
A Note On Minimum Path Bases

Petra M. Gleissa, Josef Leydoldb, Peter F. Stadlera,c

aInstitute for Theoretical Chemistry and Structural Biology,
University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria

Phone: **43 1 4277-52737 Fax: **43 1 4277-52793
E-Mail: {pmg,studla}@tbi.univie.ac.at

URL: http://www.tbi.univie.ac.at/~{pmg,studla}

bDept. for Applied Statistics and Data Processing
University of Economics and Business Administration

Augasse 2-6, A-1090 Wien, Austria
Phone: **43 1 31336-4695 Fax: **43 1 31336-738
E-Mail: Josef.Leydold@statistik.wu-wien.ac.at

URL: http://statistik.wu-wien.ac.at/staff/leydold

cThe Santa Fe Institute,
1399 Hyde Park Road, Santa Fe, NM 87501, USA

Abstract

Given an undirected graph G(V, E) and a vertex subset U ⊆ V the U -space is
the vector space over GF(2) spanned by the paths with end-points in U and
the cycles in G(V, E). We extend Vismara’s algorithm to the computation
of the union of all minimum length bases of the U -space.
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1. Introduction

Let G(V, E) be a simple graph. A cycle in G is a subgraph of G in which each
vertex has even degree. A cycle is elementary if all its vertices have degree 2. Thus
a cycle is an edge-disjoint union of elementary cycles.

A uv-path P , u 6= v, in G is a connected subgraph that has exactly two vertices of
odd degree, u and v, called its endnodes, while all other vertices, called the interior
vertices of P have even degree. A uv-path is elementary if all its interior vertices have
degree 2. One easily checks that a uv-path is an edge-disjoint union of an elementary
uv-path and a collection of elementary cycles.

The incidence vector ~H of a subgraph H of G is indexed by the edges of G and
has coordinates He = 1 if e is an edge of H and He = 0 otherwise. By abuse of
notation we henceforth use the same symbol H for a subgraph of G, its edge set, and
the corresponding incidence vector. It is customary to consider the vectors H over
GF (2). Hence vector addition, C⊕D, corresponds to the symmetric difference of the
edge sets of subgraphs C and D of G. The incidence vectors of the cycles span the
well-known cycle space C(G) of G, see e.g. [1].

The weight |H| of a subgraph H is simply the number of edges in H. The length
of a basis B of a vector space V of subgraphs of G is

`(B) =
∑

H∈B

|H|. (1)

We remark that all of the discussion below remains valid when we set |H| =
∑

e∈H ω(e)
for arbitrary edge weights ω(e) > 0.

Let U ⊆ V be a nonempty set of vertices and consider the vector space U∗ generated
by the incidence vectors of the uv-paths with u, v ∈ U . This construction is of interest
for example in the context of chemical reaction networks, where a subset U of all
chemical species V is fed into the system from the outside or is harvested from the
system. The uv-paths hence correspond to productive pathways [2, 4, 7]. Hartvigsen
[5] introduced the U -space U(G) as the union of U∗ and the cycle space C(G). He
gives an algorithm for computing a minimum length basis of U(G), a minimum U-
basis for short, in polynomial time that extends a previous algorithm by Horton [6]
for minimum length bases of the C(G).

More recently, Vismara [8] showed how to compute the set of relevant cycles, i.e.,
the union of all minimum length bases of C(G), using a method that is based on
Horton’s algorithm. It is the purpose of this note is to extend Vismara’s approach
to the U -space U(G). In addition we briefly describe an implementation of this
algorithm.

2. Dimension of the U-space U(G)

Lemma 1. If G is biconnected, then U∗ = U(G).

