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Abstract

The population dynamics of macromolecules that reproduce by means of
template-directed ligation of two fragments are shown to be represented by
a replicator equation with a special non-linear response function. This re-
sult is obtained through detailed consideration of the mechanism of ligation
autocatalysis. In contrast to treatments which involve simplification to a
parabolic growth law and the expectation of global coexistence of all species,
we find that strong selection can take place in such systems, even when there
is slow uncatalysed synthesis of replicators. Also, systems of this type are
subject to invasion by new species that have a selective advantage. An ex-
pression is derived for the survival threshold in terms of species parameters
and it is shown that this threshold depends on the total concentration of all
species in the system. For a plausible distribution of species parameters, the
number of surviving species coexisting above the threshold increases mono-
tonically with increasing concentration. Illustrative numerical simulations
are presented.
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1. Introduction

Non-enzymatic template-directed self-replication of a biopolymer was first demon-
strated in the case of a hexanucleotide synthesized from two trinucleotides more than
a decade ago [26]. The recent discovery of a peptide that can undergo autocatalytic
synthesis from two roughly equal fragments [14] has prompted a renewed interest in
the theory of ”parabolic” autocatalytic growth patterns. Ligation-based replication
mechanisms appear to be of importance in a prebiotic setting [19]. A recent exper-
imental study using nucleic acids [13] emphasizes the importance of ligation-based
replication mechanisms for the origin of life.

It is relatively easy to derive a rate equation displaying elementary parabolic growth
behavior if one assumes that catalysis proceeds through the complementary binding
of reactant(s) to free template and that autocatalysis is limited by the tendency of
the template to bind to itself as an inactive “product inhibited” dimer [27]. However,
in achieving an understanding of what is likely to happen in systems where there
is a diverse mixture of reactants and catalytic templates, it is desirable to develop
a detailed kinetic description of as many steps in the chemical process of template
synthesis as is feasible and tractable from the mathematical point of view.

Szathmáry and Gladkih [24] simplified the dynamics of catalytic synthesis to a
parabolic growth law ẋk ∝ xp

k, 0 < p < 1 for the concentrations of the interacting
template species. The resulting model suffers from a conceptual and a technical
problem: (1) Under no circumstances does one observe extinction of a species for any
parabolic growth law, and (2) the vector fields are not Lipschitz-continuous on the
boundary of the concentration simplex, indicating that we cannot expect the model
to give a physically reasonable description of the behavior in these regions.

In this contribution we analyze a more realistic version of the “parabolic growth
law” that fixes both of these problems. Not surprisingly, we find that the resulting
dynamics can be represented as a replicator equation with a monotonically decreasing
response function. In the final section we briefly investigate a metadynamic model
that considers the introduction of new species (either mutants related to members of
the network or immigrants unrelated to the extant network members).

2. Template Directed Ligation

In a previous paper [28] we have derived the kinetic equations of a system of coupled
template-instructed ligation reactions of the form

Ai + Bj + Ckl

aijkl−−−⇀↽−−−
āijkl

AiBjCkl

bijkl−−−→ CijCkl

dijkl−−−⇀↽−−−
d̄ijkl

Cij + Ckl (1)
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By assuming that the concentrations of the intermediates are stationary (the bio-
chemical Michaelis-Menten Ansatz ), we found

d

dt
[Ckl] =

∑

ij

m̃klij[Cij] with m̃klij = [Ak][Bl]
bklijaklij

bklij + āklij
(2)

This equation for the concentration of the free templates is easily solved in the absence
of fluxes. In most cases, however, one is more interested in the time evolution of the
total concentration of the template molecules in the presence of a flux. It is convenient
therefore to rewrite Eq.(2) in terms of the total template concentrations

ckl = [Ckl]

{

1 +
∑

ij

m̃ijkl

bijkl

+
∑

ij

m̃ijkl

dijkl

}

+
∑

ij 6=kl

d̄ijkl

dijkl
[Cij][Ckl] + 2

d̄klkl

dklkl
[Ckl]

2 +
∑

ij

m̃klij

dijkl
[Cij] .

