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Abstract.

The statistical properties of the energy landscape of the low autocorrelated binary

string problem (LABSP) are studied numerically and compared with those of several

classic disordered models. Using two global measures of landscape structure which have

been introduced in the Simulated Annealing literature, namely, depth and difficulty,

we find that the landscape of LABSP, except perhaps for a very large degeneracy of the

local minima energies, is qualitatively similar to some well-known landscapes such

as that of the mean-field 2-spin glass model. Furthermore, we consider a mean-

field approximation to the pure model proposed by Bouchaud and Mézard (1994, J.

Physique I France 4 1109) and show both analytically and numerically that it describes

extremely well the statistical properties of LABSP.
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1. Introduction

The Low Autocorrelated Binary String Problem (LABSP) [15, 3] consists of finding binary

strings x of length N over the alphabet {±1} with low aperiodic off-peak autocorrelation

Rk(x) =
∑N−k

i=1
xixi+k for all lags k. These strings have technical applications such as the

synchronization in digital communication systems and the modulation of radar pulses.

The quality of a string x is measured by the fitness or energy function

H(x) =
1

2N

N−1
∑

k=1

[

N−k
∑

i=1

xixi+k

]2

=
1

2N

N−1
∑

k=1

Rk(x)
2 . (1)

In most of the literature on the LABSP the merit factor F (x) = N 2/(4H(x)) is used (see

e.g. [3]): using H instead is more convenient for explicit computations.

Recently there has been much interest in frustrated models without explicit

disorder. The LABSP and related bit-string problems have served as model systems

for this avenue of research [19, 20, 23, 4]. These investigations have lead to a claim that

LABSP has a ‘golf-course’ type landscape structure, which would explain the fact that it

has been identified as a particularly hard optimization problem for heuristic algorithms

such as Simulated Annealing (see [3, 24, 21] and the references therein).

The landscape of LABSP consists of a (dominant) 4-spin Hamiltonian plus an

asymptotically negligible quadratic component. We note that the generic 4-spin

landscape is Derrida’s 4-spin Hamiltonian [11] which is a linear combination of all
(

N
4

)

distinct 4-spin functions, while the LABSP Hamiltonian, on the other hand, only contains

O(N3) non-vanishing 4-spin contributions. The landscape of the LABSP thus corresponds

to a dilute 4-spin ferromagnet. Numerical simulations in [10] show that the LABSP has by

far more local optima than a generic 4-spin glass model, which corroborates the rather

surprising finding that disordered ferromagnets have more metastable states than their

spin-glass counterparts [8].

In this contribution we carry out a thorough investigation of the statistical

properties of the energy landscape of LABSP aiming at to determine whether it has

any peculiar features that would lead to a ‘golf-course’ structure, with vanishingly

small correlations between the energies of neighboring states. To do so we carry out a

comparison with four disordered models, namely, the random energy model (REM)[11],

the ±1 4-spin glass model [13, 9], a mean-field approximation to H (MF) [4], which

reproduces the results of Golay’s ergodicity assumption [15], and, finally, the ±1 2-spin

glass model [28]. The replica analyses indicate that the first three models have a rather

unusual spin-glass phase, where the overlap between any pair of different equilibrium

states vanishes, while the last model has a normal spin-glass phase described by a

continuous order parameter function.

The rest of this paper is organized in the following way. In section 2 we

calculate analytically the average density of local minima of the disordered mean-

field approximation to H and show that it indeed describes very well the statistics

of metastable states of the pure model. Rather surprisingly, we find that the value of
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the energy density at which the density of local minima vanishes coincides with the

bound predicted by Golay [15], as well as with the ground-state energy predicted by

the first step of replica-symmetry breaking calculations of the mean-field model [4]. To

properly compare the landscapes of the different models mentioned above, in section 3

we consider two global measures of landscape structure which have been introduced in

the Simulated Annealing literature: depth and difficulty [17, 6, 18, 27]. We show that

LABSP, the mean-field approximation, and the binary ±1 2 and 4-spin glasses exhibit

approximately the same qualitative behavior in these parameters, while the behavior

pattern of the random energy model departs significantly from those. Finally, in section

4 we summarize our main results and present some concluding remarks.

