
Shaking a Box of Sand

Peter F. Stadler

Institut für Theoretische Chemie und Molekulare Strukturbiologie,

Universität Wien, Währingerstraße 17, A-1090 Wien, Austria; and

The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe NM 87501, USA

Anita Mehta

S N Bose National Centre for Basic Sciences, Block JD Sector 3, Salt Lake, Calcutta 700098, India; and

ICTP, Strada Costiera 11, I-34100 Trieste, Italy

Jean-Marc Luck
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We present a simple model of a vibrated box of sand, and discuss its dynamics in terms of
two parameters reflecting static and dynamic disorder respectively. The fluidised, intermediate
and frozen (‘glassy’) dynamical regimes are extensively probed by analysing the response of the
packing fraction to steady, as well as cyclic, shaking, and indicators of the onset of a ‘glass
transition’ are analysed. In the ‘glassy’ regime, our model is exactly solvable, and allows for the
qualitative description of ageing phenomena in terms of two characteristic lengths; predictions
are also made about the influence of grain shape anisotropy on ageing behaviour.

Vibrating sand results in very varied dynamics, rang-
ing from glassy [1, 2] to fluidised [3, 4]. Recent experi-
ments [5] have validated the notion [6] that its essential
features are captured by models with incorporate the fast
relaxation of individual particles together with the co-
operative rearrangements of clusters. In this Letter we
present a simple model of a vibrated sand-box, which in-
terpolates between the glassy and fluidised regimes, and
is based on the generalisation of an earlier cellular au-
tomaton (CA) model [7] of an avalanching sandpile. Our
model shows both fast and slow dynamics in the appro-
priate regimes: in particular, it reduces to an exactly
solvable model in the frozen (‘glassy’) regime, and pro-
vides one with a toy model for ageing [8, 9] in vibrated
sand.

We consider a rectangular lattice of height H and
width W with N ≤ HW grains located at the lattice
points, shaken with vibration intensity Γ. Each ‘grain’ is
a rectangle with sides 1 and a ≤ 1, respectively. Consider
a grain (i, j) in row i, column j whose height at any given
time is given by hij = nij− + anij+, with nij− the num-
ber of vertical grains and nij+ the number of horizontal
grains below (i, j):
• If lattice sites (i + 1, j − 1), (i + 1, j), or (i + 1, j + 1)
are empty, grain (i, j) moves there with a probability
exp(−1/Γ), in units such that the acceleration due to
gravity, the mass of a grain, and the height of a lattice
cell all equal unity.
• If the lattice site (i − 1, j) below the grain is empty, it
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FIG. 1: A vertical grain needs to be tilted through the
height ∆h to reach the unstable equilibrium position and
flop to the horizontal, while a horizontal grain needs to
be tilted through an additional height ∆H to reach the
vertical.

will fall down.
• If lattice sites (i−1, j±1) are empty, the grain at height
hij will fall to either lower neighbour, provided the height
difference hij − hi−1,j±1 ≥ 2.
• The grain flips from horizontal to vertical with prob-
ability exp(−mij(∆H + ∆h)/Γ), where mij is the mass
of the pile (consisting of grains of unit mass) above grain
(i, j). For a rectangular grain, ∆H = (1 − a)/2 is the
height difference of the center of mass between the initial
horizontal and the final vertical state of the grain. Simi-
larly, the activation energy for a flip reads ∆h = (b−1)/2,
where b =

√
1 + a2 is the diagonal length of a grain.

• The grain flips from vertical to horizontal with proba-
bility exp(−mij ∆h/Γ).
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FIG. 2: Plot of φ− φ∞ versus ln t, for different values of
Γ, indicated on the curves. Note that φ∞ decreases with
increasing Γ, and is thus distinct for each curve.

As will be evident from Figure 1, the activation energy
is the energy needed to tilt a vertical grain through an ad-
ditional height ∆h, given above, after which it falls auto-
matically to the horizontal position. Clearly, in order to
make the reverse move, a grain needs to be tilted through
the unstable equilibrium position; hence the height in-
crease ∆H + ∆h, in order to reach the vertical state.
Hereafter we consider ∆H and ∆h as phenomenological
parameters, which will be seen to be related to the two
main characteristic lengths in the system.

