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1. Introduction

Closure functions that are more general than the topological ones have been studied
already by Hausdorff [18] and Day [5]. A thorough discussion is due to Hammer, see
e.g., [16, 17], and more recently Gni lka [13, 14].

There has been increased interest in applications of generalized topological spaces,
in particular in pattern recognition, image analysis, and related areas. Although the
usual definitions of topology are generally not suited to the analysis of digital pictures,
they are easily modified and yield generalized closure or neighborhood functions that
fit the requirements of digital topology, see e.g. [24, 6, 10].

The search spaces in combinatorial chemistry as well as the sequence spaces under-
lying (molecular) evolution are conventionally thought of as graphs. Recombination,
however, implies a non-graphical structure of the underlying spaces [12]. A unified
view of combinatorial search spaces, fitness landscapes, evolutionary trajectories, and
artificial chemistries based on generalized topologies is discussed in [8, 9, 28, 29, 27].
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In this contribution we consider the higher separation axioms T3 to T5 and the
associated concepts of Urysohn functions, regularity, and normality, which have so far
not been studied in much detail in the framework of extended topologies. A discussion
of higher separation axioms in the realm of semi-uniform convergence spaces can
be found in [23]. Our main result is that the hierarchy of separation axioms that
is familiar from topological spaces generalizes to extended topologies with isotonic,
expansive closure functions, so-called neighborhood spaces; neither additivity nor
idempotence of the closure function are necessary.

2. Preliminaries: Generalized Topologies

Let cl : P(X) → P(X) be a set-valued set function which we call the closure
function. Its conjugate is the interior function int : X → X defined by

int(A) = X \ cl(X \ A) . (1)

The associated neighborhood function N : X → P(P(X)) is defined by

N (x) = {N ⊆ X|x ∈ int(N)} (2)

It is not hard to show that closure, interior, and neighborhood can be used to define
each other. For instance, we have

x ∈ cl(A) ⇐⇒ (X \ A) /∈ N (x) . (3)

A set A is closed if A = cl(A) and open if A = int(A). If A is closed then X \ A is
open and vice versa.

Table 1. Closure Axioms

closure neighborhood
K0 cl(∅) = ∅ X ∈ N (x)

A ⊆ B =⇒ cl(A) ⊆ cl(B)
K1 isotone cl(A ∩ B) ⊆ cl(A) ∩ cl(B) N ∈ N (x) , N ⊆N ′ =⇒ N ′ ∈ N (x)

cl(A) ∪ cl(B) ⊆ cl(A ∪ B)
K2 expansive A ⊆ cl(A) N ∈ N (x) ⇒ x ∈ N
K3 sub-linear cl(A ∪ B) ⊆ cl(A) ∪ cl(B) N ′, N ′′ ∈ N (x) =⇒ N ′ ∩ N ′′ ∈ N (x)
K4 idempotent cl(cl(A)) = cl(A) N ∈ N (x) ⇐⇒ int(N) ∈ N (x)

The basic axioms for closure functions are compiled in Table 1 together with their
neighborhood counterparts. The equivalence of closure and neighborhood versions of
these conditions is well-known, see e.g. [11]. For instance, the various expressions for
isotony listed in Table 1 can be found in [16, Lem.10]. For completeness we show here
that the two formulations of (K4) are equivalent:

Proof. We have in general x ∈ int(int(A)) iff int(A) ∈ N (x). Thus int(int(A)) = int(A)
for all A if and only if x ∈ int(A) is equivalent to int(A) ∈ N (x). On the other hand,
we have x ∈ int(A) if and only if A ∈ N (x). Combining these two conditions we
see that the closure function is idempotent if and only if A ∈ N (x) is equivalent to
int(A) ∈ N (x). �
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We say that (X, cl) is an isotone space if (K0) and (K1) is satisfied. If in addition
(K2) holds then (X, cl) is a neighborhood space. Neighborhood spaces satisfying (K3)
are the pretopological spaces studied in detail in [2]. An isotone and idempotent
closure function corresponds to the intersection structures studied e.g. in lattice theory
[26, 4]. In this case the intersection of an arbitrary number of closed sets is again a
closed set. A neighborhood space with idempotent closure corresponds to a so-called
topped intersection structure and is sometimes called a convex closure space. Finally,
a pretopological space with idempotent closure is a topological space in the usual
sense.