(3)

In this contribution we assume that the hetero-complexes CklCij, ij 6= kl, can be
neglected. In this case Eq.(3) simplifies considerably:

ckl = [Ckl]

{

1 +
∑

ij

m̃ijkl

bijkl

+ 2
m̃klkl

dklkl

}

+ 2
d̄klkl

dklkl

[Ckl]
2 (4)

A closer inspection of Eq.(4) shows that we may drastically simplify the notation: (a)
It is sufficient to use a single index to identify the individual species, hence we set
kl → k and ij → i. We write Aı(k) and B(k) for the building blocks of Ck = Cı(k)(k)

(b) For each template species there are only two independent parameters determining
the effective kinetics, namely

Lk = 1 + 2
m̃kk

dkk
+
∑

i

m̃ik

bik
and Qk = 2

d̄kk

dkk
(5)

Hence Eq.(3) is reduced to the simple quadratic equation, ck = Lk[Ck] + Qk[Ck]
2

relating the total concentration to the free concentration of template-species Ck. As
usual we introduce the total concentration c =

∑

j cj of the template molecules and

express concentration variables as relative abundances, xk = ck/c and yk = [Ck]/c.
The relation of xk and yk becomes xk = Lkyk + cQky

2
k in this notation. Solving for

yk we get

yk =
Lk

2cQk

[
√

4cQk

L2
k

xk + 1 − 1

]

(6)

In [28] we also translated the differential equations (2) into a system of ODEs in
terms of total concentrations. Using relative abundances and neglecting all terms
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pertaining to hetero-complexes, Eq.(44) of [28] reads

ẋk =
∑

i

m̃kiyi − xk

∑

i,j

m̃ijyj . (7)

Substituting Eq.(6) yields a system of differential equations in terms of relative con-
centrations only. The most interesting case of Eq.(7) is obtained by assuming correct
instruction. In this case the matrix M̃ is diagonal. We may then simplify the nota-
tion further by defining βk = 4cQkL

−2
k , αk = 2m̃kk/Lk and introducing the non-linear

function

ϕ(z) =
1

z
(
√

z + 1 − 1) , ϕ(0) =
1

2
. (8)

The effective kinetic constants αk and βk can be expressed in terms of the physical
parameters as follows:

αk =
2[Aı(k)][B(k)]akkbkkdkk

dkk(bkk + ākk) + [Aı(k)][B(k)]akk(2bkk + dkk)

βk =
8dkkd̄kk(bkk + ākk)

2

(

dkk(bkk + ākk) + [Aı(k)][B(k)]akk(2bkk + dkk)
)2 c = β̃kc

(9)

We remark that the definition of αk above differs from the definition in [28, Eqs.(B3,B4)],
while βk is used in the same way. Our parameter αk equals αkβk in the earlier work.

Note that the parameter αk is independent of the total concentration of templates
while βk is proportional to c. Eq.(7) now reads explicitly

ẋk = xk

(

αkϕ(βkxk) −
∑

j

αjxjϕ(βjxj)

)

(10)

This is a special form of a replicator equation with the non-linear response functions
fk(x) := αkϕ(βkxk). Eq.(10) is the subject of this investigation. If M̃ is not diagonal
but dominated by the diagonal entries we may regard Eq.(7) as being composed of a
“correct instruction” model of the form (10) and mutation-type perturbation in the
sense of [22], see also [28, sect.6].

