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Abstract

The cycle space of a strongly connected graph has a basis consisting
of directed circuits. The concept of relevant circuits is introduced as a
generalization of the relevant cycles in undirected graphs. A polyno-
mial time algorithm for the computation of a minimum weight directed
circuit basis is outlined.
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1. Introduction

Minimum length bases of the cycle space of undirected graphs have a variety of
practical applications. They play a crucial role in chemical “ring perception” [6],
structural flexibility analysis [15], electrical networks [5], and error propagation in
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2 Minumum Circuit Bases

chemical reaction networks [8]. Brief surveys and extensive references can be found
e.g. in [12, 13].
In many cases the network graphs of interest are intrinsically directed. It is natural
therefore to ask for a description of the cycle structure in terms of circuits, i.e.,
cycles that are following the directions of the arcs. This problem is of particular
interest for the analysis of the metabolites fluxed through the large metabolic reac-
tion networks of a cell. A central issue in Metabolic Flux Analysis [7], for instance,
is the computation of a certain basis of “flux modes” which, in the case of networks
of isomerization reactions [1] reduces to the problems of finding circuit bases. The
selection of a minimal weight basis can help to reduce the ambiguities of previous
methods in this field.
This contribution is organized as follows. In the following (rather lengthy) section
we introduce the basic notation and collect a number of basis properties of the
cycle spaces of directed graphs. In Section 3 we prove a variant of Berge’s theorem
stating that any strongly connected digraph has a basis consisting of all double
edges and a collection of proper circuits that correspond to a cycle basis of the
underlying undirected graph. In Section 4 we introduce the concept of “relevant
circuits” and derive their main properties. Section 5 is concerned with necessary
conditions for a circuit to be relevant. These are used in the final section for the
design of an algorithm that extracts a minimal circuit basis in polynomial time from
a relatively small collection of certain short cycles by means of a greedy procedure.

2. Preliminaries

2.1. Basic Notation

A digraph G(V, A) consists of a set V of vertices and a set A of arcs (directed
edges). We consider only graphs without self-loops and multiple arcs (unless we
explicitly use the term multi-graph), hence A can be regarded as a set of ordered
pairs of vertices, A ⊂ V × V . We write (x, y) = e ∈ A and call x the initial and y
the terminal vertex of e. We refer to both x and y as the end-points of the arc e.
A chain in G is an alternating sequence of vertices and arcs

c = (x0, e1, x1, e2, x2 . . . , eq−1, xq−1, eq, xq) (1)

such that either ek = (xk−1, xk) or ek = (xk, xk−1). In the first case we speak of a
forward arc, in the second case of a backward arc. The vertices x0 and xq are the
initial and terminal vertex of the chain, respectively.
A chain is closed if its initial and terminal vertices coincide. A chain that does not
contain the same arc twice is simple. A chain is elementary if each vertex x appears
only once with the possible exception that the initial and terminal vertices may
coincide. An elementary chain is of course always simple. The length l(c) of the
chain c is the number q of its arcs. A cycle is a closed simple chain. Consequently,
every cycle is the arc-disjoint union of a collection of elementary cycles.
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A walk is a chain in which ek = (xk−1, xk) ∈ A for all k, i.e., in which each arc
is transversed in forward direction. A path is a simple walk. A circuit is a simple
closed path. An elementary circuit is a closed elementary path and any circuit
is therefore the arc-disjoint union of elementary circuits. A cycle or circuit c is
proper if (x, y) ∈ c implies (y, x) /∈ c. Proper cycles therefore have length |c| ≥ 3.
A circuit of length 2 will be called a double edge.
The directed distance d(x, y) between two vertices x and y is the length of the
shortest path with initial vertex x and terminal vertex y or d(x, y) =∞ if no path
from x to y exists. The directed distance satisfies d(x, y) = 0 =⇒ x = y and the
directed triangle inequality d(x, y) + d(y, z) ≤ d(x, z), while it is in general not
symmetric.
If G(V, A) is a digraph, then G◦(V, A◦) denotes the underlying undirected graph
which is obtained by ignoring the direction of the arcs and identifying double edges.
In general we write B◦ for the set of edges of G◦ obtained from a set B ⊆ A of arcs
by ignoring the direction and removing duplicate edges. A directed graph G(V, A)
is weakly connected if the undirected graph G◦(V, A◦) is connected.
A directed graph G(V, A) is strongly connected if for all x, y ∈ V there is a path
from x to y and a path from y to x. Furthermore, it is well known that G(V, A)
is strongly connected if and only if G(V, A) is weakly connected and each arc is
contained in a circuit.
A cut vertex in G(V, A) is vertex x such that deleting x and all arcs incident with
x either increases the number of weakly connected components or |V \ {x}| ≤ 1. A
graph is 2-connected if it has no cut vertex. A block of G(V, A) is a maximal weakly
connected induced subgraph of G(V, A) that does not contain a cut vertex. Thus
a block is either a 2-connected component (each pair of vertex lies on a common
elementary cycle), a pair of vertices connected by an arc, or an isolated vertex.
Similarly, a cut edge is an edge whose removal disconnects the graph. A graph is
2-edge-connected if it has no cut edge.