In the following we will need a few more basic results on generalized topological
spaces which we compile here for later reference:

If (K1) holds we have the following expression for the closure function in terms of
neighborhoods [5, Thm.3.1,Cor.3.2]

cl(A) = {x ∈ X|∀N ∈ N (x) : A ∩ N 6= ∅} (4)

The notion of a neighborhood for an individual point can be extended naturally to
sets: V is a neighborhood of A, in symbols V ∈ N (A), if V ∈ N (x) for all x ∈ A.
One easily verifies for arbitrary closure functions that

V ∈ N (A) ⇐⇒ A ⊆ int(V ) (5)

Let (X, cl) and (Y, cl) be two sets with arbitrary closure functions and let f : X →
Y . Then f : X → Y is continuous if the following equivalent conditions are satisfied:

(i) cl(f−1(B)) ⊆ f−1(cl(B)) for all B ∈ P(Y ).
(ii) f−1(int(B)) ⊆ int(f−1(B)) for all B ∈ P(Y ).

(iii) B ∈ N (f(x)) implies f−1(B) ∈ N (x) for all B ∈ P(Y ) and all x ∈ X.

The equivalence of (i), (ii), and (iii) is stated (without the simple proof), e.g. in [15,
Thm.3.1.]. The function f : X → Y is closure preserving if

(CP) for all A ∈ P(X) holds f(cl(A)) ⊆ cl(f(A)).

In isotone spaces, closure preservation and continuity are equivalent.
We will also need the “lower separation axioms”:

(T0) For all x, y ∈ X, x 6= y there is N ′ ∈ N (x) such that y /∈ N ′ or there is
N ′′ ∈ N (y) such that x /∈ N ′′.

(T0’) x 6= y: y /∈ cl({x}) or x /∈ cl({y})
(T1) For all x, y ∈ X, x 6= y there is N ′ ∈ N (x) and N ′′ ∈ N (y) such that x /∈ N ′′

and y /∈ N ′.
(T1’) cl(x) ⊆ {x}
(T2) If x 6= y then there is N ′ ∈ N (x) and N ′′ ∈ N (y) such that N ′ ∩ N ′′ = ∅.

(T2 1

2
) If x 6= y then there is N ′ ∈ N (x) and N ′′ ∈ N (y) such that cl(N ′)∩cl(N ′′) = ∅.

Here (T0) and (T0’) as well as (T1) and (T1’) are equivalent in isotone spaces. In a
neighborhood space (T2 1

2
) =⇒ (T2) =⇒ (T1) =⇒ (T0).

Furthermore, the following symmetry-like axioms are of interest:

(R0) If x is contained in each neighborhood of y then y is contained in each neigh-
borhood of x.
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(R0’) If x ∈ cl({y}) then y ∈ cl({x}).
(S) If x is contained in each neighborhood of y then N (x) = N (y).

(S’) cl(A) ∩ cl({x}) 6= ∅ implies x ∈ cl(A).
(RE) Nx ∩ Ny 6= ∅ for all Nx ∈ N (x) and all Ny ∈ N (y) implies N (x) = N (y)

The (R0) axiom was introduced by Šanin [25]. Čech proved that a pretopological
space is semi-uniformizable if and only if it satisfies (R0’) [2, Thm.23.B.3]. In [20]
it is shown that (R0) is equivalent to “weak uniformizability” of convergence spaces.
(R0) and (R0’) are equivalent in all isotone spaces. The equivalence of (S) and (S’) is
shown in [2, Thm.29.A.3] for pretopological spaces. The argument easily extends to
neighborhood spaces. Reciprocal spaces characterized by axiom (RE) were considered
in [19], where this property was termed “axiom P”. Finally, it is well known that (R0)
and (S) are equivalent in topological spaces, see e.g. [22]. In isotone spaces we have
(T1) ⇐⇒ (T0 and R0). In neighborhood spaces we have

(RE) =⇒ (S) =⇒ (R0) and (T2) ⇐⇒ (T0 and RE) (6)

Let (X, cl) be a closure space and Y ⊆ X. Then cY : P(Y ) → P(Y ), A 7→ Y ∩cl(A)
is the relativization of cl to Y . The pair (Y, cY ) is a subspace of (X, cl). The closure
cY is the finest closure function of Y such that the canonical embedding j : Y →
(X, cl), x 7→ x is continuous. If A ⊆ Y then the relative interior is given by

intY (A) := Y \ cY (Y \ A) = Y ∩ int(A ∪ (X \ Y )) (7)

and the relative neighborhoods of A are

NY (A) = {N ∩ Y |N ∈ N (A)} . (8)