Proof. Since C(G) is spanned by the elementary cycles, it is sufficient to show that
any elementary cycle C is the sum of some uv-paths. Let u, v ∈ U . We show that
there exist two vertices x and y in C, not necessarily distinct, and two paths D1 and
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D2 from u to x and from v to y, respectively, such that D1, D2, and C are edge-
disjoint. We also can split the elementary cycle C into two paths C1 and C2 with x
and y as their endnodes, such that C = C1 ⊕ C2. In case that some of the points u,
v, x, and y coincide, then the corresponding paths above are empty paths, i.e. they
have no edges. Now P1 = D1 ⊕ C1 ⊕ D2 and P2 = D1 ⊕ C2 ⊕ D2 are two uv-paths
with C = P1 ⊕ P2, as proposed.
To construct the paths D1 and D2 we start with an elementary cycle D that contains
u and a vertex on C. Such a cycle exists by the biconnectedness of G. Obviously, C
contains two vertices x and y such that the paths D1 = D[u, x] and D2 = D[u, y] are
edge-disjoint and have no edge in common with C. Furthermore, since G is connected,
there must be a path H from v to some vertex y′ in C that also has no edge in common
with C. If D1 and H are edge-disjoint we can replace y by y′ and D2 by H and we
are done. Analogously we replace D1 by H if D2 and H are edge-disjoint but D1

and H are not. Otherwise D2 and H must have a vertex h in common such that the
subpath H[v, h] has no edge in common with the subpath D2[h, y] and D1 (otherwise
we change the rôle of D1 and D2). Thus D′

2
= H[v, h] ⊕ D2[h, y] is a path from v to

y that has no edge in common with D1 and C. Hence we replace D2 by D′
2

and we
are done. �

Remark. Notice that in the above proof u and v need not be distinct. As a conse-
quence C(G) is spanned by all cycles through a given vertex u ∈ U , provide that G is
biconnected. It is therefore meaningful to extend the definition of U∗ to the special
case |U | = 1 where U∗ is the cycle space of the biconnected component that contains
u ∈ U . One could therefore define a uu-path as a connected cycle through the vertex
u. However this would complicate the notation in the following.

Lemma 1 is not necessarily true for general connected graphs. Extending the
argument of the proof above it is easy to see, however, that for each biconnected
component H of G we have either C(H) ⊆ U∗ or C(H) ∩ U∗ = ∅, depending on
whether a U -path passes through H.

The dimension of the cycle space is the cyclomatic number µ(G) = |E|−|V |+1 (for
connected graphs). The dimension of the U -space dim (U) can be given as following:

Theorem 2. If G is connected then dim (U(G)) = µ(G) + |U | − 1,

Proof. Let C = C1 ⊕ C2 ⊕ · · · ⊕ Ck, with Ci ∈ U(G). Then for any vertex x ∈ V the

degree of x in C is even if and only if
∑k

i=1
degCi

(x) is even. In particular, the ⊕-sum
of two paths between two vertices x and y is a cycle.
We proceed by induction on the number of vertices in U . Assume U contains only the
two vertices x and y. To construct a basis for U, we need a path P (x, y) in addition
to the cycle basis, since all paths between x and y are obtained as ⊕-sums of the path
P (x, y) and some cycles. Hence dim (U) = µ + 1.
Now assume the proposition holds for U ⊂ V and consider U ′ = U ∪ {v} for some
v ∈ V \U . Since there is no path with endpoint v in the basis of U the degree of v is
even for every ⊕-sum of elements in U. Thus dim (U′) > dim (U). To obtain a basis
for U′ we have to add a path P (v, x) for some x ∈ U to the basis of U. Clearly, for any
y ∈ U , P (v, x) ⊕ P (x, y) is the edge-disjoint union of a path P (v, y) and a (possibly
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empty) collection of elementary cycles. All other paths from v to y ∈ U can now be
obtained as the ⊕-sum of the path P (v, y) and an appropriate set of cycles. Hence
dim (U′) = dim (U) + 1 and the proposition follows. �

We immediately find the following

Corollary 3. If G is a simple connected graph G and U ⊆ V is non-empty, then
dim (U) = |E| − |V | + |U |.

Notice that this result also holds for graphs G that are not connected provided that
each component of G contains at least one vertex of U .