2.2. Chains and Their Vectors

Let c1 = (x0, e1, x1, . . . , el, xl), c2 = (y0, f1, y1, . . . , fl, yl), and xl = y0. Then the
concatenation c1 ∗c2 = (x0, e1, x1, . . . , el, xl = y0, f1, f1, . . . , fl, yl) is again a chain.
For simplicity we say that two chains c1 and c2 have no interior vertex in common
if c1 ∩ c2 ∩ V does not contain a non-terminal vertex of either chain.
The following observations are obvious:
(1) Any chain can be regarded as the concatenation of its “individual steps”
(xi, ei+1, xi+1).
(2) The concatenation of two walks c1 and c2 is again a walk if and only if the
initial vertex of c2 coincides with the terminal vertex of c1.
(3) If c1 and c2 are simple paths that have no interior vertex in common then their
concatenation c1 ∗c2 is again a simple path if the initial vertex of c2 coincides with
the terminal vertex of c1.
(4) If, in addition, the initial vertex of c1 and terminal vertex of c2 coincide then
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c1 ∗ c2 is a circuit.
Let c be a simple chain in G. Then we define the arc-indexed vector C (with
coordinates C(e), e ∈ A) by

C(e) =







+1 if e = ek ∈ c and ek = (xk−1, xk)
−1 if e = ek ∈ c and ek = (xk, xk−1)
0 if e /∈ c

(2)

In other words, C(e) = +1 if e ∈ c is transversed by c in forward direction,
C(e) = −1 if e ∈ c is transversed in reverse direction and C(e) = 0 if e /∈ c. For
elementary chains there is a one-to-one correspondence between the vector C and
the chain c. This is not true in general.
The support of a vector C ∈ R

|A| will be denoted by supp(C) = {e ∈ A|C(e) 6= 0}.
If c1 and c2 are arc-disjoint chains and the initial vertex of c2 coincides with the
terminal vertex of c1 then the vector associated with the concatenation c1 ∗ c2 is
C1 + C2. This motivates the definition of the vector C for arbitrary chains c as
the sum of the vectors associated with its individual steps. In other words C(e) is
the number of times in which c transverses e ∈ A in forward direction minus the
number of times in which c transverses e in backward direction.
In the following we use the convention that a capital letter C is the vector associated
with the chain c.

2.3. The Cycle Space of a Digraph

The |V | × |A| incidence matrix H of the digraph G has the entries Hex = +1 if x
is the terminal vertex of the arc e, Hex = −1 if x is the initial vertex of e, and 0
otherwise. The cycle space C of G(V, A) is the subspace of R

|A| that is generated by
the cycles of G(V, A). An important and well-known result, see e.g. [4, sect.II.3],
is the following

Proposition 1. U ∈ C ⇐⇒ HU = 0

A basis of the cycle space can be constructed as follows: Let T be a spanning forest
of G. For each e /∈ T there is a unique cycle ce in T ∪ {e}. The cycles ce are the
fundamental cycles associated with the spanning forest T . The associated set of
vectors CT = {Ce|e ∈ A \ T} is a basis of the cycle space C, see e.g. [3, Thm.3.4].
The dimension of the cycle space is therefore

ν(G) = |A| − |V |+ c(G◦) (3)

where c(G◦) denotes the number connected components of G◦, i.e., the number
of weak components of G. Note that this is the same construction which is used
in undirected graphs. Hence we can expect a close relationship between the cycle
space of the digraph G and the underlying undirected graph G◦.
From the construction of the basis it follows that C has a basis consisting of vectors
with coordinates −1, 0, or +1. Thus any vector U ∈ C can be written in the form
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U = ξU∗ with ξ ∈ R+ and U∗ ∈ Z
|A|; hence it suffices to consider only those

elements of the cycle space with integer coordinates.

2.4. Elementary Circuits

From a practical point of view those elements of C that follow the directions of the
arcs in G are of particular interest. The special role of the circuits is emphasized
by the following simple result which will be a useful tool in our proofs:

Lemma 2. Let z be a closed path in G. Then there is a collection {Ci} of elemen-
tary circuits such that Z =

∑

i aiCi with ai ∈ N.

