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Abstract

Robinson graphs are configuration graphs over sets of phylogenetic trees. Their
neighbor relation is given by all possible crossovers along inner edges of these
trees. We show that Robinson graphs generate coherent algebras the cell parti-
tion of which equals the automorphism partition. Each cell consists of all phylo-
genetic trees having isomorphic inner trees (induced by the non-leaves).
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1 Introduction

In biology evolutionary relationships between species or individual genes are cus-
tomarily represented using phylogenetic trees. Finding the phylogenetic tree of a
set of extant taxanomic units is known as the phylogeny reconstruction problem.
In mathematical terms it may be stated as follows:

Given a set S of n elements, a genetic tree T on S is a tree having n vertices of
degree 1, which are labeled with the numbers {1,2,...n}. All remaining vertices
of 7" have degree 3. Furthermore, we are given a cost function f that allows
one to determine "how well” a particular tree fits the genealogical relationship
among the elements of S. The problem is now to find an optimal genetic tree
with respect to f.

In this way, the above reconstruction problem is a combinatorial optimization
problem, the basic variants of which are all known to be NP-complete [2, 4].

The set of all genetic trees for the set S may in turn be transformed into a config-
uration graph by defining an appropriate neighbor relation for genetic trees. The
resulting graphs are called Robinson graphs. In Section 3 a particular neighbor
relation is defined using crossover operations.

A landscape is a pair (G, f) of a configuration graph G and a function f : V — R
defined on the vertex set V' of G. Due to applications in biology, f is called fitness
function, compare [10, 13].

General configuration graphs and their landscapes are widely used in combinato-
rial optimization theory. They provide useful mathematical models for studying
functions on a discrete set V, the elements of which are structured objects. The
configuration graph models a neighborhood relation on V', which defines how one
is able to move within V. Such models have therefore a wide spectrum of appli-
cations.

Landscapes can be described by their autocorrelation functions which are defined
in terms of random walks on G and can be investigated by either using the eigen-
values and eigenspaces of GG or via equitable partitions derived from its coherent
algebra, see [10, 11, 12] for details.

As outlined in [12] the eigenvalues of a graph G can be expressed in terms of
the eigenvalues of graphs arising from pointed equitable partitions of G. Pointed
equitable partitions can be derived from the coherent algebra of a graph very
easily. Hence, the knowledge of the coherent algebra of GG is of interest in this
context as well.



In this paper we deal with the equitable partitions provided by the cell partitions
of Robinson graphs. In particular, we proof that the cell partition of such a graph
coincides with its automorphism partition.

2 Coherent algebras

A subalgebra A of the algebra Maty of all matrices the rows and columns of
which are indexed with elements from V' is called coherent algebra if it is invariant
with respect to Hermitian conjugation, contains the unit matrix I and the all 1’s
matrix J, and is closed with respect to componentwise multiplication, i. e.

AABeEA=— AoBec A

where (Ao B);; = A;;B;;. The set V is called the point set of .A. In our context
V ={1,2,...,N} for some natural number N.

Coherent algebras have been studied first in [14, 15], and independently in [5, 6, 7.
They play a fundamental role in algebraic combinatorics and have applications
in mathematical chemistry. A friendly introduction to coherent algebras taking
into account the interests of chemists is given in [8], while the collection [3] is
written for mathematicians and covers the most important theoretical aspects.

We present here a list of facts about coherent algebras which are used in this
paper. All proofs may be looked up in the cited literature.

The smallest coherent algebra containing the matrix A is called the coherent al-
gebra generated by A and denoted by A(A). If A is the adjacency matrix of a
graph G then we say also that A(A) is generated by G.

Every coherent algebra A of dimension d has a linear basis consisting of 0-1-
matrices Ay, ..., A4 and satisfying A; o A; = A;0;;. Hence, the supports

E; ={(u,v)|Ay, =1}, 1 <i < d,

determine a partition
C= {El,... ,Ed}

of V' x V. This partition is called a coherent configuration and is uniquely deter-
mined by the following properties:

d

=1



(C2) Using an appropriate numbering, there is a number ¢ < d such that
¢
UEZ' = {(i,1)|i € V}(= A, the diagonal of V' x V)
i=1

(C3) For each i € V there is an i/ € V with E; = E}.
(C4) There are non-negative integers pf; such that
{wl(u,w) € E; A (w,v) € Ej}| = pj;
independent of (u,v) € E.