3. Minimal U-Bases and Relevant U-Elements

Definition 4. Let V be a vector space of subgraphs of G. We say that A is relevant in
V (for short V-relevant) if there is a minimum length basis B of V such that A ∈ B.

In other words, the set R� of V-relevant subgraphs is the union of all minimum
length bases of V.

Lemma 5. A ∈ V is relevant if and only if A cannot be written as the ⊕-sum of
strictly shorter elements of V.

Proof. The proof of Vismara’s [8] Lemma 1 is valid for arbitrary vector spaces of
subgraphs. �

Horton’s [6] mimimal cycle basis algorithm is based on an easy-to-check necessary
condition for relevance: A cycle is edge-short if it contains an edge e = {x, y} and a
vertex z such that Cxy,z = {x, y} ∪ Pxz ∪ Pyz where Pxz and Pyz are shortest paths1.
Hartvigsen [5] generalized this notion to paths: A uv-path P is edge-short if there is
an edge e = {x, y} such that both P [u, x] is a shortest ux-path and P [y, v] is shortest
yv-path. Here we write P [p, q] for the subpath of P connecting p and q. Horton and
Hartvigsen furthermore showed that it is sufficient to consider the cycles Cxy,z and
paths P x,y

uv = Pux ∪ {x, y} ∪ Pyv for a fixed choice of the shortest paths Pxy between
any two vertices of G. Thus a minimum cycle basis and a minimum U-basis can be
obtained in polynomial time by means of the greedy algorithm, see [5, 6].

The related problem of computing all relevant cycles or U-elements can in general
not be solved in polynomial time because the number of relevant cycles may grow
exponentially with |V | in some graph families, for an example see [8, Fig.2]. It is
possible, however, to define a set of prototypes for the relevant cycles such that each
relevant cycle C can be represented in the form

C = Cp ⊕ S1 ⊕ S2 ⊕ · · · ⊕ Sk (2)

where Cp is a prototype cycle, with |Cp| = |C| and cycles Si that are strictly shorter
than C. One easily verifies that either both C and Cp are relevant or neither cycle is
relevant. Furthermore, a minimal cycle basis contains at most one of these two cycles.
We briefly recall Vismara’s construction of prototypes for cycles and then extend it
to U -paths.

1We reserve the symbol Pxy for a shortest path between x and y, while P (x, y) may be any path
between x and y, and P [x, y] denotes the sub-path from x to y of a given path or cycle P .
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We fix an arbitrary ordering of the vertex set of G. Consider an edge-short cycle C
such that r is the largest vertex in C. If there is a vertex x in C such that C consists
of two different shortest paths from x to r we say that C is even-balanced. The two
vertices adjacent to x will be denoted by p and q. We write Cpxq

r for this situation. If
C contains an edge {p, q} such that |Ppr|, |Pqr| < |C|/2 then C is odd-balanced and we
write Cpq

r . The cycle family associated with a balanced cycle C consists of all those
cycles that share with C the vertex r, the edge {p, q} or the path (p, x, q), respectively,
and that contains shortest paths Ppr and Pqr such that each vertex in Ppr and Pqr

preceeds r in the given ordering. Vismara shows that the members of a cycle family
are related by equ.(2) and that the relevant cycle families form a partition of the set
of relevant cycles. Any minimal cycle basis contains at most one representative from
each cycle family.

Analogously, we now introduce balanced uv-paths in the following way: An edge-
short uv-path P is even-balanced if there is a vertex w in P such that |P [u, w]| =
|P [w, v]| and P [u, w] and P [v, w] are shortest uw- and wv-paths, respectively. P
is odd-balanced if there is an edge e = {x, y} ∈ P such that |P [u, x]| < 1

2
|P | and

|P [v, y]| < 1

2
|P |, and P [u, x] and P [v, y] are shortest ux- and vy-paths respectively.

