
Visualization of Barrier Tree Sequences

Christian Heine∗

Image and Signal Processing Group

Department of Computer Science

University of Leipzig

Gerik Scheuermann†

Image and Signal Processing Group

Department of Computer Science

University of Leipzig

Christoph Flamm‡

Bioinformatics Group

Department of Computer Science

University of Leipzig

Ivo L. Hofacker§

Department of Theoretical

Chemistry and Structural Biology

University of Vienna

Peter F. Stadler¶

Bioinformatics Group

Department of Computer Science

University of Leipzig

ABSTRACT

The increasing complexity of models explaining the spatialstruc-
ture of RNA molecules require visualization methods that help to
analyze the validity of these models. In this article, we consider
the visualization of so called folding landscapes in the case of a
growing RNA molecule. These folding landscapes may be thought
of discrete energy or fitness landscapes and tend to be huge and
high dimensional. They are reduced to a so called barrier tree that
reflects the essential properties of the landscape such as local min-
ima and saddle points between them. For each sequence lengthof
the growing RNA chain, there is a folding landscape. We visualize
the sequence of folding landscapes by an animation of the corre-
sponding barrier trees. To do that, we adopt the foresight layout
with tolerance algorithm for general dynamic graph layout prob-
lems. Since it is very general, we give detailed account to each
phase: constructing a supergraph for the trees, layout of that super-
graph using a modified dot algorithm, and presentation techniques
for the final animation.

CR Categories: G.2.2 [Discrete Mathematics]: Graph Theory—
Trees

Keywords: graph drawing, dynamic graph, RNA folding, energy
landscape, fitness landscape, barrier tree

1 INTRODUCTION

1.1 Biological Background

Ribonucleic acid (RNA) is a biopolymer, i.e. a chain of covalently
bound nucleotides. There are four different types of nucleotides or
bases found in RNA: adenine, guanine, cytosine, and uracil.RNA
molecules play an important role in many biological contexts, e.g.
protein synthesis. The biological function of a RNA molecule is de-
termined by its spatial structure rather than the actual sequence of
nucleotides. This structure is build up in a process called folding by
building up hydrogen bonds between nucleotides. Not all combina-
tions of nucleotides are legal or energetically equal. The folding
reaction releases some energy. For simplicity sake, often only the
secondary structure is considered. Thissecondary structure is just a
list of base pairs that describe, which nucleotides are connected by
hydrogen bonds. Secondary structures are the backbone of the spa-
tial structure and determine most of its properties, e.g. the energy,
yet are mathematically simple enough to easily operate with. While

∗e-mail: heine@informatik.uni-leipzig.de
†e-mail: scheuermann@informatik.uni-leipzig.de
‡e-mail: xtof@bioinf.uni-leipzig.de
§e-mail: ivo@tbi.univie.ac.at
¶e-mail: peter.stadler@bioinf.uni-leipzig.de

the number of possible spatial structures grows exponentially with
the length of the base sequence, only few of these structuresare
found in nature. It is assumed that a RNA molecule is able to fulfill
its purpose only with a certain structure, the native state.

Various methods have been proposed to explain and predict the
structures of RNA molecules. A very simple attempt to predict the
structure is to find the secondary structure with maximum number
of legal base pairs. This method is not biologically motivated and
does not predict the correct structure. A better attempt is to look for
the structure with the lowest free energy, i.e. the structure where the
most energy gets released during the folding from the completely
unfolded state. Since most physical processes are motivated by en-
ergy minimization, the structure with the lowest free energy tends
to be the most stable, and has thus the highest probability ofoccur-
rence. When all other structures along with their free energy are
taken into consideration too, one can estimate the transition rates
between the configurations using only the differences of thefree
energies and compute the probability of occurrence by solving a
system of differential equations [3]. A problem for this method is
the size of the transition matrix caused by the huge number ofpos-
sible configurations. This thermodynamic approach assumesthat
each transition can be done directly, it neglects properties of the
corresponding refolding reaction. A refined version of the thermo-
dynamic approach is given by Flamm [5] and assumes transitions
only to take place between neighboring configurations. Two con-
figurations are neighbors, if their structural differencesare smaller
than a given threshold. For instance, two configurations canbe seen
as neighbors, if their secondary structures differ by only one base
pair. The whole configuration space can be transformed into alarge
graph with edges between neighboring structures. If the structural
dissimilarities between two configurations are small, the difference
in energy will be small as well. The neighbor graph along withthe
energy specific to each configuration can be imagined as a discrete
energy landscape. A folding or refolding process can then bede-
scribed by a path in the graph or a walk in the energy landscape. For
each such path there exists one structure of maximum free energy
called themaximum. Thebarrier between two configurations is the
smallest maximum of all paths between the two configurations. If a
structure refolds it has to overcome at least this energy barrier. The
transition probabilities between two neighboring configurations can
be calculated directly like in the thermodynamic approach but the
transition probabilities for non- neighboring configurations has to
consider all paths between the two configurations and all elemen-
tary steps on these paths. All this information can be storedin a so
called barrier tree, leaves representing local minima and inner ver-
tices representing the barriers between them. Fig. 1 shows an exam-
ple of a barrier tree for a very simple landscape. Barrier trees are
constructed by successively flooding the valleys of the landscape.
A barrier is found at the point where the lakes of two valleys join.
A detailed description of generating barrier trees from landscapes
is given by Flammet al. [6].

