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Summary

Most functional RNA molecules have characteristic secondary structures that are
highly conserved in evolution. Here we present a method for computing the consen-
sus structure of a set aligned RNA sequences taking into account both thermody-
namic stability and sequence covariation. Comparison with phylogenetic structures
of rRNAs shows that a reliability of prediction of more than 80% is achieved for only
five related sequences. As an application we show that the Early Noduline mRNA
contains significant secondary structure that is supported by sequence covariation.
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1. Introduction

Most functional RNA molecules exhibit a characteristic secondary structure that is
highly conserved in evolution. Examples' include tRNAs (Sprinzl et al., 1998), the
rRNAs (5S, 16S, as well as 23S) (Gutell et al., 2000; Maidak et al., 2001; Van de
Peer et al., 2000; Szymanski et al., 2000; Wuyts et al., 2001), RNAseP RNA (Brown,
1999), the RNA component of signal recognition particles (scpRNA) (Gorodkin et al.,
2001), tmRNA (Williams, 2002), and group I and group II introns. This list can be
extended by numerous families of artificially selected catalytic RNAs.

It is of considerable practical interest therefore to efficiently compute the consensus
structure of a collection of such RNA molecules. Such an approach must combine the
phylogenetic information contained in the sequence co-variations as well as thermo-
dynamic stability of molecules. Combinations of phylogenetic and thermodynamic
methods for predicting RNA secondary structure fall into two broad groups: those
starting from a multiple sequence alignment and algorithms that attempt to solve the
alignment problem and the folding problem simultaneously. The main disadvantage
of the latter class of methods (Sankoff, 1985; Tabaska & Stormo, 1997; Gorodkin
et al., 1997a,b) is their high computational cost, which makes them unsuitable for
long sequences such as 16S or 23S RNAs. Most of the alignment based methods start
from thermodynamics-based folding and use the analysis of sequence covariations
or mutual information for post-processing, see e.g., (Le & Zuker, 1991; Liick et al.,
1996; R et al., 1999; Hofacker et al., 1998; Hofacker & Stadler, 1999; Juan & Wilson,
1999). The converse approach is taken in Han & Kim (1993), where ambiguities in
the phylogenetic analysis are resolved based on thermodynamic considerations.

In this contribution we describe a combined approach that integrates the thermody-
namic and phylogenetic information into a modified energy model. This has a number
of advantages: (i) It is sufficient to run the the folding algorithm only once for the
entire alignment, which significantly reduces the computational effort, in particular
for larger data sets. (ii) The reliability of prediction can be assessed fairly directly
by computing the matrix of base-pairing probabilities instead of the minimum energy
structure (or a small ensemble of sub-optimal folds). (iii) If the sequences do not
admit a common fold the method will not predict base pairs.

2. Theory

From an algorithmic point of view, RNA secondary structure prediction can be viewed
as a (complicated) variant of the mazimum circular matching problem (MCMP)
(Nussinov et al., 1978). We briefly outline the simplified model here to highlight
the idea behind the alifold algorithm. The RNA folding problem, with a realistic
energy model that is based on extensive thermodynamic measurements (Mathews
et al., 1999), can be solved (Zuker & Stiegler, 1981; McCaskill, 1990) using a similar
dynamic programming scheme as for the MCMP.

We are given a sequence of nucleotides z = (z1,...,x,) of length n and energy
parameters [3;; describing the stability of the base pair (z;,z;). In the simplest case

IReferences given only to databases compiling sequence and structure information.
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Bi; = —1 for every base pair that is formed. RNA folding of course has to obey the
logic of base pairing, thus we introduce the pairing matrix II of the sequence x with
the entries I1;; = 1 if sequence positions ¢ and j can form a base pair, i.e., if (z;,z;) is
in the set of allowed base pairs B = {GC, CG, AU, UA, GU, UG}, and II,; = 0 if x; and
x; cannot pair. The second important restriction is that a base pair must span at
least m = 3 unpaired bases, i.e., if (7, j) is a pair then j > i+m. The RNA version of
the MCMP thus consists of finding a secondary structure {2 on x that contains only
allowed base pairs (II;; = 1) and minimizes the total energy £'= 3" i\ q Bij.