Proof. If each vertex in z is visited exactly once, then z is an elementary circuit
and there is nothing to show. Otherwise z contains a vertex x that is visited
more than once. Let x be the initial and terminal vertex of z. If x is visited
in an intermediate step then z is a concatenation of two closed paths z1 and z2

starting from x, and hence Z = Z1 +Z2. We consider the two parts independently
of each other. After a finite number of such decompositions x occurs only as
initial/terminal vertex of each partial closed path zi. Now let y be the first vertex
in zi that occurs more than once. We have zi = z1

i
∗ z2

i
∗ z3

i
where z1

i
is the path

from x to y, z3

i
is a the part of zi after the last occurrence of y, and z2

i
is the

closed path between the first and last occurrence of x in z. By construction z1

i
∗ z3

i

is a circuit and z2

i
is a closed path. This leads to a decomposition of z into a

concatenation of (not necessarily distinct) circuits. Thus the vector Z associated
with z is a sum of circuits with positive integer coefficients.

Remark. Using the same arguments it can be shown that each path can be written
as a concatenation of elementary paths (and circuits). Furthermore, the non-closed
paths can be concatenated to yield a single elementary non-closed path.

It is natural hence to consider the non-negative cone of the cycle space, K = {X ∈
C|Xk ≥ 0}. A vector U ∈ K is extremal if

U =
∑

k

λkXk, Xk ∈ K andλk > 0 implies Xk = ξkU with ξk > 0 , (4)

i.e., if U cannot be represented as a positive linear combination of other vectors
from the cone K.

Lemma 3. If U is extremal in K and X ∈ K such that X 6= 0 and supp(X) ⊆
supp(X); then X = µU for some µ > 0.

Proof. Let µ = min{e ∈ supp(X)|U(e)/X(e) > 0}. Then µX(e) ≤ U(e) with
equality for at least one e ∈ supp(X). Consider W = U − µX . We have W ∈ K

since W (e) ≥ 0 for all e ∈ A. Thus we can write U = W + µX . Hence W = 0 by
the extremality of U and consequently U = µX .
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The following proposition is well known, see e.g. [18]. We include the simple argu-
ment here to make this contribution self-contained.

Proposition 4. The elementary circuits of G are exactly the extremal vectors of
the cone K.

Proof. It follows immediately from Prop. 1 that the subgraph GX of G with
edge set supp(X) for any X ∈ K has neither a sink (vertex with out-degree 0) nor
a source (vertex with in-degree 0). Therefore GX contains a circuit. Consequently,
no proper subset of an elementary circuit can be the support of a vector in K, i.e.,
every elementary circuit is an extremal vector of K.
To see the converse, suppose X ∈ K is extremal. Let C be an elementary circuit
contained in supp(X), µ = mine∈C X(e), and X ′ = X − µC. We have X ′(e) ≥ 0
and hence X ∈ K. Since X is extremal we must have X ′ = 0 and thus supp(X)
must be an elementary circuit.

Theorem 5. Let X ∈ K with integer coordinates. Then there is a collection Q of
(vectors associated with) elementary circuits such that

X =
∑

C∈Q

a(C) C with a(C) ∈ N and supp(C) ⊆ supp(X) (5)

Proof. If X is extremal there is nothing to show. Otherwise, let C be (a vector of)
an elementary circuit with supp(C) ⊂ supp(X). Set q = min{X(e)|e ∈ supp(C)} ≥
1 and X ′ = X−qC. We have HX ′ = 0 by linearity, X ′(e) ≥ 0, i.e., X ′ ∈ K, q ∈ N,
and supp(X ′) ⊆ supp(X). Furthermore, X ′(e) = 0 for at least one e ∈ supp(X).
Hence we obtain the desired decomposition by repeating the argument a finite
number of times.

In the following sections we will be concerned with bases of the cycle space C. In
order to simplify the language we will simply say “a circuit C” instead of “a vector
C associated with a circuit c”. Strictly speaking, this amounts to the considering
equivalence classes of paths and circuits that yield the same vector representation.

3. Circuit Bases

Definition 1. A circuit basis is a basis of the cycle space C of G(V, A) consisting
exclusively of elementary circuits. A cycle basis is a basis of the cycle space C of
G(V, A) consisting exclusively of elementary cycles.

Lemma 2 raises the question under which conditions the circuits generate the cycle
space. This question was essentially answered by Berge [3]:

Proposition 6. [3] A strongly connected digraph G(V, A) has a circuit basis.
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The converse of Prop. 6 is easily obtained:

Theorem 7. A digraph G(V, A) has a circuit basis if and only if each block is
either strongly connected or a single arc.