The thermodynamic approach with respect to the kinetic prop-
erties of the folding still does not fully represent reality. RNA

a
b

c

d

e

E

c

e

b

a

d

Figure 1: a very simple landscape and barrier tree

In addition to normal trees each vertex of a barrier tree alsohas an energy
value attached, that corresponds to the energy of the folding configuration
it represents. To determine the barrier between two local minima, one just

has to find the vertex in the barrier tree that has both leaves representing the
local minima as transitive children and the greatest topological distance to

the root of the tree.

molecules are often short lived and does not only fold after,but
also during synthesis [12]. Similar effects take place, when an RNA
molecule travels through a narrow pore, unfolding on one side and
refolding on the other [9]. It is believed that these effectshave a sig-
nificant impact on the native state by selecting one of the many local
minima of the folding landscape. These processes are thought of as
a growing chain of nucleotides that folds while new nucleotides are
added. Parameters for this process are the temperature of the sys-
tem and the growing rate of the nucleotide chain. The only option to
determine the final state is to fully simulate the process, asdifferent
parameters can lead to totally different solutions. For each chain
length there is a folding landscape in which the current molecule
folds until the next nucleotide is added.

1.2 Visualization Problem

Visualizing all of the folding landscapes may help to determine the
final state independent of the simulation and the simulationparam-
eters and help to understand the full process. The folding landscape
for the new chain does have a strong similarity to the previous land-
scape and it makes sense to determine folding configurationsin the
new landscape that are most similar to configurations of the pre-
vious landscape based on structural similarities. To identify the
successor of a structure that is a local minima, one would start at
the structurally most similar configuration of the next landscape
and travel along the gradient of this energy landscape to a new lo-
cal minima. Multiple local minima may have the same successor
and some local minima of the new landscape have no predecessor.
These changes to the landscape can be adopted for the correspond-
ing barrier trees, e.g. merging of local minima can be thought of
as a replacement of a subtree by a leaf, creation of local minima
as adding leaves or subtrees. Due to the size of the landscapes, the
series of folding landscapes should be visualized by a series of bar-
rier trees. These barrier trees share some common information that
should be presented accordingly, i.e. they should not attract more at-
tention than the parts that differ. Instead of visualizing asequence
of barrier trees that have some redundancy, one can also say that
there is just on barrier tree that changes with time in a way that the
barrier trees of the sequence are snapshots of it at certain points of
time. In this work, we will thus view this problem as a dynamic
graph drawing problem. As an abstraction, we define the problem
as follows: Given a sequence of barrier trees and leaf mappings,
where leaves of one tree are mapped on leaves of the following
tree, determine the layout of all trees such that in a presentation the
mental map is retained.

2 RELATED WORK

Drawing a graph is the process of transforming topological proper-
ties of the graph to geometric objects in a graphical representation.

This process is mostly determined by the generation of a layout for
that graph, thatplaces vertices in an vector space androutes edges
to connect the vertices. The layout of a graph has propertiesthat
can be measured with certain cost functions, like area of thelayout,
number of edge crossings, distribution of vertices and edges, and
congruency of isomorphic structures. Esthetic criteria have been es-
tablished that try to make visually pleasing drawings. Suchcriteria
often include maximizing or minimizing one of the cost functions.
As not all esthetic criteria can be obeyed simultaneously, alayout
algorithm generally makes a trade-off between them. The field of
static graph layout creation has been intensively researched in the
past decades. There exist good overviews for this topic ([1,11, 17]).

Moen [14] was one of the first to consider the dynamic tree
drawing problem. However, his motivation was to present a tree
that does not change except for hiding and unhiding subtrees. The
change can be seen as a replacement of a subtree by a leaf and
vice versa. Moen’s algorithm efficiently computes the layout of the
tree after such a change from layout information before the change.
Cohenet al. [2] give detailed algorithms and data structures for
a number of graph classes that are suited for graph editing systems
and visualization of operations on data structures (e.g. AVL- Trees).
These works mainly considered changes to graphs that resultfrom
interaction with a user in the case of graph editing and browsing
and were motivated by reusing large parts of the layout in order to
not having to recompute them. Reusing layout information also has
a strong impact on the perceived quality of the presentationof a dy-
namic graph. North [15] tried to measure the quality of an algorithm
to make good dynamic drawings based on incremental or dynamic
stability, i.e. the property of an algorithm to produce verysimilar
layouts for graphs that differ only slightly. He applied hisconcepts
to the drawing of dynamic directed acyclic graphs. Misueet al. [13]
introduced the formal concept ofmental distance that tries to for-
mally described the difference of two layouts and thus the perceived
stability layout of a dynamic graph. As all graph drawing is subject
to certain esthetic criteria, he added the criterion “preserving the
mental map” to the esthetic criteria of dynamic graph drawing. He
refined this criterion: In theorthogonal ordering the left-to-right,
and up-down order of vertices stays the same.Proximity relations
are preserved, if the relative distances of vertices and edges does not
change. Thetopology is preserved, if vertices and groups of vertices
of one region stay in that region. The mental distance of two lay-
outs is the number of times one rule is broken. Frishman and Tal [7]
presented an algorithm that draws dynamic clustered general graphs
using an incremental force directed method. Their algorithm gen-
erally preserves the mental map, but improves the layout slightly, if
a static graph drawing esthetic criteria is not met anymore.Diehl
and Görg [4] propose a general scheme to layout dynamic graphs
if all graphs of the sequence are known prior to layout creation.
This scheme seems mostly independent of the class of the graphs
and the layout algorithm used. TheirForesight Layout with Toler-
ance algorithm makes a trade-off between static and dynamic graph
drawing esthetic criteria based on a tolerance parameter. In a first
phase asupergraph is constructed that contains all graphs of the
sequence as subgraphs. Then the layout of this (static) supergraph
is determined and used as blueprint for the layout of the subgraphs.
The layout of the subgraphs is further improved to meet static graph
drawing esthetic criteria, but its mental distance may not differ by
more than the tolerance parameter from the blueprint layout. Pre-
sentation of the sequence is done using morphing geometry infor-
mation between the single subgraphs. Görg and Diehl [10] further
improve their scheme with the notion of theimportance of a vertex
or edge. This importance is a measure for the number of times a
vertex or edge is present in the graph sequence and is used to im-
prove the visual quality of the layouts.

