA are distinguished and tabulated. The same straightforward modification
to existing implementations can be used to incorporate base pairs involving modified
RNA nucleotides, provided energy parametrization is possible.

the environment matters A large simplification made by the nearest neigh-
bor model is the independence of environmental ion concentrations. However, each
phosphate group of the backbone of an RNA is negatively charged, rendering it a
poly-anion. Therefore, positively charged cations, such as Na+ and Mg2+, can easily
bind to the RNA and stabilize its structure.The importance of this stabilizing effect
has especially been shown for pseudo-knots, and G-quadruplexes. Still, cations are
capable to stabilize regular RNA helices as well [59, 253, 216, 142].

Several models have been proposed [59, 60, 215, 216, 142] that explicitly take the
concentrations of certain cations into account. But they are usually used to reassess the
energy contribution of a particular secondary structure, instead to predict structures.
Although, cation dependence of the stability for self-contained structural motifs such
as G-Quadruplexes is local and can therefore directly be incorporated into prediction
algorithms, the models propose that the influence on stacks of canonical base pairs
depends on the size of the entire helix they are part of. This information, however,
gets lost in the recursive decomposition scheme of the nearest neighbor model. Thus,
it remains a challenge to develop a model that allows for an adequate estimation of
ion concentration dependence while being compatible with the decomposition scheme
of secondary structure DP algorithms.

Moreover, in the cellular context, RNAs are not only accompanied by ions in so-
lution. There is a huge amount of other small and large molecules that can bind to
specific RNA sequence and/or structure motifs, effectively distorting the underlying
secondary structure energy landscape [82, 198, 181]. Bacterial riboswitches, for in-
stance, control gene expression transcriptionally and posttranscriptonally by ’sensing’
small ligand molecules within the cell [198, 183]. These ligands usually bind to specific
structural ’pockets’ that mostly consist of well-defined sequence motifs, and thereby
stabilize loop motifs such as hairpins, interior loops, or multi loops [102]. Despite the
availability of thermodynamic parameters that describe the ligand contributions to
the overall structural stability, these external factors are virtually always omitted from
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structure prediction algorithms. Therefore, accurate prediction of meta-stable states
for riboswitches is impaired, as the stability of the corresponding structure motifs may
be drastically underestimated [86, 82].

hard and soft constraints In principle, the nearest neighbor energy model
can be adapted to situations where ligands with well-defined stabilizing contributions
bind to specific sequence-structure motifs. As long as binding is local, the involved
loops can be assigned an auxiliary (pseudo)energy that reflects the stabilizing effect.
This method can be considered as soft constraint for the prediction algorithm. An
additional application of soft constraints is their potential to allow guided secondary
structure prediction using experimental structure probing data. This is especially im-
portant, since in the last years several high-throughput methods were developed that
indicate the presence of looped or paired regions of RNA structures in vitro, and
in vivo [246, 166, 230, 245] by structure probing. Although these methods do not
identify actual pairing partners of a single nucleotide, sophisticated algorithms can
be used to deduce secondary structures that align best with the provided probing
data [151, 49, 239].

On the other hand, some proteins or enzymes that bind to parts of the RNA, e.g to
recruit more complex cellular machinery, tend to mask nucleotides, rendering them
inaccessible for the formation of alternative structure configurations. The nucleotides
involved may then be forced to stay unpaired, or remain in a particular paired confor-
mation [95, 149, 85]. For RNA structure prediction, these situations can be handled
computationally by restricting the possible decomposition paths using so-called hard
constraints. Consequently, this method removes a set of certain secondary structures
from the ensemble, and therefore from the solution space. Of course, special care
has to be taken in terms of ergodicity when using hard constraints for RNA refolding
analyses.

While hard and soft constraints can be utilized for a large variety of purposes, most
actual implementations of secondary structure DP algorithms offer only a limited con-
straint feature set. Thus, to enable prediction of a more complex interaction of RNAs
with its environment, a generalized structure constraint approach needs to be devel-
oped.