Proof. The cycle space of G(V, A) is the direct sum of the blocks of G. Thus
G(V, A) has a circuit basis if each block has a circuit basis or an empty cycle space.
The only blocks with empty cycle space are isolated vertices and pairs of vertices
that are connected by a single arc. Thus consider a 2-connected block G(V, A) that
is not strongly connected. Then there is a cut Q partitioning V into two non-empty
subsets V ′ and V ′′ such that all arcs in Q point from V ′ to V ′′. Choose an arc
e ∈ Q; by 2-connectedness e is contained in a cycle C. This cycle passes from V ′

to V ′′ and back hence it cannot be a circuit. Thus C does not have a circuit basis
since e is contained in a cycle but not in a circuit.

In other words, G(V, A) has a circuit basis if and only if its strongly connected
components are linked together in a tree-like fashion by individual arcs or sequences
of individual arcs. Because of this simple structure we shall restrict ourselves to
2-connected digraphs from here on.
Double edges, i.e., circuits of length 2, play a special role, since they are a major
difference between graphs and digraphs. For instance, the cyclomatic number of
the underlying undirected graph is

ν(G◦) = |A◦| − |V |+ c(G◦) = |A| − d∗(G)− |V |+ c(G◦) = ν(G) − d∗(G) (6)

where d∗(G) denotes the number of double edges in G.

Lemma 8. Let B◦ be a cycle basis of the undirected graph G◦, and let D(G) be the
set of double edges of G. Then B = B◦ ∪ D(G) is a cycle basis of G with length

`(B) = `(B◦) + 2|D| (7)

Proof. The cycles in B◦ are of course independent cycles of G. At each double
edge, we may choose one of the arcs to be part of the B◦-cycles that contains the
double edge. This shows that the double edges in D are indeed independent of the
set of B◦-cycles. Equ.(6) hence implies that B is a cycle basis of G. Equ.(7) now
follows immediately.

The following proposition shows that double edges are in a sense superfluous:

Proposition 9. [21] If G(V, A) is strongly 2-edge-connected then one can obtain a
strongly connected graph G∗(V, A∗) by removing one of the two arcs of each double
edge.

The main result of this section is a variant of Prop. 6 (Berge’s theorem).

Theorem 10. A strongly connected digraph G(V, A) has a circuit basis consisting
of the d∗(G) double edges and ν(G◦) proper elementary circuits.
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Proof. We follow the construction of a cycle basis consisting of circuits described
in [3, Thm.3.9] and [9] with slight modifications. Clearly the theorem is correct
for |V | ≤ 2. Suppose the assertion is correct for all graphs with k < |V | vertices.
Let c∗ = (x0, e1, x1, . . . , xh−1, eh, x0) be a shortest circuit in G, h ≥ 2. Such a
circuit exists as a consequence of strong connectedness. Clearly, it is elementary.
In particular, if G contains double edges, we choose one of them.
Next we construct a multi-digraph G′ by replacing the c∗ by a single vertex x∗ and
by replacing each arc (y, z), y 6= W , z ∈ W by an arc from y to x∗ and each arc
(z, y) by an arc from x∗ to y. In particular, any double edge in G (except c∗ itself
if it is a double edge) becomes a double edge in G′. This contraction step may lead
to multiple parallel arcs incident with x∗. The resulting multi-digraph has |A| − h
edges and |V | − |W |+ 1 = |V | − h + 1 vertices, i.e., ν(G′) = ν(G′)− 1.
Instead of iterating this construction immediately as in the original proofs of Prop. 6
[3, 9] we first take care of the multiple arcs in G′. To this end we select one of the
multiple arcs, say g; if one of them is part of a double edge of G it gets selected
first. Let Cg be a shortest circuit through g in G′; Note that if g was part of a
double edge in G, then Cg is just this double edge. We store Cg in a set C∗ and
delete the arc g from G′, obtaining a multi-digraph G′′. We repeat this procedure
until, after removing q arcs, there are no further parallel arcs and we are left with
a digraph G∗. All double edges that have become part of a multiple arcs in G′ are
now contained in C∗, all other double edge are passed on as double edges to G∗.
Thus G∗ has |V | − h + 1 vertices and |A| − h− q edges, i.e., its cyclomatic number
is ν(G∗) = ν(G) − 1 − q. Clearly the circuits in C∗, which are elementary by
construction, are independent since each uniquely contains one of the q removed
parallel arcs. Consequently, the union C∗∗ of C∗ with any cycle basis of G∗ consists
of ν(G) − 1 independent cycles and hence is a basis of the circuit space of the
multi-digraph G′. The induction hypothesis assumes that there is a circuit basis
of G∗, hence C∗∗ can be chosen such that it is a circuit basis of G′.
Now recall that each edge incident to x∗ in G′ corresponds to an edge incident
with a particular vertex xk ∈ W . Thus each circuit c ∈ C∗∗ is either an elementary
circuit in G if it does not contain x∗ or it can be lifted to a unique circuit ĉ in G by
replacing x∗ with the vertices at which c “enters” and “leaves” c∗ and the unique
path within c∗ that connects these two vertices. The set

