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Abstract. Fitness landscapes are a valuable concept in evolutionary biology, com-
binatorial optimization, and the physics of disordered systems. A fitness landscape
is a mapping from a configuration space that is equipped with some notion of adja-
cency, nearness, distance or accessibility, into the real numbers. Landscape theory has
emerged as an attempt to devise suitable mathematical structures for describing the
“static” properties of landscapes as well as their influence on the dynamics of adapta-
tion. This chapter gives a brief overview on recent developments in this area, focusing
on “geometrical” properties of landscapes.

1 Introduction

The concept of a fitness landscape originated in theoretical biology more than
seventy years ago [1]. It can be thought of as a kind of “potential function”
underlying the dynamics of evolutionary optimization. Implicit in this idea is
both a fitness function f that assigns a fitness value to every possible genotype
(or organism), and the arrangement of the set of genotypes in some kind of
abstract space that describes how easily or frequently one genotype is reached
from another one.

The same abstract construction arises in a natural way in the physics of
disordered systems. Spin-glasses, for example, can be cast into the same form
[2,3]. Each spin configuration is assigned an energy by virtue of the Hamiltonian
that specifies the model; the dynamic properties invoke a collection of transitions
between configurations. In biophysics energy landscapes govern the folding of
biopolymers, including proteins [4–6] and nucleic acids [7,8]. Conceptually, there
is a close connection with the potential energy surfaces of theoretical chemistry
[9,10]: As a consequence of the validity of the Born-Oppenheimer approximation,
the PES provides the potential energy U(R) of a molecule with n atoms as a
function of its nuclear geometry R ∈ R

3n. Electoral Landscapes are used to
explain party platform behavior in spatial voting models [11,12].

In combinatorial optimization the fitness function is usually referred to as the
cost function, and a move-set allows to inter-convert the elements of the search

space [13]. The application of evolutionary models to combinatorial optimization
problems has lead to the design of so-called evolutionary algorithms such as
Genetic Algorithms, Evolution Strategies, and Genetic Programming [14–18].

The intuitive notion of ruggedness is closely related to the difficulty of op-
timizing (or adapting) on a given landscape. It depends obviously on both the
fitness function and the geometry of the search space, which is induced by the
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search process. On the other hand, simulations of adaptation of biologically real-
istic landscapes derived from RNA folding [19] have shown that neutrality, that
is, the occurrence of adjacent configurations with the same fitness, can play a
dominating role in evolutionary dynamics as well.

One of the main topic in “landscape theory”, and the focus of this contri-
bution, is therefore a detailed understanding of the geometric features of land-
scapes: Mountain massives, valleys, basins, peaks, plains and ridges in multi-
dimensional combinatorial objects may look quite different from our 3D expe-
rience and oftentimes require a mathematical description in terms of algebraic
combinatorics rather than calculus.

Landscapes can also be studied from a “dynamical” point of view, focusing
on the features of a dynamical system, for instance an evolving population, that
uses the landscape as its substrate. The challenge for a theory of landscapes

is therefore to link these two points of views, for instance by determining how
geometric properties influence the dynamical behavior.

Given that landscapes arise naturally in many different fields, it is not sur-
prising that the concept of a fitness landscape has emerged as a unifying theme
in the literature on complex systems [17,20–22]. In formal terms, a landscape
consists of three ingredients

1. A set X of configurations,
2. a notion X of neighborhood, nearness, distance, or accessibility on X , and
3. a fitness function f : X → R,

The set X together with the “structure” X forms the configuration space. The
definition of X is purposefully left vague at this point as we will elaborate on
the structure X in section 2. A common source of confusion is the fact that
biologists like to maximize fitness on their landscapes, while physicists minimize
energy on theirs. Obviously, replacing f by −f maps one picture into the other.

Despite its wide range of applicability, the usefulness of fitness landscapes is
limited to certain situations. Let us consider a general evolutionary process as
an example for the limitations of the landscape concept. Since genetic variation
is generated independently from the natural selection acting on it, the generic
structure of an evolutionary model in discrete time can be written as

x′ = S (x,w) ◦ T (x, t) , (1)

where x is e.g. the vector of haplotype frequencies [23,24]. As usual, ◦ denotes
the Schur (Hadamard, component-wise) product of vectors. The transmission
term T (x, t) describes the probability of transforming one type into another one
by mutation and/or recombination [25] and hence determines the structure X on
the set X of all vectors of haplotype frequencies. In genetics this structure can
be understood in terms of certain classes of algebraic structures [26] that depend
on the details of transmission mechanism represented by the paramters t. The
term S(x,w) describes the selection forces acting on x. The parameters w form
the fitness function, since they can be regarded as a mapping from the set of
types into the real numbers. Whether or not the dynamics of equ.(1) is consistent
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with or determined by a fitness landscape, depends on the particularities of of
the selection term. Setting S(x,w) = x◦F (x,w), or in component-wise notation,
Sk(x,w) = xkFk(x,w), we have selection proportional to a growth-rate function

Fk for each type [27]. We suggest that one should speak about fitness landscapes

only when Fk(x,w) ≈ f(k), where f(k) is a constant that is characteristic for the
type k, since otherwise the fitness (growth rate) of type k depends on and changes
with the frequencies of all other types. Models of co-evolution are sometimes
viewed as “coupled dancing landscapes” [17] where a species A changes the
landscape of species B, and B changes the landscape of A, at the same time scale
at which both species adapt to their respective landscapes. We prefer here to
limit the term fitness landscape to situations in which (1) fitness is characteristic
of a type and (2) constant in time, at least approximately.

2 Configuration Spaces

There appear to be three distinct approaches to organizing the configuration
space.

1. In computer science one typically specifies a “move set” or “genetic operator”
that inter-converts one or more configurations into a new one.

2. Sometimes transition probabilities are specified that describe how frequently
a system attempts to move from one configuration to another one.

3. A rigorous mathematical analysis often starts with specifying a metric dis-
tance or a topology on X .

2.1 Move Sets

In its most abstract form a move set assigns to a k-tuple (x1, . . . , xk) ∈ Xk of
“parents” a list N(x1, . . . , xk) ⊆ X of “children”. We will restrict our attention
here to the two most commonly used move-set types, mutation and recombina-
tion.