13.2 rna folding dynamics

The importance of RNA folding kinetics has been repeatedly discussed throughout
this entire thesis. Not only is efficient folding dynamics prediction required to un-
derstand the mode of action of an RNA that performs its function through structure
transition, like metabolite sensing riboswitches or RNA thermometers [178, 168], but the
emergence of an RNA in the cell itself is heavily linked to folding kinetics. The nascent
RNA that leaves the transcription bubble already folds back on itself and requires con-
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secutive refolding events towards its native ground state. This process is well known
as Cotranscriptional folding, and can lead to long-lived non-equilibrium states that may
surmount the average life span of an RNA in the cell [125].

Unfortunately, the prediction of the dynamic behavior of RNA folding is a compu-
tationally demanding task (discussed in much detail in Chapter 6). While Markov
Chain - Monte Carlo (MCMC) methods follow only a single folding trajectory out of
exponentially many, holistic approaches that consider the entire ensemble of struc-
tures to solve the master equation of the underlying Markov process usually depend
on exhaustive enumeration of the ensemble. Consequently, existing methods are still
mostly applicable to RNAs with relatively short sequence lengths of at most 100 nt.

ab-initio coarse graining Coarse graining of the structure space provides a
possible lift to this limitation. However, to successfully apply a coarse graining tech-
nique to longer sequences, the properties of the resulting macro-states and the transi-
tion rates between them must be computed efficiently. Since exhaustive enumeration
of structures is out of question for longer RNA sequences, other means need to be
utilized. For instance, folding dynamics may be predicted by restricting the set of
possible conformations to just a few representative states and structures closeby. Tang
et al. [217, 218] already proposed such a method where macro states and transition
rates are approximated through Boltzmann sampling from the ensemble. The most
difficult part of such methods is to generate a structure set that adequately represents
the actual, vast ensemble of structures. But this is not guaranteed by regular Boltz-
mann sampling approaches, since very large sample sizes may be required to obtain
structures that deviate from the ground state in terms of free energy. This dilemma is
depicted exemplarily for two RNA sequence in Figure 20.

As an alternative, classified DP approaches as introduced in Chapter 3.6, can be used
to create structurally diverse samples by ab-initio partitioning the structure space and
sampling from within the generated partitions. In Chapter 12, I already presented a
technique that uses distance class partitioning with respect to two reference structures
to effectively predict their population densities over time. The proposed idea, however,
is not limited to this particular classification. In fact, it can be easily adopted to other
classifications, such as distance classes with larger numbers of reference structures, or
abstract RNA shapes, as presented in Section 3.6.

distortion of the boltzmann ensemble The drawback of classified DP ap-
proaches is, however, the increasing runtime requirements for more sophisticated par-
titionings, cf. Chapter 3.6. Therefore, it remains to be investigated, if computationally
cheaper methods, such as soft constraints used to distort the partition function Q, are
able to yield diverse enough samples that can be further taken as input for a posteriori
classifications. In fact, the application of sophisticated pseudo-energy terms that favor
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Figure 20: The bottleneck of Boltzmann sampling from the structure ensemble to construct the
energy landscape is the sample size N. While for short RNA sequences sample
sizes of some million structures may be sufficient to approximate large portions of
the actual structure space, they need to be increased to billions of structures for
sequences already close to 100 nt. Exemplarily shown are MFE representatives ob-
tained from 2D projections of the structure ensemble for two RNA switches. For
both the two corresponding low free energy conformations are used as reference
structures (see also Chapter 9). Depicted from left to right are (i) the full structure
ensemble, (ii) the ensemble obtained by Boltzmann sampling of N = 1, 000, 000, and
(iii) N = 100, 000, 000 structures. A Small artificially designed RNA switch with
sequence GGGCGCGGUUCGCCCUCCGCUAAAUGCGGAAGAUAAAUUGUGUCU and low free energy
conformations of −17.7 kcal/mol (MFE), and −17.2 kcal/mol (Meta). Sample sizes
of N = 1, 000, 000 and N = 100, 000, 000 generated 1, 491, and 7, 877 distinct struc-
tures, respectively. B 73 nt long artificially designed RNA [258] with two low free
energy conformations of −40.9 kcal/mol (MFE), and −40.0 kcal/mol (Meta), respec-
tively. The unique structures drawn from Boltzmann sampling amount to 1, 777
(N = 1, 000, 000), and 11, 702 (N = 100, 000, 000).
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structures within certain parts of the secondary structure free energy landscape may
be used for that purpose.