Theorem 6. Any relevant U-path P consists of two disjoint shortest paths P [u, x]
and P [v, y] linked by the edge {x, y} if P is odd-balanced or by the path (x, w, y) if P
is even-balanced.

Proof. We know that P must be edge-short if it is relevant. Suppose P is edge-short
but not balanced.
In the even case, let w be the vertex in P such that |P [u, w]| = |P [w, v]|. Since P is
not balanced either P [u, w] or P [v, w] is not a shortest path. W.l.o.g. we assume that
P [u, w] is not uw-shortest. Let Q be a uw-shortest path. Then |Q| < |P [u, w]| = 1

2
|P |.

Set C = Q ⊕ P [u, w]. Clearly C is a cycle or an edge disjoint union of cycles and
|C| ≤ |Q| + |P [u, w]| < |P |. Now consider the path P ′ = Q ⊕ P [w, v]; it is an
edge-short U -path satisfying |P ′| ≤ |Q| + |P [w, v]| < |P [u, w]| + |P [w, v]| = |P |. We
have

P = P [u, w]⊕ P [w, v] = P [u, w]⊕ Q ⊕ Q ⊕ P [w, v] = C ⊕ P ′ (3)

Hence P can be written as an ⊕-sum of strictly shorter elements of the U -space, and
therefore it cannot be relevant.
In the odd case, there is an edge {x, y} in P such that both |P [u, x]| < 1

2
|P | and

|P [y, v]| < 1

2
|P |. Since P is not balanced either P [u, x] or P [v, y] is not shortest.

W.l.o.g. we assume that P [u, x] is not ux-shortest, and consider a shortest ux-path
Q. In this case we have |Q| < |P [u, x]| < 1

2
|P |.

Set C = Q⊕P [u, x]. Clearly C is a cycle or an edge disjoint union of cycles and |C| ≤
|Q| + |P [u, x]| < |P |. Now consider the path P ′ = Q ⊕ {x, y} ⊕ P [y, v]; it is a short
U -path satisfying |P ′| ≤ |Q|+ |{x, y}|+ |P [y, v]| < |P [u, x]|+ |{x, y}|+ |P [y, v]| = |P |.
We have

P = P [u, x] ⊕ {x, y} ⊕ P [y, v] = P [u, x] ⊕ Q ⊕ Q ⊕ {x, y} ⊕ P [y, v] = C ⊕ P ′ (4)
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Hence again P can be written as an ⊕-sum of strictly shorter elements of the U -space,
and therefore it is not relevant. �

We are now in the position to construct prototypes of relevant U -paths in the
same manner as Vismara’s prototypes of relevant cycles. For any relevant U -path P
including the vertices x, y and eventually w, as defined in Theorem 6, we define the
U-path family associated with P as follows:

Definition 7. The U-path family F(P ) belonging to the prototype P is the set of all
balanced U-paths P ′ such that |P ′| = |P | and P ′ consists of the vertices u and v, the
edge {x, y} or the path (x, w, y) and two shortest paths Pux and Pvy.

v

u

y

x

v

u

y

x

w

P
P ′even U -path odd U -path

Hence, two U -paths P and P ′ belonging to the same family F(P ) differ only by
the shortest paths from u to x and/or from v to y that they include. Consequently,
P = P ′⊕S1⊕S2⊕· · ·⊕Sk where the Sj are cycles (or edge-disjoint unions of cycles).

Theorem 8. Each relevant U-element belongs to exactly one U-path family or cycle
family.

Proof. By construction, cycles and paths belong to different families. The proof that
the cycles families form a partition of the set of relevant cycles is given in [8].
Each relevant path is either even-balanced or odd-balanced and therefore belongs to
the U -path family that is characterized by the end-vertices u and v and the “middle
part” (x, w, y) or {x, y}, respectively. �

The relevant U-elements can be computed using the two-stage approach proposed
by Vismara [8]. In the first step a set of prototypes is extracted by means of the greedy
procedure from candidate set with a polynomial number of cycles. Algorithm 1 is
a straightforward extension of Vismara’s approach. We have to add Algorithm 2
in order to include all potential path prototypes; the following greedy step on the
collection of all balanced cycles and U -paths remains unchanged. Vismara [8] showed
that the relevant cycle families can be computed in O(|E|2|V |) steps. There are at
most |U |2|E| families of relevant U -paths, hence the algorithm remains polynomial.

