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Abstract. Fitness landscapes have proven to be a valuable concept in evolutionary biology,
combinatorial optimization, and the physics of disordered systems. A fitness landscape is a mapping
from a configuration space into the real numbers. The configuration space is equipped with some
notion of adjacency, nearness, distance or accessibility. Landscape theory has emerged as an attempt
to devise suitable mathematical structures for describing the “static” properties of landscapes as
well as their influence on the dynamics of adaptation. In this review we focus on the connections
of landscape theory with algebraic combinatorics and random graph theory, where exact results are
available.
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1. Introduction. The concept of a fitness landscape originated in the 1930s in
theoretical biology [210, 211]. A fitness landscape is a kind of “potential function”
underlying the dynamics of evolutionary optimization. Implicit in this notion is both a
fitness function f that assigns a fitness value to every possible genotype (or organism),
and the arrangement of the set of genotypes in some kind of abstract space that
provides some notion of accessibility or reachability.

Models of disordered systems, in particular spin glasses, naturally lead to the
notion of landscapes [16, 123]: Each spin configuration is assigned an energy by
virtue of the Hamiltonian that specifies the model; the dynamic properties invoke a
collection of transitions between configurations. In complete analogy, the folding of
biopolymers, including proteins [27, 38, 138] and nucleic acids [53, 51] is determined
by energy landscapes.

In combinatorial optimization the fitness function is usually referred to as the cost
function, and a move-set allows to inter-convert the elements of the search space [64].
The application of evolutionary models to combinatorial optimization problems has
lead to the design of so-called evolutionary algorithms such as Genetic Algorithms,
Evolutionary Strategies, and Genetic Programming [146, 110, 86, 99, 55].

Conceptually, there is a close connection with the potential energy surfaces (PES)
of theoretical chemistry [124, 79]: As a consequence of the validity of the Born-

Oppenheimer approximation, the PES provides the potential energyU( ~R) of a molecule

with n atoms as a function of its nuclear geometry ~R ∈ R3n. Electoral Landscapes
are used to explain party platform behavior in spatial voting models [108, 170]. Not
surprisingly, fitness landscapes have emerged as one of the unifying themes in the
literature on complex systems [142, 99, 61, 30].

In formal terms, a landscape consists of three ingredients
1. A set X of configurations,
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2. a notion X of neighborhood, nearness, distance, or accessibility on X , and
3. a fitness function f : X → R.

The set X together with the “structure” X forms the configuration space. The defi-
nition of X is purposefully left vague at this point and will made precise below.

Example: The Traveling Salesman Problem (TSP). The TSP is probably
the most frequently studied combinatorial optimization problem. Hundreds of publi-
cations and books have been devoted to this problem and a large variety of solution
techniques have been proposed [112]. The TSP is deceptively easy to state: A Sales-

man wants to visit n distinct cities and then return home. The goal is to minimize the

overall traveling distance while visiting each city not more than once. The problem
is well known to belong to the class of NP-hard problems [64, 6].

The TSPs apparent simplicity on the one hand and the difficulty of finding optimal
solutions on the other hand has established it as a test bed for new heuristics and
exact algorithms. However, the TSP is not only of theoretical value; there exist many
industrial applications to the TSP and its variants.

For the purpose of this contribution we are interested in the properties of the
landscape of the TSP rather than in algorithms for “solving” it. A very pragmatic
reason for this is that one may hope that problems with similar landscapes will lend
themselves to similar solutions.

The ingredients are simple enough: The configurations are the n! permutations
of the n cities. A tour is permutation π = (π(1), . . . , π(n)) that lists the cities in the
order in which they are visited. Given the travel cost Ckl from city l to city k we can
write down the cost function in the form

f(π) =

n−1∑

i=1

Cπ(i+1),π(i) + Cπ(1),π(n) ,(1.1)

where the last term corresponds to returning home.
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Fig. 1.1. Transposition (i, k)π (middle) and reversal [i, k]π (right) of the TSP tour π (left).

But what is the “structure X” on the set of configurations? Many heuristic
algorithms for the TSP work by gradually modifying a tour. Two operators are
particularly common: the transposition of cities and the reversal of parts of the tour,
Fig. 1.1.

An interesting, and rather surprising, observation is that simple heuristic algo-
rithms (such as simulated annealing) work much better with reversals than with trans-
positions as long as the matrix of travel costs is symmetric Ckl = Clk . On the other
hand, if transpositions are used, it does not matter whether the travel cost matrix is



COMBINATORIAL LANDSCAPES 3

symmetric Ckl = Clk . For asymmetric travel cost matrices, however, transpositions
work more efficiently [115].

What is it about the landscape that causes such performance differences? We
shall encounter a simple answer in terms of so-called amplitude spectra in section 3.3:
The correlation of the landscapes is (almost) the same for symmetric and asymmetric
C when transpositions are used. The symmetric TSP with reversals has smoother
version than with transpositions, while it is the other way around if C is asymmetric.

Landscapes can be studied either from a “static” point of view, focusing on ge-
ometric properties such as smoothness, ruggedness, and neutrality, or from a “dy-
namical” point of view focusing on the features of a dynamical system, for instance
an evolving population, that uses the landscape as its substrate. The static point of
view will be the main topic of this review as it lends itself readily to a detailed math-
ematical analysis. Dynamical aspects are much more difficult and mostly tackled by
computer simulations.

This contribution is organized as follows: We first identify the structure of config-
uration spaces either as undirected, unweighted graphs or as reversible Markov chains.
This sets the stage for decomposition of landscapes in terms of particular orthonormal
bases that take into account the structure of the underlying configuration space. This
“spectral” approach concentrates on ruggedness, neutrality and isotropy and is of
particular relevance for combinatorial optimization problems and disordered systems.
Landscapes arising in biology are based upon an underlying genotype-phenotype map
which determines key features of the landscape. We discuss two paradigmatic exam-
ples of genotype phenotype maps: RNA secondary structure folding and sequential
dynamical systems. The analysis of these examples naturally leads to a random graph
theory of neutrality. In section 6 we very briefly review dynamical aspects in land-
scape theory, in particular simulated annealing and the quasispecies model. We close
our discussion with a few remarks on recent trends.

2. Configuration Spaces. There appears to be three distinct approaches to
organizing the set of configurations.

1. Sometimes transition probabilities are specified that describe how frequently
a system attempts to move from one configuration to another.

2. In computer science one typically specifies a “move set” or “genetic operator”
that inter-converts one or more configurations into a new one. Evolutionary
biology takes the same point of view, except that the move sets are given by
nature rather than being engineered.

3. A rigorous mathematical analysis often starts with specifying a metric or a
topology on X . This approach will be discussed in some detail in section 7.1.

We shall see below that move sets and transition probabilities are closely related.
Eventually, we obtain an algebraic description of the configuration space in terms of
a matrix that may serve as the starting point of spectral landscape theory.

2.1. Markov Chains. Regarding X as a set of “states” we may specify transi-
tion probabilities Txy for moving from y to x. The Markov process with transition
matrix T organizes the configuration space. Typically, one requires T to be ergodic
(i.e., every state can be reached from every other state) and reversible, i.e., to satisfy

(E) T is irreducible, or, equivalently,
there is a unique stationary distribution p on X such that Tp = p. Further-
more p(x) > 0 for all x ∈ X .

(R) Txyp(y) = Tyxp(x). This condition is also known as “detailed balance”.
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In other words, T is self-adjoined w.r.t. to the scalar product

〈f, g〉p =
∑

x

p(x)f(x)g(x)∗(2.1)

where ∗ denotes complex conjugation.
A most useful observation is that the matrix S defined by

Sxy = p(x)−1/2Txyp(y)
1/2(2.2)

is symmetric and similar to T. Hence given a non-symmetric transition matrix T and
a landscape f we may transform the model to new coordinates with the symmetric
operator S and the transformed landscape

fσ(x) = p(x)−1/2f(x) .(2.3)

This allows for the application of much of the spectral landscape theory in the non-
symmetric case as well.

2.2. Move Sets. In its most abstract form a move set assigned to a k-tuple
(x1, . . . , xk) ∈ Xk which we refer to as “parents” a list N(x1, . . . , xk) ⊆ X which
we call “children”. In the following we will restrict our attention to the two most
commonly used move-set types, mutation and recombination.

2.2.1. Mutation. A mutation operator simply assigns a set N(x) of “accessible
neighbors” or “elementary mutants” to each configuration x. This allows us to inter-
pret X as a (possibly directed) graph with vertex set X and N(x) the (out)neighbors
of x ∈ X . Most commonly the move sets are constructed such that y ∈ N(x) if and
only if x ∈ N(y), in which case the graph is symmetric, or, equivalently, undirected.
A graph is faithfully represented by its adjacency matrix A which has the entries
Axy = 1 if x ∈ N(y) and Axy = 0 otherwise. Obviously, A is symmetric if and
only if the graph is undirected. With each (directed or undirected) graph there is an
associated Markov process on its vertex set [117] defined by the transition matrix

T = AD−1(2.4)

where D is the so-called degree matrix, which is diagonal and Dxx = |N(x)| is the
number of neighbors of x. This Markov process describes a random walk on X which
has been suggested as a means to sample information about a landscape by Ed Wein-
berger [203, 204]. We remark that in the case of undirected and symmetric directed
graphs the stationary distribution is given by

p(x) =
Dxx

2E
(2.5)

where E is the total number of undirected edges.

2.2.2. Recombination and Cross-Over. The most immediate consequence of
the fact that recombination acts on two arguments is that the recombination induced
configuration space can not be represented as a simple graph with the set of genotypes
representing the set of vertices. This leaves two alternatives: One can change the na-
ture of the vertex set and have pairs of types as vertices. Then one obtains again
a (di-)graph, since each elementary recombination event creates up to two different
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strings. This approach was pioneered by Culberson [31] and Jones [94]. The alterna-
tive is to leave the vertices to represent individual genotypes and to make the edges
more complex. In Gitchoff and Wagner [67] it was shown that recombination spaces
can be represented as hypergraphs (which consist of a vertex set X and a collection E
of (not necessarily) distinct subsets of X called (hyper)edges), where the hyper-edges
are the sets of all recombinants that can arise from the recombination of two types.
With this approach it is was easy to show that string recombination spaces and point
mutations spaces are homomorphic. Hypergraphs are still not completely satisfactory,
since they do not indicate which pair of types produces which set of recombinants,
i.e., which hyper-edge arises from which mating. This led us to invent P-structures,
which are mappings of pairs of types to the hyper-edges of the hypergraph [184, 200].

We focus here on homologous recombination on a genome consisting of n loci.
For each locus k, there are αk alleles. The set of all the

∏
k αk possible genotypes

will be denoted by V . For each locus k, we label the alleles using a letter from
the alphabet Ak = {0, . . . , αk − 1}. Thus V =

∏
kAk. A particular genotype (or

sequence) x ∈ V can be regarded as a vector with components xk ∈ Ak. A particular
cross-over operator is determined by the list χ of loci that the child inherits from
the first parent. Thus the loci in χ = {1, . . . , n} \ χ come from the second parent.
More formally, given χ, the offspring x = χ(y, z) of the two parents y and z has the
component-wise representation

xk =

{
yk if k ∈ χ
zk if k ∈ χ.

(2.6)

It will be convenient in the following to express eqn. (2.6) by means of an “incidence
operator”

Hχ
x,(y,z) =





2 if x = y = z
1 if y 6= z and x = χ(y, z)
0 otherwise .

(2.7)

Here we restrict ourselves to recombination on strings. Crossover operators for per-
mutation, such as Traveling Salesman tours, are reviewed for instance in [111].