2. Mean-field approximation

Bouchaud and Mézard [4] and, independently, Marinari et al. [19] have proposed the

following disordered model, which is “as close as possible” to the pure model:

Hd =
1

2N

N−1
∑

k=1

[

N
∑

i=1

N
∑

j 6=i

Jk
ijxixj

]2

(2)

Here the coupling strengths Jk
ij 6= Jk

ji are statistically independent random variables that

can take on the value 1 with probability (N − k) /N 2 and zero otherwise. Hence the

average number of bonds in H and Hd is the same, namely, N − k. Moreover, the pure

model is recovered with the choice Jk
ij = δi+k,j. Probably the most appealing feature

of this model is that its high-temperature (replica-symmetric) free-energy is identical

to that obtained by Bernasconi [3] using Golay’s ergodicity assumption [15], in which

the squared autocorrelations R2
k are treated as independent random variables. As the

constraints of the one-dimensional geometry are lost in the disordered Hamiltonian Hd,

it can be viewed as the mean field version of H.

The thermodynamics of the disordered model (2) is interesting on its own since,

similarly to the random energy model [11], it presents a first order transition at a certain

temperature Tg, below which the overlap between any pair of different equilibrium states

vanishes [4]. In contrast to the random energy model, however, the degrees of freedom

are not completely frozen for T < Tg, and the entropy vanishes linearly with T as the

temperature decreases towards zero. To better understand the low-temperature phase

of the mean-field Hamiltonian Hd, in the following we will calculate analytically the

expected number of metastable states 〈N (ε)〉 with a given energy density ε.

The energy cost per site of flipping the spin xi is δHi
d = −∆i where

∆i =
∑

k

vk
i

(

∑

j

vk
j − 2vk

i

)

(3)

with

vk
i =

1√
N

∑

j 6=i

(

Jk
ij + Jk

ji

)

xixj . (4)
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We say that a state x = (x1, . . . , xN) is a strict local minimum if ∆i < 0 for all i;

in the case that the equality ∆i = 0 holds for some i, we call x a degenerate local

minimum. In the forthcoming analysis, the choice of ≤ instead of <, which is customary

in optimization theory, see e.g. [27], does not make any difference. In section 3, however,

degeneracies will play a role.

The average number of local minima with energy density ε can be written as

〈N (ε)〉 =

〈

Trx δ

[

ε− 1

N
Hd (x)

]

∏

i

Θ (−∆i)

〉

(5)

where Trx denotes the summation over the 2N spin configurations and 〈. . .〉 stands for

the average over the couplings Jk
ij. Here Θ (x) = 1 if x > 0 and 0 otherwise, and δ (x)

is the Dirac delta-function.

Using the integral representation of the delta-function we obtain

〈N (ε)〉 = N

∫

dε̂

2π
eiNε̂ε

∏

i

∫

d∆id∆̂i

2π
Θ (−∆i) ei∆̂i∆i

∏

ik

∫

dvk
i dv̂

k
i

2π
eivk

i v̂k
i

× exp







−i
ε̂

8

∑

k

(

∑

i

vk
i

)2

− i
∑

ik

∆̂iv
k
i

(

∑

j

vk
j − 2vk

i

)







× Trx

〈

exp

[

− i√
N

∑

ik

v̂k
i

∑

j 6=i

(

Jk
ij + Jk

ji

)

xixj

]〉

. (6)

The average over the couplings can be easily carried out and, in the thermodynamic

limit N →∞, it yields

ln〈. . .〉 = −
∑

k

(

1− k

N

)

[

2i√
N

(

1√
N

∑

i

xi

)(

1√
N

∑

i

v̂k
i xi

)