In this work we adapted this scheme. Since it is very general,
we optimized each of the phases to fit our dynamic barrier treeap-

plication. The supergraph we construct from the barrier tree se-
quence will be an directed acyclic graph (DAG). For the layout of
this supergraph we implemented and modified thedot algorithm by
Gansneret al. [8].

3 CONSTRUCTING THE SUPERGRAPH

Definitions In the following, G = (V,E) denotes a directed
graph,V the vertices andE ⊆ V ×V the edges ofG. A path in a
graphG is a list of vertices ofG, where each two successive vertices
of the list are connected by an edge ofG, and no vertex occurs more
than one time in the list. The only exception to this is, that the
first vertex is the same as the last. Such a path is called a circle.
A path or circle is called directed, if all vertex connectingedges
point in the same direction. A directed acyclic graph (DAG) is a
directed graph that does not contain directed circles.pathG(u,v)
shall be true, if and only if there is a directed path fromu to v in G.
odegG(v) denotes the number of edges ofG that point away fromv.
Ti = (Vi,Ei) is a rooted tree and also a directed acyclic graph, where
all edges are oriented to point away from the root toward the leaves.
Li denotes the set of leaves of the treeTi andFi an arbitrary subset
of Li. LG(v) is the set of all verticesw that satisfypathG(v,w) and
odegG(v) = 0. In a tree, these vertices are leaves, in a directed
acyclic graph, they are sinks. ThusLG(v) assigns the set of leaves/
sinks that can be reached fromv to each vertexv. 2M denotes the
set of all subsets ofM.

3.1 Problem Definition

The problem of the supergraph to a sequence of trees with leafmap-
pings is: given a sequence of rooted treesT0, . . . ,Tn with

∀0≤ i, j ≤ n :
(

i 6= j →Vi ∩V j = /0
)

and
∀0≤ i ≤ n : ∀v ∈Vi : odegTi

(v) 6= 1

and a sequence of leaf mappingsf1, . . . , fn with fi : Fi−1 → Li, find
the smallest graphG = (V,E) and a global mapping of tree vertices
on supergraph verticesk =

⋃n
i=0 ki, ki : Vi → V , ki injective, such

that

1. G contains all trees:

∀0≤ i ≤ n : (ki(Vi) ⊆ G∧∀(u,v) ∈ Ei : pathG(ki(u),ki(v)))

and each path fromu to v does not contain vertices fromki(Vi)
exceptu andv.

2. G conforms to the leaf mapping:

∀1≤ i≤ n : ∀u,v∈Vi−1 : (fi(u) 6= fi(v) → ki(fi(u)) 6= ki(fi(v)))

3. G conforms to the topological properties of all trees:

∀0≤ i ≤ n : ∀u,v ∈Vi : ¬pathTi
(u,v) →¬pathG(ki(u),ki(v))

3.2 Motivations

The first step of theForesight Layout with Tolerance algorithm [4]
is to construct a supergraph of all the graphs in a sequence. The
supergraph is the smallest graph that contains all graphs ofthe se-
quence as subgraphs. To accomplish this, it is necessary to know
which vertices of the graphs should be considered equal. Leaf map-
pings between successive trees are used as a base for this process,
however this can only be applied directly to some of the leaves of
the trees. The identification of equivalent inner vertices and leaves
that result from merging leaves of the previous tree is non trivial.

This identification should not be motivated by graph theoretic min-
imization, but to reflect properties of the corresponding landscapes.
A barrier tree not only stores barriers between local minima, it also
gives a rough and abstract view on the topology of a landscape.
These topological properties of the landscape can and will be used
to identify inner vertices shared between barrier trees. If, for in-
stance, an inner vertexu has two leaves as its children that are
mapped to two different leaves of the following tree having the
same parentv, the inner vertexu and the parentv can be seen as
topologically equivalent. If the leaf mapping is extended by this
new information, further parts of the trees can be processedto iden-
tify further inner vertices as equal, and quickly identify isomorphic
structures between the barrier trees that still reflect the leaf map-
ping. This takes only the topology of the barrier tree into account.
The energy information about each vertex is neglected.

This procedure ends abruptly as soon as there is the slightest
topological difference in a barrier tree. In practice, thisstrict be-
havior results in a large number of vertices that are not considered
equal. This is avoided by identifying equal inner vertices based on
the set of local minima that can be reached from the correspond-
ing barrier just by descending in the landscape. In Fig. 2a, vertex
e and j are considered to be equal, because the set of leaves that
can be reached from them is equal under the leaf mapping. Vertices
d andi are not equal because the set of leaves that can be reached
from them,{a,b} and{g,h} respectively, are not equal under the
leaf mapping. Such cases are very common and border mostly on
the change of the height of barriers between successive trees. The
supergraph in that case is no longer a tree, but a directed acyclic
graph (DAG). This is unavoidable, but the supergraph will always
be at most a DAG.

Imagine that the barrier swap from Fig. 2a is reverted at time
t + 2. The tree at timet + 2 conveys exactly the same information
as the tree at timet +0. It contains an inner vertex that is not equal
to any vertex of treet +1, but equal to vertexd. This vertex should
not be inserted in the supergraph as it does not represent “new”
information. But this fact cannot be concluded by looking attree
t + 1 alone. Considering all past trees can get quite complicated,
it is much easier to just look into the supergraph for the pasttrees.
The supergraph can and will be used as a data structure to quickly
identify equal inner vertices of the barrier trees. It is efficient to
construct the supergraph iteratively. To determine the supergraph
for the treesT0 to Tn+1, we use the supergraph of the treesT0 to Tn
for identification of equal vertices and add any new information we
gain from treeTn+1.