In the second part the relevant U -elements are extracted by means of a recursive
backtracking scheme. For each cycle or path prototype, Cpq

r or P xy
uv , we have to replace

the paths Cpq
r [p, r] and Cpq

r [q, r] or P xy
uv [u, x] and P xy

uv [v, y] by all possible alternative
paths with the same length. These can be generated using the recursive function
List Paths() from [8] for the cycles (where we have to obey additional constraints
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Algorithm 1 Relevant U-elements.

Input: Connected graph G.
1: Compute shortest path Puv for all u, v ∈ V .
2: Compute cycle prototypes Cpq

r and Cpxq
r , see [8], and store in P.

3: Compute path prototypes P xy
uv , P xwy

uv (Algorithm 2), and store in P.

4: Sort P by length and set R̂ = ∅.
5: For each length k, check if Q ∈ P with |Q| = k is independent of all shorter

elements in R̂. If yes, add Q to R̂.
6: List all relevant U -elements by recursive backtracking from R̂.

In practice one checks linear independence only against a partial minimal basis.

Algorithm 2 Prototypes for Relevant U -paths.

for all (u, v) ∈ U do

/∗ calculate even prototypes: ∗/

for all w ∈ V do

if |Puw| = |Pvw| then

for all x ∈ V adjacent to w do

for all y ∈ V adjacent to w do

if |Pux| + |Pxw| = |Puw| and |Pvy| + |Pyw| = |Pvw| then

P xwy
uv = Pux ⊕ {x, w} ⊕ {w, y} ⊕ Pyv

/∗ calculate odd prototypes: ∗/

for all e = {x, y} ∈ E do

if |Pux|, |Pvy| < (|Pux| + |Pxy| + |Pyv|) then

P xy
uv = Pux ⊕ {x, y} ⊕ Pyv

if |Puy|, |Pvx| < (|Puy| + |Pyx| + |Pxv|) then

P xy
uv = Puy ⊕ {y, x} ⊕ Pxv

that r is the vertex with largest index in the given ordering) and an analogous function
(without constraint) for the U-paths.

4. Exchangeability of U-Elements

In [3] a partition of the set of relevant cycles is introduced that is coarser than
Vismara’s cycle families. This construction generalizes directly to the U -space:

Definition 9. Two relevant U-elements C ′, C ′′ ∈ R� are interchangeable, C ′ ↔ C ′′,
if (i) |C ′| = |C ′′| and (ii) there exists a minimal linearly dependent set of relevant
U-elements that contains C ′ and C ′′ and with each of its elements not longer than C ′.

Interchangeability is an equivalence relation. The theory developed in [3] does not
depend on the fact that one considers cycles; indeed it works for all finite vector
spaces over GF (2) and hence in particular for U -spaces. Hence we have the following

Proposition 10. Let B be a minimum length U-basis and let W be a ↔-equivalence
class of relevant U-elements. Then |W ∩ B| is independent of the choice of the basis
B.
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The quantity knar(W) = |W ∩ B| has been termed the relative rank of the equiva-
lence class W in [3]. It is tempting to speculate that the ↔-partition might distinguish
between cycles and paths. As the example below shows, however, this is not the case:

21

4 5

7

3 6

Here U = {1, 2} and the relevant U-elements are the paths P1 = (1, 3, 7, 6, 3), P2 =
(1, 3, 4, 5, 6, 2), and the cycle C = (3, 4, 5, 6, 7, 3). with |P1| = 4 and |P2| = |C| = 5.
Furthermore C = P2 ⊕ P1, i.e., the path P2 and the cycle C belong to the same
↔-equivalence class.
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