A mutation operator simply assigns a set N(x) of “accessible neighbors” or
“elementary mutants” to each configuration x. This allows us to interpret X as
a (possibly directed) graph with vertex set X and N(x) the (out)neighbors of
x ∈ X . Most commonly the move sets are constructed such that y ∈ N(x) if
and only if x ∈ N(y), in which case the graph is symmetric, or, equivalently,
undirected.

In the case of strings (i.e., sequences of characters taken from a fixed alphabet
A) typical moves consist of the replacement of a character at a single position
by another one. The resulting graphs are the Hamming graphs. In particular,
for a two letter alphabet such as spin-up (↑), and spin-down (↓), one obtains
hypercubes, see Figure 1.

In some cases the configurations are naturally interpreted as algebraic ob-
jects. For instance, the tours of a Traveling Salesman Problem are permutations
of a list of cities. Configurations hence are group elements and moves become
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Fig. 1. Some Configuration space graphs: hypercubes Q3
2 and Q4

2, the permutohedron
graph Γ [S5,K], the line graph of the Petersen graph L[P ] which equals the Robinson
graph for n = 5 taxa.

generators of the group. Let G be a permutation group acting on a finite set X .
Furthermore, let Ω ⊂ G be a set of generators of G such that (i) ı /∈ G and (ii)
x ∈ Ω =⇒ x−1 ∈ Ω. A graph G = G(G, Ω) with vertex set V = G and edges
{x, y} ∈ E if and only if xy−1 ∈ Ω is called a Cayley graph of the group G. In
case of the symmetric group Sn suitable generator sets are e.g. transpositions,
reversals, or the “canonical” transpositions of two subsequent cities which, for
n = 4, lead to the permutohedron graph shown in Fig. 1. It is not hard to show
that Hamming graphs are also Cayley graphs of a suitable group, see e.g. [28,29].

In biology evolutionary relationships between species or individual genes are
customarily represented as phylogenetic trees. The vertices of a phylogenetic tree
represent taxonomic units, the graph’s topology delineates the genealogical re-
lationships between them, and the branch lengths reflect the time of divergence.
Many methods exist for the construction of phylogenetic trees, the more sophis-
ticated among them seeking those trees in which the taxonomic units evolve with
the least evolutionary change [30] (most parsimonious trees) or trees of maxi-
mum likelihood given a stochastic model of sequence evolution [31]. The search
for the optimal tree is hence recast as a combinatorial optimization problem on
the set of all phylogenetic trees with a given number of leaves (taxa). The basic
variants of these tree reconstruction problems are all NP-complete [32,33], hence
search heuristics are used in practice which employ a variety of editing opera-
tions on phylogenetic trees. So-called “nearest neighbor interchange” (swapping
of subtrees separated by an inner edge of the tree), for instance, leads to a rather
well-studied family graph sometimes referred to as Robinson graphs [34–36].

All move sets discussed above are symmetric and regular, i.e., any two con-
figurations have the same number of neighbors. Of course, this is not always the
case. Biological sequences, for instance, not only undergo point mutations but
also insertions and deletions leading to highly irregular graphs. Other mutation
operators of interest in this context include gene duplications and genomic rear-
rangements [37,38]. A graph is faithfully represented by its adjacency matrix A

which has the entries Axy = 1 if x ∈ N(y) and Axy = 0 otherwise. Obviously,
A is symmetric if and only if the graph is undirected.
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The most immediate consequence of the fact that recombination acts on two
arguments is that the recombination induced configuration space can not be
represented as a simple graph with the set of genotypes representing the set of
vertices. This leaves two alternatives: One can change the nature of the vertex set
and have pairs of types as vertices. Then one obtains again a (di-)graph, since
each elementary recombination event creates up to two different strings. This
approach was pioneered by Culberson [39] and Jones [40]. The alternative is to
leave the vertices to represent individual genotypes and to make the edges more
complex. In Gitchoff and Wagner [41] it was shown that recombination spaces can
be represented as hypergraphs (which consist of a vertex set X and a collection E
of (not necessarily) distinct subsets of X called (hyper)edges), where the hyper-
edges are the sets of all recombinants that can arise from the recombination of
two types. With this approach it is was easy to show that string recombination
spaces and point mutations spaces are homomorphic. Hypergraphs are still not
completely satisfactory, since they do not indicate which pair of types produces
which set of recombinants, i.e., which hyper-edge arises from which mating. This
led us to invent P-structures, which are mappings of pairs of types to the hyper-
edges of the hypergraph [42,43].

Let us first consider homologous recombination on a genome consisting of
n loci. For each locus k, there are αk alleles. The set of all the

∏

k αk possible
genotypes will be denoted by V . For each locus k, we label the alleles using a
letter from the alphabet Ak = {0, . . . , αk − 1}. Thus V =

∏

k Ak. A particular
genotype (or sequence) x ∈ V can be regarded as a vector with components
xk ∈ Ak. A particular cross-over operator χ is determined by the list χ of loci
that the child inherits from the first parent. Thus the loci in χ = {1, . . . , n} \χ

come from the second parent. More formally, given χ, the offspring x = χ(y, z)
of the two parents y and z has the component-wise representation

xk =

{

yk if k ∈ χ

zk if k ∈ χ
(2)

It will be convenient in the following to express equ.(2) by means of an “incidence
operator”

H
χ
x,(y,z) =







2 if x = y = z
1 if y 6= z and x = χ(y, z)
0 otherwise .

(3)

Here we shall restrict ourselves to recombination on strings. Crossover operators
for permutation, such as Traveling Salesman tours, are reviewed for instance in
[44].

A recombination operator in the sense of most of the GA literature is then a
family F of cross-over operators that act on X ×X with probability π(χ). The
incidence “matrix” associated with a recombination operator is simply

HF =
∑

χ∈F

Hχ (4)

The two most important recombination operators are
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[∞] Uniform recombination contains all 2n possible crossover operators. In this
case it is natural to include the identity ı.