Fig. 2b shows another common case of change in the energy
landscape. Often barriers disappear, and local minima get merged.
Obviously our “set of leaves” approach fails in that case, the ver-
tices c and d would not be considered equal ({a,b} vs. {d}). The
solution is to temporarily add the mirror verticesa′ andb′ as chil-
dren tod and modify the leaf mapping. Nowc andd will be con-
sidered equal. This method also works, if more than two leaves
merge or the merging leaves do not share the same parent. Merged
leaves must be marked as inactive in the supergraph, so they will
not be considered for the “set of leaves” of other inner vertices. In
Fig. 2c a leaf vanishes, i.e. it is not part of the leaf mapping. This
may happen, because the number of leaves is usually reduced to the
most relevant ones, and a relevant leaf may have a non relevant suc-
cessor. In such a case the leaf (d) is marked as inactive and is not
considered for the set of leaves. This leaves us with the problem
that the verticesc and e of tree t + 0 have the same set of leaves
({a,b}) and thus vertexj is considered equal to both vertices. In
that case the vertex that is farthest from the root (c) of the tree is
selected. What becomes apparent now is that the treet + 1 is not
really a subgraph of the supergraph, because it lacks an edgefrom
g, i to c, j. The supergraph is still an expansion of treet +1. The re-
moval of transitive edges has little to no effect on the quality of the

E
t+1t+0

a b

cd

e

f

g h

i

j

a,f b,g c,h

d i

e,j

a b

c

E
t+1t+0

d

c,d

a’ b’

a,a’ b,b’

E
t+1t+0

a b

c d

e f

g

h i

j k

l

a,h b,i

c,j d

e f,k

g,l

f g

h i

j k

l

E
t+1t+0

a b

c d

e

i

j

a,f b,g

c,h

d,k

e,l

(c)

(a) (b)

(d)

Figure 2: examples of elementary landscape and barrier tree changes

Each figure shows how the energy landscape changes, illustrates the barrier
trees (only the topology is shown) and the leaf mappings and show how the
supergraph should look like for the following cases: barrier swap (a), leaf

merging (b), leaf vanishing (c), leaf creation (d).

final presentation but reduces the size of the supergraph andgreatly
improves the performance when the layout of the supergraph is de-
termined. In Fig. 2d a leaf is added to the tree. This is the direct
opposite of the previous case. The edge frome to c is replaced by
a path(i, j,h) and the new leaf is added at the appropriate location.
Again the supergraph is an expansion of treet +0.

These operations are considered elementary and are the onlyop-
erations we observed in our datasets. However, it is expected that
multiple elementary operations happen between successivetrees of
the sequence. While creation, deletion, and merging can nothappen
to the same leaves of a tree simultaneously, these operations and the
modification they imply on the supergraph do not affect each other.
Also creation, deletion, and merging happen at or near the leaves,
while barrier swaps can only modify inner vertices. So these oper-
ations also do not affect each other and can be done separately.

3.3 Construction

For each directed graphG = (V,E) define the functionmarkG as:

markG : 2V → 2V

M 7→

{

v|LG(v) ⊆
⋃

u∈M

LG(u)

}

The operation of this function may be described as this: Starting
from the vertices ofM all incoming edges are marked. If all out-
going edges of a vertex get marked in that process, that vertex is
added toM and the process continues. The process ends, if no
more vertices can be added toM. Fig. 3 illustrates this. Obviously
M ⊆ markG(M) andM = /0, if and only if markG(M) = /0. Unlike
the example,M does not have to contain leaves/ sinks only.

The functionmatchG reduces a mark to the topmost layer:

matchG : 2V → 2V

M 7→ markG(M)∩{ v|∀(u,v) ∈ E : u /∈ markG(M)}

For the example in Figure 3:matchG(/0) = /0, matchG({1}) = {1},
matchG({3}) = {5}, matchG({1,2}) = {4}, matchG({2,3}) =
{2,5}, matchG({1,2,3}) = {6}.

ConstructG iteratively: G0 = T0, ∀v ∈ V0 : k0(v) = v. Con-
struct Gi = (V ′

i ,E
′
i) and ki : Vi → V ′

i from Gi−1 = (V ′
i−1,E

′
i−1),

ki−1 : Vi−1 →V ′
i−1, Ti = (Vi,Ei) and fi as follows:

321

4 5

6

321

4 5

6

31

4 5

6

321

4 5

6

321

4 5

6

321

4 5

6

321

4 5

6

321

4 5

6

2

Figure 3: Example for the markG function

The result is illustrated by vertices with thick lines.
top left to right: markG(/0), markG({1}), markG({2}), markG({3}).
bottom left to right: markG({1,2}), markG({1,3}), markG({2,3}),

markG({1,2,3}).

Determine the active part of the SupergraphGi−1, this is much
easier than tracking inactive (deleted or merged) parts of the super-
graph:

G′
i = (Ai,Ki)

Ai =
{

v|v ∈V ′
i−1∧∃l ∈ Li : pathGi−1

(v,ki−1(l))
}

Ki = E ′
i−1∩Ai ×Ai

For each vertex of the treeTi determine the set of leaves ofTi
that can be reached from that vertex:

Mi : Vi → 2Li

u 7→
{

v|v ∈ Li ∧pathTi
(u,v)

}

For each vertex of the tree determine itsleaf set, i.e. the set of
vertices of the active part of the supergraph, that map on a leaf in
Mi because of the leaf mapping:

Bi : Vi → 2Vi

v 7→ { ki−1(w)| fi(w) ∈ Mi(v)}

Using thematchG function find vertices of the active part of the
supergraph with the most similar set of leaves:

li(v) = matchG′
i
(Bi(v))

Determine all children of a tree vertex that have an emptyleaf
set. These children are vertices that are created in the currentbarrier
tree. Note that, if all children of a tree vertex have an emptyleaf
set, that vertex will have an emptyleaf set also and is thus a newly
created inner vertex of the barrier tree.

ni(v) = {w|(v,w) ∈ Ei ∧Bi(w) = /0}

Barrier tree vertices can now be categorized:

• f resh(v) iff li(v) = /0. v is a new vertex in the current barrier
tree.

