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Abstract. This technical report summarized facts from the basic theory of general-
ized closure spaces and gives detailed proofs for them. Many of the results collected
here are well known for various types of spaces. We have made no attempt to find
the original proofs.

1. Set-Valued Set-Functions

1.1. Closure, Interior, Neighborhood, and Convergent. In this section, which
in part generalizes the results of Day [8], Hammer [18, 12] and Gni lka [13] on extended
topologies, we explore the surprising fact that some meaningful topological concepts
can already be defined on a set X endowed with an arbitrary set-valued set-function,
which we will interpret as a generalized closure operator.

More formally, let X be a set, P(X) its power set (i.e., the set of all subsets of X),
and let cl : P(X) → P(X) be an arbitrary function. We shall see that it is fruitful
to interpret cl as a closure function on X; hence we call cl(A) is the closure of the set
A. In order to simplify the notation in the following we write −A instead of X \ A
for the complement of A in X.

The dual of the closure function is the interior function int : P(X) → P(X) defined
by

int(A) = −cl(−A) (1)

Given the interior function, we obviously recover the closure as cl(A) = −(int(−A)).
A set A ∈ P(X) is closed if A = cl(A) and open if A = int(A). In contrast to
“classical” topology, open and closed sets will not play a central role in our discussion.
Furthermore, we emphasize that the distinction of closure and interior is completely
arbitrary in the absence of additional conditions.
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Definition 1. Let cl and int be closure function and its dual interior function on X.
Then the neighborhood function N : X → P(P(X)) and the convergent function
N ∗ : X → P(P(X)) assign to each x ∈ X the collections

N (x) =
{

N ∈ P(X)
∣

∣x ∈ int(N)
}

N ∗(x) =
{

Q ∈ P(X)
∣

∣x ∈ cl(Q)
} (2)

of its neighborhoods and convergents, respectively.

The convergent function was introduced by G. Gastl and P.C. Hammer [12, 20]. It is
not hard to see that neighborhoods and convergents are equivalent:

Theorem 1. Q ∈ N ∗(x) ⇐⇒ (−Q) /∈ N (x).

Proof. We have N ∈ N (x) if and only if x ∈ int(N) = −cl(−N), i.e., x /∈ cl(−N).
On the other hand, Q ∈ N ∗(x) iff x ∈ cl(Q). Thus x ∈ cl(−N) if and only if
(−N) ∈ N ∗(x). In other words, x /∈ cl(−N), i.e., x ∈ −cl(−N) = int(N) if and
only if (−N) /∈ N ∗(x). Using the definition of the neighborhoods we finally have
N ∈ N (x) if and only if (−N) /∈ N ∗(x). �

The next result, which is mentioned for instance in [8], shows that closure and neigh-
borhood are equivalent. Hence given one of closure function cl, interior function int,
neighborhood function N or covergent function N ∗, the other three functions are
unambiguously defined.

Theorem 2. Let N be the neighborhood function defined in equ.(2). Then

x ∈ cl(A) ⇐⇒ (−A) /∈ N (x) and x ∈ int(A) ⇐⇒ (−A) /∈ N ∗(x) (3)

Proof. x ∈ cl(A) = cl(−(−A)) if and only if (−A) ∈ {N |x ∈ cl(−N)} if and only if
(−A) /∈ {N |x /∈ cl(−N)} = {N |x ∈ (−cl(−N))} = {N |x ∈ int(N)} = N (x).
x ∈ int(A) = int(−(−A)) if and only if (−A) ∈ {Q|x ∈ int(−N)} if and only if
(−A) /∈ {Q|x /∈ int(−N)} = {Q|x ∈ (−int(−N))} = {Q|x ∈ cl(N)} = N ∗(x). �

1.2. Comparison of Closure Spaces. Let c′ and c′′ be two generalized closure
operators on X. We say that c′ is finer than c′′, c′ � c′′, or c′′ is coarser than c′ if
c′(A) ⊆ c′′(A) for all A ∈ P(X). Note that c′ � c′′ and c′ � c′′ implies c′ = c′′.

Theorem 3. Let c′ and c′′ be two closure function on X. Denote the associated
interior, neighborhood, and convergent functions by i′, i′′, N ′, N ′′, N ∗′, and N ∗′′,
respectively. Then the following conditions are equivalent:

(i) c′(A) ⊆ c′′(A) for all A ∈ P(X).
(ii) i′′(A) ⊆ i′(A) for all A ∈ P(X).
(iii) N ′′(x) ⊆ N ′(x) for all x ∈ X.
(iv) N ∗′(x) ⊆ N ∗′′(x) for all x ∈ X.

Proof. We have c′(−A) ⊆ c′′(−A) iff i′′(A) = −c′′(−A) ⊆ −c′(−A) − i′(A) for all A.
Using the relationship of closure and neighborhood we may argue c′(A) ⊆ c′′(A) iff
x ∈ c′(A) =⇒ x ∈ c′′(A) iff −A /∈ N ′(x) =⇒ −A /∈ N ′′(x) iff −A ∈ N ′′(x) =⇒
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−A ∈ N ′(x) iff A ∈ N ′′(x) =⇒ A ∈ N ′(x) for all A ∈ P(X). The condition for the
converents immediately follows from the duality. �

If one of the four equivalent conditions in theorem 3 is satisfied we say that (X, c′) is
finer than (X, c′′) and that (X, c′′) is coarser than (X, c′) and we write (X, c′) � (X, c′′)
or (X, c′′) � (X, c′).

1.3. Pre-Convergence. An alternative approach to defining very weak generalized
topological spaces starts with convergence as the basic ingredient. The discussion here
generalized the approaches of Choquet, Fisher, Kent and others [6, 24, 10, 22, 26]
which is based on Cartan’s concept of a filter [4, 3] or its generalizations [35], see
Appendix A. A different approach to convergence based on Moore-Smith systems
[25] is explored in [36].

Definition 2. A pre-convergence is a relation q on P(P(X)) × X such that
(C0) F ⊆ G and (F , x) ∈ q implies (G, x) ∈ q.

We write usually F → x instead of (F , x) ∈ q and interpret this symbol as “the
collection F of subsets of X converges to x. The axiom (C0) thus reads “F ⊆ G and
F → x implies G → x”.

There is are natural closure and interior operators cq and iq associated with q:

iq(A) = {x ∈ X|F → x =⇒ A ∈ F}

cq(A) = {x ∈ X|∃F : F → x and (−A) /∈ F}
(4)

It remains to check that iq and cq are indeed dual: x /∈ cq(−A) iff F → x implies
(−(−A)) = A ∈ F . The definition of iq(A) looks as usual, while the expression for
cq(A) looks somewhat unfamiliar.

We define the q-neighborhood of a point x ∈ X by

Nq(x) =
⋃

{F : F → x} (5)

Obviously, F → x implies Nq(x) ⊆ F . Furthermore, if Nq(x) → x then F → x if
and only if Nq(x) ⊆ F .

Definition 3. A pre-convergence q is ideal if
(C*) Nq(x) → x for all x ∈ X.

The definition of the interior reduces to iq(A) = {x|A ∈ Nq(x)} in the case of
ideal pre-convergences. For the closure we obtain cq(A) = {x|(−A) /∈ Nq(x)}, i.e.,
cq(A) = {x|A ∈ N ∗

q
(x)}, where N ∗

q
(x) is the dual of the q-neighborhood function.

Thus interior, closure, neighborhood and convergent equivalently define an ideal per-
convergence relation and vice versa.