[1] 1-point recombination contains all cross-over operators χ for which the char-
acteristic set is of the form χ = {1, . . . , k}.

Homologous recombination (of strings) under very general conditions leads to
very regular configuration spaces. In particular, one can show that the automor-
phism group of HF is generously transitive [42]. (A permutation group G on a
set X is generously transitive if for each pair x, y ∈ X there is a group element
g ∈ G such that g(x) = y and g(y) = x, see e.g. [45].) This picture, however,
changes radically, if unequal crossover is considered, where the number of genes
on a chromosome can change [46].

2.2 Transition Matrices

Regarding X as a set of “states” we may alternatively specify transition proba-
bilities Txy for moving from y to x. The Markov process with transition matrix
T organizes the configuration space in this case. Typically one requires T to be
ergodic (i.e., every state can be reached from every other state) and reversible,
i.e., to satisfy

(E) T is irreducible, or, equivalently,
there is a unique stationary distribution p on X such that Tp = p. Further-
more p(x) > 0 for all x ∈ X .

(R) Txyp(y) = Tyxp(x). This condition is also known as “detailed balance”.

In other words, T is self-adjoined w.r.t. to the scalar product

〈f, g〉p =
∑

x

p(x)f(x)g(x)∗ (5)

where the star denotes complex conjugation.
A most useful observation is that the matrix S defined by

Sxy = p(x)−1/2Txyp(y)
1/2 (6)

is symmetric and similar to T. Hence given a non-symmetric transition matrix
T and a landscape f we may transform the model to new coordinates with the
symmetric operator S and the transformed landscape

fσ(x) = p(x)−1/2f(x) (7)

This allows the application of the spectral landscape theory discussed in section 4
also to the non-symmetric case.

The move sets discussed in the previous section can be translated into the
Markov chain setting in a natural way. With each (directed or undirected) graph
there is an associated Markov process on its vertex set [47] defined by the tran-
sition matrix

T = AD−1 (8)
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where D is the so-called degree matrix, which is diagonal and Dxx = |N(x)|
is the number of neighbors of x, and A is the adjacency matrix introduced in
the previous section. This Markov process describes a random walk on X which
has been suggested as a means to sample information about a landscape by Ed
Weinberger [48,49]. We remark that in the case of undirected and symmetric
directed graphs the stationary distribution is given by

p(x) =
Dxx

2E
(9)

whereE is the number of undirected edges, which, for symmetric directed graphs,
is of course E =

∑

x |N(x)|/2.
A cross-over walk [50,51] on X is the Markov process based on the following

rule: The “father” y is mated with a randomly chosen “mother” z. The offspring
is “son” x which becomes the “father” of the next mating. We regard the se-
quence of “fathers” as a random walk on X . It is straightforward [52] to derive
the transition matrix of this Markov process for homologous recombination from
the incidence “matrix” HF . One obtains

SF ,℘
xy =

∑

χ∈F

π(χ)
1

2

∑

z∈X

H
χ
x,(y,z)℘(z) =

∑

χ∈F

π(χ)Sχ,℘
xy (10)

where ℘(z) denotes the frequency distribution of the genotypes in the equilibrium
population.

2.3 Configuration Space Topologies

We shall see in the following section that finite (“discrete”, or combinatorial)
landscapes are treated quite differently from their manifold (“continuous”) coun-
terparts. The reason is that functions on R

n, or more generally Riemannian
manifolds can be analyzed in terms of differential operators such as gradients,
while finite sets are usually discussed in terms of graph-theoretical properties.
It seems desirable therefore, to find a basic framework that allows to deal with
landscapes on arbitrary configurations spaces. A suitably general language is
provided by the theory of pretopological spaces.

A pretopological space consists of an arbitrary set X and a collection N (x)
of neighborhoods for every point x ∈ X , such that
(P1) N ∈ N (x) implies x ∈ N ;
(P2) N ∈ N (x) and N ⊆ N ′ implies N ′ ∈ N (x)
(P2) N,N ′ ∈ N (x) implies N ∩N ′ ∈ N (x) Pretopologies are more general then
the much more familiar topological spaces. In fact, (X,N ) is a topological space
if and only if
(T) For each N ∈ N (x) there is an N ′ ∈ N (x) such that N ∈ N (y) for all
y ∈ N ′.

Directed graphs are exactly the finite pretopological spaces. Their neighbor-
hood systems consists of all sets N ′ containing x and all vertices adjacent to x,
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i.e., N(x)∪{x} ⊆ N ′. Notions such as minima, maxima, or continuity of a func-
tion, connectedness, convergence, limits, etc. can be defined on pretopological
spaces [53–56]. Their usefulness in the context of genotype-phenotype maps and
fitness landscapes will be discussed in forthcoming manuscripts [57,58].

3 Basic Properties of Landscapes

3.1 Local Optima

Combinatorial optimization is concerned with finding “optimal” i.e., minimal or
maximal values of the cost function. Local optima thus play an important role
since they might be obstacles on the way to the optimal solution. In the theory
of disordered systems, local minima of the energy function are usually called
metastable states. For the sake of definiteness we shall consider local minima
in the following. Analogous expressions for local maxima can be obtained by
replacing f with −f . Let us start with a formal
Definition. A configuration x̂ ∈ X is a local minimum if there is a neighborhood
N ∈ N (x̂) such that f(x̂) ≤ f(y) for all y ∈ N .
Clearly, this definition makes sense on arbitrary pretopological spaces and it
coincides with the usual definition in the graph case, which requires f(x̂) ≤ f(y)
for all y ∈ N(x̂). A minimum x̂ is global, of course, if f(x̂) ≤ f(y) for all y ∈ X .
Note that landscapes need not have local or even global minima unless they are
defined on a compact configuration space.