Hence a growth law of the form ẋ ∝ xϕ(βx) replaces the troubling ẋ ∝ √
x in our

more detailed analysis [28]. We formally recover Szathmáry’s equation [24] by setting
ϕ(z) → z−1/2. A brief inspection show that ϕ is continuously differentiable for all
z > −1, i.e., it does not have the mathematical problems associated with the square
root function. The first terms of the Taylor expansion around 0 are

ϕ(z) =
1

2
− 1

8
z +

1

16
z2 −O

(

z3
)

. (11)

This expansion is also useful for evaluating ϕ numerically if |x| is very small. It is
easily verified that the response function ϕ(z) is monotonously decreasing for z > −1.
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3. Competition and Cooperation

Eq.(10) is a special case of a class of the replicator equations studied in [10]. Before
we proceed to the general case, we consider the two-species dynamics in some detail.
It is convenient to set x1 = x and x2 = 1 − x. It is sufficient then to consider only
the equation for ẋ = ẋ1. We have explicitly

ẋ = x(1 − x)
[

α1ϕ(β1x) − α2ϕ(β2(1 − x))
]

= F (x) (12)

In the light of the general results reported in [10] it becomes clear that the following
analysis is valid for any decreasing function ϕ(z).

Proposition 1. Suppose ϕ(z) is a continuously differentiable, monotonically decreas-
ing function for all z ≥ 0. Define

γ12 =
α1ϕ(β1)

α2ϕ(0)
and γ21 =

α2ϕ(β2)

α1ϕ(0)
. (13)

Then the two-species model (12) has the following generic phase portraits:

(i) If γ12 > 1 then x1 = 1 is stable, x2 = 1 is unstable, and there is no interior
rest point.

(ii) Conversely, if γ21 > 1 then x2 = 1 is stable, x1 = 1 is unstable, and there is
no interior rest point.

(iii) If γ12 < 1 and γ21 < 1 both corners are unstable and there is a unique stable
interior rest point x̂.

Proof. We may use the discussion in [28] or verify by simple direct computation that
the transversal eigenvalues at the two corner fixed points x1 = x = 1 and x2 = 1 (i.e.,
x = 0) are F ′(1) = α2ϕ(0) − α1ϕ(β1) and F ′(0) = α1ϕ(0) − α2ϕ(β2), respectively.
(i) Assume that x1 = 1 is stable, i.e., F ′(1) < 0. Thus α1ϕ(β1) > α2ϕ(0). Mono-
tonicity of ϕ implies now α1ϕ(0) > α1ϕ(β1) and α2ϕ(0) > α2ϕ(β2), α1ϕ(0) −
α2ϕ(β2) = F ′(0) > 0. Thus x2 = 1 is unstable whenever x1 = 1 is stable. Re-
turning to the definition of F (x) we find that stability of x1 = 1 implies

α1ϕ(0) ≥ α1ϕ(β1x) ≥ α1ϕ(β1) > α2ϕ(0) ≥ α2ϕ(β2(1 − x)) ≥ α2ϕ(β2)

for all x ∈ [0, 1], and hence α1ϕ(β1x) − α2ϕ(β2(1 − x)) does not have a zero in the
physically relevant range [0, 1].
Case (ii) is obtained from (i) by exchanging x1 and x2.
(iii) Since the stability of x1 = 1 implies instability of x2 = 1, and vice versa, in the
remaining case both corners are unstable. Consider

g(x) = α1ϕ(β1x) − α2ϕ(β2(1 − x)) ,

i.e., we write Eq.(12) as ẋ = x(1−x)g(x). The zeros of g are determined by the inter-
section of the decreasing function α1ϕ(β1x) and the increasing function α2ϕ(β2(1−x)).
Thus g has at most one zero x̂. We have g(0) > 1 and g(1) < 0. Continuity implies
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Figure 1. Bifurcation diagram of the the general two-species model (12). The inaccessible
part of the figure is drawn for ϕ(0) = 1/2, corresponding to Eq.(8).

that g has at least one zero in (0, 1). The unique interior fixed point x̂ is necessarily
stable because both corner equilibria are unstable. �

A schematic phase diagram for the two-species model is shown as Figure 1. Note
that we have the general relation γ12γ21 = ϕ(β1)ϕ(β2), i.e., the parameters always
satisfy 0 < γ12γ21 < ϕ(0)2. Hence there is an excluded region in the phase diagram.