• matching(v) iff |li(v)| = 1∧ni(v) = /0. In that case an equiv-
alent vertex has been found in the supergraph. This vertex is
the one element ofli(v) and no child ofv is fresh.

• match f resh(v) iff |li(v)|= 1∧ni(v) 6= /0. An equivalent vertex
has been found in the supergraph. At least one child ofv is
fresh.

• recomb(v) iff |li(v)| > 1. An equivalent vertex could not be
found. li(v) contain the most similar vertices.

Each vertex of the tree must be inserted in the supergraph, unless
an equivalent vertex had been found.

V ′
i = V ′

i−1∪{v|v ∈Vi ∧¬matching(v)}

ki(v) =

{

u li(v) = {u}∧ni(v) = /0
v li(v) = {u}∧ni(v) 6= /0

The inserted edges are:

E ′′
i = E ′

i−1 ∪
{

(u,v)|v ∈Vi ∧ (u,w) ∈ E ′
i−1∧matchfresh(v)

}

∪ { (v,w)|v ∈Vi ∧ li(v) = {w}∧ni(v) 6= /0}

∪ { (ki(v),w)|v ∈Vi ∧w ∈ l(v)∧¬matching(v)}

∪ { (ki(u),ki(v))|(u,v) ∈ Ei}

Transitive edges may be removed:

E ′
i =

{

(u,v)| (u,v) ∈ E ′′
i ∧¬∃path(V ′

i ,E
′′
i)(u,w) 6= (u,w)

}

The final supergraph G is equal to the supergraphGn, i.e. the
supergraph after inserting each tree of the sequence. Additional
material to this article includes some code fragments that illustrate
implementation details for the operations needed for the supergraph
construction.

3.4 Example

a b

c d

e f

g h

i

j k

n o

p q

r

m l

1 2

3

5

4

m

6

98

10

k

o

q

j73 4

5

9

10

6 7

8

1 2

Figure 4: Example construction of the supergraph of two trees

left to right: the supergraphGi, the treeTi, the treeTi+1 and the supergraph
Gi+1. Arrows betweenTi andTi+1 indicate the leaf mapping. The dashed

lines inGi+1 indicate edges that can be replaced by a path. The exact
description, how the trees are embedded in the supergraph and how the

supergraph is modified in this iteration, are found in the main text.

Fig. 4 shows a nontrivial example for one iteration of the su-
pergraph construction process. It has been chosen to show all four
elementary operations that can modify barrier trees.ki, mapping
the vertices ofTi on vertices ofGi is:

ki = {(a,1),(b,2),(c,3),(d,4),(e,5),(f ,6),(g,8),(h,7),(i,10)}

Ti is thus very similar toGi, only the edge(i,h) of the tree is rep-
resented by the path(10,9,7) in Gi. The vertexf does not occur
in the leaf mapping, i.e. it is deleted. The active part ofGi is thus:
Ai+1 = {1,2,3,4,5,7,8,9,10}. Because of the leaf mapping the
leaf sets of the vertices ofTi+1 are:

Bi+1 = {(j, /0),(k, /0),(l,{1}),(m,{2,4}),(n,{7})}

∪ {(o, /0),(p,{1,2,4}),(q,{7}),(r,{1,2,4,7})}

After mark(Ai+1,Ki+1) and match(Ai+1,Ki+1) have been determined,
li+1 andni+1 result to:

li+1 = {(j, /0),(k, /0),(l,{1}),(m,{2,4}),(n,{9})}

∪ {(o, /0),(p,{5}),(q,{9}),(r,{10})}

ni+1 = {(j, /0),(k, /0),(l, /0),(m, /0)}

∪ {(n, /0),(o,{ j,k}),(p, /0),(q,{o}),(r, /0)}

The vertices ofTi+1 are categorized as follows:
f resh(j), f resh(k), match(l), recomb(m), match(n),
f resh(o), matching(p), match f resh(q), matching(r).
Therefore the following vertices have to be added to the supergraph,
andki+1 results to:

Vi+1 = Vi ∪{ j,k,m,o,q}

ki+1 = {(j, j),(k,k),(l,1),(m,m),(n,9),(o,o),(p,5),(q,q),(r,10)}

Insertion of the edges is left as an exercise to the reader. Some
transitive edges may be removed.

3.5 Postprocessing

Unfortunately, the use of the supergraph as a data structureto find
similar leaf sets, does not find the smallest supergraph in the general
case. Some edges are inserted to ensure correct results for thematch
andmark functions, but could be removed after the supergraph of
the full sequence is generated, without violating the condition that
each tree should be contained in the supergraph. It is difficult to
track these redundant edges, because an edge may be deemed su-
perfluous when inserted, but may become necessary, when further
trees are merged with the supergraph. Such edges are identified as
a side product in a post processing phase. In this phase each edge
of the supergraph is annotated with the set of trees it occursin.
This information will be used in the following layout phase.Usu-
ally tree edges are replaced by paths in the supergraph. In that case
each edge of the path is annotated with the tree. Quite frequently,
there are multiple possible paths for one tree edge. In such cases
only the path with the highest number of edges is annotated. After
annotating there will be many edges which do not belong to any
tree. These can be safely removed. A proper problem definition
for this phase would be: find the largest set of edges that can be re-
moved without violating the constraint that the supergraphcontains
each tree. Choosing the longest path is a simple and quick heuristic
that favors edges with a high probability of reuse. In practice this
removes 5–20 percent of all edges of the supergraph.