This can be seen e.g. following the lines of [2, 17.A].
A property P of space (X, cl) is hereditary if every subspace (Y, cY ) also has prop-

erty P. It is trivial to verify that (K0), (K1), (K2), and (K3) are hereditary in
arbitrary closure spaces. Furthermore, idempotency of the closure (K4) is hereditary
in neighborhood spaces:

cY (cY (A)) ⊆ cY (cl(A)) = Y ∩ cl(cl(A)) = Y ∩ cl(A) = cY (A) ⊆ cY (cY (A))

Note that we have used (K1) and (K2), respectively, for the two inclusions.

Lemma 1. The lower separation axioms (T0), (T1), (T2), (T2 1

2
), and the symmetry

axioms (R0), and (S’) are hereditary in isotone spaces.

Proof. For the axioms (T0), (T1), (R0), and (T2) we simply notice that N ∈ N (x)
implies N ∩ Y ∈ NY (x).
Suppose x, y ∈ Y , x 6= y and (T2 1

2
) holds in (X, cl). Then there are neighborhoods

N ′ ∈ N (x) and N ′′ ∈ N (y) such that cl(N ′)∩ cl(N ′′) = ∅. The sets Ñ ′ = N ′ ∩ Y and

Ñ ′′ = N ′′∩Y are neighborhoods of x and y in Y , respectively. cY (Ñ ′) = Y ∩cl(Ñ ′) ⊆
cl(Ñ ′) ⊆ cl(N ′) and cY (Ñ ′′) ⊆ cl(N ′), i.e., Ñ ′ ∩ Ñ ′′ = ∅. Thus (T2 1

2
) holds in (Y, cY ).

For (S’) we argue as follows: Let x ∈ Y , A ⊆ Y and x /∈ cY (A) = cl(A) ∩ Y . Then
x /∈ cl(A) and (S’) on X implies cl(x) ∩ cl(A) = ∅ and hence cY (x) ∩ cY (A) = ∅, i.e.
(S’) holds on Y as well. �
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3. Semi-Separated and Separated Sets

Lemma 2. In an isotone space (X, cl) the following two conditions are equivalent for
all A, B ⊆ X.

(SS) cl(A) ∩ B = A ∩ cl(B) = ∅.
(SS’) There is U ∈ N (A) and V ∈ N (B) such that A ∩ V = U ∩ B = ∅.

Proof. If (SS’) holds then ∃U, V such that A ⊆ int(U), B ⊆ int(V ), A ∩ V = ∅, and
U ∩B = ∅. We argue A∩ V = ∅ implies V ⊆ X \A implies B ⊆ int(V ) ⊆ int(X \ A)
by isotony, hence X \ int(X \ A) = cl(A) ⊆ X \B and thus cl(A)∩B = ∅. The same
argument yields A ∩ cl(B) = ∅.
Now suppose (SS). We have cl(A) ∩ B = ∅ iff B ⊆ X \ cl(A) = int(X \ A), i.e.,
X \A ∈ N (B). Thus there is V ∈ N (B) such that A∩ V = ∅. Analogously, we have
A ∩ cl(B) = ∅ iff X \ B ∈ N (A), i.e., there is U ∈ N (A) with U ∩ B = ∅. �

Two subsets A, B ⊆ X satisfying (SS) are called semi-separated.

Lemma 3. Let A, B ⊆ Y ⊆ X. Then A and B are semi-separated in (X, cl) if and
only if A and B are semi-separated in (Y, cY ).

Proof. A∩cl(B) = ∅ implies A∩cl(B)∩Y = A∩cY (B) = ∅ and cl(A)∩B = ∅ implies
cY (A) ∩ B = ∅.
Conversely, assume A∩ cY (B) = ∅. We have A∩ cY (B) = A∩ Y ∩ cl(B) = A∩ cl(B)
since A ⊆ Y . It follows that A ∩ cl(B) = cl(A) ∩ B = ∅. �

Two sets A and B are called separated if there is U ∈ N (A) and V ∈ N (B) such
that U ∩ V = ∅.

It is clear that if A and B are separated in (X, cl) and A, B ⊆ Y then A and B are
separated in (Y, cY ).