A recombination operator in the sense of most of the GA literature is then a family
F of cross-over operators that act on X × X with probability π(χ). The incidence
“matrix” associated with a recombination operator is simply

HF =
∑

χ∈F

Hχ(2.8)

The two most important recombination operators are
[∞] Uniform recombination contains all 2n possible crossover operators. In this

case it is natural to include the identity ı.
[1] 1-point recombination contains all cross-over operators χ for which the char-

acteristic set is of the form χ = {1, . . . , k}.
Homologous recombination (of strings) under very general conditions leads to very
regular configuration spaces. In particular, one can show that the automorphism
group of HF is generously transitive [184]. This picture, however, changes radically,
if unequal crossover is considered, where the number of genes on a chromosome can
change [167].

A cross-over walk [87, 88], Figure 2.1, on X is the Markov process based on the
following rule: The “father” y is mated with a randomly chosen “mother” z. The
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Fig. 2.1. Crossover walk

offspring is “son” x which becomes the “father” of the next mating. We regard the
sequence of “fathers” as a random walk on X . It is straightforward [182] to derive
the transition matrix of this Markov process for homologous recombination from the
incidence “matrix” HF . One obtains

SF ,~℘
xy =

∑

χ∈F

π(χ)
1

2

∑

z∈X

Hχ
x,(y,z)℘(z)(2.9)

where ℘(z) denotes the frequency distribution of the genotypes in the equilibrium
population.

3. Decompositions of Landscapes. Regarding f : V → R as a vector in
the |V |-dimensional Euclidean vector space R|V | immediately poses the question of
whether there are more convenient bases than the standard basis {δx}, with δx(y) = 1
if y = x and 0, otherwise. This is the starting point of what one might call algebraic
landscape theory or spectral landscape theory.

3.1. Fourier Transform of Landscapes. A suitable basis naturally encapsul-
tates information about the regularities of the configuration space. Hence one of the
symmetric V × V matrices introduced in the previous section is the most common
starting point.

3.1.1. Discrete Laplace Operators. From the algebraic point of view it ap-
pears to be more natural to start with a discrete Laplace operator

−∆ = DS − S with (DS)xx =
∑

y∈X

Sxy(3.1)

since it has number of desirable mathematical properties:
−∆ is symmetric and has non-positive off-diagonal entries.
−∆ has 0 as an eigenvalue with eigenvector 1 = (1, . . . , 1). The eigenvalue 0 is unique
if and only if the graph associated with the off-diagonal entries is irreducible.
−∆ is non-negative definite.
The graph Laplacian −∆ = D−A arises naturally as the discretization of the Lapla-
cian differential operator for instance in finite element computations. For recent
surveys on graph Laplacians see [128, 122, 28, 129].

3.1.2. Coherent Algebras. An alternative, maybe even more appealing start-
ing point is to consider the coherent algebra associated with the configuration space
graph or transition operator [105, 183].
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A set of complex matrices that is closed under (i) scalar multiplication with
complex numbers, (ii) component-wise addition, (iii) ordinary matrix multiplication,
(iv) component-wise multiplication, and (v) transposition is called a coherent algebra
or cellular algebra. Equivalently, a matrix algebra W ⊆ C|V |×|V | is coherent if and
only if it satisfies the following axioms:
(i) As a linear space over C, W has a basis of {R(1), . . . ,R(r)} of 0-1 matrices.
(ii)

∑n
j=1 R(j) = J, the all-1 matrix.

(iii) For every i ∈ {1, . . . , r} there an i′ such that R(i)T = R(i′).
(iv) I ∈ W.
Axiom (ii) above implies that the relations associated with the basis matrices R(j)

form a partition of V × V . Such partitions are known as coherent configurations
[81, 82, 83].

For each collection M = {M1, . . . ,Mk} of |V | × |V | matrices there is a smallest
coherent algebra 〈〈M〉〉 which is the defined as the intersection of all coherent algebras
that contain {M1, . . . ,Mk}. Since the centralizer algebra is coherent we have

〈〈M〉〉 ⊆ VC(Aut[M], V )(3.2)

Equality hold if and only if there is a permutation group that has 〈〈M〉〉 as its cen-
tralizer algebra [106]. The coherent algebra 〈〈M〉〉 can therefore be regarded as a
“combinatorial approximation” of the centralizer algebra [45, 105]. This is of par-
ticular importance in the graph case: given the adjacency matrix A of Γ, there is
polynomial time algorithm that determines the coherent algebra W(Γ) = 〈〈A〉〉, see
[206, 9, 8]. It is straightforward to check that the degree matrix D, and hence also
the transition operator T = AD−1 and the associated Laplace operators are also
contained in 〈〈A〉〉.

Let R = {R(1), . . . ,R(r)} be the standard basis of a coherent algebra W. We
have R(µ)R(ν) =

∑
κ p

κ
µ,νR

(κ) where the intersection numbers

pκµ,ν =
∣∣{z ∈ V

∣∣ (x, z) ∈ µ (z, y) ∈ ν
}∣∣ ∈ N0(3.3)

are the same for all pairs (x, y) ∈ κ. The r × r matrices R̂κ with entries R̂
(ν)
µ,κ = pκµ,ν

generate a matrix algebra Ŵ that is isomorphic to W [81]. This observation makes
coherent algebras appealing objects for our purposes because Ŵ is small enough in
many cases to allows for explicit computations of eigenvalues and eigenvectors [183].
This is of particular interest in the case of association schemes (symmetric coherent
algebras), in which case all members of Ŵ share a common orthonormal basis of
eigenvectors [20]. We remark that, in the case of Hamming graphs, the eigenvectors
are the well-known Walsh functions [49].

3.1.3. Graph-Theoretical Fourier Decomposition. In the following let
{ϕk|V → C} be an orthonormal basis of eigenfunctions of the desired operator taken
from W. It is natural then to expand the fitness function f in terms of this basis:

f(x) =
∑

k

akϕk(x)(3.4)

We shall use the following convention: (i) The index 0 is reserved for the “ground
state”. If the basis is derived from a Laplacian, for instance, then ϕ0 is constant, the
associated eigenvalue is zero, and

a0 =
∑

x

ϕ0(x)f(x) = |V |−1
∑

x∈V

f(x)(3.5)
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(ii) The distinct eigenvalues of −∆ will be denoted by Λp and in the Markov chain case
we write λp. It will be convenient to define the index sets Jp = {k| − ∆ϕk = Λpϕk}
that collect all eigenfunctions belonging to the same (Laplacian) eigenvalue. (iii) We
write f̃(x) = f(x) − a0. This is the “non-flat” part of the fitness function.

3.1.4. Group-Theoretical Fourier Transformation. Let G be a finite group
and let S be a symmetric set of generators of G, i.e., 〈S〉 = G, S = S−1, and ı /∈ S,
where ı is the identity of G. A graph Γ(G, S) with vertex set G and edges {s, t} if
and only if t−1s ∈ S is called a Cayley graph. Cayley graphs are vertex transitive and
hence regular.

Definition 3.1. A Cayley graph Γ(G, S) is called quasi-Abelian if S is the union
of some conjugacy classes of G.

Clearly, a Cayley graph on a commutative group is quasi-Abelian, since each
group element forms its own conjugacy class in this case. Some interesting properties
of quasi-Abelian Cayley graphs are discussed in [201, 212]. Below we shall see that
certain algebraic properties of Cayley graphs with Abelian groups generalize to quasi-
Abelian Cayley graphs.

Definition 3.2. For any function f : G → C and any matrix representation
% = {ρ(s)}s∈G of G we call the matrix sum

f̂(%) =
∑

x∈G

f(x)ρ(x)(3.6)

the (group theoretic) Fourier Transform of f at %.
In the case of Cayley graphs we have therefore to distinguish between the “Fourier

series expansion” with respect to the graph Γ(G, S), eqn.(3.4), and the representation
theoretical Fourier transformation on the group G itself. It will not come as a surprise
that there is an intimate connection between the two.

Theorem 3.3. [158] Let Γ(G, S) be a quasi-Abelian Cayley graph with a finite
group G.

(1) The function εkij : G → C defined as

εkij(u) =

√
dk
|G|ρ

k
ij(u

−1)(3.7)

is an eigenvector of A(Γ) with eigenvalue Λk = 1
dk

∑
s∈S χk(s) where χk(s) =

Trρk(s) is the character of %k at s; its dimension is dk.
(2) All quasi-Abelian Cayley graphs on G have a common basis of eigenvectors

and hence their adjacency matrices commute.
(3) A function f : G → R can be expanded in the form

f(s) =
∑

ijk

akijε
k
ij(s) with akij =

√
dk
|G| f̂ji(ρ

k)(3.8)

Fast Fourier Transform algorithms are known for a variety of finite groups. For a
recent overview see e.g. [121, 157].

3.1.5. Elementary Landscapes. Lov Grover and others [29, 74, 174] observed
that f̃ is in many cases an eigenfunction of the graph Laplacian −∆, see Table 3.1 for
a list of examples. We say that f is elementary w.r.t. −∆ if f̃ is an eigenfunction of
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Table 3.1

Elementary Landscapes.

Problem Graph D λ Order Reference
p-spin glass Qn

2 n 2p p definition
NAES Qn

2 n 4 2 [74]
Weight Partitioning Qn

2 n 4 2 [74, 174]
GBP (constrained) Qn

2 n 4 2 [5]
Max Cut Qn

2 n 4 2 [5]
Graph α-Coloring Qα

2 (α − 1)n 2α 2 [174]
XY-spin glass Qn

α (α − 1)n 2α 2 [63]
for α > 2: Cnα 2 8 sin2(π/α) 2 [63]

Linear Assignment Γ(Sn, T ) n 1 [158]
TSP symmetric Γ(Sn, T ) n(n− 1)/2 2(n− 1) 2 [29, 74]

Γ(Sn,J ) n(n− 1)/2 n 2 [29, 74]
Γ(An, C3) n(n− 1)(n− 2)/6 (n− 1)(n− 2) ? [29]

antisymmetric Γ(Sn, T ) n(n− 1)/2 2n 3 [174]
Γ(Sn,J ) n(n− 1)/2 n(n+ 1)/2 O(n) [174]

Graph Matching Γ(Sn, T ) n(n− 1)/2 2(n− 1) 2 [174]
Graph Bipartitioning J(n, n/2) n2/4 2(n− 1) 2 [74, 178, 180]

−∆ with an eigenvalue λp > 0. In [175] this notion is extended to calling f elementary

w.r.t. a random walk transition operator iff Sf̃ = λpf̃ with an eigenvalue λp < 1.

If f is elementary, then f̃ satisfies the conditions of Courant’s nodal domain
theorem, see 3.1.6. Elementary landscapes can thus be expected to have few nodal
domains if they belong to a small Laplacian eigenvalue (or to an eigenvalue of a
Markov transition matrix close to 1), while landscapes that are far away from the
ground state will in general have many nodal domains. Such landscapes will appear
“rugged”. Grover [74] showed that

f(x̂min) ≤ a0 ≤ f(x̂max)(3.9)

where x̂min and xmax are arbitrary local minima and maxima, respectively. This
maximum principle shows that elementary landscapes are well-behaved: There are no
local optima with worse than average fitness. We shall return to local optima as a
measure of ruggedness in section 4.2.1.

3.1.6. The Nodal Domain Theorem. Discrete Schrödinger operators are de-
fined as

Hf(x) =
∑

y∼x

b(x, y) [f(x) − f(y)] + v(x)f(x) .(3.10)

where b(x, y) = b(y, x) > 0 if and only if {x, y} is an edge of the graph Γ; v(x) is an
arbitrary “potential function”. Of course, the graph Laplacian −∆ is a special case.