1.4. Continuity.

Definition 4. A function f : (X, cl) → (Y, cl) is

closure preserving if for all A ∈ P(X) holds f(cl(A)) ⊆ cl(f(A));
continuous if for all B ∈ P(Y ) holds cl(f−1(B)) ⊆ f−1(cl(B)).
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It is obvious that the identity ı : (X, cl) → (X, cl) : x 7→ x is both closure-preserving
and continuous since ı(cl(A)) = cl(A) ⊆ cl(A) = cl(ı(A)). Furthermore, the concate-
nation h = g(f) of the closure-preserving (continuous) functions f : X → Y and
g : Y → Z is again closure-preserving (continuous):

h(cl(A)) = g(f(cl(A))) ⊆ g(cl(f(A))) ⊆ cl(g(f(x))) = cl(h(x))

cl
(

h−1(B)
)

= cl
(

f−1(g−1(B))
)

⊆ f−1(cl
(

g−1(B)
)

)

⊆ f−1(g−1(cl(B))) = h−1(cl(B))

(6)

as a consequence of the continuity of f and g.

Theorem 4. Let (X, cl) and (Y, cl) be two sets with arbitrary closure functions and
let f : X → Y . Then the following conditions (for continuity) are equivalent:

(i) cl(f−1(B)) ⊆ f−1(cl(B)) for all B ∈ P(Y ).
(ii) f−1(int(B)) ⊆ int(f−1(B)) for all B ∈ P(Y ).
(iii) B ∈ N (f(x)) implies f−1(B) ∈ N (x) for all B ∈ P(Y ) and all x ∈ X.
(iv) f−1(B) ∈ N ∗(x) implies B ∈ N ∗(f(x)) for all B ∈ P(Y ) and all x ∈ X.

Conditions (iii) and (iv) are equivalent for each individual x ∈ X as well.

Proof. The result is given without the (simple) proof in [15, Thm.3.1.].
We repeatedly use the identity f−1(U) = −f−1(−U) and the equivalence of A ⊆ A′

and −A′ ⊆ −A. We first show that (i) implies (ii) and then the converse:

f−1(int(B)) = −f−1(−int(B)) = −f−1(cl(−B)) ⊆ −cl
(

f−1(−B)
)

= −cl
(

−f−1(B)
)

= int
(

f−1(B)
)

.

cl
(

f−1(B)
)

= −(−cl
(

f−1(B)
)

) = −int
(

−f−1(B)
)

= −int
(

f−1(−B)
)

⊆ −f−1(int(−B)) = −f−1(−cl(B)) = f−1(cl(B)).

By definition we have

int
(

f−1(B)
)

= {x ∈ X|f−1(B) ∈ N (x)}

f−1(int(B)) = {x ∈ X|B ∈ N (f(x))}

cl
(

f−1(B)
)

= {x ∈ X|f−1(B) ∈ N ∗(x)}

f−1(cl(B)) = {x|B ∈ N ∗(f(x))}

(7)

By (ii) f is continuous if and only if x ∈ f−1(int(B)) implies x ∈ int(f−1(B)) for all
B ∈ P(Y ) and all x ∈ X. Using equ.(7) this translates to condition (iii), while (i)
translates to (iv). It remains to show that (iii) and (iv) are equivalent for a given
x ∈ X:
f−1(B) ∈ N ∗(x) implies B ∈ N ∗(f(x)) iff B /∈ N (f(x)) implies f−1(B) /∈ N ∗(x),
Equivalently, (−B) /∈ N (f(x)) implies f−1(−B) = −f−1(B) /∈ N ∗(x) since the
conditions must hold for all B ∈ P(Y ). Now we use the duality of neighborhoods
and convergents and obtain the equivalent condition: B ∈ N (f(x)) implies f−1(B) ∈
N (x) for all B ∈ P(Y ). �

The last part of the theorem gives rise to the
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Definition 5. Let (X, cl) and (Y, cl) be two sets with arbitrary closure functions.
Then f : X → Y is continuous in x if for all B ∈ P(Y ), B ∈ N (f(x)) implies
f−1(B) ∈ N (x) (or, f−1(B) ∈ N ∗(x) implies B ∈ N ∗(f(x)).

An immediate consequence of theorem 4 is the following familiar relationship between
local and global continuity:

Corollary 1. Let (X, cl) and (Y, cl) be two sets with arbitrary closure functions. Then
f : X → Y is continuous if and only if it is continuous in x for all x ∈ X.

Convergence gives rise to its own “natural” version of continuity. Consider two pre-
convergence spaces (X, x) and (X, y) and f : X → Y . The most natural definition
of q-continuity would be to require that f(F) →y f(x) implies f(F) →y f(x). This
definition behaves reasonably only when f(X) = Y . Otherwise, no function could
be continuous whenever there is a convergent pre-filter G on Y that does not satisfy
G ⊆ P(f(X)), i.e., continuity would be destroyed by the large neighborhoods in Y .

Theorem 5. (X, c′) is finer than (X, c′′), (X, c′) � (X, c′′), if and only if ı : (X, c′) →
(X, c′′) is continuous.

Proof. By definition ı is continuous if and only if c′(ı−1(B)) ⊆ ı−1(c′′B) for all B ∈
P(X). Since ı(x) = ı−1(x) = x this condition simplifies to c′(B) ⊆ c′′(B), i.e., to the
definition of (X, c′) � (X, c′′). �

The definition of finer and coarser structures in section 1.2 thus coincides with the
category theoretic notion, see e.g. [28].

1.5. Neighborhoods of Sets. The notation of a neighborhood for an individual
point can be extended naturally to sets.

Definition 6. Let A ∈ P(X). A set V is a neighborhood of A, in symbols V ∈ N (A)
if V ∈ N (x) for all x ∈ A.

Obviously N ({x}) = N (x).

Lemma 1. For all V, A ∈ P(X) we have V ∈ N (A) iff and only if A ⊆ int(() V ).

Proof. V ∈ N (A) iff ∀x ∈ A : V ∈ N (x) iff ∀x ∈ A : xinint(V ), i.e., iff x ∈ A
implies x ∈ int(V ). �

1.6. Limit Points.

Definition 7. A point p is a limit point of A ⊆ X if each neighborhood N ∈ N (p)
satisfies N ∩ (A \ {p}) 6= ∅. The set

A
�

= {x ∈ X|∀N ∈ N (x) : N ∩ (A \ {p}) 6= ∅} (8)

of all limit points of A is called the derived set of A.
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Derived sets are at the basis of Sierpiński’s presentation of generalized topologies [31].

Note that if x has no neighborhood, N (x) = ∅, then x ∈ cl(A) and x ∈ A
�

for all
sets A ⊆ X. Thus ∅

�

= {x ∈ X|N (x) = ∅}.

The definition immediately implies

x ∈ A
�

=⇒ x ∈ (A \ {x})
�

(9)

If B ⊆ A we have B
�

⊆ A
�

since N∩(B\{p}) 6= ∅ obviously implies N∩(A\{p}) 6= ∅.
This property is called isotony and will be the focus of the following section.

Definition 8. A set A ⊆ X is dense-in-itself if A ⊆ A
�

.

2. Isotonic Spaces

2.1. Isotony and Stacks. Almost all approaches to extend the framework of topol-
ogy at least assume that the closure functions are isotonic, or, equivalently, that the
neighborhoods of a point form a “stack”, [17, 18, 8, 2, 13] and many others. The
importance of isotony is emphasized by a large number of equivalent conditions.