+
1

N

∑

i

(

v̂k
i

)2
+

(

1

N

∑

i

v̂k
i

)2


 . (7)

We note that this result could have been obtained by considering the couplings

Jk
ij as Gaussian independent random variables with means and variances equal to

(1− k/N) /N . To get a physical but nontrivial thermodynamic limit we must assume

that the magnetization
∑

i xi scales with N 1/2, which results then in the vanishing of the

term that contains the dependence on the spin variables in eq.(7). Droping this term,

the sum over the spin configurations yields simply 2N . As the remaining calculations

are rather straightforward we will only sketch them in the sequel.

To carry out the integrals over vk
i and v̂k

i we introduce the auxiliary parameters

Nqk =
∑

i

(

v̂k
i

)2
, Nmk =

∑

i v̂
k
i , and rk =

∑

i v
k
i . After performing the resulting

Gaussian integrals we introduce the saddle-point parameters NM =
∑

i ∆̂i and NQ =
∑

i ∆̂
2
i which allow the decoupling of the indices k and i. The final result is

〈N (ε)〉 = 2NN3

∫

dMdM̂

2π

∫

dQdQ̂

2π

∫

dε̂

2π
exp

[

iN
(

MM̂ +QQ̂ + εε̂
)]
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× exp

[

N

∫ 1

0

dz lnG0 (z, ε̂,M,Q) +N lnG1

(

M̂, Q̂
)

]

(8)

where

G0 =

∫

dqdq̂

2π

∫

dmdm̂

2π

∫

drdr̂

2π
exp

[

i rr̂ − z
(

q +m2
)

− i
ε̂

8
r2

]

exp
[

im̂ (m− r̂ − rM) + iq̂
(

q − r̂2 − r2Q− 2r̂rM + 4iM
)]

(9)

and

G1 =

∫

d∆d∆̂

2π
Θ (−∆) exp

[

−iQ̂∆̂2 + i∆̂
(

∆− M̂
)]

. (10)

The integrals in eq.(8) are then evaluated in the limit N →∞ by the standard saddle-

point method, while the integrals in the equations for G0 and G1 are trivially performed.

The final result for the exponent

α (ε) =
1

N
ln〈N (ε)〉 (11)

is simply

α (ε) = i
[(

2 + M̂
)

M +QQ̂ + εε̂
]

+ ln erfc







M̂
(

4iQ̂
)1/2







− 1

2

∫ 1

0

dz ln
[

1 + 8
(

Q−M2
)

z2 + 8iMz + iε̂z
]

(12)

where the saddle-point parameters M , M̂ , Q, Q̂, and ε̂ are determined so as to maximize

α. In particular, a brief analysis of the saddle-point equations indicates that M , Q̂ and

ε̂ are imaginary so that α is real, as expected. Introducing the real parameters µ = iM ,

β = iε̂, η = M̂/
(

4iQ̂
)1/2

, and ξ = −Q/M 2, we rewrite eq.(12) as

α (ε) = 2µ− η2

ξ
+ βε+ ln erfc (η)

− 1

2

∫ 1

0

dz ln
[

1 + (β + 8µ) z + 8µ2 (1 + ξ) z2
]

(13)

where we have used the saddle-point equation ∂α/∂Q̂ = 0 to eliminate Q̂. We note that

in eq. (13) the parameters η and µ are decoupled which facilitates greatly the numerical

problem of maximizing α.

The number of local minima, regardless of their particular energy values, is obtained

by maximizing α with respect to ε, which corresponds to setting β = 0 in the saddle-

point equations. In this case, the value of the energy density that maximizes α, denoted

by εt, can be interpreted as the typical (average) energy density of the local minima.

We find α = 0.4394 and εt = 0.0837. These results agree very well with the numerical

data α ≈ 0.4388± (7) and εt ≈ 0.0826± (6), obtained through the exhaustive search for

N ≤ 20 and averaging over 100 realizations of the couplings.