Let us now turn to the general case. Restating Theorem A from [10] in our notation
immediately yields

Proposition 2. (i) There is a unique fixed point x̂ which is the ω-limit of all orbits
in the interior of the simplex Sn. (ii) If x̂ lies in the interior of a face, then it is also
the ω-limit of all orbits in the interior of its face. (iii) If the species are labeled such
that α1 ≥ α2 ≥ . . . αn, then there is an index m ≥ 1 such that x̂ is of the form x̂i > 0
if i ≤ m and x̂i = 0 for i > m. (iv) If min{βk} is large enough, then m = n, i.e., x̂
is an interior fixed point.

Remark. It is shown in [11] that Eq.(10) is a Shashahani gradient system. Further-
more, V (x) =

∏

k xpk

k , where pk are the coordinates of a globally stable fixed point is
a Ljapunov function.
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It is not hard to verify that the condition for survival of species k, item (iii) in
Proposition 2, is explicitly

αk > 2Φ(x̂) . (14)

If we sort the replicating species according to decreasing values of the Darwinian
fitness parameters, α1 ≥ α2 ≥ . . . ≥ αn, then there is an index m such that x̂ is of the
form x̂k > 0 if k ≤ m and x̂k = 0 for k > m. In other words, m species survive while
the n−m least efficient replicators die out. This behavior is completely analogous to
the reversible exponential competition case [18] where the rate constants ak play the
role of the Darwinian fitness parameters αk.

The concentration dependent values βk, on the other hand, collectively influence
the flux term and hence set the extinction threshold α∗ = 2Φ(x̂). The value of α∗ can
be computed explicitly starting from the equation αkϕ(βkxk) = Φ(x̂) by means of the
inverse function ϕ−1(z) = (1 − 2z)/z2 of ϕ. We find

x̂k =
1

Φ(x̂)2

α2
k

βk

(

1 − 2
Φ

αk

)

(15)

Using the constraint
∑

k xk = 1, we obtain

Φ(x̂) =
m
∑

k

αk

βk







√

√

√

√1 +

(

m
∑

k

α2
k

βk

)

/

(

m
∑

k

αk

βk

)2

− 1






(16)

where the sum runs over the surviving species only. Using the definition β̃k = βk/c
from Eq.(9), we set

U` =

(

∑̀

k=1

α2
k

β̃k

)

/

(

∑̀

k=1

αk

β̃k

)2

and V` =
∑̀

k=1

αk

β̃k

(17)

For given ` we can compute the threshold for the survival of the first ` species as

Φ` = c−1V`(
√

1 + cU` − 1) = U`V`ϕ(cU`) (18)

For large c we find Φ` ∼ c−1/2 → 0. Thus α` > α∗ for all `, i.e., all species survive.
As c → 0, on the other hand Φ` → U`V`/2 from below. The term

α` = U`V` =
∑̀

k=1

αkwk

/

∑̀

k=1

wk with wk = αk/β̃k (19)

is a weighted average of the Darwinian fitness parameters of the survivors; in partic-
ular U1V1 = α1. Hence α` ≤ α1 and strictly decreasing with `. Thus only the fittest
species survives for small enough c.

It is clear from Eq.(18) that Φ` decreases strictly monotonically with c because
α` > 0 and U` > 0 are independent of c, and ϕ is a strictly monotonically decreasing
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Figure 2. Fraction of surviving species as a function of the total concentration c for n = 10,
100, 1000, 10000 species with αk ∼ exp(−k/n) and β̃k chosen from Uniform[0, 1].

function. The fraction of surviving species thus increases monotonically with the total
concentration, Fig. 2.

It is interesting to note that the Darwinian fitness parameters αk determine the
order in which species reach extinction whereas the concentration dependent values
βk collectively influence the flux term and hence set the “extinction threshold”. In
contrast to Szathmáry’s model equation [24] the extended replicator kinetics leads to
both competitive selection and coexistence of replicators depending on total concen-
tration and kinetic constants.