Lemma 2. [18, Lem.10] The following conditions are equivalent for arbitrary func-
tions cl : P(X) → P(X).

(K1) A ⊆ B implies cl(A) ⊆ cl(B) for all A, B ∈ P(X).
(K1ı) cl(A) ∪ cl(A) ⊆ cl(A ∪ B) for all A, B ∈ P(X).
(K1ıı) cl(A ∩ B) ⊆ cl(A) ∩ cl(B)

A closure function satisfying (K1) is called isotonic.

Proof. Suppose A ⊆ B implies cl(A) ⊆ cl(B). Then A, B ⊆ A ∪ B for all A and B
implies cl(A) ⊆ cl(A ∪ B), cl(B) ⊆ cl(A ∪ B) and therefore cl(A)∪cl(B) ⊆ cl(A ∪ B).
Analogously, A ∩ B ⊆ A, B implies cl(A ∩ B) ⊆ cl(A) ∩ cl(B). Next assume cl(A) ∪
cl(B) ⊆ cl(A ∪ B) and consider A ⊆ B. Then cl(A) ⊆ cl(A) ∪ cl(B) ⊆ cl(A ∪ B) =
cl(B). Finally, if cl(A ∩ B) ⊆ cl(A)∩cl(B) and A ⊆ B we have cl(A) = cl(A ∩ B) =⊆
cl(A) ∩ cl(B) ⊆ cl(B). �

It is easy to derive equivalent conditions for the associated interior function by re-
peated applications of int(A) = −cl(−A) and cl(A) = −int(−A). One obtains

(K1ııı) A ⊆ B implies int(A) ⊆ B for all A, B ∈ P(X).
(K1ıv) int(A) ∪ int(B) ⊆ int(A ∪ B) for all A, B ∈ P(X).
(K1v) int(A ∩ B) ⊆ int(A) ∩ int(B) for all A, B ∈ P(X).

A (not necessarily non-empty) collection F ⊆ P(X) is a stack if F ∈ F and F ⊆ G
implies G ∈ F . Let us write S(X) for the set of all stacks. It is important to
distinguish the empty set ∅ ∈ P(X) and the empty stack ∅ ⊆ P(X).

Most interestingly, there is are conditions equivalent to (K1) in terms of neighborhood
and convergent functions:

Lemma 3. The closure functions cl is isotonic if and only if
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(K1vı) N (x) is a stack for all x ∈ X.
(K1vıı) N ∗(x) is a stack for all x ∈ X.

Proof. We have N ∈ N (x) iff x ∈ int(N). Thus, if N (x) is isotonic we have N ′ ∈ N (x)
and hence x ∈ int(N ′) for all supersets N ′ of N . It follows that N ⊂ N ′ implies
int(N) ⊆ int(N ′). To see the converse, suppose N (x) is isotonic, A ⊆ B, and there is
x ∈ cl(A) such that x /∈ cl(B). Equivalently, we have −A /∈ N (x), −B ∈ N (x), and
−B ⊆ −A. Isotony of N (x) thus implies −A ∈ N (x), a contradiction. Thus A ⊆ B
implies cl(A) ⊆ cl(B). Finally, it is well known that N (x) is a stack if and only if its
dual N ∗(x) is stack. �

Isotony (K1) is necessary and sufficient e.g. to replace equ.(3) by a more familiar
expression for the closure in terms of neighborhoods: in (pre)topological spaces the
closure c(A) is defined by the well-known formula

c(A) = {x ∈ X|∀N ∈ N (x) : A ∩ N 6= ∅} (10)

which is meaningful in arbitrary closure spaces. We have the

Theorem 6. [8, Thm.3.1,Cor.3.2] Let (X, cl) an arbitary closure space.

(i) c(A) ⊆ cl(A) for all A ∈ P(X).
(ii) c : P(X) → P(X) is isotonic.
(iii) c(A) = cl(A) if and only if cl : P(X) → P(X) is isotonic.

Proof. We have N ∈ N (x) iff x ∈ int(N) iff x ∈ −cl(−N). Thus x ∈ c(A), i.e.,
“N ∈ N (x) implies N ∩ A 6= ∅” is equivalent to “N ∩ A = ∅ implies x ∈ cl(−A)”.
Now replace B = −N and observe that (−B) ∩ A = ∅ is equivalent with A ⊆ B.
Thus x ∈ c(A) iff and only if for all supersets B of A we have x ∈ cl(B), i.e.,

c(A) =
⋃

B:A⊆B

cl(B) (11)

c(A) ⊆ cl(A) and isotony of c follows immediately. We have c(A) = cl(A) if and only
if cl(A) ⊆ CB for all A ⊆ B, i.e., if and only if the closure function cl is isotonic. �

In an isotonic space we also have a more familiar relationship between convergents
and neighborhoods. Define

secF = {G ∈ P(X)|∀F ∈ F : G ∩ F 6= ∅} (12)

Theorem 7. [12, Thm.2] Let (X, cl) be an isotonic space. Then N ∗(x) = secN (x)
and N (x) = secN ∗(x).

Lemma 4. A
�

⊆ cl(A) and A
�

− A = cl(A) − A.

Proof. Suppose p /∈ A. Then p ∈ A
�

iff ∀N ∈ N (p) : N ∩ (A − {p}) = N ∩ A 6=
∅, i.e. iff p ∈ cl(A) by theorem 6. This proves the second statement. In general
N ∩ (A − {p}) 6= ∅ implies N ∩ A 6= ∅, hence p ∈ A

�

implies p ∈ cl(A). �
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2.2. Stack-Convergence. A much more useful notion of pre-convergence arises by
restricting the convergence relation q to S(X)×X. Much of the following is discussed
in [37] and in particular in [16].

Definition 9. (X, q) is a stack-convergence space if q ⊆ S(X) × X satisfies
(C0) F ⊆ G and (F , x) ∈ q implies (G, x) ∈ q.
(X, q) is an ideal stack-convergence space if in addition
(C*) Nq(x) → x for all x ∈ X.
is satisfied.

Obviously, if (X, q) is an ideal stack convergence space then the q-neighborhoods
Nq(x) form a stack. Conversely, if (X, cl) is an isotonic space, we can define a stack-
convergence relation qc by setting (F , x) ∈ qc iff N (x) ⊆ F . Thus we have (F , x) ∈ q

if and only if Nq(x) ⊆ F if and only if (F , x) ∈ qc if and only if Nqc(x) ⊆ F . Thus
we can identify the ideal stack-convergence spaces with the isotonic spaces.

Let (X, x) and (Y, y) be stack-convergence spaces and f : X → Y . We define the
associated map f : S(X) → S(Y ) (for which we will always use the same symbol),
by

f(F) = {G ∈ P(Y )|∃F ∈ F : f(F ) ⊆ G} (13)

It is obvious that f(F) is indeed a stack on Y . Furthermore, we have f(P(X)) = P(Y )
and f(∅) = ∅.

2.3. Continuity. Now we are in the position to define stack-continuity in a familiar
form:

Definition 10. Let (X, x) and (X, y) be two stack-convergence spaces. Then f : X →
Y is stack-continuous in x if

F →x x implies f(F) →y f(x) (14)

f : X → Y is stack-continuous if it is stack-continuous in x for each x ∈ X.