Denote by E;; the best energy on the subsequence from position 7 to j. Because of the
no-crossing rule a base-pair (i, k) separates the secondary structure into a secondary
structure on the sub-sequence from i + 1 to k — 1 and a secondary structure from
k+1 to j. The latter may be empty if & = j, of course. Therefore, £;; satisfies the
following recursion:

kii4+m<k<j
=1

E;j = min {Ei,j—l; min_ Ei g1+ Eppj + @'k} (1)

The value E} ,, is the minimal energy for a secondary structure of the sequence x. The
(triangular) matrix E has O(n?) entries, and the computation of each entry requires
a minimum over O(n) terms, hence the total effort is O(n3). The structure itself, i.e.,
the list of base pairs, can be recovered by standard back-tracking from the matrix E.

While 3;; depends only on the type of the base pair (z;, z;) in the usual ansatz there is
nothing to prevent us to use a more sophisticated cost function that summarizes all our
knowledge on the base pair, not just its thermodynamic stability. Most importantly,
we can use [3;; incorporate knowledge about sequence covariations into the folding
procedure.

Assume that we are given a multiple sequence alignment A of N sequences. By A;
we denote the i-th column of the alignment, while a{* is the entry in the a-th row of
the i-th column. The length of A, i.e., the number of columns, is n. Furthermore, let
fi(X) be the the frequency of base X at aligned position ¢ and let f;;(XY) be frequency
of finding X in ¢z and Y in j.

The most common way of quantifying sequence covariation for the purpose of RNA
secondary determination is the mutual information score (Chiu & Kolodziejczak,
1991; Gutell & Woese, 1990; Gutell et al., 1992)

N ey J5OY)
Mo = 2 1) 0w 500 7w 2

Usually, the mutual information score makes no use of RNA base pairing rules. For
large datasets this is desirable, since it allows to identify non-canonical base pairs
and tertiary interaction. For the small datasets considered here, neglecting base
pairing rules does more harm (by increasing noise) than good. In particular, mutual
information does not account at all for consistent non-compensatory mutations, i.e., if
we have, say, only GC and GU pairs at positions ¢ and j then M;; = 0. Thus sites with
two different types of base pairs are treated just like a pair of conserved positions.
We argue, however, that the information contained in consistent mutations such as
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GC — GU should not be neglected when dealing with sparse data sets that contain
too little sequence variation to use phylogenetic methods alone.

As a consequence we prefer a covariance-like measure distinguished between conserved
pairs, pairs with consistent mutations, and pairs with compensatory mutations. It is
convenient to use the abbreviation

d;-lj’ﬁ:2—5(a a?’) —6(a%,d?) (3)

it i 4
where §(a’,a”) = 0 if @’ = a” and 0 otherwise. Thus d%ﬁ = 0 if the sequences a and [
d’

coincide in both aligned positions ¢ and j, d;;° = 1 if they differ in one position, and

d%ﬁ = 2 differ in both positions. In other words, df}’ﬁ is the Hamming distance of the
restriction of the sequences v and 3 to the two aligned positions ¢ and j.

A straight forward measure of covariation is then

Z d5y T TL,

a<6

> £ (XY) Dy oy fi;(XY)
( 2 ) XY XY’

where the 16 x 16 matrix D has entries Dxy xvv = dg(XY,X'Y’) if both XY € B
and X'Y" € B and Dxy xys = 0 otherwise. In passing we note that equ.(4) can be
reformulated as a scalar product, C;; = (f;;D fi;), and hence efficiently evaluated.