A well-known feature of Schrödinger operators on Riemannian manifoldsM is that
the nodal domains of any of its eigenfunctions, that is, the connected components of
M \ f−1(0), of their eigenfunctions are severely constrained. In order to formulate
Courant’s theorem for graphs, we define for any function f : V → R on Γ: supp+(f) =
{x ∈ V |f(x) > 0}, supp−(f) = {x ∈ V |f(x) > 0}, zero(f) = {x ∈ V |f(x) > 0},
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supp0
+(f) = supp+(f) ∪ zero(f), and supp0

−(f) = supp−(f) ∪ zero(f). A (strong)
nodal domain of f is a maximal connected component of either supp+(f) or supp−(f).
A weak nodal domain is a maximal connected component of supp+(f) ∪ zero(f) or
supp−(f) ∪ zero(f), respectively.

Let λ1 ≤ λ2 ≤ . . . ≤ λ|V | be the eigenvalues of a Schrödinger operator on Γ
with corresponding eigenvectors ϕi. Define M(i) = max{k|λk = λi} and m(i) =
min{k:λk = λi}. Hence, m(i) ≤ i ≤ M(i), M(i) = m(i) + mult(λi) − 1, and m(i) =
M(i) = i if and only if λi is a simple eigenvalue of H. With this notation we have

Theorem 3.4. [Nodal Domain Theorem] Let f be an eigenvector of H with
eigenvalue λi. Then:
(i) there are at most M(i) (strong) nodal domains of f and
(ii) there are at most m(i) weak nodal domains of f .

Various discrete versions of the Nodal Domain theorem have been discussed in
the literature [35, 62, 193, 39], however, sometimes with ambiguous statements and
incomplete or flawed proofs. An elementary proof can be found in [33]. The interest
in nodal domain properties of graph eigenvectors goes back to M. Fiedler [47] who
showed that the number of components of supp0

+(f) is at most M(i). Some closely
related results on the component structure of supp+(f) ∪ supp−(f) can be found in
[144].

3.2. Random Landscapes. In many cases, for instance in applications to spin
glasses, the definition of the landscape contains a number of random parameters. We
therefore define landscapes here as elements of an appropriate probability space.

Definition 3.5. Let V be a finite set and let W be a predicate of landscapes
f : V → R. A random W -landscape F over V is the probability space

Ω = ({f : V → R | f has property W},A, µ) ,(3.11)

where A is a σ-field and µ : A → [0, 1] a measure. Let ξ : Ω → R be a Ω-random
variable; we denote expectation value and variance of ξ by E[ξ] and V[ξ], respectively.
In particular we will consider the family

∀ x ∈ V ; evalx : Ω → R, evalx(f) = f(x) .(3.12)

By abuse of notation we shall write E[f(x)] for E[evalx], the expectation of f evaluated
at x ∈ V . The covariance matrix of the random landscape Ω is given by

Cxy = Cov[evalx, evaly] = E[f(x)f(y)] − E[f(x)]E[f(y)] .(3.13)

The matrix C is obviously symmetric and non-negative definite. Taking the set of all
maps {f : V → R} as base space of the probability space Ω, a basis is formed by the
set of orthonormal eigenvectors {ψk} of the covariance matrix C. An expansion of
the form

f(x)=̇
∑

k

bkψk(x) a.s. x ∈ V(3.14)

is known as the Karhunen-Loève series or the principal component decomposition of
f . A crucial result is:

Theorem 3.6. [90, 97, 116] Let σ2
k denote the eigenvalue of C belonging to

the eigenvector ψk. Then the coefficient of the Karhunen-Loève series (3.14) are
uncorrelated random variables satisfying

Cov[bk, bj ] = σ2
kδkj 1 ≤ k, l ≤ |V |.(3.15)
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Table 3.2

Examples of Additive Random Landscapes.
The component landscapes ϑI and the index set M , eqn.(3.16), are listed together with information
on whether the models are uniform (U), strictly uniform (S), or pseudo-isotropic (P). Properties
that are implied by stronger ones are shown as ◦. Adapted from [154].

Model Component Landscapes and Index set U S P
Ising spin glass ϑI(x) =

∏
k∈I xk I ⊆ {1, . . . , n} • •

SK model as above with |I | = 2 • •
Nk Landscapes see [154] ◦ • ◦
Graph Bipartitioning ϑij([A,B]) =

{
1 if {i, j} 6⊆ A,B
0 otherwise

i < j ◦ • ◦
Asymmetric TSP ϑkl(τ) =

∑
i δk,τ(i)δl,τ(i−1) k 6= l ◦ • ◦

Thus σ2
k = V[bk]. Furthermore we have σ2 = TrC =

∑
k σ

2
k.

Random landscapes of practical importance often exhibit strong regularities.

Definition 3.7. A random landscape F is pseudo-isotropic if there are constants
a0, v, and w such that for all x ∈ V
(i) E[f(x)] = a0,
(ii) V[f(x)] = v2, and
(iii) |V |−1

∑
y∈V Cxy = w.

3.2.1. Additive Landscapes. Many important random landscapes can be writ-
ten as a sum of components with random coefficients. More precisely, let M be finite
index set, let cj , j ∈M be independent, real valued random variables over appropriate
probability spaces Ωj = (R,Aj , µj), and let Θ = {ϑj : V → R | j ∈ M} be a family
of real valued functions on V . An additive random landscape (arl) is the probability
space (ΩV ,⊗jAj ,⊗j , µj) with

ΩV =
{
f : V −→ R | f(x) =

M∑

j=1

cjϑj(x)
}
.(3.16)

In other words, the random landscape is constructed as a linear combination of non-
random landscapes ϑj with independent random coefficients cj .

Using the Karhunen-Loève decomposition, (3.14), any random landscape can be
written as a linear combination with uncorrelated random coefficients. Since uncor-
related Gaussian random variables are independent we have

Lemma 3.8. [154] Every Gaussian random landscape is additive.

The most important additive random landscapes exhibit additional regularities:

Definition 3.9. An arl is uniform if and only if
(i) the random variables ci, i ∈ M , are i.i.d. and
(ii) there exist constants a, b ∈ R such that

∑
x∈V ϑi(x) = |V |a and

∑
x∈V ϑ

2
i (x) =

|V |b holds.
A uniform random landscape is strictly uniform if there exist for any x ∈ V constants
d, e ∈ R with

∑
j ϑi(x) = d and

∑
j ϑ

2
i (x) = e.

Theorem 3.10. [154] A uniform random landscape is pseudo-isotropic if and
only if: (i) F is strictly uniform, or (ii) a = 0, E[ci] = 0, and there is a constant
e ∈ R such

∑
i ϑ

2
i (x) = e for all x ∈ V .
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3.2.2. Isotropy. Uniformity and pseudo-isotropy are still rather weak proper-
ties. In [173, 179] the notion of an isotropic random landscape was introduced as a
“statistically symmetric model”, that is, as a random landscape with a covariance
matrix that shares the symmetries of the underlying configuration space.

Definition 3.11. A random landscape is isotropic w.r.t. a partition R of V ×V
if there are constants a0 and s and a function c : R → R such that
(i) E[f(x)] = a0 and V[f(x)] = s2 for all x ∈ V , and
(ii) Cxy = c(µ) for all (x, y) ∈ µ, i.e., the covariance matrix C is constant on the
classes µ ∈ R.

The notion of isotropy for random landscapes is the analogue of stationarity for
stochastic processes. Following the conventions of Karlin and Taylor [98] our notion
of isotropy would be called “covariance isotropic”, “weakly isotropic”, or “wide sense
isotropic”. For a Gaussian random landscape the notions of (weak) isotropy and strict
isotropy coincide of course.

A partition R of V ×V is homogeneous if the diagonal {(x, x)|x ∈ V } is a class of
R. It is class degree regular if for a given class X ∈ R the number |{y ∈ V |(x, y) ∈ X}|
is independent of x ∈ V .

Theorem 3.12. [179]
(i) If F is isotropic w.r.t. a homogeneous class degree regular partition of V ×V then
F is pseudo-isotropic. (ii) If F is isotropic w.r.t. a homogeneous class degree regular
partition of V × V and E[f(x)] = a0 for all x ∈ V , then F is isotropic w.r.t. a
homogeneous coherent configuration if and only if C ∈ 〈〈R〉〉.

If A is the adjacency matrix of an undirected graph (or more generally, the
symmetric transition matrix of a Markov process on V then we say that a random
landscape is *-isotropic w.r.t. A if E[f(x)] = a0 and C ∈ 〈A〉, i.e., if C can be written
as a polynomial of A. For association schemes (such as those arising from distance
regular graphs including the hypercube) isotropy and *-isotropy are equivalent.

Theorem 3.13. [179] An arl is *-isotropic if and only the Fourier coefficients
(w.r.t. an orthonormal basis of eigenvectors of A) satisfy:
(i) E[ak] = 0 for k 6= 0,
(ii) Cov[ak, aj ] = δkjV[ak], and
(iii) V[ak] = V[aj ] if ϕj and ϕk belong to the same eigenspace.

These conditions mean that the Fourier coefficients are uncorrelated and that they
have the same mean and variance whenever they belong to the same mode (eigenspace
of A). One might also say that Fourier and Karhunen-Loève series coincide for *-
isotropic landscapes.

The class of *-isotropic models (on their natural configuration spaces) includes
among others Derrida’s p-spin Hamiltonians, the graph-bipartitioning problem, and
the TSP. On the other hand, most variants of Kauffman’s Nk-model, the XY-Hamil-
tonians, short-range Ising models, or the Graph-Matching Problem are not isotropic.
This has important implications for the structure of these landscapes, as we shall see
below.

3.2.3. Entropy. For a random landscape with measure µ we define the entropy

S = −
∫

lnµ(f)dµ(f)(3.17)

It is well known the Gaussian distributions maximize entropy. The proof for the one-
dimensional case can be found e.g. in [80, prop. 1.15]. A proof of the general case is
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provided in [177] together with a more detailed discussion of the relationships between
isotropy and entropy. The main result is

Theorem 3.14. Let F be a random landscape with positive definite covariance
matrix C with eigenvalues σ2

k > 0. Then the entropy satisfies

S ≤ SC =
1

2
|V | ln 2πe

|V | +
1

2

∑

k

ln
Λk|V |
σ2

(3.18)

It is easy to verify that SC is the entropy of a Gaussian distribution with covariance
matrix C.

The two terms in eqn.(3.18) allow for a direct interpretation. The Gaussian
entropy SC attains its maximum subject to a given variance σ2 if and only if Λk =
σ2/|V |, in which case the second term vanishes. We therefore split the entropy of a
random landscape into three contributions

S = Sσ2 + ∆SC + ∆Sng(3.19)

where ∆Sng = S − SC is the entropy loss due to deviations from a Gaussian dis-
tribution, Sσ2 is the maximal entropy with given variance σ2, and ∆SC, the second
term in eqn.(3.18), measures the entropy loss due to variations in the spectrum of
C. In particular, whenever there are correlations between different vertices, then C
is non-diagonal and hence ∆SC < 0. More precisely, ∆SC = 0 if and only if the
corresponding Gaussian random landscape is i.i.d.

3.3. Amplitude Spectra. Eqn.(3.4) decomposes non-elementary landscapes in
a natural way into a superposition of elementary ones. A natural way of quantify-
ing this decomposition is to consider the projection fΛ of the landscape f onto the
eigenspace of −∆ with eigenvalue Λ. The relative importance of the Λ eigenspace is
quantified in a natural way the ratio of the landscape variances of fΛ and f .