Theorem 8. Let (X, x) and (X, y) be ideal stack-convergence spaces. Then f : X →
Y is q-continuous in x if and only if

Ny(f(x)) ⊆ f(Nx(x)) (15)

Proof. Using theorem 3 we can rewrite definition 10 in the form Nx(x) ⊆ F =⇒
Ny(f(x)) ⊆ f(F). Substituting Nx(x) for F and using the fact that G ⊆ F implies
f(F) ⊆ f(F) we get Ny(f(x)) ⊆ f(Nx(x)) ⊆ f(F) whenever Nx(x) ⊆ F . Thus
condition (15) is necessary and sufficient. �

The most important observation in this section is that in isotonic spaces the different
types of structure-preserving maps are the same. We first show that local continuity
and local stack-continuity are equivalent.

Theorem 9. Let (X, cl) and (Y, cl) be isotonic spaces and f : X → Y a function.
Then the following properties are equivalent:

(i) f is continuous in x.
(ii) f is stack-continuous in x.
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Proof. Suppose B ∈ N (f(x)) implies f−1(B) ∈ N (x). Then there is A ∈ N (x) such
that A ⊆ f−1(B). Thus f(A) ⊆ f(f−1(B)) ⊆ B and hence, by isotony, B ∈ f(N (x)),
i.e., N (f(x)) ⊆ f(N (x)).
Conversely, suppose f is stack-continuous in x. Then B ∈ N (f(x)) implies that there
is A ∈ N (x) such that f(A) ⊆ B. We have A ⊆ f−1(f(A)) ⊆ f−1(B) and hence
f−1(B) ∈ N (x). Thus f is continuous in x. �

Results similar to this and the following theorem can be found e.g. in [8, Thm.6.1].
Let us now turn to the global versions of continuity.

Theorem 10. Let (X, cl) and (Y, cl) be isotonic spaces. Then the following properties
are equivalent:

(i) f : X → Y is continuous.
(ii) f : X → Y is closure preserving.
(iii) f(A) ⊆ B implies f(cl(A)) ⊆ cl(B) for all A ∈ P(X) and all B ∈ P(Y ).
(iv) f : X → Y is stack-continuous.

In general, (iii) implies that f is continuous and closure preserving.

Proof. We first show that (iii) implies (i) and (ii) without assuming that cl is isotonic.
Set A = f−1(B) then f(f−1(B)) ⊆ B, whence (iii) implies f(cl(f−1(B))) ⊆ cl(B).
We have cl(f−1(B)) ⊆ f−1(f(cl(f−1(B)))) ⊆ f−1(cl(B)), i.e., f is continuous. Now
assume (iii) and set B = f(A). Since f(A) ⊆ f(A), we have conclude that f(cl(A)) ⊆
cl(f(A)), i.e., f is closure preserving.
Suppose f is continuous and cl is isotonic. Then

f(A) ⊆ B =⇒ A ⊆ f−1(f(A)) ⊆ f−1(B) =⇒ cl(A) ⊆ cl
(

f−1(B)
)

⊆ f−1(cl(B))

=⇒ f(cl(A)) ⊆ f(f−1(cl(B))) ⊆ cl(B) =⇒ (iii)

If f is closure preserving and cl is isotonic we argue: f(A) ⊆ B implies f(cl(A)) ⊆
cl(f(A)) ⊆ cl(B), i.e., (iii) is satisfied.
(iv) follows directly from theorem 9. �

3. Axioms Systems for Closure Spaces

Let (X, cl) be a generalized closure space and consider the following properties of the
closure function for all A, B ∈ P(X).

(K0) cl(∅) = ∅.
(K1) A ⊆ B implies cl(A) ⊆ cl(B) (isotonic).
(K2) A ⊆ cl(A) (expanding).
(K3) cl(A ∪ B) ⊆ cl(A) ∪ cl(B) (sub-additive).
(K4) cl(cl(A)) = cl(A) (idempotent).
(K5)

⋂

i∈I cl(Ai) = cl
(
⋂

i∈I Ai

)

(additive).

Theorem 11. The conditions in each row of table 1 are equivalent.

Further equivalent conditions in terms of convergence in terms of convergence can be
found in [16].
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Table 1. The basic axioms.
The properties below are meant to hold for all A, B ∈ P(X) and all x ∈ X , respectively.

closure interior neighborhood convergent

K0’ ∃A : x /∈ cl(A) ∃A : x ∈ int(A) N (x) 6= ∅ N ∗(x) 6= P(X)
K0 cl(∅) = ∅ int(X) = X X ∈ N (x) ∅ /∈ N ∗(x)
K1 A ⊆ B =⇒ cl(A) ⊆ cl(B) A ⊆ B =⇒ int(A) ⊆ int(B) N ∈ N (x) and N ⊆N ′ Q ∈ N ∗(x) and Q ⊆ Q′

isotonic, cl(A ∩ B) ⊆ cl(A) ∩ cl(B) int(A) ∪ int(B) ⊆ int(A ∪ B) =⇒ =⇒
monotone cl(A) ∪ cl(B) ⊆ cl(A ∪ B) int(A ∩ B) ⊆ int(A) ∩ int(B) N ′ ∈ N (x) Q′ ∈ N ∗(x)
KA cl(X) = X int(∅) = ∅ ∅ /∈ N (x) X ∈ N ∗(x)
KB A ∪ B = X =⇒ A ∩ B = ∅ =⇒ N ′, N ′′ ∈ N (x) =⇒ Q′ ∪ Q′′ = X =⇒

cl(A) ∪ cl(B) = X int(A) ∩ int(B) = ∅ N ′ ∩ N ′′ 6= ∅ Q′ ∈ N ∗(x) ∨ Q′′ ∈ N ∗(x)
K2 A ⊆ cl(A) int(A) ⊆ int(A) N ∈ N (x) =⇒ x ∈ N x ∈ Q =⇒ Q ∈ N ∗(x)
expansive
K3 cl(A ∪ B) ⊆ cl(A) ∪ cl(B) int(A) ∩ int(B) ⊆ int(A ∪ B) N ′, N ′′ ∈ N (x) =⇒ (Q′ ∪ Q′′) ∈ N ∗(x) =⇒
sub-linear N ′ ∩ N ′′ ∈ N (x) Q′ ∈ N ∗(x) ∨ Q′′ ∈ N ∗(x)
K4 cl(cl(A)) = cl(A) int(int(A)) = int(A) N ∈ N (x) ⇐⇒ Q ∈ N ∗(x) ⇐⇒
idempotent int(N) ∈ N (x) cl(Q) ∈ N (x)
K5 N (x) = ∅ or ∃N(x) : ?

additive
⋃

i∈I

cl(Ai) = cl

(

⋃

i∈I

Ai

)

⋂

i∈I

int(Ai) = int

(

⋂

i∈I

Ai

)

N ∈ N (x)

⇐⇒ N(x) ⊆ N
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Proof. Many of the equivalences in table 1 have been noted previously, see e.g. [12].
We collect the proofs here for completeness. The equivalence of the conditions for
neighborhoods and convergents follow immediately from discussion in Appendix A.

K0’. N (x) 6= emptyset iff there is a set A such that (−A) ∈ N (x), i.e., x /∈ cl(A),
i.e., x ∈ −cl(A) = int(−A).

K0. X ∈ N (x) iff x ∈ int(X) = −cl(−X) = −cl(∅) iff x /∈ cl(∅) for all x ∈ X.

K1. The equivalent definitions of isotony are discussed in section 2.

KA. X = C(X) = −int(−X) = −int(∅) iff int(∅) = ∅. We have ∅ ∈ N (x) iff
x ∈ int(∅), i.e., ∅ /∈ N (x) for all x iff int(∅) = ∅.