4 LAYOUT

4.1 Supergraph Layout

The second step of theForesight Layout with Tolerance algorithm
creates the layout of the supergraph. In general, the supergraph of
the tree sequence will be a directed acyclic graph (DAG). Different
strategies have been proposed to layout a DAG. Sugiyamaet al. [16]
proposed to split the task in three phases. In the first phase,the
ranking , vertices are grouped in successive layers, such that the
edges are oriented in one direction, usually from top to bottom. In
the second phase, theordering, an order of vertices in each layer
is determined, that minimizes edge crossings. In the final phase,
thepositioning, coordinates are assigned to each vertex, preserving
the order inside the layers, but minimizing the overall edge-length
by shifting vertices inside the layers. Gansneret al. [8] gives de-
tailed heuristics for each of the phases. In this work we adopted his
heuristics to lay out the supergraph.

The main esthetic goal for DAG layout is the removal of edge
crossings. In practice, the supergraph can contain a large number
of edge crossings, but most of them do not matter for us, because
the crossing edges may never be shown simultaneously. The post-
processing phase of the supergraph construction not only decreases
the number of edges and thus the possibility of an edge crossing, by
annotating each edge with the trees it occurs in, we can weight the
importance of an edge crossing. In thedot [8] algorithm, graphs are
laid out respecting edge weights. Edges with a high weight are kept
short and crossing free. The weight of an edge is generated from the

number of trees it occurs in. For the phase of crossing removal, in-
stead of this weight, the weight of an edge is replaced by the weight
of a crossing. This weight is generated from the number of trees,
that both edges actually cross. In the original algorithm, crossing
reduction is done by repeatedly iterating over and through all lay-
ers, switching the order of two successive vertices, if thatlocally
improves the number of edge crossings. Sometimes such a switch
does neither improve nor deteriorate the number of edge crossings,
but the switch may lead to further improvements. Gansneret al. [8]
suggest performing such switches only every other global iteration.
In our case, many crossing weights will be zero and switches sel-
dom improve the number of edge crossings directly. As a result,
the original formulation leads to long running times of the algo-
rithm and changes periodically from one extreme to the other. In
our implementation we perform the switch randomly in a process
similar to simulated annealing. A temperature, initially 1, is used
as the probability of performing a switch that does not improve the
number of edge crossings directly. Improvements are alwaysand
deterioration never accepted. Each global iteration the system cools
down, the temperature decreases exponentially. The process termi-
nates, if no more switches are performed. The routing of edges
is not relevant for the layout of the supergraph, the edges will be
routed only in the subgraphs.

4.2 Tree Layout

Until now, the energy of a vertex has been neglected. Since a ver-
tex of the supergraph may represent multiple vertices of thetree
sequence and each of these vertices may have a different energy,
a supergraph vertex may not be associated with a single energy
value. Because we want one of the coordinates to indicate theen-
ergy, it is not possible to do the third phase of the DAG- layout, the
positioning, for the whole supergraph. Coordinate assignment has
to be done for each tree separately, respecting the order generated
in the ordering phase. This constraint preserves themental map,
more specifically theorthogonal ordering. Positioning each tree
separately allows us to locally improve the layout of the subgraphs.
This is also the third phase of theForesight Layout with Tolerance
algorithm.

The original formulation of the algorithm generates one coordi-
nate from the number of the layer, that a vertex resides in. Because
the edges of a barrier tree point from vertices with higher energy to
vertices of lower energy, and the construction of the supergraph and
the assignment to layers preserve this orientation, the coordinate,
that is best suited to be replaced with the coordinate generated from
the energy of an vertex, is the one, that would have been generated
from the layer number. The other coordinate, usually the horizon-
tal one, is generated by shifting vertices inside the layerswithout
switching their order and minimizing the global edge length. The
original formulation of this phase of the layout algorithm ensures
that no two vertices of the same layer will have the same horizontal
position. But if the vertical coordinate is generated from the energy
of the vertices, it is possible for two vertices from different layers
to overlap, if they have been assigned to the same horizontalposi-
tion and have the same energy. Since we do not have the freedom
of changing the energy/ vertical position of a vertex, one way to
avoid this, is to assign an unique horizontal position to each ver-
tex independent of what layer it may belong to. The simplest way
to do this, is to perform the positioning of vertices for the whole
supergraph as in the original formulation of the layout, sorting the
vertices according to their horizontal position, and usingtheir or-
der in the sorted list as their new horizontal position. Thatway no
two vertices overlap, but this results in a bad coverage of the draw-
ing area and does not allow further local improvements. A different
strategy is to force all sinks of the supergraph to be in the same layer
and performing thepositioning for the whole supergraph. This en-
sures that at least the sinks of the supergraph will have an unique

horizontal position. As most leaves of the barrier trees aresinks of
the supergraph, and they are the most interesting vertices,this re-
sults in better drawing due to a more efficient usage of the drawing
area. However this part of the algorithm still leaves room for im-
provements as there is still no local improvement of the layout in
the horizontal coordinate.

After the vertices have been positioned, edges must be routed.
For simplicity each tree edges consist just of one horizontal and
one vertical line segment that directly connect the two adjacent ver-
tices. Edges are routed independently of the supergraph, where this
edge might have been replaced by a path. Because of the problem
definition, vertices on that path would not be a part of the current
tree and thus layout information of these vertices is not valid for
this tree. In general, it is not always possible to draw the subgraphs
without edge crossings, we sacrificed this property for the preserva-
tion of theorthogonal ordering, themental map. Drawing the edges
as orthogonal line segments conforms to the style, barrier trees are
drawn usually. We also found, that a straight line drawing does not
reduce the number of edge crossings and makes tracing the edges
even harder than an orthogonal drawing.