The number of local optima is a measure for the “ruggedness” of landscape.
Richard Palmer [59], for instance, suggested to call a landscape f rugged if the
number Mf of local optima scales exponentially with some measure of “system
size” such as the number of cities in a TSP or the number of spins in spin
glass. Unfortunately, there is in general no simply way of computing Mf without
exhaustively generating the landscape. Alternatively, one can of course estimate
Mf by checking whether a randomly generated x ∈ X is a local minimum.
Numerical data of this kind are reported e.g. in [60–62]. Methods from statistical
mechanics can be used, however, to obtain the scaling of the expected value E[M]
with the system size for a variety of disordered systems, see e.g. [63–70].

3.2 Basins

To each local minimum x̂ there is an associated basin B(x̂). On manifolds it
can be defined as the set of all y ∈ X such that x̂ is the ω-limit of the gradient
dynamics ż = −∇f(z) with initial condition y. In the graph case one can use the
steepest descent algorithm instead: Starting with z0 = y we choose at each step
the neighbor zk+1 ∈ N(zk), f(zk+1) < f(zk) with the smallest fitness value and
repeat the procedure until it terminates when zk+1 = x̂ is a local minimum. The
notion of a basin hence may become ambiguous when there is “local neutrality”
in N(x), i.e., if there are x ∈ X and y, y′ ∈ N(x) with f(y) = f(y′). It is an
open question how the basin should be defined in full generality, or what kind
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of structure on X must be required in order to properly define basins. It is not
surprising that the distribution of basin sizes is crucial for the performance of
simple optimization heuristics [71]. So far there does not appear to be a good
method for estimating basin sizes beyond exhaustive enumeration or random
sampling, however.
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Fig. 2. Size distribution of basins of attraction for the SK-Model (quadratic Ising
spin glass with i.i.d. Gaussian coefficients ai1i2 in equ.(20) and all other coefficients
0, n = 20), and a random assignment of Gaussian random numbers with mean 0 and
variance 1 to the vertices of the 20-dimensional hypercube Q20

2 . Error bars show the
standard deviation of the distribution of basin sizes in a fixed fitness interval for the
random Gaussian landscape, which has Mf = 49935 local minima. The SK model
on the r.h.s has only Mf = 70 local minima and therefore much larger basins. The
important observation is, however, that the basin size scales exponentially with fitness
(energy) in this case.

An important aspect is the correlation between basin size and fitness of the
minimum: In general, deeper minima have larger basins. Figure 2 shows that this
is not only true for well-behaved landscapes such as the Sherrington-Kirkpatrick
spin glass (r.h.s.), but also for random landscapes (l.h.s.). The difference is, how-
ever, that basin sizes appear to scale exponentially with fitness in well-behaved
landscapes, while they approach a constant in essentially random landscapes.

3.3 Gradient Walks and Adaptive Walks

A simple measure for the size of a basin B(x̂) is the average length L of the
steepest descent walks from y ∈ B(x̂) to x̂. The average length L of a gradient
walk has been investigated as a ruggedness measure in a few models, including
random landscapes, Kauffman’s NK landscapes [72], fitness landscapes derived
from RNA folding [73].

An adaptive walk accepts a neighbor xk+1 ∈ N(xk) provided f(xk+1) < f(xk)
instead of looking for the steepest descent. Gillespie [74] suggested to use adap-
tive walks as models of evolutionary adaptation. They have been studied exten-
sively in NK models [72,75,76], in particular in the context of the maturation
of the immune response [77–79], in RNA folding landscapes [73] and in a model
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of early vascular land plants [80]. The lengths distribution of adaptive walks
appears to be linked to the size distribution of the basins; the details of this
connection, however, remain to be elucidated.

3.4 Barriers

The basins of local minima are separated by saddle points and fitness barriers.
Let x̂ and ŷ be two local minima and let p be a path in X from x̂ to ŷ. Then
the fitness barrier separating x̂ from ŷ is

f [x̂, ŷ] = min

{

max
[

f(z)
∣

∣z ∈ p
]

∣

∣

∣

∣

p : path from x̂ to ŷ

}

, (11)

A point ẑ ∈ X satisfying the minimax condition in equ.(11) is a saddle point

of the landscape. It should be noted that this definition is meaningful both in
the graph case and on R

n. However, in the context of potential energy surfaces
one typically defines a saddle point as a critical point ∇f = 0 that is neither a
minimum nor a maximum. The saddle-point energies f [x̂, ŷ] form an ultrametric
distance measure on the set of local minima, see e.g. [81–83]. This hierarchical
structure can be represented by the barrier tree of the landscape, Figure 3. Its
leaves are the local minima and its internal nodes correspond to saddle points.
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Fig. 3. Example of a barrier tree for the folding energy landscape of a bi-stable RNA
molecule. The secondary structures of the two lowest energy states are indicated. For
details see [84].
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The barrier enclosing a local minimum is the height of the lowest saddle point
that gives access to a more favorable minimum. In symbols:

B(x̂) = min
{

f [x̂, ŷ] − f(x̂)
∣

∣ŷ : f(ŷ) < f(x̂)
}

(12)

If B(s) = 0 then the local minimum s is degenerate. It is easy to check that
eq.(12) is equivalent to the definition of the depth of a local minimum in [85].
For metastable states it agrees with the more general definition of the depth of
a “cycle” in the literature on inhomogeneous Markov chains [86–88].

3.5 Depth

The information contained in the energy barriers is conveniently summarized by
two global parameters that e.g. determine the convergence behavior of Simulated
Annealing and related algorithms. Let Ωf be the set of all global minima of f .
Now consider the following two quantities

D = max
{

B(s)
∣

∣s /∈ Ωf

}

ψ = max

{

B(s)

f(s) − f(min)

∣

∣

∣

∣

s /∈ Ωf

}

(13)

Both parameters are easily obtained from the barrier tree. The depth D and
difficulty ψ [85,87–90] play a crucial role in theory of Simulated Annealing.
For instance, Simulated Annealing converges almost surely to a ground state
if and only if the cooling schedule Tk satisfies

∑

k≥0 exp(−D/Tk) = ∞ [89]. The
difficulty parameter is directly related to the optimal speed of convergence of
Simulated Annealing.