KB. First note that A ∪ B = X iff (−A) ∩ (−B) = ∅. Hence A ∩ B = ∅ implies
−cl(−A) ∩ −cl(−B) = ∅, i.e., int(A) ∩ int(B) = ∅. Recall x ∈ cl(A) ⇐⇒ A ∈ N ∗(x).
Suppose A ∪ B = X. Then cl(A) ∪ cl(B) = X means that for each x ∈ X we have
x ∈ cl(A) or x ∈ cl(B), and equivalently, A ∈ N ∗(x) or B ∈ N ∗(x). The condition
for the neighborhood follows by duality, see Appendix A.

K2. A ⊆ cl(A) ⇐⇒ −A ⊆ cl(−A) ⇐⇒ int(A) = −cl(−A) ⊆ −(−A) = A. Hence
N ∈ N (x) implies x ∈ int(N) ⊆ N , i.e., x ∈ N . Conversely, suppose x ∈ N for all
N ∈ N (x) and consider x ∈ A. Then x /∈ −A and hence −A /∈ N (x), i.e., x ∈ cl(A)
by equ.(3).

K3. The axiom can be expressed as x ∈ cl(A ∪ B) implies x ∈ cl(A) or x ∈ cl(B).
Equivalently, x /∈ cl(A) and x /∈ cl(B) implies x /∈ cl(A ∪ B). Using equ.(3) three
times we see that this is equivalent with: −A ∈ N (x) and −B ∈ N (x) implies
−(A∪B) = (−A)∩ (−B) ∈ N (x). Replacing A and B by −A and −B, respectively,
completes the proof.

K4. We have int(A) = int(−cl(−A)) = −cl(−[−cl(−A)]) = −cl(cl(−A)). Thus
cl(cl(−A)) = cl(−A) implies int(int(A)) = −cl(−A) = int(A).
Conversely, int(int(A)) = int(A) implies −cl(cl(−A)) = −cl(−A) and cl(cl(A)) =
cl(A). We have in general x ∈ int(int(A)) = −(cl(cl(−A))) iff x /∈ cl(cl(−A)), i.e., iff
−(cl(−A)) = int(A) ∈ N (x). Thus K4 is equivalent to the condition that x ∈ int(A)
if and only if int(A) ∈ N (x). On the other hand, we have x ∈ int(A) if and only
if A ∈ N (x). Combining these two conditions we obtain A ∈ N (x) if and only if
int(A) ∈ N (x).

K5. Since (K1) from (K5) we know from theorem 6 that x ∈ cl(A) iff N ∩A 6= ∅ for
all N ∈ N (x). In particular, therefore, x ∈ cl({y}) ⇐⇒ y ∈ N for all N ∈ N (x), i.e.,
if and only if y ∈ N(x).
Now we have cl(A) =

⋃

y∈A cl({y}), hence int(A) = −(cl(−A)) = −
⋃

y∈−A cl({y}) =
⋂

y∈−A −cl({y}). Thus x ∈ int(N) iff x /∈ cl({y}) for all y /∈ N , i.e., iff y /∈ N(x)

for all y /∈ N i.e., iff N(x) ⊆ N . Collecting the equivalences we have N ∈ N (x) iff
N(x) ⊆ N . �

A few remarks are in order here.

(K0) implies (K0’).
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Table 2. Axioms for closure operators.
Defining axioms are marked by •, further properties that implied are marked by ◦.

Axiom cl
(∅

)
=

∅

A
⊆

B
=
⇒

cl
(A

)
⊆

cl
(B

)
is

ot
on

ic

A
⊆

cl
(A

)
en

la
rg

in
g

cl
(A

∪
B

)
⊆

cl
(A

)
∪

cl
(B

)
su

b
-l

in
ea

r

cl
(c

l(
A

))
=

cl
(A

)
id

em
p

ot
en

t

cl
(⋃

i
A

i)
=
⋃

i
cl

(A
i)

ad
d
it

iv
e

Ref.

Extended Topology • •
Brissaud • • [2]
Neighborhood space • • • [19]
Closure space (•) • • • [33]
Smyth space • • • [32]
Pretopology • • • • [5]
Topology • ◦ • • •
Alexandroff space • ◦ • ◦ •
Alexandroff topology • ◦ • ◦ • •

Isotonic closure functions satisfying (K0’) also satisfy (K0). Such closures are studied
in detail in [13, 14] under the name extended topology.

(KB) and (K0) implies (KA).

(K2) implies (KB).

(K3) implies (KB).

An isotonic sub-linear closure function, (K1) and (K3), is called linear or finitely
additive and satisfied cl(A ∪ B) = CA ∪ cl(B) and int(A ∩ B) = int(A) ∩ IB. Often,
this condition replaces (K1) and (K3) in axiom systems of closure spaces, see e.g. [11].

Axiom (K4) can be rephrased in the more familiar form Each neighborhood N ∈ N (x)
contains an open neighborhood, namely int(N) = int(int(N)). Idempotence of the
closure operator, hence, is the distinguishing feature of topological spaces.

By definition, (K5) implies linearity and therefore both (K1) and (K3).

Spaces with the same combination of axioms have different names in the literature
and the same name is used for different axiom systems by different authors. Table 2
summarizes the names used in this manuscript.

Dikranjan et al. [9] show that the class of generalized closure space (X, cl) satisfying
(K0), (K1), (K2), and (K4) form a topological category. It is well known that the
Čech closure spaces, which satisfy (K0), (K1), (K2), and (K3), are identical to the
pretopological spaces which also form a topological category, see e.g. [29].
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4. Symmetry and Separation Axioms

The symmetry and separation axiom always deal with the existence of neighborhoods
around every point of X such that certain additional conditions are satisfied. Hence
we shall assume N (x) 6= ∅, i.e. (K0’) from now on.

4.1. Symmetry Axioms. The two most important symmetry properties in term
of neighborhoods and their closure counterparts are

(R0) If x is contained in each neighborhood of y then y is contained in each neigh-
borhood of x.

(R0c) If x ∈ cl({y}) then y ∈ cl({x}).
(wS) If x is contained in each neighborhood of y then N (x) ⊆ N (y).
(cS) cl(A) ∩ cl({x}) 6= ∅ implies x ∈ cl(A).
(S) If x is contained in each neighborhood of y then N (x) = N (y).

(RE) If Nx ∩ Ny 6= ∅ for all Nx ∈ N (x) and all Ny ∈ N (y) implies N (x) = N (y)

The (R0) axiom was introduced by Šanin [30]. Eduard Čech proved that a pretopo-
logical space is semi-uniformizable if and only if it satisfies (R0c) [5, Thm.23.B.3]. In
[23] it is shown that (R0) is equivalent to “weak uniformizability”.

In [5, Sect.29] axiom (S) and its variants appear as necessary condition for normal-
ity. The equivalence of (wS), (cS) and (S) for preotopological space is shown as
Thm.29.A.3.

Reciprocal spaces were considered in [21], where (RE) was termed “axiom P”.

Lemma 5. (i) If (X, cl) is an extended topology then (R0) and (R0c) is equivalent.
(ii) If (X, cl) is a neighborhood space then (wS) implies (R0).
(iii) If (X, cl) is a neighborhood space then (RE) always implies (cS).