Moreover, an exhaustive search for N ≤ 30 yields that the exponent governing the

exponential growth of the number of local minima in the pure modelH is 0.453±(7) and
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Figure 1. Exponent α(ε) as a function of the energy density ε. The ground state

energy is defined by α(ε0) = 0. We find ε0 = 0.0202845.

the typical energy density of the minima is 0.086 ± (2). Hence, so far as the statistics

of metastable states is concerned, the mean-field Hamiltonian Hd yields in fact a very

close approximation to the pure Hamiltonian H. For the purpose of comparison we note

that α = 0.1992 and α = 0.3552 for the binary ±1 2-spin glass [30, 5] and 4-spin glass

models [16, 29], respectively, while α = ln 2 ≈ 0.6931 for the random energy model [11].

In Fig.1 we show the exponent α as a function of the energy density ε. For the sake

of clarity we present only the region of positive values of α. The lowest value of ε at which

the exponent α vanishes, denoted by ε0, gives a lower bound to the ground-state energy

density of the spin model defined by the Hamiltonian (2) [30]. We find ε0 = 0.0202845

which, within the numerical precision, is exactly the value predicted by the first step of

replica-symmetry breaking [4] as well as by Golay’s ergodicity hypothesis [15, 3]. This

coincidence between the replica and the density of metastable states predictions for the

ground-state energy occurs also in the random energy model [11, 16].

A similar study of the symmetrized version of the mean-field Hamiltonian (2), in

which Jk
ij = Jk

ji, yields exactly the same expression for the exponent α, see eq.(13),

provided that the energy density ε is replaced by εs/2. Hence the symmetrization

procedure results in a trivial rescaling the energy densities of the local minima, without

affecting their number.

3. Energy Barriers and Basin Sizes

The picture that comes out of the replica approach to disordered spin models is that

the phase space V composed of the 2N spin configurations is broken into several valleys

connected by saddle points [22]. The relative location and energetic properties of valleys
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and saddles are expected to determine e.g. the ease with which the ground state can be

reached.

It will be convenient to introduce the notion of saddle-point energy E[s, w] between

two (not necessarily strict) minima s and w. Denoting, for the sake of generality, the

energy of state x by f(x), we can write

E[s, w] = min
{

max [f(z)|z ∈ p]
∣

∣

∣
p : path from s to w

}

, (14)

where a path p is a sequence of configurations connected by one-spin flips (or, more

generally, by moves taken from any desired “move set”). The saddle-point energy E[s, w]

forms an ultrametric distance measure on the set of local minima, see e.g. [25, 31]. The

barrier enclosing a local minimum is the height of the lowest saddle point that gives

access to an energetically more favorable minimum. In symbols:

B(s) = min {E[s, w]− f(s)|w : f(w) < f(s)} (15)

If B(s) = 0 then the local minimum s is marginally stable. It is easy to check that

eq.(15) is equivalent to the definition of the depth of local minimum in [18]. It agrees

for metastable states with the more general definition of the depth of a “cycle” in the

literature on inhomogeneous Markov chains [1, 6, 7].

The information contained in the energy barriers is conveniently summarized by two

global parameters that e.g. determine the convergence behavior of Simulated Annealing

and related algorithms. The depth of a landscape [17, 6, 18, 27] is defined as

D = max {B(s)|s is not a global minimum } . (16)

It can be shown that Simulated Annealing converges almost surely to a ground state

if and only if the cooling schedule Tk satisfies
∑

k≥0
exp(−D/Tk) = ∞ [17]. In order

to make the depth comparable between different landscapes we shall consider below

the dimensionless parameter D/σ, where σ2 is the variance of the energy across the

landscape. A related quantity is the (dimensionless) difficulty [6, 7] of the landscape,

defined by

ψ = max
{ B(s)

f(s)− f(min)

∣

∣

∣
s is not a global minimum

}

(17)

where f(min) is the global energy minimum and the maximum is taken over non-global

minima only. It is directly related to the optimal speed of convergence of Simulated

Annealing.