With the help of the sets E;, ©+ < t, which are contained in the diagonal A, we
define a partition of V', namely

C; ={u|(u,u) € E;}, 1 <i<t.
The sets C; are called the cells’s, and
CA: {Cl,... 7Ct}

is called the cell partition of A (or of C), or if A is generated by a graph G, the
cell partition of G. For every basic set Ej there are cells C; and C; such that

Let a = (ai,...,q;) be an arbitrary sequence of indices a; € {1,...,d}. An
a-walk from ¢ to j is a sequence of arcs

(1;0) il)? (ih i?)a R (il—la Zl)

with the property
(1s,0541) € E,,, 0 < s <.

In dealing with coherent configurations (like rather often in dealing with arbitrary
partitions of objects) it has become standard language to express membership
(u,v) € E; by saying that (u,v) has colori. Analogously, we say that u has color
k, if u € Cy holds.

The following lemma expresses a basic property of coherent configurations.

Lemma 1 Let C and C' two arbitrary cells of C and assume i,i' € C. Then for
any a, the number of a-walks from i to a vertex in cell C' is the same as from i'.
Note that a-walks counted here have only fized starting point, but the final points
vary over C'.



Typically, this lemma is used when one has to demonstrate that two given items ¢
and j cannot belong to the same cell. We shall make use of this lemma whenever
it is appropriate and without quoting it at every occasion.

Graphs which generate the same coherent algebra are cospectral. Therefore the
structure of the associated coherent algebra and of the corresponding coherent
configuration, respectively, is an important structural property of graphs. In gen-
eral, we are not able to compute the coherent configurations for Robinson graphs
for larger n, those graphs have too huge a size. However, we are at least able to
determine the cell partition.

3 (Genetic Trees

A leaf of a tree T is a vertex v of degree 1. All other vertices are called inner
vertices. Edges joining inner vertices are called inner edges. A tree is called
genetic if all its inner vertices have degree 3 and its leaves are colored (labeled)
with the colors 1,2, ..., n, whereas all inner vertices are uncolored.

(a) (b)

Figure 1: A genetic tree T' (a) and its inner tree 7° (b)

The set of genetic trees with n leaves will be denoted by 7,. A member of 7,
has 2n — 3 edges and n — 2 inner vertices [9]. The inner tree T° of a genetic tree
T is the subtree of T induced by the inner vertices of 7. Two genetic trees are
considered equal if and only if they are isomorphic as leaf colored trees. Observe



that equal trees have isomorphic inner trees.

In Figure 2 the inner trees in 7, for n up to 8 are depicted.

S
I
w
S

Figure 2: Inner trees of genetic trees

An inner vertex is called s-vertex if its degree with respect to the inner tree 7° is
s. The number of s-vertices will be denoted by ng, s = 1,2,3. We call an edge of
the inner tree an (s : t)-edge if the end vertices of the edge are an s- and a t-vertex.

In many considerations, the coloring of the leaves is of no matter. In such cases,
it is usually not mentioned.

With every inner edge [u,v] of a genetic tree T, we associate four subtrees
A, B,C, D as indicated in Figure 3(a). The subtrees A, B,C, D are the four
connected components which are obtained when deleting the edge [u, v] and the
vertices u and v from 7. Note that each of these subgraphs may consist of a
single vertex only.

Definition 1 The operations indicated in Figure 3(b) and (c) are called p(arallel)-
crossover and d(iagonal)-crossover of T (on the inner edge [u,v]).
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(a) inner edge with

subtrees
W Q) @), )
(b) p-crossover (c) d-crossover

Figure 3: Crossovers

The type of the crossover is not a graph theoretical property. It depends on the
drawing or the current ordering of the edges adjacent to some vertex. It is only
introduced to simplify the argumentation at certain points.

A crossover on [u,v] is called (s : t)-crossover if [u,v] is an (s : t)-edge. We say
that two trees are of the same type if and only if their inner trees are isomorphic.

Definition 2 The configuration graph (Robinson graph) I';, has vertex set T,, and
two trees T, T' are adjacent in T, if and only if there exists an inner edge e € T
such that T" results from T by a crossover on e. The vertices of I'y, are called the
trees of [',,.