4. Urysohn Functions

In the following we will denote by R and [0, 1] the real numbers and the closed unit
interval with the usual topology, resp.

Definition 4. The function υ : X → [0, 1] is an Urysohn function separating A and
B if υ is continuous, υ(A) ⊆ {0} and υ(B) ⊆ {1}. The sets A and B are Urysohn-
separated if there is an Urysohn function separating A and B. We write A

∥

∥

υ
B and

A
∥

∥B, respectively.

We have A
∥

∥

υ
B if and only if B

∥

∥

1−υ
A. Thus

∥

∥ is a symmetric relation. Furthermore,

A
∥

∥∅ because ∅
∥

∥

1
A, where 1 : X → [0, 1] is the constant function 1(x) = 1.

Definition 5. A set A is completely within B, A b B, if there is a continuous
function υ : X → [0, 1] such that υ(A) ⊆ {0} and υ(X \ B) ⊆ {1}.

By definition we have A b B iff A
∥

∥X \ B. Clearly, A b B implies X \ B b X \ A
and A ⊆ B.

Theorem 6. If (X, cl) is an isotone space then A b B implies A∪cl(A) b int(B)∩B.
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Proof. If A = ∅ or B = X the claim is obviously true since we assume cl(∅) = ∅. In
the following we may therefore use A 6= ∅ and B 6= X.
By assumption there is a function υ such that υ(A) = {0}, υ(X \ B) = {1}, and υ
is continuous, i.e., for every ε > 0 and every x ∈ X there is N ∈ N (x) such that
υ(N) ⊆ Iε(υ(x)) := (υ(x)−ε, υ(x)+ε)∩ [0, 1]. Now suppose x ∈ cl(A), i.e., N ∩A 6= ∅
for all N ∈ N (x). (Here we use that (X, cl) is isotone). Hence υ(A) = {0} implies
0 ∈ υ(N) ⊆ Iε(υ(x)) and consequently 0 ≤ υ(x) < ε. Thus υ(x) = 0. Analogously, if
y ∈ cl(X \ B), i.e., N ∩X \B 6= ∅ for all N ∈ N (y), we have 1 ∈ υ(N) ⊆ Iε(υ(y)) and
hence 1 − ε < υ(y) ≤ 1 for all ε > 0, hence υ(y) = 1. Thus υ(A ∪ cl(A)) = {0} and
υ(X \B ∪ cl(X \ B)) = {1}, i.e., A∪ cl(A)

∥

∥

υ
(X \B)∪ cl(X \ B). Therefore we have

A∪cl(A) b X \[(X \B)∪cl(X \ B)] = [X \(X \B)]∩[X \cl(X \ B)] = B∩ int(B). �

Let Y ⊆ X and suppose A, B ⊆ Y are separated by the Urysohn function υ in X.
The restriction υY : Y → [0, 1], x 7→ υ(x) is an Urysohn function on the subspace
(Y, cY ). We only have to verify that υY is continuous. To see this let H ⊆ Y and

consider υY (cY (H)) = υ(cl(H) ∩ Y ) ⊆ υ(cl(H)) ⊆ υ(H) = υY (H) where T denotes
the standard topological closure in [0, 1].

Definition 7. A closure space (X, cl) is an Urysohn-space, or (T2U) if for any two
distinct points x 6= y ∈ X are Urysohn separated, {x}

∥

∥{y}.

It is clear from the discussion above that (T2U) is a hereditary property.

Lemma 8. Every isotone Urysohn space satisfies (T2 1

2
).

Proof. By assumption there is a continuous function υ : X → [0, 1] with υ(x) = 0
and υ(y) = 1. Thus for each ε > 0 there are neighborhoods Nx ∈ N (x) and Ny ∈
N (y) such that υ(Nx) ⊆ [0, ε) and υ(Ny) ⊆ (1 − ε, 1]. Thus υ(cl(Nx)) ⊆ [0, ε] and
υ(cl(Ny)) ⊆ [1 − ε, 1], i.e., cl(Nx) ∩ cl(Ny) = ∅ for ε < 1/2. �

5. Regular and Completely Regular Spaces

Theorem 9. In an isotone space the following conditions are equivalent:

(R) For all x ∈ X and all N ∈ N (x) there is U ∈ N (x) such that cl(U) ⊆ N .
(R’) For all x ∈ X and all non-empty A ∈ P(X) such that x /∈ cl(A) there is

U ∈ N (x) and V ∈ N (A) such that U ∩ V = ∅.