Proof. (i) can be seen as follows: Let N(x) = ∩{N |N ∈ N (x)} be the vicinity of x.
Then (R0) can be written as “y ∈ N(x) implies x ∈ N(y). The crucial observation
is that in isotonic space we have cl({x}) = {y|∀N ∈ N (y) : N ∩ {x} 6= ∅} = {y|x ∈
N(x)}, i.e.,

x ∈ N(y) ⇐⇒ y ∈ cl({x}) . (16)

The proof now follows trivially.
(ii) Suppose x ∈ N(x). Then (wS) implies N (x) ⊆ N (y), i.e., U ∈ N (x) =⇒ U ∈
N (y). Equivalently, x /∈ cl(−U) implies y /∈ cl(−U) and hence y ∈ cl(A) implies
x ∈ cl(A) for all A. Now x ∈ N(y), i.e., y ∈ cl({x}), and, by (K2), y ∈ cl({y}),
implies x ∈ cl({y}), i.e., y ∈ N(x).
(iii) If y ∈ N(x) and by (K2) y ∈ N(y) then N(x)∩N(y) 6= ∅ and hence Nx ∩Ny 6= ∅
for all Nx ∈ N (x) and all Ny ∈ N (y). Now (RE) implies N (x) = N (y), i.e., (S) holds
as well. �

Theorem 12. (i) (S) implies (cS) implies (wS) in isotonic spaces.
(ii) In an isotonic (R0) space (wS), (cS), and (S) are equivalent.
(iii) If (X, cl) is a neighborhood space then (wS), (cS), and (S) are equivalent.
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Proof. (i) Suppose (S) holds, i.e., x ∈ N(y) ⇐⇒ y ∈ cl({x}) implies that N ∈ N (x)
iff N ∈ N (y). Equivalently, we have x /∈ cl(−N) iff y /∈ cl(−N), i.e., x ∈ cl(−N) iff
y ∈ cl(−N), i.e., x ∈ cl(A) iff y ∈ cl(A) for all A ∈ P(X). Thus y ∈ cl({x}) and
y ∈ cl(A) implies x ∈ cl(A), i.e., cl({x}) ∩ cl(A) 6= ∅ implies x ∈ cl(A). The negation
of this implication is (cS).
Now let x ∈ N(y), i.e., y ∈ cl({x}) and U ∈ N (x), i.e., x /∈ cl(−U ). (cS) implies
cl({x})∩cl(−U) = ∅, hence y ∈ cl({x}) implies y /∈ cl(−U), i.e. y ∈ int(U), and hence
U ∈ N (y). Thus N (x) ⊆ N (y).
(ii) It suffices to show that (R0) and (wS) implies (S). We have x ∈ cl({y}) implies
N (y) ⊆ N (x) by (wS) and y ∈ cl({x}) by (R0). Applying (wS) again we have
N (x) ⊆ N (y), and the assertion follows.
(iii) Follows directly from (ii) and Lemma 5(ii). �

It is well known that (R0) and (S) are equivalent in topological spaces, see e.g. [29].

4.2. Lower Separation Axioms. The axioms (T0) and (T1), as well as the weak
symmetry axiom (R0) above, can be stated in full generality in the same way as in
topological spaces:

(T0) For all x, y ∈ X, x 6= y there is N ′ ∈ N (x) such that y /∈ N ′ or there is
N ′′ ∈ N (y) such that x /∈ N ′′.

(T1) For all x, y ∈ X, x 6= y there is N ′ ∈ N (x) and N ′′ ∈ N (y) such that x /∈ N ′′

and y /∈ N ′.

Assuming (K0’) we can rewrite (T0) and (T1) in terms of N(x). This notation
immediately suggests corresponding axioms in terms of the closure function:

(T0) x 6= y: y /∈ N(x) or x /∈ N(y) (cT0) x 6= y: y /∈ cl({x}) or x /∈ cl({y})
(T1) N(x) ⊆ {x} (cT1) cl(x) ⊆ {x}

Theorem 13. (T1)⇐⇒(T0 and R0) and (cT1)⇐⇒(cT0 and cR0). If (X, cl) is an
extended topology then (T0)⇐⇒(cT0) and thus also (T1)⇐⇒(cT1).

Proof. It is obvious from the definitions that (T1) =⇒ (T0) and (R0) and that
(cT1) =⇒ (cT0) and (cR0). Conversely, suppose (X, cl) satisfies (T0) and (R0)
but not (T1). Then there are two points x0 6= y0 ∈ X such that y0 ∈ N(x0). Now
(T0) implies x0 /∈ N(y0), contradicting (R0). The argument for (cT1) is analogous.
The second part of theorem follow immediately from Lemma 5 and equ.(16). �

4.3. Hausdorff-Like Axioms.

(T2) If x 6= y then there is N ′ ∈ N (x) and N ′′ ∈ N (y) such that N ′ ∩ N ′′ = ∅.
(H) A proper prefilter converges to at most one point.

(T2 1

2
) If x 6= y then there is N ′ ∈ N (x) and N ′′ ∈ N (y) such that cl(N ′)∩cl(N ′′) = ∅.

Lemma 6. (T2) implies (RE) in general.
In a neighborhood space (T2 1

2
) =⇒ (T2)⇐⇒(T0 and RE) =⇒ (T1).

Proof. (T2) =⇒ (RE): N ′ ∩ N ′′ 6= ∅ for all N ′ ∈ N (x) and all N ′′ ∈ N (y) implies
x = y and hence trivially N (x) = N (y).
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Now assume that (X, cl) is a neighborhood space.
(T2 1

2
) =⇒ (T2) =⇒ (T1): If cl(N ′) ∩ cl(N ′′) = ∅ then (K2) implies N ′ ∩ N ′′ = ∅ and

using (K2) again implies both x /∈ N ′′ and y /∈ N ′.
Now suppose (RE) holds but (T2) is not satisfied. Then there are points x 6= y
such that N ′ ∩ N ′′ 6= ∅ for all N ′ ∈ N (x) and all N ′′ ∈ N (y). By (RE) we have
N (x) = N (y). (K2) now implies x, y ∈ N for all N ∈ N (x) = N (y). This contradicts
(T1) and hence also (T0). �

Theorem 14. If (X, cl) is a neighborhood space then (H)⇐⇒(T2).

Proof. In a neighborhood space each neighborhood system N (x) is by definition a
proper prefilter. The union F ∪ G of two proper prefilters is a proper prefilter if and
only if F ∩ G 6= ∅ for all F ∈ F and all G ∈ G.
(T2) =⇒ (H): Suppose F is a proper prefilter converging to both x and y, F → x and
F → y. In other words, N (x)∪N (y) ⊆ F . If x 6= y then by (T2) there is N ′ ∈ N (x)
and N ′′ ∈ N (y) such that N ′ ∩ N ′′ = ∅, i.e., F is not a proper prefilter. Thus x = y.
(H) =⇒ (T2): Condition (H) can be rephrased in as “if x 6= y then there is no proper
prefilter finer than N (x)∪N (y), and, equivalently, N (x)∪N (y) itself is not a proper
prefilter. This means that there is N ′, N ′′ ∈ N (x) ∪ N (y) such that N ′ ∩ N ′′ = ∅.
Since both N (x) and N (y) are proper prefilters we have to choose N ′ ∈ N (x) and
N ′′ ∈ N (y), and hence (T2) holds. �

4.4. Regularity-Like Axioms.

Theorem 15. In an isotonic space the following conditions are equivalent:

(R) For all x ∈ X and all N ∈ N (x) there is U ∈ N (x) such that cl(U) ⊆ N .
(R’) For all x ∈ X and all non-empty A ∈ P(X) such that x /∈ cl(A) there is

U ∈ N (x) and V ∈ N (A) such that U ∩ V = ∅.