4. Background Reactions

The Michaelis-Menten-type reaction mechanism (1) is likely to be accompanied by
a slow background reaction of the form

Ai + Bj

gij−−−→ Cij (20)

Including (20) in the kinetic equations and simplifying the indices adds a term

Bk(x) = γk − xk

∑

l

γl (21)

where γk = gı(k)(k)[Aı(k)][Bı(k)], see also [28]. This background term satisfies xk =
0 =⇒ Bk(x) > 0 everywhere on the boundary of the state space, i.e., it satisfies the
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conditions of a “mutation field” as defined in [22]. We can hence apply perturbation
theory and in particular the rest point migration theorem to determine the qualitative
effect of (20) as long as it is sufficiently slow compared to (1). Recall that a fixed point
is saturated if it is stable perpendicular to the boundary of the state space [8, 9]. In
biological terms that means that the equilibrium is uninvadable. In particular, every
stable fixed point is saturated. The rest point migration theorem describes the behav-
ior of the fixed points of a replicator equation with a small mutational perturbation:
Saturated fixed points move into the interior of the state space, while non-saturated
fixed points move into the non-physical exterior of the state space. The dynamics
of the ligation based replication dynamics therefore remains qualitatively unchanged.
The effect of the background reaction is simply to “pollute” the equilibrium with very
small concentrations of those species that would have died out in its absence.

5. Evolution of Ligation-Replication Systems

A species k is represented merely by the pair (αk, βk) in our model. Detailed
computer simulations of quasi-species-like evolution of RNA sequences have shown
that the behavior of an evolving population depends crucially on the structure of the
fitness landscape [6, 17, 12]. The reason is that periods of “stasis” are determined by
the waiting times for the occurrence of advantageous mutants. A thorough discussion
of this topic in terms of accessibility relations of phenotypes can be found in [4, 5, 21].

We take a much less ambitious point of view here. In order to identify trends in
the evolution of the ligation-replication model described here we consider mutations
of the form

(αk, βk) → (αk + ε1, βk + ε2)

where ε1 and ε2 are independent random numbers drawn from a given distribution.
Note that at this level of description we do not have an absolute time scale. Rather
we measure “time” by the number of mutation events. If we allow for large mutations,
i.e., E[|εk|] and αk are of the same order of magnitude, then we occasionally observe a
single surviving dominant mutant. Hence we only discuss the case of small mutational
effects further.

Similar metadynamic models have been considered in the past for Lotka-Volterra
models in the context of super-infection in host-parasite associations [16] or competi-
tion and biodiversity in spatially structured habitats [25]. The evolution of diversity
in general second order replicator networks is considered in [7]. One finds a slow in-
crease in the number of coexisting species with time provided the mutants are similar
to the parents, while unrelated immigrants occasionally destroy the networks com-
pletely. Although coexistence is established in a completely different way in these
networks, namely by means of positive feedback instead of product buffering, we find
similar metadynamics.
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Figure 3. Number of species in a ligation-replication system with mutation. ¿From top to
bottom: c = 10, 1, 0.1, 0.01, 0.001. The simulation is started with αk ∼ exp(−λk) and βk

taken from a uniform distribution.

In the case of mutation the number of surviving species slowly increases with time.
The diversity of the ecosystem depends strongly on the total concentration c, see
Fig. 3.

Simulations show no selection for particular values of the product-inhibition pa-
rameters β̃k. This may seem surprising since the extinction threshold is dependent on
the β-parameters. However the influence of species k’s value of βk on the threshold
value is very small, hence survival depends essentially on the value of the Darwinian
fitness parameter αk relative to the externally determined threshold value.

It is interesting to note that the spread of the fitness distribution, i.e., α1 − 2Φ(x̂),
is comparable to the expected value E[|εk|] of the mutation effect.