In line with recent investigations of compaction [2, 6,
10, 11], we examine the behaviour of the packing fraction
of our model, as a function of the vibration intensity Γ.
Let N− and N+ be the numbers of vertical and horizontal
grains in the box. The packing fraction φ is:

φ = (N+ − aN−)/(N+ + aN−), (1)

which we use as an order parameter reflective of the be-
haviour of the compactivity [11]. The vertical orientation
of a grain thus wastes space proportional to 1−a, relative
to the horizontal one.

We examine the response of the packing fraction for
∆H = 0.3, ∆h = 0.05 to shaking at varying intensities
in Fig. 2. Since the ‘equilibrium’ packing fraction φ∞

(which we determined in separate runs) decreases with
increasing intensity [6], we plotted the difference φ− φ∞

as a (logarithmic) function of time T in the figure, start-
ing with the same initial packing fraction in each case.

The dynamical response of the shaken sand-box in-
cludes three distinct regions, each illustrated by repre-
sentative curves in the figure:
• a fluidised region: for Γ � 1, we observe an initial
increase (caused by a non-equilibrium and transient ‘or-
dering’ of grains in the boundary layer) of the packing

fraction that quickly relaxes to the equilibrium values
φ∞ in each case. This over-shooting effect in Fig. 2 in-
creases with Γ, since grains ever deeper in the sand-box
can now overcome their activation energy to relax to the
horizontal. This inhomogeneous relaxation has been seen
in earlier, off-lattice simulations of compaction [12].
• an intermediate region (for Γ ≈ 1), where the pack-
ing fraction remains approximately constant in the bulk,
while the surface equilibrates via the fast dynamics of
single-particle relaxation. The specific φ∞ at which
this occurs (0.917 here), is the single-particle relaxation

threshold density observed in Ref. [13]; non-equilibrium,
non-ergodic, fast dynamics allows single particles locally
to find their equilibrium configurations at this density.
Analogous effects have been observed in recent experi-
ments on colloids [14], where the correlated dynamics of
fast particles was seen to be responsible for most relax-
ational behaviour before the onset of the glass transition.
• a frozen region (for Γ � 1), where the slow dynamics
of the system results in a logarithmic growth of packing
fraction with time:

φ − φ∞ = b(Γ) ln t + a, (2)

where b(Γ) increases with Γ, in good agreement with ex-
periment [2]. The slow dynamics has been identified [13]
with a cascade process, where the free volume released
by the relaxation of one or more grains allows for the
ongoing relaxation of other grains in an extended neigh-
bourhood. It includes the phenomenon of bridge collapse,
which, for low vibration intensities, has been seen to be a
major mechanism of compaction [6]. As Γ decreases, the
corresponding φ∞ increases asymptotically towards the
jamming limit φjam, identified with a dynamical phase

transition in related work [13].
We next investigate the analogue of ‘annealed cooling’,

where Γ is increased and decreased cyclically, and the
response of the packing fraction observed [2]. The results
obtained here are similar to those [12] seen using more
realistic models of shaken spheres, but the simplicity of
the present model allows for greater transparency.

Starting with the sand in a fluidised state, as in the ex-
periment [2], we submit the sand-box to taps at a given
intensity Γ for a time ttap and increase the intensity in
steps of δΓ; at a certain point, the cycle is reversed,
to go from higher to lower intensities. The entire pro-
cess is then iterated twice. Figure 3 shows the resulting
behaviour of the volume fraction φ as a function of Γ,
where an ‘irreversible’ branch and a ‘reversible’ branch
of the compaction curve are seen, which meet at the ‘ir-
reversibility point’ Γ∗ [2]. The left- and right-hand side
of Figure 3 correspond respectively to high and low val-
ues of the ‘ramp rate’ δΓ/ttap [2]. As the ramp rate is
lowered, we note that:
• the width of the hysteresis loop in the so-called re-
versible branch decreases. The ‘reversible’ branch is thus
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FIG. 3: Hysteresis curves. Left: ∆Γ = 0.1, ttap = 2000
time units. Right: ∆Γ = 0.001, ttap = 105 time units.
Note the approach of the irreversibility point Γ∗ to the
‘shoulder’ Γjam, as the ramp rate δΓ/ttap is lowered.