C = {ĉ|c ∈ C∗∗} ∪ {c∗} (8)

contains ν(G′) + 1 = ν(G) elementary circuit, among which are all d∗(G) double
edges. Finally, consider the equation

∑

c∈C∗∗

acĈ + a∗C∗ = 0 . (9)

First we note that C∗(e) = 0 for all e ∈ A\c∗. Thus, restricting equ.(9) to the arcs
in A\c∗ and using that the arcs c ∈ C∗∗ are linearly independent, we obtain ac = 0
for all c ∈ C∗∗. Therefore a∗C∗ = 0, and C is indeed a set of ν(G) independent
circuits of G.
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As a consequence of Thm. 7 we will restrict our attention in the remainder of this
contribution to strongly connected digraphs.

4. Minimum Circuit Bases and Relevant Circuits

For a vector Z ∈ C with integer coordinates we set

|Z| =
∑

e∈A

|Z(e)| (10)

It follows from Thm. 5 that for all Z ∈ K with integer coordinates there is a set Q
of elementary circuits such that |Z| =

∑

C∈Q a(C)|C| with a(C) ∈ N. Furthermore,
we have |Z| ≥ |supp(Z)|, with equality if and only if Z(e) ∈ {+1, 0,−1}, i.e., if and
only if Z is an edge-disjoint union of cycles. In particular, the elementary circuits
are the minimal integer-valued elements of K.

Lemma 11. Let B ⊂ K be a basis of C with integer coordinates. If B has minimum
length then it consists exclusively of elementary circuits.

Proof. Suppose Z is not an elementary circuit. Then it can be written in the
form (5), and |Z| > |C| for all C ∈ Q. Furthermore, we can replace Z by one of
the elementary circuits in Q. The resulting basis is strictly shorter than B and still
contains only vectors from the positive cone K with integer coordinates. Thus B
was not minimal.

Bases of the circuit space with minimum total length

`(B) =
∑

C∈B

|C| (11)

consisting of integer-valued vectors, C(e) ∈ Z, are of particular interest.

Definition 2. A minimum cycle (circuit) basis is a cycle (circuit) basis with min-
imal length.

Theorem 12. Let G be strongly connected and let C be a shortest circuit through
an arc e ∈ A. Then there is a minimum circuit basis that contains C. If C is the
unique shortest circuit through e, then every minimal circuit basis contains C.

Proof. Suppose B is a minimal circuit basis, and let e ∈ A. Set Be = {C ∈ B|e ∈
C} and B∗ = B \ Be. Suppose C is a shortest circuit containing e, C /∈ Be. Since
B∗ ∪ {C} is obviously an independent set, there exists a circuit C ′ ∈ Be such that
B′ = B ∪ {C} \ {C ′} is a circuit basis with length `(B ′) = `(B) + |C| − |C ′| ≤ `(B),
since we have assumed |C| ≤ |C ′|. If C is the unique shortest cycle through e we
have |C| < |C ′|, and hence `(B′) < `(B), contradicting the minimality of B. Thus
C ∈ B for every minimal circuit basis.
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The argument used for the proof of Thm. 12 is the same as in the case of minimal
cycle bases of undirected graphs [19].

Corollary 13. Every minimal circuit basis B of a strongly connected digraph con-
tains the set D of double edges.

Proof. If e ∈ A is part of a double edge, then the double edge D = {e, e ′} is the
unique shortest circuit containing e. By Thm. 12 D is an element of every minimal
circuit basis.

It is sometimes useful to consider undirected graphs as symmetric digraphs, i.e., as
digraphs in which (x, y) ∈ A implies (y, x) in A. The following result shows that
minimum cycle bases of undirected graphs and minimum circuit bases of symmetric
digraphs are essentially the same.

Theorem 14. Let G be a symmetric digraph. Then every minimum circuit basis
consists of the set D of double edges and a set B of circuits such that B◦ = {C◦|C ∈
B} is a minimum cycle basis of the undirected graph G◦.