Since a direct evaluation of eq.(14) would require the explicit constructions of all

possible paths it does not provide a feasible algorithm for determining E[s, w] even if N

is small enough to allow an exhaustive survey of the landscape. The values of E[s, w]

and B(s) can, however, be retrieved from the barrier tree of the landscape. Barrier trees

have been considered recently in the context of RNA folding [12] and under the name

“disconnectivity graphs” in the protein folding literature [2, 14]. In this contribution we

use a modified version of the program barriers, which was developed for the analysis

of RNA folding landscapes in [12]. For the sake of completeness we briefly outline the

definition of the barrier trees below.
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Figure 2. Example of a barrier tree of a landscape. Data belong to a Gaussian REM

with N = 7. The leaves 1-12 denote the local minima. The global minimum 1 is

marked with an asterisk. Saddle points are labelled with capital letters from A to

G. The saddle points B, C, D, E are “degenerate” indicating that the lowest energy

paths leaving e.g. 4,5,8 run through a common exit point. (Note that all 27 = 128

configurations have pairwise distinct energies, hence there are no two distinct saddle

points with the same energy, which may exist e.g. in the LABSP.) The Barrier of 5 is

B(5) = E(D) − E(5), along the lowest path from 5 to 4, while B(4) = E(E) − E(4),

along the lowest path from 4 to 1∗.

For simplicity let us assume that the energies of any two spin configurations are

distinct, i.e., there is a unique ordering of the spin configurations by their energies. The

construction of the barrier tree starts from an energy-sorted list of all configurations in

the landscape. We will need two lists of valleys throughout the calculation: The global

minimum x[1] belongs to the first active valley V1, while the list of inactive valleys is

empty initially. Going through this list of all configurations in the order of increasing

energy we have three possibilities for the spin configuration x[k] at step k.

(i) x[k] has neighbors in exactly one of the active valleys Vi. Then x[k] belong to Vi.

(ii) x[k] has no neighbor in any of the (active or inactive) valleys that we have found

so far. Then x[k] is a local minimum and determines a new active valley Vl. In the

barrier tree x[k] becomes a leaf.

(iii) x[k] has a neighbor in more than one active valley, say {Vi1, Vi2 , . . . , Viq}. Then it is

a saddle point connecting these active valleys. In the barrier tree x[k] becomes an

internal node. In this case we add x[k] to valley Vi1 with the lowest energy. Then we

copy the configurations of Vi2 , . . . , Viq to Vi1 . Finally, the status of Vi2 through Viq is

changed from active to inactive. This reflects the fact that from the point of view
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of a configuration with an energy higher than the saddle point x[k], Vi1, . . . , Viq

appear as a single valley that is subdivided only at lower energy. Consequently,

after the highest saddle-point energy has been encountered, all valleys except for

the globally optimal V1 are in the inactive list.

The outcome of this procedure is a tree such as the one shown in Fig. 2. The leaves

correspond to the valleys of the landscape, while the interior nodes denote the saddle

points. The tree contains the information on all local minima and their connecting

saddle points. Indeed, saddle-point energies, and energy barriers can be immediately

read off the barrier trees.

A precise definition of valleys and saddle points in a landscape requires that we

take into account the degeneracies in the energy function, i.e., the existence of distinct

spin configurations with identical energies, in particular, the presence of neutrality,

where neighboring configurations have identical energies [26]. Degeneracies complicate

the construction of the barrier tree, since the energy-sorting of the landscape is not

unique any more. The simplest remedy is to use the same procedure as above starting

from an arbitrary energy sorting. In this case the order of degenerate configurations

in the list is arbitrary but fixed throughout the computation. Before proceeding to a

configuration with strictly higher energy a simple clean-up step needs to be included in

the tree-building algorithm: adjacent valleys with E[s, w] = f(s) = f(w) are joined to a

single valley. Note that the resulting barrier tree may still contain distinct valleys with

the same energy, as the examples in Fig. 3 show. The leaves of the barrier trees are in

general valleys which may contain more than one degenerate local minimum.