Proof. Suppose (R’) holds. Choose an arbitrary x ∈ X and N ∈ N (x) and set
A = −N . We have x /∈ cl(A) iff −A = N ∈ N (x). Now We have U ∩ V = ∅, hence
U ⊆ −V and by isotony cl(U) ⊆ cl(−V ) and finally int(V ) = −cl(−V ) ⊆ −cl(U). By
Lemma 1 we have A ⊆ int(V ), thus A ⊆ −cl(U), and cl(U) ⊆ −A = N . Thus (R) is
satisfied.
Conversely assume (R), and let N ∈ N (x). Then there is U ∈ N (x) such that cl(U) ⊆
N . Set V = −U and A = −N . Then −N = A ⊆ −cl(U) = −cl(−V ) = int(V ), i.e.,
A ∈ N (V ) and U ∩ V = ∅. Observing again that N ∈ N (x) if and only if x /∈ cl(A)
completes the proof. �

Definition 11. An isotonic space is regular if it satisfies one of conditions in theo-
rem 15.

It is worth noting that condition (R) naturally appears in the theory of generalized
convergence spaces (see e.g. []), while (R’) is the straightforward generalization of the
usual regularity axiom in topological spaces.

A stronger property is
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(tR) For all x ∈ X and all non-empty closed sets ∅ 6= A = cl(A) ∈ P(X) there is
U ∈ N (x) and V ∈ N (A) such that U ∩ V = ∅.

It is clear that (tR) implies (R). Obviously (R) and (tR) are equivalent if cl is idem-
potent.

Definition 12. A closure spaces is (T3) if it satisfies (R) and (T0).

Lemma 7. If (X, cl) is a neighborhood space then (T3) =⇒ (T2 1

2
) =⇒ (T2).

Proof. We start with (R’) and set A = {y}. Since (R) implies (R0) we know that a
(T3) space is (T1), hence cl(A) = cl({y}) = {y}. Thus (R’) reduces to the existence
of N ′ ∈ N (x) and N ′′ ∈ N (y) such that N ′ ∩ N ′′ = ∅, i.e., to (T2). Now we can use
(R) to obtain U ′ ∈ N (x) and U ′′ ∈ N (y) with cl(U ′) ⊆ N ′ and cl(U ′′) ⊆ N ′′. Clearly
cl(U ′) ∩ cl(U ′′) = ∅, i.e., (T2 1

2
) is satisfied. �

4.5. Normality. There appears to be no consistent definition of normal spaces be-
yond the realm of topological spaces. The nomenclature above is a hybrid of the
conventions from different authors, motivated in part by analogy with the terminol-
ogy of regularity properties above. Cech [5, ] call a pretopological space normal if it
is quasi-normal and symmetric. In [27] Paoli & Ripoli introduce a notion of normal
convergence space based on closed sets, calling (QTN) quasi-normal and using normal
for (N). In [34] (QN) is called normal.

Definition 13. Let (X, cl) be a isotonic space. The space is

(QN) quasi-normal if for all A, B 6= ∅ cl(A) ∩ cl(B) = ∅ implies that there is U ∈
N (A) and V ∈ N (B) such that U ∩ V = ∅.

(N) normal For all non-empty closed sets A = cl(A) =6= ∅ and all N ∈ N (A)
there is U ∈ N (A) such that cl(U) ⊆ N .

(TN) normal For all non-empty closed sets A = cl(A) =6= ∅ and all N ∈ N (A)
there is a closed set U = cl(U) ∈ N (A) such that cl(U) ⊆ N .

(QTN) quasi-t-normal if for all non-empty disjoint closed sets, i.e., A = cl(A) 6= ∅,
B = cl(B) 6= ∅, A ∩ B 6= ∅ implies that there is U ∈ N (A) and V ∈ N (B)
such that U ∩ V = ∅.

Lemma 8. Let (X, cl) be a neighborhood space. Then
(i) (QN) implies (N) implies (QTN), and (TN) implies (N).
(ii) If cl is idempotent then (QN), (TN), (N), and (QTN) are equivalent.

Proof. (i) The implication (TN) =⇒ (N) is trivial.
Suppose Q = cl(Q) 6= ∅ and W ∈ N (Q), i.e., Q ∈ int(W ). Using Q = cl(Q) and
−int(W ) = cl(−W ) we have cl(Q)∩ cl(−W ) = ∅ and by (QN) there is U ∈ N (Q) and
V ∈ −W such that U ∩ V = ∅. Thus (−W ) ⊆ int(V ) = −cl(−V ) and hence
cl(−V ) ⊆ W . Furthermore U ⊆ −V . Now U ∈ N (Q) and U ⊆ −V implies
−V ∈ N (Q) and cl(−V ) ⊆ W ; thus (N) holds.
(second part of (i) missing).
(ii) The equivalence of (N) and (TN) and the equivalence of (QN) and (QTN), re-
spectively is obvious for idempotent closure operators. Then lemma now follows from
(i). �
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Definition 14. A closure space (X, cl) is (T4) if satisfies (T1) and (QN).

Lemma 9. If (X, cl) is a neighborhood space, then (T4) implies (T3).

Proof. Consider a point x and a set A such that x /∈ cl(A). From (T1) and (K2)
we have cl({x}) = {x}, hence cl({x}) ∩ cl(A) = ∅. Thus (QN) implies that there is
N ∈ N (x) and U ∈ N (A) such that N ∩ U = ∅, i.e., (R’) is satisfied. Recall, finally,
that (R’) and (T0) is equivalent to (T3) in all isotonic spaces. �

Cech [5] mentions that a symmetric, quasi-normal pretopological space is topological.

5. Connectedness

Connectedness is closely related to separation. Two sets A, B ∈ P(X) are semi-
separated if there are neighborhoods N ′ ∈ N (A) and N ′′ ∈ N (B) such that A ∩
N ′′ = N ′ ∩ B = ∅; they are separated if if there are neighborhoods N ′ ∈ N (A) and
N ′′ ∈ N (B) such that N ′ ∩ N ′′ = ∅.

Lemma 10. If (X, cl) is isotone then A and B are semi-separated if and only if
cl(A) ∩ B = A ∩ cl(B) = ∅.

Proof. Using the definition of the neighborhoods of sets we see that A and B are semi-
separated if and only if there are sets U and V such that A ⊂ int(U) and B ⊂ int(V ).
We argue: A∩V = ∅ implies V ∈ −A and hence B ⊆ int(V ) ⊆ int(−A) where we have
used that cl is isotone. Switching to the complements we have cl(A) = A− int(−A) ⊆
−B and hence cl(A) ∩ B = ∅. Analogously we see cl(B) ⊆ −A.
Now suppose cl(A) ∩ B = A ∩ cl(B) = ∅. Thus B ⊆ −cl(A) = int(−A) and hence
V = −A ∈ N (B). Of course A ∩ V = ∅. Analogously we see that U = −B is a
neighborhood of A. �

Definition 15. A set Z ∈ P(X) is connected in (X, cl) if it is not a disjoint union
of a nontrivial semi-separated pairs of sets A, Z − A, A 6= ∅, Z.

By definition a 1-point set Z = {z} is connected. We say that (X, cl) is connected if
X is connected in (X, cl). This definition can be rephrased as

Theorem 16. A set Z ∈ P(X) is connected in an isotonic space (X, cl) if and only
if for each proper subset A ⊆ Z holds

[cl(A) ∩ (Z \ A)] ∪ [cl(Z \ A) ∩ A] 6= ∅ (17)

Eq.(17) is known as the Hausdorff-Lennes condition.