not reversible at all; more realistic simulations of shaken
spheres [6] confirm the first-order, irreversible nature of
the transition, which allows the density to attain values
that are substantially higher than random close packing,
and quite close to the crystalline limit [1]. Precisely such
a transition has also recently been observed experimen-
tally in the compaction of rods [15].
• the ‘irreversibility point’ Γ∗ approaches Γjam (the shak-
ing intensity at which the jamming limit φjam is ap-
proached), in agreement with results on other discrete
models [16].

The simplicity of our model also permits us to explore
the onset of the ‘glass’ transition between the regimes
where fast and slow dynamics respectively predominate.
We explore this via a configurational overlap function

χ(tref , ∆t) =
1

N

∑

i,j

Θ[Bi,j(tref), Bi,j(tref + ∆t)]. (3)

Here Bi,j(t) can take three distinct values depending on
whether the lattice site (i, j) at time t is a) empty, b)
occupied by a + grain, c) occupied by a − grain. We
write Θ[X, Y ] = 1 − δX,Y ; i.e., Θ[X, Y ] = 0 if X = Y .
∆t is the time lag. Figure 4 shows results for different
values of Γ, for Γ = 0.1, 0.7, 5.

The left-hand panel (Γ = 0.1) shows the logarithmic
behaviour characteristic of ageing, while the right-hand
panel (Γ = 5) shows the quick equilibration virtually in-
dependent of waiting times, which characterises the flu-
idised regime. The middle panel (Γ = 0.7) exemplifies
the behaviour characteristic of the transition: there is an
apparent ‘equilibration’ into different metastable states
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FIG. 4: Overlap functions χ(tref , ∆t), Eq. (3), for
Γ = 0.1, 0.7, 5. Line styles distinguish five reference
times from tref = 1 (full line) to tref = 104 (dotted line).
The time unit is defined as HW attempted Monte Carlo
moves.

depending on the waiting time tref .
The frozen regime is characterised by an absence of

holes within the sand-box, and negligible surface rough-
ness. Here, our model reduces to an exactly solvable
model of W independent columns of H noninteracting
‘spins’ σn(t) = ±1, with an up spin (σ = +1) denoting a
horizontal grain, and a down spin (σ = −1) denoting a
vertical grain. The depth of the spin n = 1, . . . , H is mea-
sured from the top of the system. The n-th spin evolves
according to a Markov dynamics, with rates w(− → +) =
exp(−n∆h/Γ) and w(+ → −) = exp

(

−n(∆H+∆h)/Γ
)

,
as mij = n = H + 1− i.

In the remaining part of the paper, we restrict our-
selves to the language of spins; the correspondence can
easily be made via the relationship of the mean mag-
netisation M(t) = (1/H)

∑H

n=1 Mn(t), with Mn(t) =
〈σn(t)〉, to the packing fraction of Eq. (1):

M =
(1 + a)φ − (1 − a)

1 + a − (1 − a)φ
. (4)

At equilibrium, the magnetisation profile is given by
Mn,eq = tanh

(

n/(2ξeq)
)

, while the local equilibration
time diverges exponentially with depth n, as τn,eq ≈
exp(n/ξdyn). These expressions involve two character-
istic lengths of the model, the equilibrium length ξeq and
the dynamical length ξdyn, which read

ξeq = Γ/∆H, ξdyn = Γ/∆h. (5)

In the scaling regime where the height H and both
lengths ξeq, ξdyn are simultaneously large, the mean mag-
netisation reads M eq ≈ (2ξeq/H) ln cosh(H/(2ξeq)). For
H � ξeq, M eq ≈ H/(4ξeq) � 1: the system is very
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weakly ordered, even at equilibrium. For H � ξeq,
M eq ≈ 1 − (2 ln 2)ξeq/H : the system is strongly ordered
at equilibrium, except for its top skin layer, whose depth
is of order ξeq.