Proof. It follows from equ.(6) that a minimum circuit basis of G cannot be
shorter than 2|D|+ L, where L is the length of a minimum cycle basis of G◦. Con-
versely, if B is a minimum circuit basis, then B \ D is a set of ν(G◦) independent
proper cycles and corresponds to a cycle basis of G◦ with the same length.
Now assume that G is symmetric, i.e., 2|D| = |A|. We will show that every mini-
mum cycle basis B◦ of G◦ can be lifted and extended to a circuit basis of G with
length L + |A|, which, as a consequence of the previous paragraph must then be a
minimum circuit basis. To this end we identify each edge e of G◦ with one of the
two arcs of G forming the corresponding double edge. This amounts to lifting B ◦ to
the digraph G. Clearly, B∗ = B◦∪D is a basis of the cycle space with the minimum
possible length. However, the cycles C ∈ B◦ will in general not be circuits.
For each “negative” edge e, C(e) = −1, of a basis cycle C, there is a double edge
D = {e, e′} ∈ D such that either C ′ = C+D or C ′ = C−D is a cycle that coincides
with C except for e, which is replaced by the forward edge e′, C′(e′) = +1. Clearly,
C and C ′ have the same length and belong to the same cycle C ◦ of the undirected
graph G◦. Since D is contained in B∗, B∗∗ = B∗∪{C ′}\{C} is a basis of the cycle
space with the same length. Repeating this argument for all negative edges in C
replaces the basis cycle C with a basis circuit C+ of the same length. Note that C
and C+ by construction belong to the the same cycle C◦ of G◦. We finally obtain
a circuit basis of G with length L + |A|.

The set of circuits of G(V, A) forms a matroid. A basis of the cycle space with
minimum weight can therefore be obtained by means of the greedy algorithm [16]
from the set of all circuits.
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Definition 3. Let (Q, J) be a matroid on Q with the set J of independent sets
and let | . | : Q → R

+ be a non-negative weight function on Q. Then A ∈ Q is
| . |-relevant if there is a minimum weight basis B of (Q, J) containing A.

Definition 3 is the obvious generalization of Vismara’s relevant cycles of a graph
[22, 23].

Theorem 15. Let (Q, J) be a matroid with a non-negative weight function | . | and
C ∈ Q. Furthermore, let

I< =
{

W ∈ J
∣

∣|W | < |C| for all W ∈ W
}

Then C is | . |-relevant if and only if W ∪ {C} ∈ J for all W ∈ J<.

Proof. Let A be | . |-relevant. Thus there is a minimum weight basis B with
A ∈ B. Let W be an independent set with |A′| < |A| for all A′ ∈ W . Now
suppose W ∪ {A} is dependent. Then there is an element A′′ ∈ W such that
B′ = (B \ {A}) ∪ {A′′} is again a basis. We have `(B ′) < `(B) contradicting the
assumption that B has minimum weight. Hence W ∪ {A} must be independent.
The converse implication follows directly from the applicability of the greedy algo-
rithm.

As an immediate consequence of Thm. 5 we may specialize Thm. 15 for circuits in
the following form:

Corollary 16. A circuit is relevant if and only if it cannot be written as linear
combination of shorter circuits.

We can now use Vismara’s approach [23] to extract the set R | . | of | . |-relevant
matroid elements by means of the modified greedy algorithm 1 from Q.

Lemma 17. Algorithm 1, R-Greedy, works.

Proof. For a set Z let us writeZ<w = {A ∈ Z
∣

∣ |A| < w}, and let B be a minimum
weight basis. Then A is a relevant element if and only if B<|A| ∪ {A} ∈ J, since
we can order Q such that A is the first element with weight |A| in the prescribed
order.

Algorithms for listing all circuits of a digraphs are available, see e.g. [14, 17]. The
number of circuits in a digraph G(V, A) may be very large, however. The straight-
forward application of the greedy algorithm or of Algorithm 1 to the set of all
circuits will therefore not be feasible in most cases. In the case of undirected
graphs one can drastically reduce the initial set of cycles [2, 13, 23]. In the fol-
lowing section we consider similar constructions for circuits in digraphs. The main
difference is that in the undirected graph one can work over GF (2) and explicitly
use the vector addition of cycles. Here we have the additional problem that the
sum of circuits is in general not a circuit.
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Algorithm 1 R-Greedy [23]

Input: (Q, J), | . |
Output: R /∗ Set of | . |-relevant elements. ∗/

1: Sort Q by weight: {A1, A2, . . . , Am}; /∗ A1 with minimal weight. ∗/

Add A0, Am+1 with |A0| = 0 and |Am+1| =∞;
2: B< ← ∅; B= ← ∅; R= ← ∅; R ← ∅;
3: for k = 1 to m + 1 do

4: if |Ak| > |Ak−1| then

5: R← R∪R=; B< ← B< ∪ B=;
6: R= ← {Ak}; B= ← {Ak};
7: else

8: if {Ak} ∪ B< ∈ J then

9: R= ←R= ∪ {Ak};
10: if {Ak} ∪ B< ∪ B= ∈ J then

11: B= ← B= ∪ {Ak};

In practice the test for linear independence X ∈ J is performed e.g. by Gauss Jordan
elimination. In order to reduce the computational effort we therefore compute a
minimal basis B “on the fly”.