5 ANIMATION

Now that the layout for each tree has been generated, the single
trees could be presented using the generated layout. In practice,
there can be quite a number of changes between consecutive trees.
Vertices and edges disappear and whole subtrees can change the
energy of their vertices. We created methods to make the transition
smooth and to indicate the type of change. Vertices, that experi-
ence a change of energy are moved accordingly in the drawing area
using linear interpolation of the coordinates. Barriers that appear
or disappear are presented usingblending. Edges are modified in
a similar manner, based on the changes of their adjacent vertices.
Subtrees that are created or merged “grow” out or into the vertices,
where they are created or merged into, again using linear interpo-
lation of the coordinates. Usually the number of changes would
require each change to be visualized separately. In our proof-of-
concept implementation all changes are shown simultaneously us-
ing the following scheme: Each transition is given a time interval
[ti,ti + ∆t). Vertices, that change their energy, are moved during
[ti + 3

8∆t,ti + 7
8∆t). Subtrees, that grow into a vertex because of

merging, are scaled during[ti + 2
8∆t,ti + 5

8∆t), subtrees that grow
out of a vertex, do this during[ti + 5

8∆t,ti + 8
8∆t). Fading out of

barriers is done during[ti + 2
8∆t,ti + 6

8∆t) and fading in takes place
during [ti +

4
8∆t,ti +

8
8∆t). The two segments overlap intentionally.

Because vertices are not drawn explicitly, but are implied by the
point, where edges join, this preserves the mental map better. The
remaining interval[ti,ti +

2
8∆t) is used for a static presentation of

treeTi.

6 RESULTS

To create and evaluate our algorithm we had three datasets atour
disposal. Theatt dataset consists of 20 barrier trees, with at most 25
leaves per tree and a total of 894 vertices in all trees. It represents
a small RNA- molecule, with sequence length growing from 40 to
74 nucleotides with varying step size. This example was usedto
design and test the algorithm. The last page of this article shows
the keyframes for this dataset. The full animation is part ofthe
additional material to this paper. Thelepto dataset consists of 47
barrier trees, with a maximum of 50 leaves per tree and a totalof
3727 vertices in all trees. The sequence length of the molecule
grows from 10 to 56 nucleotides. The largest example, thehok
dataset, consists of 65 trees with a maximum of 100 leaves anda

total of 8635 vertices. The sequence length grows from 10 to 74
nucleotides. The inner vertices of all trees of these datasets satisfy
odeg(v) = 2, i.e. all inner vertices have exactly two children. All
datasets present rather short RNA- molecules.

One way to determine the quality of the algorithm is to look at
properties of the supergraph. The number of vertices in the super-
graph of theatt, lepto and hok datasets are 392, 1874 and 4594
respectively. This means that only about half of the vertices of the
trees were identified as redundant. This results from a property of
the sequences that we have not yet mentioned. In each new treeof a
sequence leaves get deleted, merged and added. The average num-
ber of leaves that are added is 5.00, 7.20 and 16.16 respectively.
That means that up to 20 percent of each tree changes on aver-
age. A different perspective is estimating the minimum supergraph.
This supergraph would be created if there were nobarrier swaps in
the barrier tree sequence, only addition, deletion and merging. The
minimum supergraph has the same number of sinks as the generated
supergraph, because each sink was once a leaf in the tree and the
equivalence of leaves can be trivially determined based on the leaf
mappings. The supergraph must be connected, i.e. may not be split
and it can be shown, that the propertyodegTi (v) = 2 for each inner
vertex of the barrier tree results in the propertyodegG(v) = 2 for
each inner vertex of the minimum supergraph. IfN is the number of
sinks inG, thenG must have at least 2N−1 vertices. The number of
leaves in the supergraph for theatt, lepto andhok datasets are 110,
332 and 1035 respectively. The leaves already make up a largepart
of the supergraph and it can be seen, that the supergraphs areno big-
ger than three times the minimal solution (att: 1.79x, lepto: 2.82x,
hok: 2.22x). The cause of this are mainlybarrier swaps.

More critical to the perceived quality of the layout is the num-
ber of edges. If this number is near the number of vertices, the
supergraph is very similar to a tree and can thus be drawn with
few edge crossings and (horizontally) short edges. If thereare no
edge crossings in the supergraph, there will not be edge crossings in
the layout of the subgraphs. Horizontally long edges in the super-
graph layout are undesirable, because each edge is shown at least
once. The amount of edges divided by the amount of vertices for
the three datasets are 1.52, 1.69 and 1.61 respectively. Although
these numbers seem to be close, thelepto andhok datasets have a
significantly larger number of edge crossings and long edgesthan
the att dataset. This is because the edges are unevenly distributed
among the layers of the supergraph layout in the datasets. The ani-
mation suffers from long edges that are close together and make it
difficult to track edges.

Various preprocessing methods have been tested to determine if a
subset of the data still results in bad layouts. Surely we do not want
to reduce the number of trees, since we want to visualize the whole
process. Barriers are not that important, and there are a number
of barriers that are connected by an edge in the barrier tree,and
whose energy differs only slightly. Such barriers are merged in a
preprocessing step. This process reduces the probability of barrier
swaps, thus the supergraph is made up of less vertices. In thelepto
andhok datasets the merging of barriers that differ by 0.5 or less
(which is approximately two percent of the overall energy range)
reduced the total number of tree vertices down to 2419 and 5863
respectively and the number of supergraph vertices down to 853 and
2493 respectively. This means that nearly two third of the vertices
were identified as redundant. Unfortunately this method does not
reduce the number of edges as much as the number of vertices, so
the supergraph suffers from a huge number of edge crossings and
long horizontal edges. After applying this method, the supergraph
span less layers and the edges got distributed more equal over the
layers. In the final animation long edges are still visible, but they
are no longer close together, so it is easier to track them.