3.6 Correlation

Correlation measures are by the far the most accessible indicators of ruggedness.
Weinberger [48] considers the autocorrelation function r(s) of the “time series”
of fitness values f(x(t)) sampled along a random walk {x(0), . . . , x(t), . . . } on
X with transition matrix T and initial conditions distributed as p. In [91,92]
distance dependent correlation functions ρ(d) are considered, where d is a metric
on X . The walk correlation function r(s) of a landscape can be obtained without
reference to the stochastic sampling process as [29]

r(s) = 〈f,Tsf〉 (14)

The relationship between the walk correlation function r(s) and the distance
correlation function ρ(d) is described in detail in [93] for highly symmetric tran-
sition operators. In many applications the correlation length

` =

∞
∑

s=0

r(s) (15)
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is used as a convenient measure of ruggedness, see e.g. [73,94].
The correlation length `, the length L of gradient walks, and the expected

number M of local optima appear to be closely related in “typical” landscapes.
The notion of a “typical” landscape is made precise in [95]. Denoting by X(x0, `)
the set of configurations that can be reached in at most ` applications of T from
x0 on a graph Γ , the “correlation length conjecture” [96] states that there should
be roughly M ≈ |X |/|X(x0, `)| local optima. This estimate is based on the as-
sumption that the correlation length determines the diameter of the large moun-
tains and valleys, and that due to the high dimensional nature of typical search
spaces each mountain typically contains only a small number of local optima.
The correlation length conjecture has been tested on a variety of combinatorial
optimization problems and appears to be a very good approximation [62,97].

4 Spectral Landscape Theory

Spectral approaches to fitness landscapes start with one of the symmetric non-
negative operators on X discussed in section 2.2 above. The basic idea is to
interpret the adjacency matrix A of a symmetric graph, or the operator S, as a
representation of the configuration space and to discuss the fitness function in
terms of the regularities of S. From an algebraic point of view it appears to be
more natural to start with a discrete Laplace operator

−∆ = DS − S with (DS)xx =
∑

y∈X

Sxy (16)

since it has number of desirable mathematical properties:
−∆ is symmetric and has non-positive off-diagonal entries.
−∆ has 0 as an eigenvalue with eigenvector 1 = (1, . . . , 1). The eigenvalue 0
is unique if and only if the graph associated with the off-diagonal entries is
irreducible.
−∆ is non-negative definite. The graph Laplacian arises naturally as the dis-
cretization of the Laplacian differential operator for instance in finite element
computations. For recent surveys on graph Laplacians see [98–101].

Let {ϕk} be an orthonormal basis of eigenvectors of −∆. Of course, we can
interpret ϕk as a fitness function on X , hence we use the “function” notation
ϕk(x) for the coordinate of ϕk indexed by x. It appears natural to expand a
fitness function f into a Fourier series

f(x) =
∑

k

akϕk(x) (17)

On so-called quasi-abelian Cayley graphs, that is, Cayley graphs for which the
generator set is a union of conjugacy classes of the underlying group, this graph-
theoretical Fourier series and the group theoretical Fourier transformation [102]
coincide (apart from a different conventional normalization), see [103].

Since −∆ is symmetric one can of course choose the basis functions ϕk

to be real valued. In many instances it is much more convenient, however, to
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allow for complex valued eigenfunctions. For instance, the basis functions for
the Hamming graph Qn

α on the α-letter alphabet A = {0, . . . , α − 1} can be
written in the form

ϕa(x) = α−n/2
n

∏

k=1

exp
(

2πι
akxk

α

)

(18)

for each index a ∈ An. A real-valued basis for this case is described e.g. in [28].
The corresponding Laplacian eigenvalue is Λa = αord(a), where

ord(a) = |{k|ak 6= 0}| (19)

can be interpreted as the interaction order of the eigenfunction ϕa. This notion
becomes more intuitive by considering Ising spin models. The most general spin
glass Hamiltonian is

f(x) = a0 +

n
∑

p=1

∑

i1<i2<···<ip

ai1i2...ip
xi1xi2 . . . xip

(20)

with Ising spins xj = ±1. In other words f(x) is a superposition of p-spin models,
where p = ord(i1, . . . , ip) is the interaction order. In fact, the Fourier basis on
the hypercube are the (normalized) Walsh functions

ϕI (x) = 2−n/2
∏

i∈I

xi = 2−n/2xi1xi2 . . . xip
(21)

with the index set I = {i1, i2, . . . , ip}, and hence p = ord(I) = |I |. The standard
way of specifying a spin glass model therefore is its Fourier expansion (17). In
the following we shall assume without loosing generality that the landscape is
normalized such that

f =
∑

x∈X

p(x)f(x) = 0

Var[f ] =
∑

x∈X

p(x)(f(x) − f)2 = 〈f, f〉p − f
2

= 1
(22)

where p(x) is the stationary distribution of the transition operator in questions,
see section 2.2. Thus we may assume a0 = 0 in equ.(20).

Walsh functions, equ.(21), are used extensively in the analysis of Genetic
Algorithms [42,105–109]. It is shown in [43,52] that the Walsh functions are also
eigenvectors of the crossover transition matrices Sχ defined in equ.(10) with
uniform population distribution ℘(z) = 1/|X |. The corresponding eigenvectors
are

λχ
a =







1 if ã = ∅
1/2 if ã 6= ∅ and ã ⊆ χ or ã ⊆ χ

0 otherwise
(23)
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Table 1. Some Elementary Landscapes.
For a detailed discussion see section 4 of [29]. The order ord(Λ) of an eigenspace is its
position in the spectrum of −

�
, not counting multiplicities and starting to count with

0 for the “flat landscape” with Λ = 0. For strings the order is given by equ.(19).