B(Λ) =
〈f̃Λ, f̃Λ〉
〈f̃ , f̃〉

(3.20)

where, as usual, f̃(x) = f(x) − f . We call B(Λ) the amplitude of (the eigenspace
associated with) Λ. In terms of the Fourier decomposition we obtain immediately
[174]

B(Λ) =
∑

k:−∆ϕk=Λϕk

|ak|2
/ ∑

k:−∆ϕk 6=0

|ak|2(3.21)

For convenience of notation we set B(0) = 0. Thus B(Λ) ≥ 0 and
∑

ΛB(Λ) = 1.
In many cases, in particular for landscapes on Hamming graphs, it is more con-

venient to refer to an amplitude by the interaction order (number of the eigenvalue
when eigenvalues are arranged in ascending order without counting multiplicities).
Hence one typically finds Bp instead of B(pα) for the p-th eigenspace of an α-letter
Hamming graph. Obviously, the Laplacian −∆ can be replaced for instance by a tran-
sition operator if desired. In the case of random landscapes one naturally considers
the expectation values E[B(Λ)].

Amplitude spectra are a very useful way of classifying non-elementary landscapes.
We mention just a few examples here.
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Fig. 3.1. The estimated amplitude spectrum for a GC landscape with n = 100 under mutation
[89]. The configuration space is the Hamming graph Q100

2
of sequences taken from the 2-letter

alphabet {G,C}.
The most striking feature of the amplitude spectrum of RNA landscapes is a strong difference between
even and odd modes. This can easily be explained in terms of the physics underlying RNA folding:
The major contribution of the folding energy comes from stacking of base pairs. Hence the major
changes in free energy caused by a point mutation will arise from these contributions. Since stacking
energies are influenced by an even number of nucleotides depending on the location of the affected
base pair within a stack. A recent comparison of amplitude spectra for different landscapes based
on folding short RNA chains indicates that the amplitude spectra of the free energy landscapes are
typical [175].

- Asymmetric TSPs are superpositions of symmetric and anti-symmetric TSPs
with equal weights [174]. Together with Table 3.1 this observation explains
the behavior of the TSP mentioned in the introduction: with transpositions
the symmetric and the anti-symmetric version of the TSP have very similar
Laplacian eigenvalues and hence essentially the same correlation structure. In
the case of reversals, however, we have a smooth landscape belonging to the
3rd eigenvalue for symmetric C, and an essentially uncorrelated landscape
corresponding to a highly “excited state” for the anti-symmetric component.

- The landscape of the Low Autocorrelated Binary String Problem consists of
a dominating 4-spin contribution and an asymptotically vanishing 2nd order
component [174].

- The quadratic assignment problem consists in general of three contributions
corresponding to the 3 smallest non-zero eigenvalues of the Laplacian of the
Cayley graph Γ(Sn, T ) [158].

- The free energy landscapes of two-letter RNA sequences consist predomi-
nantly of the small even modes p = 2, 4, 6, 8 [89], while the biophysically more
relevant 4-letter alphabet AUGC has an additional large p = 1 component,
Figure 3.1. See section 5.1.1 for an explanation of the RNA model.

Amplitude spectra of landscapes arising from more complicated models, such as evolv-
ing cellular automata [32], RNA folding, or electronic circuit design have been com-
puted as well [89, 158, 195]. A Gaussian random landscape is *-isotropic if and only
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if ∆SC is maximal subject to given values of V[ak] in Theorem 3.13. In this sense we
can regard *-isotropy as a “maximum entropy” condition.

4. Ruggedness and Neutrality. Ruggedness intuitively is just the opposite
of smoothness. Neutrality, i.e., the existence of neighboring configurations with the
same fitness, appears to be just a way of achieving a “smooth” landscape. It comes as
a surprise therefore, that ruggedness and neutrality will turn out to be independently
tunable parameters.

4.1. Ruggedness and Autocorrelation Functions. The ruggedness of a land-
scape is most easily quantified by measuring the correlation of fitness values in “neigh-
boring” positions. Weinberger [203, 204] suggested the following procedure. Given a
Markov process on V , we sample the fitness values f(x(t)), interpret them as a time
series, and compute the autocorrelation function of this time series. Let T be the
transition matrix of such a reversible Markov process with stationary distribution ϕ0.
The (expected) autocorrelation function along a T-random walk on V is then

r(t) =

(
∑

x∈V

|f̃2(x)|ϕ0(x)

)−1 ∑

y∈V

f̃(x)(Tt)xyf̃
∗(y)ϕ0(y) =

〈f̃ ,Ttf̃〉ϕ0

〈f̃ , f̃〉ϕ0

.(4.1)

By expanding f w.r.t. eigenvectors of T it can be shown [174] that

r(t) =
∑

λ6=1

BT(λ)λt(4.2)

where BT(λ) are the amplitudes of f w.r.t. the eigenspaces of T. Thus a landscape
f is elementary w.r.t. a transition operator T if and only if the “random walk” auto-
correlation function is exponential, r(t) = λtp.

For regular graphs T, A and −∆ have the same eigenspaces and the eigenvalues
of the transition matrix can be expressed in terms of the Laplacian eigenvalues as
λ = 1 − Λ/D, where D is the vertex degree of the graph. Thus eqn.(4.2) becomes

r(t) =
∑

Λ6=0

B(Λ) (1 − Λ/D)
t
.(4.3)

The information contained in r(s) is therefore equivalent to the amplitude spectrum.
A landscape is highly correlated if r(s) decays slowly, i.e., if B(Λ) is large for small
eigenvalues Λ. The correlation length

` =

∞∑

t=0

r(t) = D
∑

Λ6=0

B(Λ)

Λ
(4.4)

may be used to condense the correlation information into a single measure of rugged-
ness.

Most early work on RNA landscapes, e.g. [59, 188] uses a different type of cor-
relation measure based on the Hamming distance. In [174, 179] this approach is
generalized to relations on R on V × V .

Definition 4.1. Given a relation R on V ×V , the autocorrelation of f w.r.t. R
is

%(R) =
|V |2
|R|

∑
(x,y)∈R(f(x) − f)(f(y) − f)
∑

x,y∈V (f(x) − f)(f(y) − f)
(4.5)
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On Hamming graphs, for instance, it is natural to consider the distance classes,
i.e., (x, y) ∈ Rd if and only if dH(x, y) = d. Such distance-dependent correlation
functions have been considered also for some combinatorial optimization problems
[3, 4, 168, 178]. Given a partition of V × V , we may of course regard % as a function
of the classes of this partition. Furthermore, if this partition is sufficiently “nice”,
then the correlation function % itself also has useful algebraic properties. An example
is the following:

Theorem 4.2. [172] Let f be landscape on a graph Γ that has a homogeneous
coherent algebra W[Γ]. Then r(s) is exponential if and only if % is a left eigenvector
of the collapsed adjacency matrix Â.

4.2. Ruggedness and Local Optima.

4.2.1. The number of local optima. Local optima play an important role
since they might be obstacles on the way to the optimal solution. In the theory of
disordered systems, local minima of the energy function are usually called metastable
states. For the sake of definiteness we shall consider local minima, i.e., configurations
x̂ ∈ V satisfying

f(x) ≤ f(y) for all y ∈ N(x) .(4.6)

Analogous expressions for local maxima can be obtained by replacing f with −f .
The number and distribution of local minima provides an alternative approach to
landscape ruggedness.

In [141] Richard Palmer proposed to call a landscape f rugged if the number
Mf of local optima scales exponentially with some measure of “system size” such as
the number of cities in a TSP or the number of spins in spin glass. Unfortunately,
there is in general no simply way of computing Mf without exhaustively generating
the landscape. Alternatively, one can of course estimate Mf by checking whether
a randomly generated x ∈ X is a local minimum. Numerical data of this kind are
reported e.g. in [181, 180, 63]. Methods from statistical mechanics can be used,
however, to obtain the scaling of the expected value E[M] with the system size for a
variety of disordered systems, see e.g. [191, 189, 19, 73, 36, 156, 34, 46].

A non-rigorous result is particular interest in this context. The correlation length
conjecture [181] suggests that the number of local optima of a “typical” landscape can
be estimated from its correlation length `, eqn.(4.4). More precisely, one expects on
the order of one local optimum on a mountain with a radius that is determined by the
correlation length `. Numerical surveys provided good evidence that the correlation
length conjecture yields a fairly accurate prediction of the number of local optima
(meta-stable states) of isotropic elementary random landscape, see [63] for a summary
of the numerical data.

4.2.2. Basins. To each local minimum x̂ there is an associated basin B(x̂) de-
fined by means of the steepest descent algorithm: Starting with z0 = y we choose
at each step the neighbor zk+1 ∈ N(zk), f(zk+1) < f(zk) with the smallest fitness
value and repeat the procedure until it terminates when zk+1 = x̂ is a local minimum.
The notion of a basin hence may become ambiguous when there is “local neutrality”
in N(x), i.e., if there are x ∈ X and y, y′ ∈ N(x) with f(y) = f(y′). It is an open
question how the basin should be defined in full generality. It is not surprising that
the distribution of basin sizes is crucial for the performance of simple optimization
heuristics.
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Probably the simplest approach is to generate an initial configuration at random
and then to use steepest descent to reach the minimum of the basin. The question
then becomes how likely it is to hit the basin of the global optimimum by chance. Let
αj , j = 1 . . .Mf , denote the sequence of relative basin sizes |B(x̂)|/|E|.

Theorem 4.3. [65] The probability p(m) that in a sample of m randomly chosen
configurations we find at least one configuration in each basin is

p(m) =

Mf∑

k=0

(−1)Mf−k
∑

1≤j1≤...≤jk≤Mf

(αj1 + . . .+ αjk )m(4.7)

From this rather complicated expression one can deduce, for instance
Corollary 4.4. [65] Suppose Mf � 1, m = a2Mf for some a > 0 and the

relative basin sizes are uniformly distributed. Then p(m) = exp(−1/a).
In other words, sampling O(M2

f ) points at random provides a finite chance to find
the basin of the global optimum.

However, so far there does not appear to be a good method for estimating basin
sizes beyond exhaustive enumeration or random sampling. An important aspect is
the correlation between basin size and fitness of the minimum: In highly correlated
landscapes, i.e., in landscapes in which the amplitude spectrum shows large values
of B(Λ) for small values of Λ only, it appears that deeper minima have larger basins
[46, 176].

4.2.3. Barriers and Depth. The basins of local minima are separated by sad-
dle points and fitness barriers. Let x̂ and ŷ be two local minima and let p be a path
in X from x̂ to ŷ. Then the fitness barrier separating x̂ from ŷ is

f [x̂, ŷ] = min

{
max

[
f(z)

∣∣z ∈ p
] ∣∣∣∣p : path from x̂ to ŷ

}
,(4.8)

A point ẑ ∈ X satisfying the minimax condition in eqn.(4.8) is a saddle point of the
landscape. The saddle-point energies f [x̂, ŷ] form an ultra-metric distance measure
on the set of local minima, see e.g. [145, 196, 131]. This hierarchical structure can be
represented by the barrier tree of the landscape, Figure 4.1. Its leaves are the local
minima and its internal nodes correspond to saddle points.

The barrier enclosing a local minimum is the height of the lowest saddle point
that gives access to a more favorable minimum. In symbols:

B(x̂) = min
{
f [x̂, ŷ] − f(x̂)

∣∣ŷ : f(ŷ) < f(x̂)
}
.(4.9)

If B(x̂) = 0 then the local minimum x̂ is degenerate. It is easy to check that eqn.(4.9)
is equivalent to the definition of the depth of a local minimum in [103]. For meta-
stable states it agrees with the more general definition of the depth of a “cycle” in the
literature on inhomogeneous Markov chains [7, 22, 23]. The information contained in
the energy barriers is conveniently summarized by two global parameters. Let Ωf be
the set of all global minima of f and let x̂ ∈ Ωf .