Proof. Suppose (R’) holds. Choose an arbitrary x ∈ X and N ∈ N (x) and set
A = −N . We have x /∈ cl(A) iff −A = N ∈ N (x). Now we have U ∩ V = ∅, hence
U ⊆ −V and by isotony cl(U) ⊆ cl(−V ) and finally int(V ) = −cl(−V ) ⊆ −cl(U).
By eq. 5 we have A ⊆ int(V ), thus A ⊆ −cl(U), and cl(U) ⊆ −A = N . Thus (R) is
satisfied.
Conversely assume (R), and let N ∈ N (x). Then there is U ∈ N (x) such that cl(U) ⊆
N . Set V = −U and A = −N . Then −N = A ⊆ −cl(U) = −cl(−V ) = int(V ), i.e.,
V ∈ N (A) and U ∩ V = ∅. Observing again that N ∈ N (x) if and only if x /∈ cl(A)
completes the proof. �

Definition 10. An isotone space is regular if it satisfies one of the conditions (R) or
(R’) in theorem 9.
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It is worth noting that condition (R) naturally appears in the theory of generalized
convergence spaces (see e.g. [7, 3]), while (R’) is the straightforward generalization of
the usual regularity axiom in topological spaces.

Regularity is hereditary in isotone spaces. This can be verified by observing that
the arguments in [2, 27.B.8] are valid in all isotone spaces.

A stronger property is

(tR) For all x ∈ X and all non-empty closed sets ∅ 6= A = cl(A) ∈ P(X) there is
U ∈ N (x) and V ∈ N (A) such that U ∩ V = ∅.

It is clear that (tR) implies (R). Obviously (R) and (tR) are equivalent if cl is idem-
potent.

Definition 11. A closure space is (T3) if it satisfies (R) and (T0).

Obviously, (T3) is a hereditary property in isotone spaces.

Lemma 12. If (X, cl) is a neighborhood space then (T3) =⇒ (T2 1

2
) =⇒ (T2).

Proof. We start with (R’) and set A = {y}. Since (R) implies (R0) we know that a
(T3) space is (T1), hence cl(A) = cl({y}) = {y}. Thus (R’) reduces to the existence
of N ′ ∈ N (x) and N ′′ ∈ N (y) such that N ′ ∩ N ′′ = ∅, i.e., to (T2). Now we can use
(R) to obtain U ′ ∈ N (x) and U ′′ ∈ N (y) with cl(U ′) ⊆ N ′ and cl(U ′′) ⊆ N ′′. Clearly
cl(U ′) ∩ cl(U ′′) = ∅, i.e., (T2 1

2
) is satisfied. �

Definition 13. An isotone space is completely regular if for all x ∈ X and all
N ∈ N (x) there is N ′ ∈ N (x) such that N ′

b N . An isotone space is (T3 1

2
) if it is

(T1) and completely regular.

Completely regular filter convergence spaces are discussed in detail in [1].
It follows directly from the definition that a (T3 1

2
) space is an Urysohn space.

Thm. 6 and (R) together immediately imply that a completely regular isotone space
is regular. Hence (T3 1

2
) implies (T3) in isotone spaces.

Lemma 14. Complete regularity, and hence (T3 1

2
), are hereditary properties in iso-

tone spaces.

Proof. N ′ b N means N ′
∥

∥

υ
X \N such that υ(N ′) ⊆ {0}, υ(N) ⊆ {1}. Now consider

N ′ ∩ Y ⊆ N ′, and (X \ N) ∩ Y = Y \ (N ∩ Y ) ⊆ X \ N . Thus υ(N ′ ∩ Y ) ⊆ {0},
and υ(Y \ (N ∩ Y )) ⊆ {1}. Since the restriction of υ to Y is continuous this implies
N ′ ∩ Y b N ∩ Y on Y , i.e., the subspace (Y, cY ) is completely regular. �

Theorem 15. A completely regular neighborhood space has idempotent closure.