Another method is the reduction of leaves in the barrier trees.
Local minima with a low energy are generally more stable and have

a high probability of being present in the next barrier tree.They are
also more interesting than local minima of higher energy from the
viewpoint of folding landscapes. For each leaf that is removed, the
one barrier connecting it to the rest of the tree is removed aswell.
By reducing the number of leaves in thelepto andhok datasets to
a maximum of 31 and 66 leaves per tree, the total number of tree
vertices was reduced to 2409 and 5875 respectively. The number of
supergraph vertices was reduced to 732 and 2528, so again almost
two third of the tree vertices have been identified as redundant. The
minimal supergraph did not get significantly smaller but thegen-
erated supergraphs are only twice as big as the minimal one. This
preprocessing method removed substantially more edges than ver-
tices and in thelepto andhok datasets the number of edges divided
by the number of vertices decreased to 1.50 and 1.44 respectively,
which greatly improves the supergraph layout. There are a lot less
edge crossings and only a few long edges. This directly results in a
better layout of the barrier trees.

7 CONCLUSION AND FUTURE WORK

It is possible to generate a readable dynamic layout for sequence
of barrier trees using the Foresight Layout with Tolerance algo-
rithm. For larger datasets, preprocessing may have to be applied
to the sequence. While reducing barriers decreases the height of
the supergraph layout, a reduction of leaves decreases the width
and greatly improves the perceived quality of the dynamic layout.
From the viewpoint of folding landscapes, often only a smallnum-
ber of leaves are of interest. These leaves and their historycan
be highlighted using colors. The layout of the single trees may
be combined with additional information. The simulation ofthe
folding process during the growing of the molecule under various
temperatures and growing rates results in distribution functions for
local minima. Because the animation of the barrier trees preserves
the orthogonal ordering, annotating the barrier tree leaves with the
density of the corresponding structure configurations alsopreserves
the mental map for the annotations. The change in the densities can
be additionally indicated by a flow of liquid along the lines of the
tree edges. Such methods, that combine tree layout and additional
information, are currently investigated.

The current methods to generate the animation leave room for
further improvements. Different strategies for edge removal dur-
ing the postprocessing of the supergraph construction can result in
an improved layout, because fewer edges generally result infewer
edge crossings. Rather than overgenerating the edges of thesuper-
graph and reducing it afterwards, a more constructive method could
be proposed. In this article we did not pay much attention to local
improvement of the subgraph layout. Especially in larger datasets
this would be beneficial, because each subgraph only uses a small
part of the drawing area leading to resolution issues. A local im-
provement strategy based on a force directed strategy is currently
being implemented.

The constructed supergraph is a static visualization of thewhole
sequence, and presentation forms other than an animation, may be
investigated. The supergraph is already such a static presentation.
Other ideas include the generation of a synthetic energy landscape
from all barrier trees, where the folding process is visualized as a
walk in this landscape.

REFERENCES

[1] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for
drawing graphs: An annotated bibliography.Computational Geome-
try: Theory and Applications, 4(5):235–282, 1994.

[2] Robert F. Cohen, Giuseppe Di Battista, Roberto Tamassia, Ioannis G.
Tollis, and Paola Bertolazzi. A framework for dynamic graphdrawing.
In Symposium on Computational Geometry, pages 261–270, 1992.

[3] Jan Cupal, Ivo L. Hofacker, and Peter F. Stadler. Dynamicprogram-
ming algorithm for the density of states of RNA secondary structures.
In R. Hofstdt, T. Lengauer, M. Lffler, and D. Schomburg, editors,
Computer Science and Biology 96 (Proceedings of the German Con-
ference on Bioinformatics), pages 184–186. Universität Leipzig, 1996.

[4] Stephan Diehl and Carsten Görg. Graphs, they are changing - dynamic
graph drawing for a sequence of graphs. In M. T. Goodrich and S. G
Kobourov, editors,Proceedings of 10th International Symposium on
Graph Drawing, number 2528 in Lecture Notes in Computer Science,
LNCS, pages 23–31, 2002.

[5] Christoph Flamm.Kinetic Folding of RNA. PhD thesis, University of
Vienna, Austria, 1998.

[6] Christoph Flamm, Ivo L. Hofacker, Peter F. Stadler, and Michael T.
Wolfinger. Barrier trees of degenerate landscapes.Z. Phys. Chem.,
216:1–19, 2002.

[7] Yaniv Frishman and Ayellet Tal. Dynamic drawing of clustered
graphs. InProceedings of the IEEE Symposium on Information Vi-
sualization (INFOVIS’04), pages 191–198, 2004.

[8] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Kiem-Phong Vo. A technique for drawing directed graphs.IEEE
Trans. Software Engineering, 19(3):214–230, 1993.

[9] Ulrich Gerland, Ralf Bundschuh, and Terence Hwa. Translocation
of structured polynucleotides through nanopores.Physical Biology,

1(1-2):19–26, 2004.
[10] Carsten Görg, Peter Birke, Mathias Pohl, and Stephan Diehl. Dynamic

graph drawing of sequences of orthogonal and hierarchical graphs.
In Proceedings of 12th International Symposium on Graph Drawing,
2004.

[11] Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph visual-
ization and navigation in information visualization: A survey. IEEE
Transactions on Visualization and Computer Graphics, 6(1):24–43,
2000.

[12] Irmtraud M. Meyer and Istvan Miklos. Co-transcriptional folding is
encoded within rna genes.BMC Molecular Biology, 5(10), 2004.

[13] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment
and the mental map.Journal of Visual Languages and Computing,
6(2):183–210, 1995.

[14] Sven Moen. Drawing dynamic trees.IEEE Software, 7(4):21–28, July
1990.

[15] Stephen C. North. Incremental layout in dynadag. InGraph Drawing,
pages 409–418, 1995.

[16] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual under-
standing of hierarchical systems.IEEE Trans. Systems, Man, and Cy-
bernetics, 11:109–125, 1981.

[17] Roberto Tamassia. Advances in the theory and practice of graph draw-
ing. Theoretical Computer Science, 217(2):235–254, 1999.