D = max
{
B(s)

∣∣s /∈ Ωf
}

(4.10)

ψ = max

{
B(s)

f(s) − f(min)

∣∣∣∣s /∈ Ωf

}
(4.11)

Both parameters are easily obtained from the barrier tree. The depth D and difficulty
ψ [77, 22, 103, 160, 23] play a crucial role in theory of Simulated Annealing, see
section 6.1.
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Fig. 4.1. Example of a barrier tree of a landscape. Data are Gaussian random numbers on a Q7

2
.

The leaves 1-12 denote the local minima. The global minimum 1 is marked with an asterisk. Saddle
points are labeled with capital letters from A to G. The saddle points B, C, D, E are “degenerate”
indicating that the lowest energy paths leaving e.g. 4,5,8 run through a common exit point. Note that
all 27 = 128 configurations have pairwise distinct energies, hence there are no two distinct saddle
points with the same energy, which may exist in general. The Barrier of 5 is B(5) = E(D) − E(5),
along the lowest path from 5 to 4, while B(4) = E(E) − E(4), along the lowest path from 4 to 1∗.

4.3. Neutrality. In this section we consider exclusively landscapes on finite
simple undirected graphs with vertex set V and edge-set E. The number of neutral
neighbors of x ∈ V is

ν(x) =
∑

y∈N(x)

δ
(
f(x), f(y)

)
(4.12)

which can again be regarded as a landscape on Γ. Empirically, it turns out the
important classes of landscapes arising in evolutionary biology and the theory of
computer simulations exhibit a large degree of neutrality. We postpone a discussion
of these cases to section 5. Below we briefly discuss two mechanisms for generating
neutrality in simple models.

4.3.1. Neutrality from Symmetry. A rather trivial course of neutrality are
symmetries in the fitness function. In some cases these symmetries arise from em-
bedding a combinatorial optimization problem in a state space that is too large. We
briefly outline one example.

Given a weighted graph with an even number n of vertices and a symmetric weight
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matrix W, the task of the graph matching problem (GMP) is to determine a set ξ of
n/2 edges (ik, jk) with distinct incident vertices (a matching) such that

f(ξ) =

n/2∑

k=1

Wik ,jk(4.13)

is maximized. A matching ξ is conveniently encoded as a permutation π such that
{π(2k−1), π(2k)} is an edge of the matching. The resulting landscape is elementary on
the Cayley graph Γ(Sn, T ) with the transpositions as generators. Obviously, canonical
transpositions of the form τ2k−1,2k leave f(ξ) unchanged since they merely exchange
the endpoints of the same edge, and hence lead to the same matching.

4.3.2. Neutrality in Additive Random Landscapes. At present the most
interesting approaches to neutrality focus on random landscapes. Hence we shall
consider the random variable version of eqn.(4.12):

Definition 4.5. Let F be a random landscape. The random variable

νx : F −→ Z, νx(f) =
∑

x′∈N(x)

δ
(
f(x), f(x′)

)
.(4.14)

is called the neutrality of F in x. It is convenient to define the following parameters
for all y, y′, y′′ ∈ N(x):

cx(y) =
∣∣{j ∈ Φ | ϑj(x) 6= ϑj(y)}

∣∣(4.15)

wx(y
′, y′′) =

∣∣{j ∈ Φ | ϑj(x) 6= ϑj(y
′) ∧ ϑj(x) 6= ϑj(y

′′)}
∣∣(4.16)

Ξ = E


 1

|V |
∑

x

(
νx −

1

|V |
∑

x′

νx′

)2

 ,(4.17)

where x ∈ V is an arbitrary vertex. The quantity Ξ is the expected variance of the
family νx across a given landscape.

Theorem 4.6 below describes quite completely how additive random landscapes
behave when their coefficients cj vanish with a non-zero probability. This class of
random landscapes, so far, the only one for which a detailed analysis of neutrality is
available. Newman and Engelhardt [134] and [11] consider variations of Kauffman’s
Nk Landscape with integer coefficients, which also leads to non-vanishing neutrality
in general.

Theorem 4.6. [154] Let F be an arl with coefficients ci satisfying

µ{cj = ξ} =

{
µ0 > 0 if ξ = 0

0 otherwise.
(4.18)

Then we have

E[νx] =
∑

y∈N(x)

µ
cx(y)
0(4.19)

V[νx] =
∑

y′,y′′

µ
cx(y′)+cx(y′′)
0

[
µ
−wx(y′,y′′)
0 − 1

]
(4.20)

Ξ =
1

|V |


∑

y

V(νy) −
1

|V |
∑

y,y′

Cov(νy, νy′)


(4.21)
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+
1

|V |
∑

y

E[νy]
2 −

(
1

|V |
∑

y

E[νy]

)2

,

where 1
|V |

∑
y,y′ Cov(νy , νy′) ≥ 0.

In [154] a number of applications of Theorem 4.6 are discussed. Here we restrict
ourselves to the simplest one:

Corollary 4.7. For a p-spin model with coefficients ci satisfying eqn.(4.18) we
have

E[ν] = n µ
( n−1

p−1 )
0(4.22)

V[ν] = n(n− 1)µ
2(n−1

p−1 )
0

[
µ
−(n−2

p−2 )
0 − 1

]
+ n µ

( n−1
p−1 )

0

[
1− µ

( n−1
p−1 )

0

]
(4.23)

Ξ = 0 .(4.24)

Consider a spin-glass model where the spins are arranged on a finite-dimensional
lattice. That is, independent of the size of the system, there is only a finite number
of lattice neighbors for each spin. In short range spin glasses, the only non-zero
interaction coefficients link lattice neighbors, i.e., all but O(n) coefficients vanish. A
short range spin glass is therefore characterized by µ0 = 1 − z

np−1 , where z > 0 is a
parameter determined by the connectivity of the lattice. As a consequence we have
for every short range spin glass

lim
n→∞

E[ν/n] = e−z and lim
n→∞

V[ν/n] = 0 .(4.25)

The p-spin models are elementary w.r.t. spin-flip moves, see Table 3.1. On the
other hand, we may use µ0 to tune the degree of neutrality to any desired value.
Conversely, given a value of E[ν], we may choose p arbitrarily, thereby prescribing
any desired degree of ruggedness. Thus we have established that ruggedness and
neutrality are independent features of (random) landscapes.

5. Landscapes and Genotype Phenotype Maps.

5.1. General Considerations. In the context of RNA sequences, fitness of-
tentimes does not depend on the particular sequence of nucleotides but its actual
(spatial) structure. That is, there exists a generic partition on the configuration
space by whose elements will be called phenotypes, representing classes of genotypes.
However, note that two phenotypes do not necessarily have different fitness values.
Accordingly, when some notion of phenotype representing an ensemble of genotypes
of equal fitness exists, we can decompose the landscape as follows:

Genotypes −→ Phenotypes −→ Fitness .(5.1)

Obviously, many properties of f are closely related to properties of the genotype-
phenotype mapping which we will study in the following using Ribonuclein amino
acids (RNA) and sequential dynamical systems (SDS) as paradigms. We will call the
preimage of a fixed phenotype its neutral network and we will discuss the properties
and role of neutral networks. In the following we will provide some background on
RNA and SDS.
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5.1.1. RNA. RNA acts in viruses and cells as messenger (mRNA), carrying the
genetic information from the DNA to the translation apparatus, as transfer RNA,
or tRNA for short, it plays the role of an adapter for the synthesis of proteins and
finally as ribosomal RNAs (rRNA) being integral parts of the ribosome and exhibiting
catalytic activities in natural polypeptide synthesis [25, 26, 207]. RNA thus serves
two purposes: (i) storage of genetic information based on a one-dimensional template
that can be read and copied on request, and (ii) catalytic properties as ribozymes
which require three-dimensional structures in order to gain efficiency and specificity
in processing specific substrates. As demonstrated by Spiegelman, in vitro evolu-
tion experiments can be performed to select RNA molecules that are capable of fast
replication [125]. Indeed, replication rates are optimized in serial transfer experi-
ments [44, 96, 161]. In case one wants to optimize other properties than replication,
intervention is required making use of special techniques, which interfere with nat-
ural selection. A well known example is represented by the SELEX method – an
acronym for systematic evolution of ligands by exponential enrichment – which al-
lows one, for example, to create molecules with optimal binding constants [192]. The
SELEX procedure is a protocol which isolates high-affinity nucleic acid ligands for
a target, for example a protein, from a pool of variant sequences. Multiple rounds
of replication and selection exponentially enrich the population of species which ex-
hibits the highest affinity, i.e. which fulfill the required task. This procedure thus
allows for simultaneous screening of highly diverse pools of nucleic acid molecules for
different functionalities (for a review see, e.g. [43, 107]). Results from those experi-
ments clearly demonstrate the essential property of RNA molecules, that genotype,
i.e. the RNA sequence, and phenotype, associated to the structure, are combined in
one molecule. Computer models of an RNA toy world were pioneered by the Vienna
group [53, 155, 163, 164, 165, 93, 58] and lead to first realistic models of biological
landscapes, see section 5.2.

5.1.2. Sequential Dynamical Systems. SDS are discrete dynamical systems
that were introduced to capture basic features of computer simulations [12, 14, 132,
13]. An SDS consists of: (a) an undirected graph Y (with vertex set {1, . . . , n}),
(b) a collection of Boolean functions (Fi) that update the state of each vertex i as
a function of its neighbors while leaving all other vertex states unchanged, and (c)
an update schedule π, defining the order in which the vertices are updated. The
composition of the maps Fi in the order prescribed by the update schedule π yields
the SDS [F, π] =

∏n
i=1 Fπ(i) : Fn2 −→ Fn2 .

Example. Let Y = Circ4, be the circle graph on 4 vertices.

1 2

4 3

Suppose we have the parity function, p3 : F3
2 → F2, p3(x1, x2, x3) =

∑
i xi mod2

for each vertex. Then we obtain for the update schedule (1, 2, 3, 4) with initial state
(1, 1, 0, 0)

F1(1, 1, 0, 0) = (0, 1, 0, 0),

F2 ◦ F1(1, 1, 0, 0) = (0, 1, 0, 0),

F3 ◦ F2 ◦ F1(1, 1, 0, 0) = (0, 1, 1, 0),

F4 ◦ F3 ◦ F2 ◦ F1(1, 1, 0, 0) = (0, 1, 1, 1) ,
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(a) (b) (c)

Fig. 5.1. A particular class of SDS are sequential cellular automata (sCA). Here we display
the space time evolution of 4 different sCA over Circ75 with underlying rule 90 (applied for each
vertex) and fixed initial condition. The sequential updates monitored are: (a) (1, 2, . . . , n) (natural
order) (b) (1, 3, . . . , 75, 2, 4, . . . , 74) (odd-even) (c) (2, 4, . . . , 74, 1, 3, . . . , 75) (even-odd).

and consequently we have [FCirc4
, (1, 2, 3, 4)](1, 1, 0, 0) = (0, 1, 1, 1).

One important question is to analyze the set of all schedules π′ that lead to the
same dynamical system. In Fig. 5.1 we present examples on how the update schedule
affects the dynamics of an SDS.

5.2. RNA Secondary Structure Folding.

5.2.1. Genotypes and Phenotypes for RNA. In the following we will con-
sider RNA sequences of constant length, represented by n-tuples, (x1, . . . , xn), with
xi ∈ A, A being a finite alphabet formed by the nucleotides. The basic mutational
mechanism are random point mutations that occur with independent probability. This
motivates us to call two sequences adjacent if they differ in exactly one nucleotide.
Sequence space with this adjacency relation is referred to as Qn

α (the generalized n-
cube), where α = |A|. In Qn

α each sequence has (α− 1)n neighbors and the maximal
distance between two sequences is n.