An example for such an approach that borrows the ideas of 2D projections of the free
energy landscape, as introduced in Chapter 9, is presented below 1. Instead of using a
classified DP algorithm that ab-initio partitions the structure space into distance classes
according to the reference structures s1 and s2, the distorted Boltzmann ensemble

QD =
∑
s

e−β(E(s)+x(s)+y(s)) (69)

is used to draw representative structure samples. Here, the two soft constraining
pseudo-energy terms x(s) = x ′ · dBP(s, s1), and y(s) = y ′ · dBP(s, s2) with constant
parameters x ′ and y ′ can be used to favor (x ′,y ′ < 0) or disfavor (x ′,y ′ > 0) structures
according to their distance to the reference structures s1 and s2. Consequently, on
average Boltzmann sampling generates structures in the vicinity, or far away from the
reference structures, respectively. Using this approach it is even possible to align the
equilibrium probabilities of s1 and s2 with that of the MFE structure sMFE. Therefore,
the distance dependent pseudo-energy factors x ′ and y ′ have to be chosen such that
their equilibrium probabilities p(s) = exp(−βE(s) + x(s) + y(s))/Q are all equal, i.e.

e−β(E(s1)+x
′·0+y ′·dBP(s1,s2)) = e−β(E(s2)+x

′·dBP(s1,s2)+y ′·0)

e−β(E(s1)+x
′·0+y ′·dBP(s1,s2)) = e−β(E(sMFE)+x

′·dBP(s1,sMFE)+y ′·dBP(s2,sMFE))

e−β(E(s2)+x
′·dBP(s1,s2)+y ′·0) = e−β(E(sMFE)+x

′·dBP(s1,sMFE)+y ′·dBP(s2,sMFE)). (70)

Consecutive sampling from distorted Boltzmann ensembles with a good choice of
different pairs of x ′ and y ′ may then yield a diverse set of secondary structures suitable
for landscape approximation and a posteriori macro state partitioning.

How well this method scales for short and long RNA sequences, and if it provides
the means for adequate approximation of macro states, such as distance classes, to
predict coarse-grained folding dynamics will be part of future research. Nonetheless,
such an approach highlights the potential of constraints in secondary structure predic-
tion (as discussed in the previous section). Especially, since it is not restricted to two
reference structures s1 and s2, but allows for an arbitrary number of reference struc-
tures, which enables to triangulate small subspaces in the high-dimensional secondary
structure landscape.

co-transcriptional folding Every RNA in a cellular environment of a living
organism is produced by a process called transcription, where an enzyme, the RNA
polymerase, covalently connects single ribonucleotides according to the complementary
sequence of the corresponding DNA template. As soon as the nascent RNA leaves the
transcription bubble, it folds back on itself to adopt an energetically favorable structure.

1 These ideas were developed together with Yann Ponty and Ivo L. Hofacker
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However, with every transcription step the sequence is extended by an additional nu-
cleotide, and the optimal structure for the partial transcript constantly changes. There-
fore, the RNA undergoes several refolding processes from transient structures to its
new native state. Depending on the stability of a transient structure, the transcription
speed, and the energy barrier that has to be surpassed for the structure transition, the
RNA may become stuck in a so-called kinetic trap, a transient non-equilibrium state
that may be very long-lived.