(4)

Both the mutual information score and the covariance score give a bonus to compen-
satory mutation. Neither score deals with inconsistent sequences, i.e., with sequences
that cannot form a base pair between positions 4, j. The simplest ansatz for this

purpose is
1 I IOé

In a multiple alignment of a larger number of sequences we have to expect one or the
other sequencing error and of course there will be alignment errors. Thus we cannot
simply mark a pair of positions as non-pairing if a single sequence is inconsistent.
Furthermore, there is the possibility of a non-standard base pair (Gutell et al., 1992).
Thus we define a threshold value B* for the combined score B;; = Cj; — ¢1¢;; and set

0 if B;; < B*
A iJ
I = {1 if B;; > B* (6)
for the pairing matrix of the alignment. The energy model for the MCMP is then
obtained as a linear combination of the average pairing energy and the combined
covariation score B;;:

zg - N Z 7,7 ] ¢2BZ] (7)
where €(ai, a$) is the pairing energy contrlbutlon for a (af, a) pair in sequence a.
In practice, “loop-based” energy models perform much better. The secondary struc-

ture is decomposed into its loops (faces of the planar drawing) and each loop is as-
signed an energy dependent on loop-type (stacked pairs, hairpin loops, interior loops,
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Figure 1. Consensus secondary structure of the 14 SRP RNA of Archea contained in SR-
PDB (Gorodkin et al., 2001) (MET.JAN., MET.VOL. MET.FER., MET.THE., MET.ACE.,
HAL.HAL., ARC.FUL., PYR.ABY., PYR.HOR., THE.CEL., PYR.OCC., AER.PER.,
SUL.SO-A, SUL.SO-B). We use this example to explain the representation of the results:
L.h.s: Mountain plot: A base pair (i, ) is represented by a slab ranging from ¢ to j. The 5’
and 3’ sides of stems thus appear as up-hill and down-hill slopes, respectively, while plateaus
indicated unpaired regions. Mountain plots Hogeweg & Hesper (1984) are equivalent to the
conventional drawing (r.h.s.) but have the advantage that (1) they can be compared more
easily, and (2) it is easier to display additional information about both sequence variation
(color code) and thermodynamic likeliness of a base pair (indicated by the height of the
slab and the size of the dot, respectively). Colors in the order red, ocher, green, cyan, blue,
violet indicate 1 through 6 different types of base pairs. Pairs with one or two inconsistent
mutation are shown in (two types of) pale colors.

The shaded mountain in the background is the phylogenetic structure taken from the SR-
PDB. The close match is easily visible. It appear higher because the phylogenetic structure
contains base pairs that correspond to deletions in the majority of the structures and be-
cause the height of base pair in the alifold structure is in general somewhat less than
p=1.0.

R.h.s.: In the conventional secondary structure graph paired positions with consistent mu-
tations are indicated by circles around the varying position. Compensatory mutations thus
are shown by circles around both pairing partners. Inconsistent mutants are indicated by
gray instead of black lettering.

multi-branched loops), size, and sequence. Up-to-date parameters for this model are
tabulated in Mathews et al. (1999). We set the total energy of an alignment-folding
as the average of loop-based energies of all sequences plus the covariance contribution.

In addition to the standard energy model for RNA folding we have therefore only
the threshold value B* and the two scaling factors ¢; and ¢5. Their default values
are listed in Tablel. In addition, non-standard base pairs can occur in the alignment
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Table 1. Additional “energy” parameters for alignment folding

Parameter Default
Threshold for pairing B* | —1.00

Relative weight of inconsistent sequences ¢ 1.00

Weight of sequence covariation [0 1.00 kcal/mol

folding for which no measured energy parameters are available. We substitute the
default stacking energy of 0.0kcal/mol in this case.

The values for B* and the linear combination coefficients ¢; and ¢, have to be esti-
mated with the expected values of the covariance term C;; and the non-bonding term

¢;; for uncorrelated random sequences in mind:
6xX0+8x1+22x2 13
(Cij) = XOFEx T e = — =~ 0.203
162 64 (8)

6
i) =1 —— =~ 0.833

Here the expectation of Cj; is computed for a sample of independent random RNA
sequences.