RNA phenotypes are in general molecular structures of various resolutions. Here
we will consider the following class of RNA secondary structures [202]:

Definition 5.1. A secondary structure over n vertices {1, . . . , n}, sn, is a vertex-
labeled graph with an adjacency matrix A(sn) = (ai,k)1≤i,k≤n such that

• ai,i+1 = 1 for 1 ≤ i ≤ n− 1
• for each i there is at most a single k 6= i− 1, i+ 1 such that ai,k = 1
• if ai,j = ak,l = 1 and i < k < j then i < l < j.

We call an edge {i, k}, |i− k| 6= 1 a base pair. A vertex i connected only to i− 1 and
i+ 1 is called unpaired.

The combinatorics of secondary structures viewed as abstract graphs has been
studied in detail in Waterman et.al.[91, 162]. A particular result from asymptotic
combinatorics on secondary structures – with certain restrictions such as minimum
helix length – is that their number asymptotically becomes O(an) with a < 2 [84].
This result immediately implies that there are structures having preimages of expo-
nential size. Moreover, the RNA model allows for several generic choices of the fitness
assignment, as for example using the thermodynamic stability and the degradation
constant of the corresponding secondary structure.

5.2.2. The Intersection Theorem. We call a nucleotide sequence (xi) com-
patible w.r.t. a secondary structure sn iff for all ai,k with ai,k = 1 and k 6= i− 1, i+ 1
the nucleotides xi and xk could in principle form a Watson-Crick base pair. We de-
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note the set of compatible sequences w.r.t. some secondary structure sn by C(sn).
Note that we have

C(sn) ∼= Qn1
α ×Qn2

β

where n1, n2 are the numbers of unpaired and paired bases respectively and β is the
size of the alphabet formed by the base pairs i.e. all pairs of nucleotides that can
actually establish a chemical bond.

In terms of combinatorics, the uniqueness property of the Watson-Crick base pairs
of an RNA secondary structure corresponds to an involution (viewing the base pairs
as transpositions within the symmetric group, Sn [153, 155]).

Theorem 5.2. [155] Let s1n, s
2
n be two secondary structures with the sets of

compatible sequences C(s1n), C(s2n). Then

C(s1n) ∩ C(s2n) 6= ∅ .(5.2)

Accordingly, for any two secondary structures there exists a sequence that could
in principle realize both from which we can conclude that the corresponding neutral
networks come relatively close in sequence space. This in not true for more than two
sequences. A necessary and sufficient condition for the intersection of the compatible
sets of an arbitrary number of secondary structures to be non-empty can be found in
[52].

5.2.3. Connectivity of Neutral Networks. In the following, we will denote a
probability measure by µn where n refers to some index of the corresponding probabil-
ity space Ωn (here: a random graph) over n vertices. Let Pn be some property (event)
in Ωn. Then we write “Pn holds a.s.” if and only if we have limn→∞ µn{Pn} = 1.
The random graph model. Let Qn

α be a generalized n-cube over an alphabet of length

α. Let Γn be a subgraph of Qn
α and µn{Γn} = λ

|Γn|
n (1 − λn)α

n−|Γn|. Then we call
Qn
α,λn

the random induced subgraph model.
For RNA folding landscapes we can interpret the probability λ as the neutrality de-
gree i.e. the number of neutral neighbors, ν divided by the total number of neighbors,
(α− 1)n.

Theorem 5.3. [147] In Qn
α,λn

, let C
(1)
n be the largest component of a Qn

α-subgraph

Γn. Then there exists a constant c > 0 such that for λn ≥ c ln(n)
n

|C(1)
n | ∼ |Γn| a.s.

holds.
It may be of interest to note that theorem 5.3 establishes the existence of the giant

component indirectly. The proof gives no clue on how to construct a path between two
vertices and moreover on how long such a path might be. The explicit construction
of (short) paths between vertices of neutral networks would therefore be of particular
interest and leads to a deeper understanding on how likely such a path would be
realized in an evolutionary search. In fact the next result provides such a constructive
proof, although we will need the higher probability λn ≥ n−a with 0 ≤ a < 1/2.

Theorem 5.4. [150] Let 0 ≤ a < 1/2 and let k ∈ N with k > 1+3a
1−2a . In Qn

α,λn
let

λn be such that ∃n0 ∈ N; ∀n ≥ n0 λn ≥ n−a holds. Finally, let dQn
α

and dΓn
denote

the distances in the graphs Qn
α and Γn, respectively. Then

∀ P,Q ∈ Qn
α; lim

n→∞
µn{dΓn

(P,Q) ≤ [2k + 3] dQn
α
(P,Q)} = λ2

n
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Fig. 5.2. L.h.s.:Distribution of scaled neutral path lengths L/n on random subgraphs of Q100
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for different values of p.
R.h.s.: Average length of neutral path for different sequence length n.

holds. In particular for constant λn = λ we have

∀ P,Q ∈ Qn
α; lim

n→∞
µn{dΓn

(P,Q) ≤ 7dQn
α
(P,Q)} = λ2 .

Let us finally come to the last result on generalized n-cubes. From now on we
will assume a constant probability λ > 0.

Theorem 5.5. [147] In the random graph Qn
α,λ the probability λ∗ = 1− α−1

√
α−1

is the threshold value for connectivity. That is, a.s. no random graph is connected for
λ < λ∗ and a.s. every random graph is connected for λ > λ∗.

The above theorem is in fact well known for binary n-cubes. However the proof
in [17] is based on an estimation of some edge boundary and utilizes in this context
an isoperimetric inequality from [78].
The proof of 5.5 does in fact explicitly construct “many” independent paths which
eventually lead to the desired result. Let P,Q be arbitrary vertices of the random
graph. As in Theorem 5.4 we can reduce the case to P,Q having finite Hamming
distance. For λ > λ∗, one then shows that any vertex has an arbitrary finite number
of neighbors in the random graph. Using these neighboring vertices one proceeds
completely analogous to the proof of Theorem 5.4. To prove that λ∗ is a threshold
value we show that there exist isolated vertices in case of λ < λ∗. This can be proved
by considering the random variable counting the isolated vertices, Z. It is obvious
that Z has mean µ = λ αn (1−λ)(α−1)n and for finite µ one can show that Z becomes
in the limit of large n Poisson. From this we can conclude that a.s. for λ < λ∗ and
arbitrary natural number `, there are at least ` isolated vertices in the random graph.

Extensive computational studies on RNA landscapes indeed show that the neu-
trality ν/(α− 1)n is above the threshold value λ∗ for many RNA structures and that
there are indeed extensive (almost) connected neutral networks [75, 76].

5.2.4. Neutral Paths. Neutral paths were used to gain information about the
structure of the (connected components of) neutral networks in a series of computer
experiments on RNA folding landscapes [164, 75, 76]. In each step we attempt to find
a neutral neighbor such that the distance from the starting point increases.

In a random subgraph Γn,p of a distance regular graph Γn the probability that a
neutral path with d steps cannot be elongated any further equals (1 − p)α(d) where
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α(d) denotes the the number of “forward steps”, i.e. the number of adjacent vertices
actually increasing the distance to the starting point. For Hamming graphs Qn

α, for
instance, we have α(d) = (a− 1)(n− d). The probability that a neutral path of Γn,p
terminates after exactly d steps reads [154]:

Prob[L = d] = (1 − p)α(d) ×
d∏

d′=1

[
1− (1 − p)α(d′−1)

]
.(5.3)

Let next L(n) = diamΓn and x = d/L(n). We consider a sequence Γn of distance
transitive graphs such that L = L(n) → ∞ and α(d) can be written in the form α(d) =
D(n)ϑ(x) where D(n) is the vertex degree of Γn and ϑ : [0, 1] → [0, 1] is differentiable.
Let ωn tend to infinity arbitrarily slowly and suppose ζ = limn→∞ logD(n)/ logL(n)
exists. Then Prob[L/diamΓn = x] has a maximum at

x∗ =





1 if p = ωn logD(n)/D(n)
0 < s < 1 if p = C logD(n)/D(n) C > 1/ζ

0 if p = C logD(n)/D(n) C < 1/ζ .
(5.4)

For an example see Fig. 5.2. Neutral paths provided the first evidence for extended
neutral networks in RNA models [164].

5.3. Sequential Dynamical Systems.

5.3.1. Genotypes and Phenotypes of SDS. The schedules are the SDS-
genotypes and form the update graph U(Y ) whose vertices are permutations, written
as n-tuples without repetition: (i1, . . . , in). In order to understand what adjacency
of schedules means let us consider Y = Circ4:

4 3

1 2

Now suppose we apply the maps F1, . . . , F4 according to the orderings (1, 2, 3, 4)
and (3, 2, 1, 4). Since 2 is adjacent to 1 and 3 there exist maps F1, . . . , F4 such
that F1 ◦ F2 ◦ F3 ◦ F4 6= F3 ◦ F2 ◦ F1 ◦ F4 (see Fig. 5.3 for an illustration). That
is, in general we cannot transpose vertices 1 and 3 although they are not adjacent
in Circ4. Hence, if we want to define an adjacency relation between two permu-
tations π = (i1, . . . , in), π

′ = (j1, . . . , jn) such that for all maps F1, . . . , Fn holds∏n
r=1 Fπ(r),Y =

∏n
r=1 Fπ′(r),Y , we can at most allow the transposition of consecutive

coordinates (being Y -vertices) ik, ik+1 in (i1, . . . , in). In fact it is straightforward to
show that every transposition of consecutive non-adjacent vertices ik, ik+1 leaves the
SDS invariant [14]. Hence two schedules (i1, . . . , in), (h1, . . . , hn) are adjacent (point
mutants) if they differ by exactly one flip of two consecutive coordinates that are not
Y -neighbors (or equivalently: iff (a) i` = h`, ` 6= k, k + 1 and (b) {ik, ik+1} is not
adjacent in Y ). Note that the above definition of adjacency leads to a maximum of
n− 1 neighbors and a maximal distance of

(
n
2

)
between two schedules.

U(Y ) induces equivalence classes of schedules by identifying any two vertices that
are connected by a path in the update graph, which we will write as π ∼Y π′. As
an illustration see Fig. 5.3, where we draw the update graph of the square, Y =
Circ4. It turns out that there exists an one-to-one correspondence between sets of
equivalent schedules and the acyclic orientations of Y , ψY : Sn/ ∼Y−→ Acyc(Y ),
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The Update Graph of Circ_4

Fig. 5.3. The update graph of Circ4, U(Circ4). U(Circ4) has 24 vertices, 8 of which are
isolated points (corresponding to the Hamiltonian paths in Circ4), 4 components of size two and 2
components of size 4.

undirected base graph

acyclic orientation 1 acyclic orientation 2

Fig. 5.4. Acyclic orientations of an undirected graph are obtained by assigning directions to its
edges such that the resulting directed graph is cycle-free.

see Fig. 5.4, [148]. An acyclic orientation of an undirected graph Y is obtained by
assigning directions on its edges such that the resulting directed graph is a tree.
We denote the set of acyclic orientations of Y by Acyc(Y ). The number of acyclic
orientations of a graph Y is given by the absolute value of its chromatic polynomial at
(−1) [185]. Accordingly, acyclic orientations of Y a can be viewed as the phenotypes
of the mapping:

λY : U(Y ) −→ Acyc(Y ) .(5.5)

It is worth mentioning that λY is highly nontrivial. For example, determining the λY -
preimage of an acyclic orientation corresponds to the computation of the number of
linear orders that are compatible to a given partial order (which is naturally induced
by the acyclic orientation).