Problem Graph Degree Λ ord(Λ)

p-spin glass Qn
2 n 2p p

NAES(1) Qn
2 n 4 2

Weight Partitioning Qn
2 n 4 2

Graph α-Coloring Qα
2 (α − 1)n 2α 2

XY-spin glass Qn
α (α − 1)n 2α 2

for α > 2: Cn
α 2 8 sin2(π/α) 2

Linear Assignment Γ (Sn, T ) n(n − 1)/2 n 1

TSP symmetric Γ (Sn, T ) n(n − 1)/2 2(n − 1) 2

Γ (Sn,J ) n(n − 1)/2 n 2

Γ (An, C3) n(n − 1)(n − 2)/6 (n − 1)(n − 2) ?

antisymmetric Γ (Sn, T ) n(n − 1)/2 2n 3

Γ (Sn,J ) n(n − 1)/2 n(n + 1)/2 O(n)

Graph Matching Γ (Sn, T ) n(n − 1)/2 2(n − 1) 2

Graph Bipartitioning J(n, n/2) n2/4 2(n − 1) 2

(1)Not-All-Equal-Satisfiability, see [104].

where ã = {k|ak 6= 0} is the set of non-zero indices for the corresponding eigen-
function ϕa. This fact allows a direct comparison of the landscapes formed by
the same fitness function for a variety of crossover and mutation operators. The
bottom line of such an analysis is that fitness functions with low interaction or-
der look smoother with mutation, while recombination appears to be favorable
for high interaction orders. For the details we refer to [42,43,52].

The usefulness of the spectral approach is by no means limited to Walsh
functions. Its general applicability is established by the following observations:
(1) The landscapes of many of the most studied combinatorial optimization
problems are elementary, i.e., their normalized fitness functions, equ.(22), are
eigenvectors of the graph Laplacian, when X is organized according to the most
natural move sets [29,110,111]. Examples include the Traveling Salesman Prob-
lem, Graph Bipartitioning, certain Satisfiability problems, Graph Coloring with
a fixed number of colors, see Table 1. Furthermore, most of the examples belong
to the 2nd non-zero eigenvalue of the Laplacian, see the last column of Table 1.
Not all of the “classical” landscape are elementary, of course, but many of the
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non-elementary ones have non-zero projections to only a few eigenspaces with
small eigenvalues; an example is the Quadratic Assignment Problem [103,112]
or the asymmetric TSP [29].
(2) Eigenvectors of graph Laplacians have local minima and maxima that are
well-separated on the fitness scale. Lov Grover [110] showed that for any local
minimum x̂ and any local maximum ŷ one has

f(x̂) ≤ f ≤ f(ŷ) (24)

(3) Eigenvectors of graph Laplacians satisfy a discrete version of Courant’s nodal
domain theorem [113]. A nodal domain of f : X → R is a maximal connected
subset of X such that f does not change sign. Suppose the eigenvalues of −∆

arranged in ascending order 0 = Λ1 < Λ2 ≤ · · · ≤ Λ|X|, counting multiplicities.
Note that the “ground state” Λ1 corresponds to the flat landscape. On Hamming
graphs we have therefore ord(Λk) = k − 1.
The nodal theorem now states that if −∆f = Λkf , then f has at most k nodal
domains, [114–118]. Thus landscapes may have more nodal domains, and hence
more “mountain massives” if they belong to larger eigenvalues of the Laplacian.
We remark that the nodal domain theorem holds for the class of so-called dis-
crete Schrödinger operators which includes the symmetric transition matrices
discussed in section 2.2.

0 5 10 15 20 25
Λ/2 = ord(Λ)

0

0.1

0.2

0.3

0.4

0.5

B
(Λ

)

0 2 4 6 8 10 12
Λ/4 = ord(Λ)

0

0.1

0.2

0.3

0.4

0.5
B

(Λ
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Fig. 4. Amplitude Spectra of RNA folding energy landscapes for GC sequences of
length n = 25 and GCAU-sequences of length n = 12. The amplitude spectra are
computed from explicit FFTs of the landscape as described in [103]. Note that the
GC landscape has large amplitudes B(Λ) only for even interaction orders, while the
GCAU-landscape also contains a substantial linear, ord(a) = 1, component. For a
discussion of the biophysical reasons see [119,120].

Given an arbitrary landscape, we can measure the importance of a particular
eigenspace of −∆ by means of the amplitude spectrum

B(Λ) =
∑

k:−∆ϕk=Λϕk

|ak|
2 (25)
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using
∑

k |ak|2 = 1 for normalized landscapes. Thus we have B(Λ) ≥ 0 and
∑

Λ6=0B(Λ) = 1. For regular graphs, or bi-stochastic transition matrices, the
Laplacian (16) and T have the same eigenvectors. In this case we can express
random walk correlation functions and correlation lengths in terms of the am-
plitude spectrum

r(s) =
∑

Λ6=0

B(Λ) (1 − Λ/d)
s

and ` = d
∑

Λ6=0

B(Λ)

Λ
(26)

where d = (DS)xx for all x ∈ X . The amplitude spectrum, or an aggregate
parameter such as the average eigenvalue Λ∗ =

∑

ΛB(Λ)Λ, thus may serve as
an alternative measure of ruggedness. It is interesting to note that Davidor’s
“epistasis variance” [121] corresponds to

∑

Λ>Λ2
B(Λ), while B(Λ2) measures

the linear (additive) part of a landscape defined on a set of strings. Elementary
landscapes belonging to Λ3, or equivalently, ord(Λ) = 2 on Hamming graphs,
thus belong to the simplest class of landscapes with epistasis. In biology, epistasis
is the interaction between genes such that the contribution of a gene to the fitness
depends on the value of other genes in the chromosome [122,123].

5 Concluding Remarks

The present contribution is by no means an exhaustive survey of fitness land-
scapes. There is a great number of topics that have not been discussed here. Most
importantly, we have excluded a thorough discussion of ensembles of landscapes
and all the topics associated with them such as statistical mechanics methods,
see e.g. [3], the notion of isotropic ensembles of landscapes [95], a stochastic treat-
ment of neutrality [124], or the random graph approach to neutral landscapes
[125–129].

Free Energy

Melting Temperature

Dipole Moment

Kinetic Constants

Reproduction Rate

Genotype Phenotype Fitness

Φ
θ

. . .

Fig. 5. Biologically realistic fitness landscapes are compositions of the genotype-
phenotype map Φ and the evaluation θ of the phenotype by the environment.