Proof. N ′ b N implies N ′ ⊆ int(N) by theorem 6 and by (K1) N ′ ∈ N implies
int(N) ∈ N . By (K2) int(N) ⊆ N , hence N ∈ N (x) if and only if int(N) ∈ N (x).
This is equivalent to the idempotence of the closure. �

It follows immediately that a completely regular neighborhood space satisfies (tR).
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6. Normal Spaces

Definition 16. A closure space (X, cl) is

(tN) t-normal if any two non-empty disjoint closed sets are separated.
(QN) quasi-normal if, for all non-empty sets A, B ∈ P(X) satisfying cl(A)∩cl(B) =

∅, there are neighborhoods U ∈ N (A) and V ∈ N (B) such that U ∩ V = ∅;
(N) normal if, for all non-empty sets A, B ∈ P(X) satisfying cl(A) ∩ cl(B) = ∅,

there are neighborhoods U ∈ N (cl(A)) and V ∈ N (cl(B)) such that U∩V = ∅;
(UN) Urysohn-normal if, for all non-empty sets A, B ∈ P(X) satisfying cl(A) ∩

cl(B) = ∅, there is an Urysohn function separating A and B, i.e. A
∥

∥B.

The condition for quasi-normality appears in Čech’s book [2, 29.A.]. There a
pretopological space is called “normal” if it satisfies (S) and (QN).

Normal neighborhood und Urysohn-normal spaces (there termed “completely nor-
mal”) are considered by Thampuran [30]. In [21] a notion of normality for filter
converge spaces is considered that corresponds to the axiom (tN) above.

Theorem 17. If (X, cl) is an isotone space then (UN) =⇒ (N) =⇒ (tN) and
(QN) =⇒ (tN).
If (X, cl) is a neighborhood space then (UN) =⇒ (N) =⇒ (QN) =⇒ (tN).

Proof. We will first show that Urysohn-normal implies normal. By assumption, for
each x ∈ cl(A) there is Nx ∈ N (x) such that υ(Nx) < ε. Then U = ∪x∈cl(A)Nx is
a neighborhood of cl(A)) and υ(U) ≤ ε. Analogously, we can find a neighborhood
V ∈ N (cl(B)) such that υ(V ) ≥ 1− ε. Setting ε < 1/2 implies that U ∩V = ∅, hence
cl(A) and cl(B) are separated. The implications (N) =⇒ (tN) and (QN) =⇒ (tN)
are obvious.
Now suppose that (X, cl) is a neighborhood space. We have U ∈ N (cl(A)) ⇐⇒
cl(A) ⊆ int(U). From (K2) we conclude A ⊆ cl(A) ⊆ int(U) and hence U ∈ N (A).
Thus (N) =⇒ (QN). �

Lemma 18. If (X, cl) is an neighborhood space with an idempotent closure (i.e., a
convex closure space) then (N), (QN), and (tN) are equivalent.

Proof. It suffices to show that for idempotent closures (tN) implies (N). If (K4) holds
then cl(A) and cl(B) are closed sets. Hence if cl(A) ∩ cl(B) = ∅ they are separated
by (tN) and hence (N) holds. �

An important result for pretopological spaces is the following

Proposition 19. [2, 29.A.4] If (X, cl) is a pretopological space then (QN and S) ⇐⇒
(K4 and TN and R0).

The following result is the famous Urysohn lemma which was generalized to pre-
topological spaces by Thampuran:

Proposition 20. [30] If (X, cl) is a pretopological space then it is Urysohn-normal if
and only if it is normal.
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Urysohn’s lemma fails in more general neighborhood spaces. An example is Tham-
puran’s Line T which is normal but not Urysohn-normal.

Example. For any real number x, let R(x) be the family of all subsets N of the real
numbers R such that {y : y < v} ⊆ N for some v > x or {y : u < y} ⊆ N for some
u < x. For a subset A of R, let

cl(A) = {y ∈ R|N ∩ A 6= ∅ for all N ∈ R(y)} (9)

The closure space T = (R, cl) is called Thampuran’s Line.
We have z ∈ cl(A) iff for all N ∈ R(z) we have N ∩ A 6= ∅, thus

cl(A) =























[inf A, sup A] if inf A ∈ R and sup A ∈ R

(−∞, sup A] if 6 ∃ inf A and sup A ∈ R

[inf A, +∞) if inf A ∈ R and 6 ∃ sup A
R if 6 ∃ inf A and 6 ∃ sup A
∅ if A = ∅

(10)

Note that R(x) is a neighborhood basis of x.
It is clear therefore that (K0), (K1), and (K2) are satisfied. Furthermore, cl is

idempotent. However, the closure is not additive as the example of a set with two
points A = {x, y} shows. We have cl(A) = [x, y] but cl({x}) = {x} and cl({y}) = {y}.
Thampuran’s line is therefore a convex closure space.