Further, it is clear that SDS by construction allow for a variety of genotype–
phenotype maps. Unlike the RNA case, where we have fixed genotypes and there are
only relatively few concepts of phenotypes, like for example secondary structures or
tertiary structures, SDS genotype–phenotype maps depend on the choice of the base
graph, Y . From this point of view RNA seems to be a particular case since of course
the secondary structure notion strongly depends on the linear sequence realizing it.
For SDS the graph Y yields both, the update graph U(Y ) whose vertices are the
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genotypes and the phenotypes that factor through acyclic orientations:

U(Y ) // AcycY

Y

bbDDDDDDDD

<<xxxxxxxxx

5.3.2. Neutral networks. Now we can ask how well can we search for a specific
schedule of a simulation, simply using some analogue of point mutations in the update
graph? Of course, this question is motivated by our findings in the RNA case. In fact,
straightforward comparison of (generalized) n-cubes Qn

α (the search space for RNA)
and the update graphs (the search space for SDS) reveals that both are excellent search
spaces. We explicitly have deg(Qn

α) = (α − 1)n, deg(U(Y )) ≤ n − 1, diam(Qn
α) = n

and diam(U(Y )) ≤
(
n
2

)
. Furthermore |Qn

α| = αn and |U(Y )| = n! holds. In view
of this similarity, it remains to analyze whether the genotype–phenotype mapping
constructed in (5.5) exhibits a significant degree of neutrality.

We will next give a concentration result for the number of acyclic orientations of
the random graph Gn,p from which we can draw the following two conclusions:
(a) the number of neutral networks is sharply concentrated around its mean
(b) the average size of a neutral network, N is given by

p−n
n∏

i=1

[1 − (1 − p)i] .(5.6)

Theorem 5.6. [148] Let Gn,p be a random graph i.e. the graph over {1, . . . , n}
where each edge is selected with independent probability p and log2(|Acyc(Gn,p)|) :
Gn,p → N the r.v. counting the number of acyclic orientations of Gn,p. Then
log2(|Acyc(Gn,p)|) is sharply concentrated around its mean, i.e. ∀λ > 0;

µn,p({ | log2(|Acyc(Gn,p)|) − E[log2(|Acyc(Gn,p)|)] | > λ
√
n(n− 1)/2 }) < 2e−λ

2/2 ,

where n[log2(n)− log2 e− log2 p− o(1)] ≤ E[log2(|Acyc(Gn,p)|)]. In particular on the
average there are p−n

∏n
i=1[1− (1− p)i] permutations (schedules) that are mapped by

λY into an acyclic orientation.
Note, that the above theorem, however, does not provide information on the

distribution of sizes of neutral networks.

6. Dynamics on Landscapes.

6.1. Landscape Structure and Simulated Annealing. Simulated annealing
[104, 77, 139] is a very general optimization method based on stochastically simulating
the slow cooling of a physical system. The basic idea is that there is a “temperature”
T , various ways to change the state of the system, and a probability of accepting a
change that depends on the difference in the fitness function. The transition matrix
is therefore of the form

Pyx = Tyx ×
{

1 if f(y) ≤ f(x)
exp

(
− (f(y) − f(x))/T

)
if f(y) > f(x)

(6.1)

The temperature is slowly decreased at each step. The sequence {Tt} is called the
cooling schedule.
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When the temperature is zero, changes are accepted only if f decreases, an al-
gorithm also known as hill-climbing or adaptive walk [66], or more generally, the
greedy algorithm or steepest descent. In this case the system soon reaches a state in
which none of the proposed changes can decrease the cost function, but this is usually
a poor optimum. Little is known about the relationships of adaptive and gradient
walks and landscape structure apart from extensive numerical studies mostly on Nk
model landscapes [100, 205, 54] and uncorrelated random landscapes [119, 118, 143].
Similar numerical studies have been performed for RNA folding landscapes [59] and
in a model of early vascular land plants [135].

Landscape characteristics such as depth and difficulty determine the asymptotic
behavior of simulated annealing.

Theorem 6.1. [77]. Simulated Annealing converges almost surely to a global
minimum if and only if the cooling schedule Tk satisfies

∑
k≥0 exp(−D/Tk) = ∞.

A general theory of “Simulated Annealing Algorithms and Markov Chains with
Rare Transitions” that emphasizes the importance of depth and difficulty for conver-
gence results and error bounds is reviewed in [23].

6.2. Quasispecies Dynamics. A particular class of dynamics that has been
studied in various landscapes is a subclass of genetic algorithms in which only mutation
but no crossover is considered. Given some landscape f : X → R some configuration,
x, is replicated with rate f(x). The replication process is error-prone and produces
the mutant configuration y with probability Qx,y. We can visualize this process as
follows

x
f(x) // Qx,y // x+ y(6.2)

The first class of landscapes in which mutation based dynamics has been investigated
were single peak landscapes. In a single peak landscape one particular configuration
has the maximum fitness while all other configurations have inferior fitness values.
Eigen, Schuster, and collaborators [40, 42, 187, 41] completely analyzed the error-
prone replication of haploid organisms (or, equivalently, biopolymer sequences) on a
single peak landscape. They discovered the genotypic error threshold phenomenon,
i.e. the existence of some critical error rate at which the population becomes unstable
and drifts essentially randomly through sequence space.

More complicated landscapes were considered beginning with the double-peak
model [166] exhibiting a trade-off between width and height of the peaks that de-
pends on the mutation rate. Error-threshold phenomena on spin-glass type landscape
are studied for instance in [190, 18]. The effects of population sizes are discussed in
[137, 2, 120, 21]. Inspired by a series of computer simulations based on RNA fold-
ing landscapes [57, 56, 59, 93] interest has recently shifted to so-called single shape
landscapes. These arise from neutral networks by assigning a high fitness value to
all sequences belonging to a particular neutral network and a low fitness to all other
configurations [152].

It could be shown that RNA mutation dynamics exhibits for single-shape land-
scapes phenotypic error thresholds [93, 152]. The phenotypic error-threshold is a
natural generalization of Eigen’s genotypic error threshold which corresponds to the
absence of neutrality. Accordingly, the error threshold phenomenon does not seem to
be an artifact of the particular choice of single peak landscapes, although many types
of fitness function do not exhibit the error-threshold phenomenon [199, 209].
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In the following we use a single-shape landscape of a SDS of the form

fa0 : Acyc(Y ) → {1, σ}, f(a) =

{
σ > 1 for a = a0

1 else.
(6.3)

as an example. We shall see that the landscape

λY : U(Y ) −→ Acyc(Y ) → {1, σ} ,

exhibits an error threshold phenomenon for mutation based replication of update
schedules.

To this end we introduce a replication-deletion process over permutations with
acyclic orientations as phenotypes. We refer to a permutation π as a master or a
non-master, respectively, depending on whether or not π is an element of λY (a0). A
population V = {vi| i ∈ NN} is a finite family of vertices. Each element of V has a
fitness of 1 if it corresponds to a non master acyclic orientation or σ otherwise. The
replication-deletion process consists of two coupled random events: an element of V
is selected with some fitness weighted probability and is then subject to replication
whereas another randomly chosen one is deleted. This process is the well known Moran
model [130]. In detail, the replication-deletion process works as follows [68]: suppose
there are m ∈ NN elements having the master–phenotype and let σ = (N + (σ −
1)m)/N . We select an ordered pair (vr, vd) from V : The first element vr has then a
master-phenotype with probability pµ = σm/(Nσ) and has a non-master phenotype
otherwise. The second element vd is chosen with uniform probability 1/(N − 1)
from V \ {vr}. The pair (vr, vd) is mapped into the pair (vr, v

∗) where vr remains
(unchanged) in the population and vd is replaced by v∗. In order to describe the
mapping (vr , vd) 7→ (vr, v

∗) we first introduce the maps

ej : Sn → Sn; ej((i1, . . . , in)) = (i1, . . . , ij+1, ij , . . . , in) .(6.4)

for all j = 1, . . . , n. The maps ej are the analogue of point mutations in the RNA
case. The mapping (vr, vd) 7→ (vr, v

∗) is now obtained as follows: We select each
ej , j = 1, . . . , n − 1 independently with probability ϕ and derive the multi-set I =
(j1, . . . , js) where ja < jb for a < b and jh ∈ {1, . . . , n− 1}. Then we set

v∗ =


∏

j∈I

ej


 (vr).(6.5)

The above mappings are considered as independent events and the time interval ∆t
which elapses between two such actions is assumed to be exponentially distributed
according to P (∆t > τ) = exp(−τNσ).

Let us now turn to the time evolution of a population of permutations. We
introduce the following metric on acyclic orientations:

d( , ) : Acyc(Y ) × Acyc(Y ) → N,
d(a, a′) = |{y ∈ E[Y ] | y has a different orientation in a and a′}|

Each element of v ∈ V has distance d(v, a0) from the “target” a0. In the following
we focus on the frequency distribution of these distances. Specifically, we generate
a random graph Y ∈ Gn,p and choose a random acyclic orientation a0 ∈ AcycY to
be the master–phenotype and set σ = 10. The initial population consists of N=1000
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Fig. 6.1. The error threshold phenomenon for the compositum fa0 ◦ λG30,p
for probabilities

p = 0.25 (l.h.s) and p = 1.0, respectively. We plot the fraction of a population of size N = 1000 in
the distance classes D = 0 (full line), D = 1 (dotted), D = 2 (short-dashed), D = 3 (long-dashed),
D = 4 (dash-dotted), etc., as a function of the mutation probability ϕ.

permutations corresponding to the master acyclic orientation, see Fig. 6.1 for two
examples.

The critical value of the mutation probability ϕ can be obtained analytically [109]:

ϕ∗ = 1/p(1− n−1
√

1/σ) .(6.6)

For error rates below the threshold we have a non-uniform distribution of the pop-
ulation, a quasispecies of schedules and above threshold the population is uniformly
distributed. In particular, for Y = Kn, i.e., p = 1 the mapping λY is bijective and
consequently, each phenotype is represented by exactly one genotype. Accordingly,
we obtain the classical single peak landscape of [41]. By modulating the edge-picking
probability p one obtains a variety of genotype–phenotype mappings. The smaller p
becomes the more selective neutrality is exhibited which allows to tolerate more and
more replication errors.

Neutrality has a number of important impacts on the dynamical behavior of
population replicating according to eqn.(6.2). The diffusive motion of the population’s
“center of gravity” is described in [37]. The diffusion constant is related to population
size N , per digit mutation rate ϕ and the fraction p of neutral neighbors [93]

D ≈ 6f(a0)ϕ

3 + 4Nϕ
np(6.7)

in the case of a 4 letter alphabet. A constant “rate of innovation” is reported in [92]
for the landscapes in which all neutral networks come close together, as in the case
of RNA. An analytical study of very simple model landscapes shows that crossing
entropy barriers is faster by orders of magnitude than the crossing of fitness barrier
[194].

6.3. Genetic Algorithms and Genetic Programming. Genetic Algorithms,
Evolutionary Strategies, and Genetic Programming [146, 15, 110, 86, 99, 55] can be
viewed as dynamical systems defined on a fitness landscape, and the interplay of land-
scape structure and performance of genetic algorithms is an area of active research.
Most of the literature on this topic, however, deals with computer simulations and
empirical connections between measures such as fitness distance correlation [95] and
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algorithm performance. We deliberately exclude this topic here and refer the reader
to recent books including [10, 71, 127, 169].

Much of the mathematical analysis of Genetic Algorithms is concerned with the
convergence of the population, see e.g. [136, 159]. Schemata, i.e., hyperplanes in Qn

a

appear to play an important role here [69, 70, 72, 114, 140, 48, 197, 198].
The fitness function f : X → R can be extended in a natural way to arbitrary

subsets of X by setting

f(A) =
1

|A|
∑

x∈A

f(x) .(6.8)

A schema is defined in terms of its fixed bits h as

H = H [h] = {x ∈ V |∀i ∈ H : xi = hi} .(6.9)

Note that we regard H ⊆ {1, . . . , n} as the index set of fixed positions. The value
f(H [h]) is called the schema-fitness. For a discussion of the Schema Theorem and the
Building Block Hypothesis we refer to the literature [1, 15, 85, 60, 86, 186]. A variety
of landscape classes can be defined in terms of schema fitnesses. We restrict ourselves
to a simple example here just to give the flavor. In a deceptive landscape an optimal
schema of some size is “contradicted” by one of its sub-schemata. Intuitively, this is
just the converse of GA-easy [113].