Lemma 11. If X and Y are connected in an isotone space (X, cl) and X ∩ Y 6= ∅,
then X ∪ Y is connected.

Proof. We use the Hausdorff-Lennes condition:

[cl(A) ∩ (Y ∪ Z) \ A] ∪ [A ∩ cl((Y ∪ Z) \ A)] =

[cl(A) ∩ (Y \ A)] ∪ [cl(A) ∩ (Z \ A)] ∪ [A ∩ cl((Y \ A) ∪ (Z \ A))] ⊇

{[cl(A) ∩ (Y \ A)] ∪ [A ∩ cl(Y \ A)]} ∪ {[A ∩ cl(Z \ A)] ∪ [cl(A) ∩ (Z \ A)]}

(18)
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If A∩Y or A∩Z is a proper subset of Y or Z, respectively, then one of the expressions
in the braces in non-empty. Both expressions are empty if and only if either A = Z
and A ∩ Y = ∅ or A ∩ Z = ∅ and A = Y . This is impossible if Y ∩ Z 6= ∅. �

Theorem 17. If (X, cl) is a neighborhood space then cl(Z) is connected whenever Z
is connected.

Proof. Set A′ = Z ∩A and A′′ = A \Z. We then use the Hausdorff-Lennes condition:

[cl(A) ∩ (cl(Z) \ A)] ∪ [cl(cl(Z) \ A) ∩ A] ⊇

[(cl(A′) ∪ cl(A′′)) ∩ (Z \ A′)] ∪ [cl(Z − A′) ∩ (A′ ∪ A′′)] ⊇

{[cl(A′) ∩ (Z \ A′)] ∪ [cl(Z \ A′) ∩ A′]} [cl(Z − A′) ∩ A′′]

(19)

Here we have used Z − A′ ⊆ (cl(Z) \ A′′) \ A′ which is true only if (K2) holds. If
A′ 6= ∅ then the term in braces in non-empty because Z is connected by assumption.
If A′ = ∅ then A′′ ⊆ cl(Z)\Z is nonempty and hence cl(Z \ A′)∩A′′ = cl(Z)∩A′′ 6= ∅.
Thus cl(Z) is connected. �

Lemma 12. In neighborhood spaces let f : (X, cl) → (Y, cl) be continuous and suppose
A, B ⊆ X are semi-separated. Then f−1(A) and f−1(A) are semi-separated.

Proof. Suppose cl(A) ∩ B = ∅. Then f−1(cl(A)) ∩ f−1(B) = ∅. Continuity means
cl
(

f−A
)

⊆ f−1(cl(A)), hence cl(f−1(A))∩f−1(B) = ∅. By the same argument cl(B)∩
A = ∅ implies cl(f−1(B)) ∩ f−1(A) = ∅, and the lemma follows. �

Theorem 18. If f : (X, cl) → (Y, cl) is a continuous function between neighborhood
spaces, and A is connected in X, then f(A) is connected in Y .

Proof. Suppose f(A) is not connected. Then f(A) = U ∪̇V , where U and V are
semiseparated and non-empty. Thus f−1(U) and f−1(V ) are semi-separated. Clearly
A′ = A∩ f−1(U) and A′′ = A∩ f−1(V ) are both non-empty and also semi-separated.
Furthermore A′ ∪ A′′ = A, hence A is not connected. �

Appendix A: Filters and Grills

Let F be an arbitrary collection of subsets of X. The dual of F is defined by

F∗ = {F ∈ P(X)| − F /∈ F} (20)

Obviously we have F ∗∗ = F , F = G∗ if and only if G = F∗, and P(X)∗ = ∅.

A stack on X is F a (possibly empty) isotonic collection of subsets of X. F is a stack
if and only if its dual F ∗ is a stack. In particular, P(X)∗ and ∅ are stacks on X.

We call a stack proper if it is non-empty and does not contain the empty set. Note
that the only stack containing ∅ is P(X) as an immediate consequence of isotony.
Thus the dual of a proper stack is again a proper stack. Equivalently, a stack F is
proper if and only if X ∈ F . In table 3 we list the filter axioms and their duals.

Proper stacks satisfy (F0). The “pair-wise intersection” axiom (F1) is emphasized in
[35], the term prefilter for an (F1)-stack was used in [1]. Axiom (F2), which implues
(F1), defines H. Cartan’s notion of a filter [4], its dual is called a grill [7]. By analogy
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Table 3. Filter and Grill Axioms.

Axiom filter grill

ISO F ∈ F , F ⊂ F ′ =⇒ F ′ ∈ F

F0 F 6= ∅ and ∅ /∈ F , i.e., X ∈ F
F1 F ′, F ′′ ∈ F =⇒ F ′ ∩ F ′′ 6= ∅ G′ ∪ G′′ = X =⇒ G′ ∈ F or G′ ∈ F

F ∈ F =⇒ −F /∈ F G /∈ F =⇒ −G ∈ F
F2 F ′, F ′′ ∈ F =⇒ F ′ ∩ F ′′ ∈ F G′ ∪ G′′ ∈ F =⇒ G′ ∈ F or G′ ∈ F
F3 F ∈ F ⇐⇒ −F /∈ F

we call a stack that satisfies the dual of (F1) a pregrill. A stack with property (F3) is
universal. A universal filter is an ultrafilter [3]. Obviously (F3) implies (F1) but not
(F2).

Notation

x Points are denotes by lower case letters, preferably x, y, z, p, q, . . .
X A set of points is denoted by captial letters.

P(X) The power set if X.
F A family of sets, e.g., F ⊆ P(X).

N (x) The familly of neighborhoods of x.
F∗ The dual of F .

P(X) = P(P(X)), the set of all families of sets on X.
S(X) The set of all stacks on X.
S0(x) The set of all proper stacks on X.
J0(x) The set of all proper prefiltres on X.
F(x) The set of all filters on x.

F0(x) The set of all proper filters on x.
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[24] H. L. Kowalsky. Limesräume und komplettierung. Math. Nachr., 12:301–340, 1954.
[25] E. H. Moore and H. L. Smith. A general theory of limits. Amer. J. Math., 44:102–121, 1922.
[26] J. Novák. On some problems concerning multivalued convergences. Czech. Math. J., 14:548–561,

1964.
[27] M. Paoli and E. Ripoli. Convergence subspaces and normality. Ital. J. Pure Appl. Math., 1:91–

99, 1997.
[28] G. Preuss. Theory of Topological Structures. D. Reidel, Dordrecht, NL, 1988.
[29] G. Preuß. Convenient topology. Math. Japonica, 47:171–183, 1998.
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[31] W. Sierpiński. General Topolgy. Univ. Toronto Press, Toronto, 1956.
[32] M. B. Smyth. Semi-metric, closure spaces and digital topology. Theor. Computer Sci., 151:257–

276, 1995.
[33] W. P. Soltan. An Introduction in Axiomatic Theory of Convexity. Shtiintsa, Kishinev, 1984.

Russian.
[34] D. Thampuran. Normal neighborhood spaces. Rend. Sem. Mat. Univ. Padova, 45:95–97, 1971.
[35] D. V. Thampuran. Extended topology: filters and convergence I. Math. Annalen, 158:57–68,

1965.
[36] D. V. Thampuran. Extended topology: Moore-smith convergence. Portug. Math., 24:83–98,

1965.
[37] D. V. Thampuran. Neighborhood spaces and convergence. Port. Math., 33:43–49, 1974.