There is a clear visual difference between the barrier trees for LABSP and the mean-

field approximation MF at the one hand, and the ±1 4-spin Hamiltonian and the REM on

the other hand. The main difference appears to be a much larger amount of degeneracy

in LABSP/MF, in particular highly degenerate ground states. In fact, it can be shown

that the pure Hamiltoninan (1) has many nontrivial symmetries, besides the trivial one

where x is replaced by −x, which are then responsible for the high degeneracy observed

in the tree barrier [21]. Obviously, the disordered Hamiltonian (2) cannot have the same

symmetries as the pure one, and so its high degeneracy stems simply from the extreme

dilution of the couplings Jk
ij. All models, except REM, are symmetric under replacing

x by −x, hence all states appear in pairs. We note that the barrier tree of the ±1

4-spin model is reminiscent of the “funnels” discussed e.g. in protein folding, with a

large energy difference between the two global optima and almost all local “traps”. In

contrast, the REM shows, as expected, no relationship between energy and nearness of

local minimum to the global one.

During the construction of the barrier tree it is easy only to compute the lowest

barrier B′(s) from s to a local minimum that comes earlier in the list of configurations,

instead of the lowest barrier B(s) to a local minimum with strictly smaller energy.

Clearly, B′(s) ≤ B(s) since we take the minimum over a few more configurations

than prescribed by eq.(15). In case of degenerate landscapes our version of the

barriers program calculates B ′(s) which depends on the ordering of the degenerate
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LABSP MF

+/- 4spin REM

Figure 3. Tree representation of typical landscapes with N = 16. Upper left LABSP,

upper right mean-field approximation, lower left integer 4-spin model, lower right

Gaussian REM for N = 14 since for N = 16 the number of minima is too large to

allow a meaningful drawing.

configurations. We obtain, however, B(s) = B ′(s) for at least one of the valleys at each

energy level. The fact that in eq.(16) we are required to maximize in particular over

the barriers necessary to escape from any given energy level, however, implies that the

values of depth and difficulty can be obtained directly from B ′(s) instead of B(s). We

note at this point that a modified version D
′ ≥ D of the depth in which the maximum

over all non-global minima is replaced by the maximum over all minima except one

global minimum x∗ can also be obtained by the simplified procedure above, since it can

be shown that D
′ is independent of the choice of x∗ [7]. The parameter D

′ also appears

in exact results on the convergence of Simulated Annealing.



The low autocorrelated binary string problem 11

6 8 10 12 14 16 18 20
N

0

0.5

1

1.5

2

2.5

3

3.5

S
ca

le
d 

D
ep

th

6 12 18
N

0

5

10

15

20

D
iff

ic
ul

ty

Figure 4. Depth and Difficulty. Symbols: • LABSP, � mean-field approximation, 4
±1-version of the 2-spin model, � ±1-version of the 4-spin model, ? Gaussian REM.

Data are averaged over 100 instances (50 instances for N = 20); the error bars show

the width of the distribution, not the standard error of the means.

Depth and Difficulty are shown in Figure 4 as a function of the number N of

spins. While there are (moderate) quantitative differences, there does not seem to

be a qualitative difference between the LABSP, the mean-field approximation, and the

discretized 2 and 4-spin models. Note that all landscapes with the exception of the

Gaussian REM have constant scaled depth D/σ, while D/σ increases linearly with the

system size in the REM.

A linear regression of the difficulties yields the slopes 0.595 ± 6, 0.926 ± 14, and

0.07± 2 for the mean-field Hamiltonian, the ±1-version of the 4-spin model and the ±1

2-spin model, respectively. As expected, the difficulty of the quadratic model is much

smaller than the difficulty of the 4-spin model. For the sake of clarity, we have omitted

the data about the mean difficulty of the REM since it is too large as compared to those

shown in the figure. Moreover the width of its difficulty distribution is also so large that

the mean value is not physically meaningful.