As a consequence, pure thermodynamically driven methods, such as MFE predic-
tion, that assume the RNA in equilibrium can lead to very different structures than
observed in living organisms. Thus, it is of much importance to provide methods that
enable the prediction of secondary structure by taking the transcription process into
account. Some approaches for this purpose that use heuristics instead of simulating
the entire folding process have already been presented in Chapter 12.2. However, their
number is very limited and the heuristic assumptions are sometimes questionable.
Therefore, new methods have to be developed that allow for the assessment of native,
possibly non-equilibrium structures by explicitly accounting for transitions between
transient states, especially for longer RNA transcripts.

The Kinwalker approach [77] seems to provide a good foundation for further ex-
tensions, since it seems to be possible to address the drawbacks of this method with
recent advances in RNA secondary structure bioinformatics. On the one hand, new
efficient energy barrier estimation techniques emerged [58, 136], that do not restrain
themselves to direct transition paths. The application of such new methods very likely
improves the accuracy of predicting whether or not a particular transient structure un-
dergoes larger refolding when further nucleotides are attached to its sequence. On the
other hand, the way how Kinwalker deduces transient structure candidates definitely
needs to be improved. Since the algorithm constructs candidates by merging a current
structure with optimal substructures drawn from the MFE matrices, it requires larger
refolding and thus introduces high energy barriers, the longer the transcript becomes.
This is due to the fact, that the substructures obtained from backtracking in the MFE
matrices tend to be structurally far away from the current state of the transient struc-
ture, after all, they only represent the most probable ones, and do not need to merge
well into a non-equilibrium state.

To avoid large structural changes and to allow a more fine grained prediction of the
cotranscriptional folding trajectory, alternative, non-equilibrium structure prediction
needs to be applied. For this purpose, the use of hard constraints in structure predic-
tion may be a promising technique. Therefore, (parts of) the current transient structure
can be used as hard constraint for conditional structure prediction through subsequent
MFE forward recursions. Backtracking in the resulting constrained MFE matrices then
yields substructures that are more closely related to the current transient state, and
therefore more likely to be adopted. This heuristic also makes sense from a molecular
biology point of view. An RNA structure is more prone to undergo a transition into
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a more or less closely related state, than to refold a major part at once, as the original
Kinwalker heuristic assumes.

In contrast to that, advances in computational RNA folding kinetics also contribute
largely to the problem of cotranscriptional folding prediction, of course. Although to
date only applicable to relatively small sequence lengths of about 100 nt, more effi-
cient methods, such as ab init io coarse graining, enable the analysis of RNA sequences
with sequence lengths of up to 400 nt already. This was shown in Chapter 12. The
current drawback of this method is the involved sampling strategy. It requires a large
amount of computations, after all stochastic backtracking from the 2D distance classes
requires an additional factor of n2 compared to regular stochastic backtracking from
the ensemble. However, the ansatz to successively distort the Boltzmann ensemble
with elaborate pseudo-energy functions and draw samples from the deformed sec-
ondary structure free energy landscape, as described above, shows promise that even
more efficient methods can be developed.
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[7] M. Marz, A.R. Gruber, C. Höner zu Siederdissen, F. Amman,
S. Badelt, S. Bartschat, S.H. Bernhart, W. Beyer, S. Kehr,
R. Lorenz, A. Tanzer, D. Yusuf, H. Tafer, I.L. Hofacker, and P.F.
Stadler. Animal snoRNAs and scaRNAs with exceptional struc-
tures. RNA Biology, 8(6):938–946, 2011.

192



List of Publications (continued)

[8] I. Boria, A.R. Gruber, A. Tanzer, S.H. Bernhart, R. Lorenz, M.M.
Mueller, I.L. Hofacker, and P.F. Stadler. Nematode sbRNAs: ho-
mologs of vertebrate Y RNAs. Journal of Molecular Evolution,
70(4):346–358, 2010.