Definition 6.2. [208] A landscape f is deceptive if there are vertices x, y ∈ Qn
α

and index sets H ⊂ K ⊂ {1, . . . , n} such that
(i) K[x] 6= K[y],
(ii) f(H [x]) > f(H [z]) for all z with H [x] 6= H [z], and
(iii) f(K[y]) > f(K[z]) for all z with K[y] 6= K[z].
A discussion of various notions of deceptive and GA-easy functions and their

mutual relationships can be found in [177, 133].

7. Trends in Landscape Theory. In the following we will try to discuss some
developments in landscape theory, currently being under investigation, that we think
have some relevance for a more complete picture of this subject. As this section is in-
tended to be an outlook in different directions of landscape theory, our representation
is not entirely self contained. Explicitly, subsection 7.2 does require some background
on basic cohomology theory [126].

7.1. Configuration Space Topologies. Combinatorial (“discrete”) landscapes
are treated quite differently from their manifold (“continuous”) counterparts. The rea-
son is that functions on Rn, or more generally Riemannian manifolds can be analyzed
in terms of differential operators such as gradients, while finite sets are usually dis-
cussed in terms of graph-theoretical properties. It seems desirable therefore, to find
a basic framework that allows to deal with landscapes on arbitrary configurations
spaces. A suitably general language is provided by the theory of pretopological spaces.

A pretopological space consists of an arbitrary set X and a collection N (x) of
neighborhoods for every point x ∈ X , such that
(P1) N ∈ N (x) implies x ∈ N ;
(P2) N ∈ N (x) and N ⊆ N ′ implies N ′ ∈ N (x)
(P2) N,N ′ ∈ N (x) implies N ∩N ′ ∈ N (x)
Pretopologies are more general then the much more familiar topological spaces. In
fact, (X,N ) is a topological space if and only if
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Fig. 7.1. A 2-neutral landscape f : Q4

2
→

�
2 (here all black vertices map into 0 and 1,

otherwise. Note that each of the two fitness classes forms two connected subgraphs.

(T) For each N ∈ N (x) there is an N ′ ∈ N (x) such that N ∈ N (y) for all y ∈ N ′.

Directed graphs are exactly the finite pretopological spaces. Their neighbor-
hood systems consists of all sets N ′ containing x and all vertices adjacent to x,
i.e., N(x) ∪ {x} ⊆ N ′. Notions such as minima, maxima, or continuity of a func-
tion, connectedness, convergence, limits, etc. can be defined on pretopological spaces
[50, 101, 24, 102]. Their usefulness in the context of genotype-phenotype maps and
fitness landscapes is discussed in [171].

The virtue of the topological approach is that it allows a unified description of
combinatorial landscapes and potential surfaces on manifolds alike. For example, basic
notions such as local minima, saddle points, and so on can be defined in the same
way. For example, x ∈ X is a local minimum if there is a neighborhood N ∈ N (x) of
x such that f(x) ≤ f(y) for all y ∈ N . Similarly, one can use paths to define saddle
points analogous to eqn.(4.8).

7.2. An algebraic context for neutral landscapes. From an algebraic point
of view it is natural to ask a question like to following: Given a graph Y , under

which conditions is there a specific class of landscapes f on Y , and if so, how many

landscapes of this class can be constructed? Typically one would be interested in
Y -local properties such having a fixed number k of neutral Y -neighbors. Surprisingly,
it appears that no such theory has been developed for landscapes, yet. Since we will
frequently make explicit references to the underlying graph in the following, we shall
write v[Y ] and e[Y ] for its vertex and edge sets, respectively.

Call a landscape k-neutral over Y if for any j ∈ v[Y ] |{ i ∈ B1(j) | f(i) =
f(j) }| = k holds. We are interested in the collection of all k-neutral landscapes over
Y . The key idea is to consider the class of all induced subgraphs of Y and relate the
k-neutral landscapes over these to the k-neutral landscapes over Y . More precisely,
we expand k-neutral landscapes over Y -subgraphs to k-neutral landscapes over Y .
Clearly, this idea is motivated from analytic continuations of functions.

We begin our analysis by introducing what we consider to be the “local pieces”
of Y : To this end we consider the category C(Y ) whose objects are all Y -induced
subgraphs and morphisms are the inclusion maps. In other words, we have the com-
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mutative diagram

U //

!!B
BB

BB
BB

B U ′

}}{{
{{

{{
{{

Y .

We call C(Y ) the I-topology of Y . A covering of Y in the I-topology is then a multi-
set of C(Y )-morphisms (Ui −→ Y )i∈I with the property ∪Ie[Ui] = e[Y ]. Next we
consider the mapping Pk which assigns to each induced Y -subgraph the free Abelian
group generated by its k-neutral maps:

Pk(U) = Z[{f : Y → K | ∀ j ∈ U ; f is k-neutral in j }] .(7.1)

We will denote elements of P (U) by fU . For any U,U ′ ∈ C(Y ) let resU (fU ′) = fU∩U ′ ∈
P (U ∩ U ′) be the mapping fU ′ 7→ fU ′ , considered as an element of P (U ∩ U ′), which
is naturally induced by the inclusion U ∩U ′ → U ′. Accordingly, any C(Y )-morphism
induces the commutative diagram

U

��

// Pk(U)

U ′ // Pk(U ′) .

resU

OO

and Pk is a contravariant functor from C(Y ) into the Abelian groups Ab. Next we
introduce the derivation map

d(s) :
∏

∩s
h=1Uih

,ih<ih+1

Pk(∩sh=1Uih) −→
∏

∩s+1
h=1Uih

,ih<ih+1

Pk(∩s+1
h=1Uih) .

d(s) is defined as follows: d(s)((f∩s
h=1Uih

)) = (β∩s+1
h=1Uih

) where

β∩s+1
h=1Uih

=

s+1∑

g=1

(−1)gresUig
f∩h,h 6=gUih

.

The key result relating local and global information on k-neutral landscapes can be
encoded in the exactness of the following short sequence of Abelian groups:

Lemma 7.1. [149] Let Y be a connected graph and (Ui −→ Y )i∈I be a covering
of Y in the I-topology. Then we have the short exact sequence

Pk(Y ) −→d(1)
∏

i∈I

Pk(Ui) −→d(2)
∏

i<j

Pk(Ui ∩ Uj) .(7.2)

Equivalently, the contravariant functor Pk : C(Y ) −→ Ab is a sheaf.
Basically, Lemma 7.1 allows us to arbitrarily patch together consistent, local k-

neutral pieces in order to obtain a k-neutral landscape over Y . One natural algebraic
invariant of the sheaf P is its cohomology and since P encodes information on a col-
lection of Y -local k-neutral landscapes its cohomology groups will contain information
on the neutral landscapes over Y itself. The following result provides a purely alge-
braic interpretation of the k-neutral landscapes over Y as some cohomology group of
the sheaf Pk.
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Theorem 7.2. [149] Let Y be a graph. Then we have

Z[Neutk(Y )] ∼= H0(Y, Pk)(7.3)

where H0(Y, Pk) is the 0-th derived functor cohomology group of the sheaf Pk.

7.3. Landscape Morphisms. Landscape theory so far is not a relative theory
in the sense that we would understand how structural changes in the move set (or
equivalently base graph over the configurations) affect its properties. Relative Theo-
ries, however, are standard in mathematics. For instance, in algebraic geometry one
has the concept of base changes of schemes over sites or consider the mappings of
(co)homology groups of topological spaces. In the following we will discuss briefly the
particular case of morphisms between SDS as introduced in 7.3. Of course, we will
try to design SDS-morphisms such that they allow for some “information” transfer
from one SDS (viewed as a dynamical system) to another.

Definition 7.3. Let [FY , π] and [FZ , σ] be two SDS. A morphism Φ : [FY , π] −→
[FZ , σ] is a tuple (ϕ, ψ), where ϕ : Y −→ Z and ψ : G[FZ , σ] −→ G[FY , π] are graph
and digraph morhpisms, respectively.

Next we show that there are in fact nontrivial SDS-morphisms and study one
particular class, naturally induced by locally bijective and locally surjective graph
morphisms. Here, we call a graph morphism ϕ : Y −→ Z locally surjective or locally
bijective, respectively, iff

resB1,Y (i)(ϕ) : B1,Y (i) −→ B1,Z(ϕ(i))(7.4)

is surjective (or bijective) for all i ∈ v[Y ].
Let ϕ : Y −→ Z be a graph morphism. Then we call the set

Acycϕ(Y ) = {O ∈ Acyc(Y ) | ∀ z ∈ e[Z]; ∀ y, y′ ∈ ϕ−1(z); OY (y) = OY (y′)}

the set of ϕ-symmetric acyclic orientations. It is shown in [151] that there exists a
one-to-one correspondence ψϕ : AcycZ −→ Acycϕ(Y ) for locally surjective ϕ. From
this we obtain a mapping ηϕ : Sm → Sn such that

Sm

��

ηϕ // Sn

��
AcycZ

ψ′
ϕ // AcycY

is commutative. The following theorem establishes a relation between the phase spaces
of SDS that have SDS-morphisms induced by locally bijective and surjective graph
morphisms, respectively. Let [NorZ , π] denote an SDS over the graph Z, with a
Boolean Nor function on each vertex.

Theorem 7.4. Let Y, Z be connected loop free graphs, let ϕ : Y −→ Z be a graph
morphism and define

ϕ∗ : F
|Z|
2 −→ F

|Y |
2 by ϕ∗(x)k = xϕ(k) .

Then the following assertions hold:
(a) If ϕ : Y −→ Z is locally bijective and [FZ , π] and [FY , ηϕ(π)] are induced by the
set of local functions f(k) : Fk2 → F2. Then one has the following morphism of SDS

Φ = (ϕ, ϕ∗) : [FY , ηϕ(π)] −→ [FZ , π] .(7.5)
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Fig. 7.2. Illustration of Theorem 7.4 showing a phase space embedding induced by the covering
map Q3

2
→ K4. The l.h.s. shows a limit cycle of an SDS composed by Min-functions (i.e. local,

Boolean maps returning the minority value in the corresponding neighborhood and 0 in case of an
equal number of 0’s and 1’s) over K4 with the identity as update schedule. The r.h.s. shows the
corresponding SDS over Q3

2
with the schedule ηϕ(id), as defined in Theorem 7.4. It follows that the

digraph of l.h.s. can be embedded into the digraph of the r.h.s.

(b) Let ϕ : Y −→ Z be locally surjective. Then we have the following morphism of
SDS:

Φ = (ϕ, ϕ∗) : [NorY , ηϕ(π)] −→ [NorZ , π] .(7.6)

In particular, Theorem 7.4 shows how to translate any graph automorphism of Y
into a phase space isomorphism of the corresponding SDS, independent of the Y -local
functions used, Fig. 7.2. In other words, the symmetries of the base graph induce
dynamically equivalent schedules which proves that SDS can in fact be formulated
over unlabelled graphs.

Theorem 7.4 describes the relationship between two SDS over graphs that are
related by locally surjective graph morphism. A similar morphism concept would be
a step towards a relative landscape theory. For example, one might try to identify the
impact of certain classes of graph morphisms on the corresponding amplitude-spectra.

Acknowledgements. We want to thank Henning Mortveit for providing Fig. 7.2.
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