The second topic that we have not touched yet is the structure of biologically

realistic fitness landscapes, which typically can be viewed as the composition
of a genotype-phenotype map and the fitness evaluation of the phenotype, Fig-
ure 5. Such landscapes inherit many of their properties, including ruggedness
and neutrality, essentially from the genotype-phenotype map Φ [130]. Genotype-
Phenotype maps have been studied extensively for RNA molecules. In this model
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the RNA sequence serves as genotype, while the secondary structure approxi-
mates the phenotype [19,131,132].

Another important topic concerns the connection of Genetic Algorithm and
landscape structure. Schemata, i.e., hyperplanes in Qn

a play an important role
here [105–109,133–135]. For a discussion of the Schema Theorem and the Build-
ing Block Hypothesis we refer to the literature [16,136–140]. The fitness function
f : X → R can be extended in a natural way to subsets of X by setting

f(A) =
1

|A|

∑

x∈A

f(x) (27)

If A is a schema, then f(A) is the schema-fitness. A variety of landscape classes
can be defined in terms of schema fitnesses, most notably deceptiveness of land-
scape [141,142]. Some of these are compared in [143,144]. The impact of prop-
erties such as ruggedness, neutrality, deceptiveness, isotropy, etc. on the perfor-
mance of particular optimization strategies is the subject of ongoing research
[112,145–147].
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66. D.J. Gross, M. Mèzard: Nucl. Phys. B 240, 431–452 (1984)
67. B. Derrida, E. Gardner: J. Physique 47, 959–965 (1986)
68. H. Rieger: Phys. Rev. B 46, 14 655–14 661 (1992)
69. V.M. de Oliveira, J.F. Fontanari, P.F. Stadler: J. Phys. A: Math. Gen. 32, 8793–

8802 (1999)
70. F.F. Ferreira, J.F. Fontanari, P.F. Stadler: J. Phys. A: Math. Gen. 33, 8635–8647

(2000)
71. J. Garnier, L. Kallel: SIAM J. Discr. Math. (2000). Submitted
72. E.D. Weinberger: Phys. Rev. A 44, 6399–6413 (1991)
73. W. Fontana, P.F. Stadler, E.G. Bornberg-Bauer, T. Griesmacher, I.L. Hofacker,

M. Tacker, P. Tarazona, E.D. Weinberger, P. Schuster: Phys. Rev. E 47, 2083 –
2099 (1993)

74. J.H. Gillespie: Evolution 38, 1116–1129 (1984)
75. S.A. Kauffman, S. Levin: J. Theor. Biol. 128, 11–45 (1987)
76. H. Flyvbjerg, B. Lautrup: Phys. Rev. A 46, 6714–6723 (1992)
77. C.A. Macken, A.S. Perelson: Proc. Natl. Acad. Sci. USA 86, 6191–6195 (1989)
78. C.A. Macken, P.S. Hagan, A.S. Perelson: SIAM J. Appl. Math. 51, 799–827

(1991)
79. A.S. Perelson, C.A. Macken: Proc. Natl. Acad. Sci. USA 92, 9657–9661 (1995)
80. K.J. Niklas: Amer. J. Botany 84, 16–25 (1997)
81. R. Rammal, G. Toulouse, M.A. Virasoro: Rev. Mod. Phys. 58, 765–788 (1986)



20 Peter F. Stadler

82. A.M. Vertechi, M.A. Virasoro: J. Phys. France 50, 2325–2332 (1989)
83. S.R. Morgan, P.G. Higgs: J. Phys. A 31, 3153–3170 (1998)
84. C. Flamm, I.L. Hofacker, S. Maurer-Stroh, P.F. Stadler, M. Zehl: RNA 7, 254–

265 (2001)
85. W. Kern: Discr. Appl. Math. 43, 115–129 (1993)
86. R. Azencott: Simulated Annealing (John Wiley & Sons, New York, 1992)
87. O. Catoni: Ann. Probab. 20, 1109–1146 (1992)
88. O. Catoni: “Simulated annealing algorithms and Markov chains with rate tran-

sitions”, in Seminaire de Probabilites XXXIII , ed. by J. Azema, M. Emery,
M. Ledoux, M. Yor (Springer, Berlin/Heidelberg, 1999), Vol. 709 of Lecture Notes
in Mathematics, pp. 69–119

89. B. Hajek: Math. Operations Res. 13, 311–329 (1988)
90. J. Ryan: Discr. Appl. Math. 56, 75–82 (1995)
91. G.B. Sorkin: (1988), “Combinatorial optimization, simulated annealing, and frac-

tals”, Tech. Rep. RC13674 (No.61253), IBM Research Report
92. M. Eigen, J. McCaskill, P. Schuster: Adv. Chem. Phys. 75, 149 – 263 (1989)
93. P.F. Stadler: Discr. Math. 145, 229–238 (1995)
94. P. Schuster, P.F. Stadler: Computers & Chem. 18, 295–314 (1994)
95. P.F. Stadler, R. Happel: J. Math. Biol. 38, 435–478 (1999)
96. P.F. Stadler, W. Schnabl: Phys. Letters A 161, 337–344 (1992)
97. B. Krakhofer, P.F. Stadler: Europhys. Lett. 34, 85–90 (1996)
98. B. Mohar: “The Laplacian spectrum of graphs”, in Graph Theory, Combinatorics,

and Applications, ed. by Y. Alavi, G. Chartrand, O. Ollermann, A. Schwenk
(John Wiley and Sons, Inc., New York, 1991), pp. 871–898

99. R. Merris: Lin. Alg. Appl. 39, 19–31 (1995)
100. F.R.K. Chung: Spectral Graph Theory , Vol. 92 of CBMS (American Mathematical

Society, Providence RI, 1997)
101. B. Mohar: “Some applications of Laplace eigenvalues of graphs”, in Graph

Symmetry: Algebraic Methods and Applications, ed. by G. Hahn, G. Sabidussi
(Kluwer, Dordrecht, 1997), Vol. 497 of NATO ASI Series C, pp. 227–275

102. D. Rockmore: “Some applications of generalized FFTs”, in Groups and Com-

putation II , ed. by L. Finkelstein, W. Kantor (American Mathmatical Society,
Providence, RI, 1995), Vol. 28 of DIMACS, pp. 329–370