Let A and B be two disjoint non-empty closed sets. Then sup A, inf B ∈ R. We
set α = (sup A + inf B)/2, N ′ = {z|z < α}, and N ′′ = {z|z < α}. We have
int(N ′) = R \ cl(R \ N ′) = R \ cl({z|z ≥ α}) = R \ {z|z ≥ α} = {z|z < α} = N ′.
Since A ⊆ int(N ′) we have N ′ ∈ N (A) and analogously N ′′ ∈ N (B). By construction
N ′ ∩ N ′′ = ∅, i.e., Thampuran’s line satisfies (tN). From Lemma 18 we see that T is
normal.

On the other hand, there is no Urysohn function separating sets A and B as above.
Suppose υ : T → [0, 1] (with the standard topology) is continuous and υ(A) = 0,
υ(B) = 1. If υ(x) = y with y 6= 0, 1 then, for all ε > 0, there is a neighborhood N
of x such that υ(N) ⊆ (y − ε, y + ε). By definition each neighborhood contains a set
from R thus either A or B is a subset of N , i.e., either y = 0 or y = 1. Now suppose
υ(x) = 0 and for all η > 0 there is a y ∈ (x − η, x + η) such that υ(y) = 1. Since
N = (−∞, x + η) is a neighborhood of x we see that υ(N) < ε for sufficiently small η
and any given ε > 0, and hence even υ(N) = 1. Thus a continuous function υ cannot
“switch” from 0 to 1 anywhere, i.e., there is no Urysohn function separating sets A
and B.

/

It is shown in [30] that a neighborhood space (X, cl) is normal if and only if for any
two nonempty sets A, B with disjoint closures cl(A)∩ cl(B) = ∅ there is a continuous
function τ : (X, cl) → T ∩ [0, 1] such that τ(A) = {0} and τ(B) = {1}.

7. Completely Normal Spaces

Definition 21. A closure space (X, cl) is

(CN) completely normal if any two semi-separated sets are separated.
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(T5) if it is (T1) and completely normal.
(CNU) completely Urysohn-normal if each pair of semi-separated sets is Urysohn-

separated.
(T5U) if it is (T1) and completely Urysohn- normal.

Both (CN) and (CNU), and therefore also (T5) and (T5U), are hereditary.

Lemma 22. (CNU) =⇒ (CN) =⇒ (QN), and (UN) =⇒ (N).

Proof. The implications (CNU) =⇒ (CN) and (CN) =⇒ (QN) follow directly
from the definitions. In order to see (CNU) =⇒ (N) we recall that A

∥

∥B implies

cl(A)
∥

∥cl(B) which in turn implies that A and B are separated. �

Every subspace of a completely normal neighborhood space is normal. In topolog-
ical spaces the converse it true as well, i.e., if every subspace of (X, cl) is normal then
(X, cl) is completely normal. This appears not to be true in general neighborhood
spaces because the proof of this result, e.g. in [2, 30.A.4], depends on the observation
that Y = X \ (cl(A) ∩ cl(B)) is an open set in X but not on the additivity of the
closure. Thus we have

Lemma 23. A convex closure space is hereditarily normal if and only if it is com-
pletely normal.

8. Summary

In all neighborhood spaces (i.e., generalized topologies with an expansive closure
function) the following implications hold:

T5U =⇒ T4U =⇒ T3 1

2
=⇒ T2U

⇓ ⇓ ⇓ ⇓
T5 =⇒ T4 =⇒ T3 =⇒ T2 1

2
=⇒ T2 =⇒ T1 =⇒ T0

CNU =⇒ UN =⇒ N
⇓ ⇓

CN =⇒ QN =⇒ tN
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[20] D. C. Kent. On convergence groups and convergence uniformities. Fund. Math., 60:213–222,

1967.
[21] M. Paoli and E. Ripoli. Convergence subspaces and normality. Ital. J. Pure Appl. Math., 1:91–

99, 1997.
[22] G. Preuß. Convenient topology. Math. Japonica, 47:171–183, 1998.
[23] G. Preuss. Higher separation axioms, paracompactness and dimension for semiuniform conver-

gence spaces. Sci. Math., 2:321–335, 1999.
[24] A. Rosenfeld. Digital topology. American Mathematical Monthly, 86:621–630, 1979.
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