The reliability of thermodynamics-based RNA folding is increased substantially by
taking sub-optimal structures into account. This can be achieved either by explicitly
generating a list of suboptimal structures (as in Zuker’s mfold (Zuker, 1989) or the
program RNAsubopt from the Vienna group (Wuchty et al., 1999)) or by directly
computing the pairing probabilities for all possible base pairs. McCaskill’s partition
function algorithms (McCaskill, 1990) produces the complete matrix P of pairing
probabilities with time and memory requirements comparable to the simpler minimum
energy folding. The partition function algorithm is easily extended work with the
modified energy functions in the same way as the minimum energy folding algorithm.

The covariance term (4) can be biased if the sequences are strongly clustered. A more
accurate approach to quantifying the sequence covariations should therefore explicitly
account for the phylogenetic relationships of the aligned sequences. A maximum
likelihood approach for this task is outlined in (Gulko & Haussler, 1996). We have
experimented with a parsimony-based approach in which covariations are not counted
between all pairs of sequences but only along the edges of an inferred phylogenetic
tree. It appears, however, that at least for data sets considered in this this study the
simple covariance term yield equally good results.

3. Materials and Methods

Sequence data were retrieved from publicly accessible RNA databases: the SR-
PDB (Gorodkin et al., 2001) http://psyche.uthct.edu/dbs/SRPDB/SRPDB.html,
the non-coding RNA database Erdmann et al. (2000) http://biobases.ibch.poznan.
pl/ncRNA/, and the Ribosomal Database Project (Maidak et al., 2001) http://rdp.
cme.msu.edu/html/. The rRNA reference secondary structures were retrieved from
Robin Gutell’s Comparative RNA Web Site http://www.rna.icmb.utexas.edu/,
non-standard base pairs and pseudo-knots pairs were removed for comparison with
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predicted structures. The database names of the sequences used here are listed in the
corresponding figure captions.

Alignments were generated either automatically using clustalw (Thompson et al.,
1994) or taken from the website of the Ribosomal Database Project.

The consensus structure for a set of aligned RNA sequences was computed using the
program RNAalifold as described in detail in the previous section. Both optimal
consensus structures and base pair probabilities were computed using the simple
covariance scoring scheme (7) and the standard nearest neighbor energy model as
compiled in (Mathews et al., 1999) with the additional parameters listed in Table 1.

For the test of prediction accuracy (table 2), 16s and 23s rRNAs from E.Coli were
aligned with 1 to 8 sequences from other prokaryotic species (16s rRNA: A. tumefa-
ciens, A. globiformis, B. japonicum, Anabena. sp, B. burgdorferi, B. melitensis, B.
suis; for 23s rRNA: B. subtilis, Pir. marina, Rb. sphaero, T. thermoph, Ps. cepacia,
Syn. 6301, Tt. maritim, Myb. leprae). The predicted optimal consensus structure was
then compared to the phylogenetically reconstructed E.Coli structure, by counting
the percentage of the base pairs of reference structure present in the predicted struc-
ture. Since the E.Coli structure may contain additional non-conserved base pairs,
we also compared the “filled-in” structure obtained by computing the thermodynam-
ically most favorable structure consistent the with the consensus prediction (using
RNAfold -C).

4. Results and Discussion

Purely phylogenetic methods can be used to derive conserved elements or a consensus
structure only when a sufficiently large number of sequences is available, while the
accuracy of purely thermodynamic structure prediction is often not satisfactory. In
contrast, the alignment folding procedure introduced in this contribution predicts
over 80% of the base pairs correctly from a dataset of only 5 sequences with an
automatically generated alignment, as the examples in Fig. 2 show, see also Tab. 2.

The consensus structure of a set of RNA sequences has to be distinguished from the
collection of structural features that are conserved. Whenever there are reasons to
assume that the structure of the whole molecule is conserved one may attempt to
compute a consensus structure. On the other hand, consensus structures are unsuit-
able when a significant part of the molecule has no conserved structures. RNA virus
genomes, for instance contain only local structural patterns (such as the IRES in
pircorna viruses or the TAR hairpin in HIV). Such features can be identified with a
related approach that is implemented in the algorithms alidot and pfrali (Hofacker
et al., 1998; Hofacker & Stadler, 1999) and requires structure prediction for each in-
dividual sequence. The automatic search for conserved structures should not return
false positives and hence has been designed not to predict secondary structures at all
unless structure is unambiguously preserved among the sequences. For small sets of
sequences pfrali therefore predicts only about half of the base pairs of the phyloge-
netic structure and leaves out regions with little sequence variation and ambiguous
thermodynamic structure predictions (data not shown).
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Figure 2. Mountain representation of the secondary structure of E.coli rRNAs. Upper
panel: 16S RNA (A.globiformis, Anabaena.sp, A.tumefaciens, B.japonicum, E.coli), lower
panel 23S RNA (B.subtilis, T.thermoph, Pir.marina, Rb.sphaero, E.coli).