103. D. Rockmore, P. Kostelec, W. Hordijk, P.F. Stadler: Appl. Comput. Harmonic
Anal. (2000). In press Santa Fe Institute preprint 99-10-068

104. T.J. Schaefer: “The complexity of satisfiability problems”, in Proceedings of the

10th Annual ACM Symposium on Theory of Computing , ed. by N.N. (Association
for Computing Machinery, New York, 1978), pp. 216–226

105. D.E. Goldberg: Complex Systems 3, 129–152 (1989)
106. D.E. Goldberg: Complex Systems 3, 153–176 (1989)
107. S.E. Page, D.E. Richardson: Complex Systems 6, 125–136 (1992)
108. M.D. Vose, A.H. Wright: Evol. Comp. 6, 253–274 (1998)
109. M.D. Vose, A.H. Wright: Evol. Comp. 6, 275–289 (1998)
110. L.K. Grover: Oper. Res. Lett. 12, 235–243 (1992)
111. B. Codenotti, L. Margara: (1992), “Local properties of some np-complete prob-

lems”, Tech. Rep. TR 92-021, International Computer Science Institute, Berkeley,
CA

112. E. Angel, V. Zissimopoulos: Discr. Appl. Math. 99, 261–277 (2000)
113. I. Chavel: Eigenvalues in Riemannian Geometry (Academic Press, Orlando Fl.,

1984)



Fitness Landscapes 21

114. Y.C. de Verdière: Rendiconti di Matematica 13, 433–460 (1993)
115. J. Friedman: Duke Math. J. 69(3), 487–525 (1993)
116. H. van der Holst: (1996), “Topological and spectral graph characterizations”,

Ph.D. thesis, Universiteit van Amsterdam
117. A.M. Duval, V. Reiner: Lin. Alg. Appl. 294, 259–268 (1999)
118. E.B. Davies, G.M.L. Gladwell, J. Leydold, P.F. Stadler: Lin. Alg. Appl. (2001).

In press, see also: math.SP/0009120
119. R. Happel, P.F. Stadler: Complexity 2, 53–58 (1996)
120. W. Hordijk, P.F. Stadler: J. Complex Systems 1, 39–66 (1998)
121. Y. Davidor: Complex Systems 4, 369–383 (1990)
122. M. Whitlock, P.C. Phillips, F.B.G. Moore, S. Tonsor: Ann. Review Ecol. Sys-

tematics 26, 601–629 (1995)
123. J.B. Wolf, E.D. Brodie III, M.J. Wade (Eds.): Epistasis and the Evolutionary

Process (Oxford Univ. Press, Oxford, UK, 2000)
124. C.M. Reidys, P.F. Stadler: Appl. Math. & Comput. 117, 321–350 (2001)
125. C.M. Reidys: Adv. Appl. Math. 19, 360–377 (1997)
126. S. Gavrilets, J. Gravner: J. Theor. Biol. 184, 51–64 (1997)
127. C.M. Reidys, P.F. Stadler, P. Schuster: Bull. Math. Biol. 59, 339–397 (1997)
128. S. Gavrilets, H. Li, M.D. Vose: Proc. Roy. Soc. London B 265, 1483–1489 (1998)
129. S. Kopp, C.M. Reidys: Adv. Complex Syst. 2, 283–301 (1999)
130. P.F. Stadler: J. Mol. Struct. (THEOCHEM) 463, 7–19 (1999)
131. W. Fontana, D.A.M. Konings, P.F. Stadler, P. Schuster: Biopolymers 33, 1389–

1404 (1993)
132. W. Fontana, P. Schuster: Science 280, 1451–1455 (1998)
133. D.E. Goldberg, M. Rudnik: Complex Systems 5, 265–278 (1991)
134. G.E. Liepins, M.D. Vose: Complex Systems 5, 45–61 (1991)
135. P. Field: Complex Systems 9, 11–28 (1995)
136. L. Altenberg: “The schema theorem and the Price’s theorem”, in Foundations of

Genetic Algorithms 3 , ed. by L.D. Whitley, M.D. Vose (Morgan Kauffman, San
Francisco CA, 1995), pp. 23–49

137. A.D. Bethke: (1991), “Genetic algorithms and function optimizers”, Ph.D. thesis,
University of Michigan

138. J.H. Holland: “Genetic algorithms and classifier systems: foundations and fu-
ture directions”, in Proceedings of the 2nd International Conference on Genetic

Algorithms (1987), pp. 82–89
139. S. Forrest, M. Mitchell: “Relative building block fitness and the building block

hypothesis”, in Foundations of Genetic Algorithms 2 , ed. by L.D. Whitley (Mor-
gan Kaufmann, San Mateo, CA, 1993), pp. 109–126

140. C.R. Stephens, H. Waelbroeck: Phys. Rev. E 57, 3251–3264 (1998)
141. L.D. Whitley: “Fundamental principles of deception in genetic search”, in Foun-

dations of Genetic Algorithms, ed. by G. Rawlins (Morgan Kaufmann, San Ma-
teo, CA, 1991), pp. 221–241

142. K. Deb, D.E. Goldberg: “Analyzing deception in trap functions”, in Foundations

of Genetic Algorithms 2 , ed. by L.D. Whitley (Morgan Kaufmann, San Mateo,
CA, 1993), pp. 93–108

143. P.F. Stadler: “Spectral landscape theory”, in Evolutionary Dynamics—Exploring

the Interplay of Selection, Neutrality, Accident, and Function, ed. by J.P. Crutch-
field, P. Schuster (Oxford University Press, New York, 2001), in press

144. B. Naudts, L. Kallel: IEEE Trans. Evol. Comp. (2000). To appear
145. M. Mitchell: An Introduction to Genetic Algorithms (MIT Press, Cambridge MA,

1996)



22 Peter F. Stadler

146. D.F. T. Baeck, Z. Michalewicz (Eds.): Handbook of Evolutionary Computation

(Oxford University Press, New York, 1997)
147. E. Angel, V. Zissimopoulos: Theor. Computer Sci. 191, 229–243 (1998)