5. Short Circuits

Definition 4. A circuit C is isometric if for any two of its vertices x and y it
contains a shortest path from x to y and a shortest path from y to x.
A circuit C is short if for any two of its vertices x and y it contains a shortest path
from x to y or a shortest path from y to x.
A circuit C is strictly arc-short if for each x in C there is an arc ex = (v, w) such
that C = P [w, x] + P [x, v] + (v, w) where P [w, x] and P [x, v] are shortest paths.
A circuit C is arc-short if C contains a vertex x and an arc e = (v, w) such that
C = P [w, x] + P [x, v] + (v, w) where P [w, x] and P [x, v] are shortest paths.

Lemma 18. Every isometric circuit is short. A circuit C is short if and only if it
is strictly arc-short. Every short circuit is arc-short.

Proof. It follows directly from the definition that an isometric circuit is short.
For two distinct vertices x 6= y in C, we denote the path from x to y in C by
C[x, y]. Furthermore, we write S[x, y] for a path from x to y in G that is shorter
than C[x, y] provided such a di-path exists. We call S[x, y] a shortcut from x to
y. In this case S[x, y] ∪ C[y, x] is a closed path and hence a linear combination of
shorter circuits.
Suppose C is short. First we note that in this case there cannot be a vertex in x
such that there are two vertices y, y ′ in C and shortcuts S[x, y] and S[y′, x]. Hence
we have to consider three cases for each vertex x in C:
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(i) There is no shortcut to or from x in C. Then we may choose any arc e = (u, v)
in C and see that C[x, u] and C[v, x] are shortest paths.
(ii) There is a shortcut from x to some y in C, see the l.h.s. of Fig. 1. Then there
is also a shortcut S[x, w] from x to every vertex w in C[y, x] (via S[x, y]). We can
choose y such that it is maximal in the sense that there is no shortcut S[x, w] for all
w 6= y in C[x, y]. Necessarily there is an arc e = (z, y) ∈ C[x, y]. Hence C[x, z] is a
shortest path. Since C is short C[y, x] must be a shortest path and the proposition
follows.
(iii) There is a shortcut from some y in C to x, see the r.h.s. of Fig. 1. This implies
that there is a shortcut S[w, x] for all w in C[x, y]. Again we choose y maximal
in the sense that there is no shortcut form w to x for all w 6= y in C[y, x]. Then
there is an arc e = (y, z) ∈ C[y, x]. If C[x, y] is not a shortest path then there is a
shortcut S[x, y] and C is not short.

x

y

e

x

y

z z

Figure 1: Cases (ii) and (iii) of Lemma 18. For details see text.

Conversely, suppose C is not short. We show that C is not strictly arc-short. If
C is not short then there are two vertices x 6= y in C such that there are two
shortcuts S[x, y] and S[y, x]. Now suppose there is an arc (u, v) ∈ C such that
there is neither a shortcut S[x, u] nor a shortcut S[v, x]. Since there is a shortcut
S[x, y] there are also shortcuts S[x, y ′] for all y′ in C[y, x]. Thus u cannot lie in
C[y, x]. Similarly, there is a shortcut S[y ′, x] for all y′ in C[x, y] and hence v cannot
be in C[x, y]. Hence u must be in C[x, y] \ {x, y} and v must be in C[y, x] \ {x, y}.
Thus there cannot be an arc from x to y in C.
Finally, a strictly arc-short circuit is trivially arc-short.

In undirected graphs, where a path from x to y is a path from y to x, a short cycle
is trivially isometric. In directed graphs, a circuit is isometric if for all pairs of
vertices x, y ∈ c the distance along the circuit equals the directed distance in G,
i.e., dc(x, y) = d(x, y). In general, short circuits therefore are not isometric, as the
graph G1 in Fig. 2 shows.
We observe that a double edge is obviously isometric. However, not all strongly
connected digraphs have cycle bases consisting of isometric circuits. The graph G2
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x

y

z

1 2

3

4

5

G1 G2

Figure 2: The graph G1 has ν = 4−3+1 = 2. The only circuits are the double edge
D = (x, z) and the triangle T = (x, y, z) which is not isometric since dT (z, x) =
2 < d(z, x) = 1. However, T is short, since for any two points, a shortest path in
one of the two directions runs along T .
The pentagon in G2 is not short since there are shortcuts S[3, 5] and S[5, 3]. It
is arc-short, however, because it consists of the arc (2, 1) and the shortest paths
P [1, 4] and P [4, 2].

in Fig. 2 serves a counter-example. Arc-short circuits are useful because they can
be constructed rather easily. In analogy to the undirected case only short circuits
can be part of a minimum circuit basis.