Instead of mutation we might also consider invasion, i.e., at each time step a
randomly generated invader (α, β) is created. When the value of α is taken from
Uniform[0, 1] then the threshold 2Φ(x̂) approaches 1. The number of species contin-
ues to grow as additional invaders accumulate in the slowly narrowing gap between
2Φ(x̂) and 1. In contrast, when the invaders have a Gaussian distribution of αk, there
is no systematic increase in the number of species. Occasionally species with a large
selective advantage occur leading to the extinction of all their competitors, Fig. 4.



Evolution in Systems of Ligation-Based Replicators 11

0 2×10
5

4×10
5

6×10
5

8×10
5

1×10
6

Invasion events

0

50

100

150

200

250

300

N
um

be
r 

of
 s

pe
ci

es

Figure 4. The number of surviving species under invasion. Thick line: uniform distribution
of αk, thin line: Gaussian distribution with mean and standard deviation 0.5, truncated at
0. The values are multiplied by 30.

6. Discussion

By using the biochemical Michaelis-Menten Ansatz we have investigated the de-
tailed mechanism of template-directed macromolecular ligation and derived a repli-
cator equation describing this form of autocatalysis. These considerations remove
certain difficulties inherent in more approximate treatments that result in a parabolic
growth law and the prediction of global coexistence of all templates in a homogeneous
system [24, 27].

In contrast, the more detailed approach shows that the possible behavior of these
systems ranges from selection of the single fittest species, reminiscent of the master
sequence in the quasi-species theory [1, 2], through coexistence of a proportion of
species with fitnesses above some threshold, to the global coexistence of all species,
as is predicted from the approximate parabolic growth law. This existence of an
extinction threshold appears to be a generic feature of replication systems with prod-
uct inhibition as it generalizes to higher order autocatalysis [20]. We note that the
concentration dependence of the selection behavior of the system shows that it is not
generally possible to reach conclusions about the generic behavior of a system just by
studying the mode of selection at low concentration.

Having given a limited demonstration of this range of behaviors previously [28],
we have now provided a rigorous, general, theoretical analysis of the phenomena and
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we can conclude that systems of competing species replicating via template-directed
ligation can meet two of the criteria requisite for true evolution: (i) strong selection
leading to the extinction of some or even almost all species, and (ii) susceptibility to
invasion by new, advantageous species.

This conclusion bears directly on the possibility of observing true selection in sys-
tems of replicators which reproduce through ligation autocatalysis [14, 26, 15]. The
current theoretical treatment is directly relevant in the case that template complemen-
tarity is strong enough that cross reactions due to hetero-duplex formation (ij 6= kl
in Eqs.(1-3)) are of no consequence. However, more important in the experimen-
tal context is the conclusion that strong selection can be expected to take place
in the presence of slow background reactions (see Section 4). Although slow back-
ground reactions will produce small concentrations of all possible species {Cij} that
can arise from the available reactants {Ai} and {Bj}, this will have only a minor per-
turbative effect on the survival threshold, except in the case of an invading template
whose kinetic parameters place it above the threshold, in which case there will be
a metadynamic shift in the selection equilibrium. Thus, our analysis predicts that
if the chemical kinetic parameters governing replication in experimental systems can
be brought within appropriate ranges, perhaps through the choice of special condi-
tions of pH, ionic strength, temperature, etc., then strong selection of some species
should be observed, even though the rate of growth (Eq.10) is, strictly speaking,
sub-exponential.

The origin of life reqires a mechanism of chemical replication in which strong selec-
tion enables some species to outgrow others, the “losers” which die out. On the other
hand, the coexistence of more than one “master sequence” is required for functional
specialisation and cooperation to emerge. Replicators which reproduce through du-
plex formation utilizing a Michaelis-Menten type of mechanism fulfil these conditions
much more easily than replicators needing the strong and specific catalytic inter-
actions characteristic of hypercyclic cooperation [3, 23]. Therefore they are good
candidates for the first molecules which may have been selectively amplified in the
prebiotic environment.
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