[9] Ronny Lorenz, Christoph Flamm, and Ivo L. Hofacker. 2D pro-
jections of RNA folding landscapes. In Ivo Grosse, Steffen Neu-
mann, Stefan Posch, Falk Schreiber, and Peter F. Stadler, editors,
German Conference on Bioinformatics 2009, volume 157 of Lec-
ture Notes in Informatics, pages 11–20, Bonn, September 2009.
Gesellschaft f. Informatik.

[10] I. Glauche, R. Lorenz, D. Hasenclever, and I. Roeder. A novel
view on stem cell development: analysing the shape of cellular
genealogies. Cell proliferation, 42(2):248–263, 2009.

[11] Andreas R. Gruber, Ronny Lorenz, Stephan H. Bernhart, Richard
Neuböck, and Ivo L. Hofacker. The vienna RNA websuite. Nucleic
Acids Research, April 2008.

[12] I. Roeder, K. Braesel, R. Lorenz, and M. Loeffler. Stem cell fate
analysis revisited: interpretation of individual clone dynamics in
the light of a new paradigm of stem cell organization. Journal of
Biomedicine and Biotechnology, 1:84656, 2007.

[13] Ingo Roeder and Ronny Lorenz. Asymmetry of stem cell fate and
the potential impact of the niche. Stem Cell Reviews, 2(3):171–
180, 2006.

193





colophon

This document was typeset using the typographical look-and-feel classicthesis de-
veloped by André Miede. The style was inspired by Robert Bringhurst’s seminal book
on typography “The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection
of postcards received so far is featured here:

http://postcards.miede.de/

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	Acronyms
	RNA in vivo, in vitro, and in silico
	1 Introduction
	1.1 Biological Background and Motivation
	1.2 The Structure of this Thesis

	2 RNA secondary structures
	2.1 Nucleic Acid Structures
	2.2 On RNA Secondary Structures and Graphs
	2.3 RNA Secondary Structure Representations

	3 RNA Secondary Structure Prediction
	3.1 Decomposition of Secondary Structures and its Implications
	3.2 Thermodynamic Secondary Structure Prediction
	3.3 Suboptimal Secondary Structures
	3.4 The Thermodynamic Ensemble of Secondary Structures
	3.5 Reliability Measures and Representative Structures
	3.6 Classified Dynamic Programming Approaches
	3.7 Nucleic Acid Interactions
	3.8 Beyond Secondary Structures


	Of Paths and Landscapes
	4 Transitions between RNA Structures
	4.1 Move sets, Paths and Energy Barriers
	4.2 Prediction of Direct Folding Paths
	4.3 Taking Detours

	5 The Big Picture
	5.1 Secondary Structure Free Energy Landscape
	5.2 Barrier Trees and Gradient Basins
	5.3 2D Projections


	RNA Folding Kinetics
	6 RNA Folding as a Dynamic Process
	6.1 Transition Rates
	6.2 Solving the Master Equation
	6.3 Markov Chain Monte Carlo Method
	6.4 Coarse Graining of the Landscape


	Published Work
	7 ViennaRNA Package 2.0
	8 Prediction of RNA/DNA hybrid structures
	9 2D Projections of RNA folding Landscapes
	10 2D meets 4G: G-Quadruplexes in RNA Secondary Structure Prediction

	Unpublished Work
	11 Finding Optimal Refolding Paths
	11.1 Distance Class Partitioning Revisited
	11.2 The Pathfinder Algorithm

	12 Folding Kinetics on Coarse Grained Landscapes
	12.1 Kinetics on 2D Projections of the Energy Landscape
	12.2 Folding Kinetics on Varying Landscapes


	Discussion
	13 Conclusions and Outlook
	13.1 The Future of Secondary Structure Prediction
	13.2 RNA Folding Dynamics


	Bibliography
	CV
	Colophon