Theorem 19. If C is relevant then C is short.

Proof. Suppose C is contained in a minimum circuit basis and it is not short.
Then there are two vertices x and y in C such that C contains neither a shortest
path S[x, y] from x to y nor a shortest path S[y, x] from y to x. As above, we write
C[x, y] and C[y, x] for the paths from y to x and from x to y along C, respectively.
Note that C1 = C[x, y] + S[y, x], C2 = S[x, y] + S[y, x], and C3 = S[x, y] + S[y, x]
correspond to closed paths in G and by Lemma 2 each of them can be written as
a (positive) linear combination of circuits that are all not longer than C 1, C2, or
C3, respectively. By assumption we have |C i| < |C|, for i = 1, 2, 3. From

C = C[x, y] + C[y, x] = C1 + C2 − C3

we find that C itself can be written as a linear combination of circuits, all of which
are strictly shorter than C itself. Thus C is not short by Cor. 16, a contradiction.

Theorem 19 is the direct generalization of the analogous result for undirected graphs
[10, 13]. The notion of short circuits, however, appears to be weaker in directed
graphs than in their undirected counterparts.
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6. A Polynomial Time Algorithm for Minimum Circuit Bases

The discussion in the previous section suggests a simple generalization of Horton’s
algorithm to minimal circuit bases: (1) Find a shortest path S[x, y] between any
two vertices x and y; (2) from each (x, y) ∈ A and z ∈ V construct an arc-short
circuit Cxy,z = (x, y)+S[y, z]+S[z, x] and (3) use the greedy algorithm to extract
a basis. This procedure works in the undirected case since one can show that any
choice of a — usually not unique — shortest path S[x, y] will work [13]. The ideas
behind the proof of this result, however, are not applicable to paths in digraphs.
We may, however, exploit a trick used e.g. in [11], namely perturbing the arc weights
by a small amount in such a way that no distinct subsets of A have the same weight.
Then the greedy algorithm can select the unique minimal weight basis from the
set of arc-short cycles that can be constructed unambiguously because the shortest
path S[x, y] from x to y is unique. If the perturbation of the weights is small
enough, then the weight of a basis B is arbitrarily close to the unperturbed weight.
Therefore the unique minimum weight basis of the perturbed version is indeed one
of the minimum weight bases of the unperturbed problem.
It is easy to see that a perturbation with the desired properties indeed exists.
For instance, we label the arcs in some prescribed order by the positive integers
#e = 1, . . . , |A| and then set w(e) = 1 + ε3−#e, 0 < ε � 1. For ε < (|A||V |)−1

the difference between the length `(B) and the perturbed length w(B) of the basis
B is smaller than 1, hence the minimum weight basis is indeed a minimum circuit
basis.
In practice, the weighting scheme is of course numerically problematic. It can,
however, be replaced by a suitable lexicographic ordering of the arc sets.

Theorem 20. The complexity of computing a minimum circuit basis is at most
O(ν(G)|A|2|V |).

Proof. The collection of all shortest paths S[x, y] can be obtained e.g. by a
variant of Dijkstra’s or Floyd’s algorithm in O(|V |3) operations, see e.g. [20]. There
are at most O(|A||V |) arc-short circuits. Testing whether a candidate circuit is
elementary can be done in O(|V |) steps, this stage requires O(|A||V |2) operations.
Since |A| ≥ |V | this is less expensive than O(|A|2|V |). The greedy algorithm
requires at most O(|A||V |) tests for linear independence: each arc-short circuit
must be tested against a partial basis which contains at most O(ν(G)) circuits.
Gauss elimination thus requires O(|A|ν(G)) operations for each arc-short cycles.
Hence the worst case requirement is O(|A|2|V |ν(G)).

As in the case of minimum cycle bases of undirected graphs [13] we expect that
the algorithm performs much better for most graphs than the worst case estimate
of Thm. 20 suggests.
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1995. 95-MON-2-253.

[23] P. Vismara. Union of all the minimum cycle bases of a graph. Electr. J. Comb.,
4:73–87, 1997. Paper No. #R9 (15 pages).