Additional information on the local minima can be traced during the construction of

the barrier tree. We say that a configuration x belongs to the basin of the local minimum

s if s is the endpoint of the gradient walk (steepest descent) starting in x. (Recall that

each step of a gradient walk goes to the lowest energy neighbor.) By determining the

valley to which the lowest energy neighbor of x[k] belongs we may for instance record the

basin size of each local minimum. In a landscape without neutrality the gradient walk is

uniquely determined by the initial condition, hence the basins form a partition of the set

of configurations. We neglect the effects of neutrality in our numerical data by directing

the gradient walk to the first possibility in the energy-sorted list of configurations.

Computationally we find, for all models but the REM, that there is an approximate

linear relationship between the energy of a local minimum and the logarithm of the
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Figure 5. The logarithm of the size of the gradient-walk basin of attraction of the

minima as function of their energies for N = 20. The data for MF and the ±1 4-spin

model are superpositions of 10 instances, while for the REM we show only a single

instance.

size of its gradient-walk basin of attraction, see Figure 5. The fact that the deepest

valleys have the largest basins of attraction can be understood as a consequence of the

correlation between neighboring spin configurations in all landscapes with the exception

of the REM, for which all low-energy minima have essentially the same size of basin of

attraction.

4. Discussion

The performance evaluation of local search heuristics, in particular Simulated Annealing,

in typical instances of optimization problems is a relatively new subject, where the

existing criteria for measuring the hardness or difficulty of a problem are still not widely

known or accepted, as compared to e.g. the more traditional worst-case analysis. In

fact, on the one hand, one expects that the average number of local minima may serve

as a measure of the problem hardness, while, on the other hand, one must concede

that only local minima separated by high energy barriers are potential traps for the

search heuristic. In this paper we combine the concepts of depth and difficulty from the

Simulated Annealing literature to the average density of states calculations from the

statistical mechanics of disordered systems to obtain a reasonably complete statistical

description of the energy landscapes of several classic disordered models. The motivation

is to compare the statistical features of these landscapes with the properties of a rather
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puzzling deterministic problem — the low autocorrelated binary string problem (LABSP)

— which has been identified as a particularly hard optimization problem for search

heuristics such as Simulated Annealing.

Our results indicate that there is only a quantitative difference between the

depths and difficulties, as defined in the Simulated Annealing literature, of all models

investigated, with the exception of the random energy model (REM) for which the

complete lack of correlations between the energies of neighboring configurations results

in a genuine golf-course type landscape. Hence, we have found no evidences of a golf-

course like structure in the LABSP landscape, which resembles much more a correlated

spin-glass model than the REM. It must be emphasized that although the pure LABSP

model (1) may have a glass phase characterized by uncorrelated equilibrium states (at

least its mean-field version has such a phase [4]), the mere existence of this phase is no

evidence of a golf-course like structure which, as mentioned above, requires vanishing

correlations between the energy values of neighboring spin configurations.

Perhaps the “golf-course” conjecture [3, 21] stems simply from the fact that for

large N the LABSP is a much more difficult problem for Simulated Annealing than the

familiar quadratic spin glass, as shown in Fig. 4. Interestingly, the pairwise comparison

between the problems indicates that those problems with the larger number of local

minima have also the larger difficulty, the only exception being LABSP and the 4-spin

glass model. It should therefore be interesting to use these two problems as a test-bed

for validating the hardness criteria proposed in the Simulated Annealing literature.

Finally, our analysis has shown that the disordered, mean-field Hamiltonian Hd,

eq.(2), describes surprisingly well the qualitative (e.g. the barrier trees) as well as the

quantitative (e.g. number and typical energy of local minima) features of the pure model

H, eq.(1).
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