Green line: predicted mfe structure; black line: phylogenetic structure; solid colored area:
RNAalifold prediction for E.coli from alignment of 5 sequences.
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Table 2. Quality of Predictions.

We list the percentage of the base pairs of the phylogenetically reconstructed structure
for E.Coli rRNA that are correctly predicted. Data are compared for two alignments and
different number N of aligned sequences, both for the raw RNAalifold prediction and the
filled-in structure (see text).

Clustal W RDB Clustal W RDB
N | raw filled | raw filled || raw filled | raw filled
E.coli 16sRNA 23sRNA
11472 N/A |[47.2 N/A 522 N/A 522 N/A
2164.7 67.1|73.8 734 | 71.0 69.4 |83.7 82.6
31741 772|781 799 | 71.2 73.7 |85.3 84.9
51745 81.2 852 86.6 | 76.2 82.4 [86.6 86.8
9|74.1 821|859 88.6 | 74.6 82.6 |86.1 &86.2
$ & £ & & & & & 8 Y

wl B

Figure 3. Mountain plots for 9 enod40 sequences (PSENOD40, TRJ00268, MSENODA40,
MTENOD40R, MSENOD40R, AF013594, PVENOD40, GMENOD401, SRENOD40) taken
from the database Erdmann et al. (2000). The short ORF is marked by a gray bar. L.h.s.:
consensus structures from RNAalifold; r.h.s: pfrali prediction. Both methods unambigu-
ously detect a stem-loop structure (alignment positions 272-450), and the hairpin structure
(468-500) which is located within the longer ORF II. The structure (156-190) partially over-
laps with ORF I; it is not well predicted by pfrali. The location of the putative RNA
secondary structure described in Fig. 7 of Sousa et al. (2001) is marked by the narrow bar.

In Fig. 3 we compare the RNAalifold consensus structure with the conserved parts
of the structure as predicted by pfrali for the mRNAs of the early nodulin gene
enod40 from nine plant species. Enod40, which is coding for an RNA of about 700nt,
is expressed in the nodule primordium developing in the root cortex of leguminous
plants after infection by symbiotic bacteria. Translation of two sORFs (I and II, 13
and 27 amino acids, respectively) present in the conserved 5" and 3’ regions of enod40

was required for this biological activity Sousa et al. (2001).
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In Sousa et al. (2001) a stem-loop structure located just after the first ORF is pro-
posed. Its location, indicated by a narrow bar in Fig. 3, coincides with a signal in
the pfrali prediction but does not appear in the RNAalidot consensus structure.
A comparison of this element between different enod40 transcripts (Fig. 7 of Sousa
et al. (2001)) shows that there is a thermodynamically exceptionally stable stem-loop
structure that exhibits so much structural variation that only a few base pairs are
conserved among all sequences. Hence, there is no (thermodynamically reasonable)
consensus structure which explains the absence of a signal in the RNAalidot compu-
tation. The pfrali program, on the other hand, picks up the few conserved pairs
and reports a structural element with many “holes”.

Both methods agree on a number of other conserved secondary structure elements in
enod40 RNAs that are supported by a significant number of sequence covariations.
Whether some or all of these structural features are functional is unknown at present.
One likely possibility is that they might take part in localization of mRNA translation
Oleynikov & Singer (1998).

Availability. Source code implementing the method described here will be dis-
tributed with the next release of the Vienna RNA Package, a corresponding fold server
can be found at http://rna.tbi.univie.ac.at/.
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