As the equilibration time diverges exponentially with
the depth, order propagates down the system logarithmi-
cally slowly. More specifically, for a large but finite time
t, only a top layer up to an ‘ordering length’ Λ(t) has
equilibrated, with

Λ(t) ≈ ξdyn ln t. (6)

We have Mn(t) ≈ Mn,eq for n � Λ(t), whereas Mn(t) ≈
0 for n � Λ(t). The most ordered spins are situated
at a depth comparable to Λ(t); they have a maximum
magnetisation Mmax(t) ≈ tanh

(

(ω/2) ln t
)

, where

ω = ξdyn/ξeq = ∆H/∆h = (1 − a)/(b − 1) (7)

is the ratio of both characteristic lengths.
In order for the model to exhibit interesting non-

equilibrium or ageing effects, one must have Λ(t) � H .
The two-time quantities we investigate to explore age-
ing are the full two-time correlation function, Sn(t, s) =
〈σn(t)σn(s)〉, and the connected one, Cn(t, s) = Sn(t, s)−
Mn(t)Mn(s), with 0 ≤ s (waiting time) ≤ t (observation
time). In terms of the overlap function of Eq. (3), we have
S(tref +∆t, tref) = 1−2χ(tref , ∆t). We are led to consider
two different non-equilibrium regimes. In each case, the
mean observables can be expressed, after some algebra,
in terms of the ordering lengths only (see Table I).

TABLE I: Two different non-equilibrium regimes.

Regime I Regime II

ξeq � Λ(t) � H Λ(t) � ξeq, H
(ω ln t � 1) (ω ln t � 1)

M(t) Λ(t)/H [Λ(2t)]2 /(4Hξeq)

S(t, s) 1 − [Λ(t) − Λ(s)]/H 1 − [Λ(2(t − s))] /H

C(t, s) 1 − [2Λ(t) − Λ(t + s)]/H 1 − [Λ(2(t − s))] /H

In Regime I, the maximal ordering is very close to per-
fect, as 1 − Mmax(t) ∼ t−ω � 1. This is the conven-
tional frozen regime (to which our data in Figure 4 cor-
respond). The top layer of the system is strongly ordered,
most of the grains are flat, and likely to stay that way:
the ageing phenomenon corresponds to the slow order-
ing attempts of grains deeper in the bulk, quantified by
the logarithmic growth of the ordering length Λ(t). Ta-
ble I shows that the mean magnetisation is nothing but
the fraction Λ(t)/H of the system that has equilibrated.
The two-time correlations are non-stationary, and they
involve Λ(s), Λ(t), and Λ(t + s).

In Regime II, the maximal ordering is very weak, as
Mmax(t) ≈ (ω/2) ln t � 1. This regime exists only for
ω � 1, i.e., a → 1 in the geometrical model. It corre-
sponds to an even slower dynamics, since now any at-
tempts at ordering are hindered additionally by a strong

probability that a horizontal grain will flip to the vertical
orientation. Table I shows that the mean magnetisation
involves the square of the ordering length, while the two-
time correlations do not exhibit any non-stationary fea-
tures characteristic of ageing, at least to leading order,
in this scaling regime.

The physical difference between the two scenarios is
comprehensible in terms of disorder in grain shapes.
Where grains are very irregularly shaped (Regime I), the
non-equilibrium regime will carry all the usual charac-
teristics of ageing. Where, however, grains are regularly
shaped (Regime II), the signatures of ageing will be hard
to detect even in a highly non-equilibrium regime. It
would be interesting to test this experimentally: would
ageing experiments carried out separately on weakly vi-
brated rods (Regime I) or spheres (Regime II) have dif-
ferent results?

In conclusion, the simplicity of our model makes it
a useful conceptual tool for probing the dynamical re-
sponses of vibrated sand, from the fluidised to the frozen
regimes. In the latter case, our model is exactly solvable,
which allows one to describe the by now well-established
picture of logarithmic compaction, in terms of two char-
acteristic lengths. The improvement of this necessarily
qualitative picture of ageing by the addition of more re-
alistic and complex interactions, while still retaining the
overall conceptual simplicity of our model, constitutes
the focus of current research.
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