Observe that I's consists of 1 vertex only and that [’y is the complete graph on 3
vertices.

Remark 2 The configuration graph I',, has [[}=; (2 + 1) vertices. It is (2n —
6)-regular and the number of trees with distance two from a given tree equals
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2n? — 10n + 4n4, i.e., it depends only on n and the number of 1-vertices of the
inner tree. Furthermore, the numbers ny and n3 depend only on n and n; in a
simple way, namely ny = n; — 2 and n3 = n — 2n;. Proofs for these observations
can be found in [9].

4 The Cell Partition of [,

Remember that by definition the coherent configuration Ar, generated by the
graph I',, is the coarsest partition of 7, x 7, satisfying (C1) — C(4). This partition
contains a partition of 7, the cell partition Cr, of I',. In the following, we are
going to determine the cell partition Cr, .

Figure 4: 7 (T)

Let {T; | 1 < k < K} denote the set of pairwise non-isomorphic inner trees with
n — 2 vertices. Let [T}] denote the set of genetic trees with inner tree isomorphic
to Tj. Elements of [T}] differ only by the coloring of their leaves. Obviously,
Cn:={[T}] | 1 < k < K} is a partition of 7, as well.

Definition 3 Let 7 be an arbitrary permutation of {1,2,...,n}. For a genetic
tree T € T, define the tree w(T) by replacing the colors 1,2,...,n on the leaves
of T by the colors w(1),m(2),...,m(n), respectively.

Let

(1234 56 7 8 910 11 12 13 14 15
T™\439215 8 11 14 6 13 5 7 12 10 1



and consider T as defined in Figure 1. The genetic tree 7(T) is depicted in
Figure 4.

Lemma 3 The partition C, is at least as fine as the cell partition Cr,,.

Proof. Let m be an arbitrary permutation of {1,2,...,n}. This permutation
preserves the partition Cp, i.e., 7([Tx]) = [Tx], 1 < k < K. Furthermore, if 7" is a
neighbor of 7" due to a crossover on an inner edge [u,v|, then 7(7”) is a neighbor
of m(T') due to the same crossover. Hence, m induces an automorphism of I',.
Since for any two trees T,T" € [T}, there is a 7 such that 7(T) = T", we obtain
that C, is at least as fine as the automorphism partition of I',,. Now, the claim
follows by the fact that the cell partition of a graph is always coarser than or
equal to its automorphism partition. 0

Lemma 3 shows that all genetic trees in '), having isomorphic inner trees belong
to the same cell of Cr,,. In the following, we want to prove that the other direction
is true as well. In other words: trees contained in the same cell have isomorphic
inner trees, and thus, C,, the automorphism partition of I',,, and the cell partition
of Ar, coincide. To prove this, we show that two trees having non-isomorphic
inner trees lie in different cells of Cr, .

Let U be a cellular set (a union of cells) of Ar, . In the discussion which follows,
we use the fact that two vertices having a different number of neighbors in U,
cannot belong to the same cell of Cr, (see Lemma 1).

We will start by showing that the sets defined in Definition 4 are cellular sets of
Ar

n*

Definition 4 Let 7" (i), 1 < k < 3, be the subset of T, in which each element
has i k-vertices and T,%™ (i) the subset of T, in which each element has diameter
equal to 1.

As mentioned above in Remark 2, the number of trees with distance 2 from a
tree T' € 7T, depends only on n and the number of 1-vertices. By Lemma 1, this
implies the following lemma.

Lemma 4 The trees in a given cell of Cr, have the same number of 1-vertices
(ny is constant on each cell).

Immediately, we get:

Lemma 5 The trees in a given cell of Cr, have the same number of 2-vertices
and the same number of 3-vertices.
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Proof. Since ny, =n — 2n; and n3 = n; — 2, the claim holds. 0

Thus, we get finally:
Lemma 6 Fach 7, (i), 1 < k < 3, defines a cellular set.

We now examine crossovers and their potential to change the diameter, i.e., we
examine how the diameter of the resulting tree differs from the diameter of the
tree we start with.

Consider the tree T' of Figure 3 again. Define [, and [p to be the length of a
longest path from u to a leaf of A and B, respectively, and [c and [p to be the
length of a longest path from v to a leaf of C' and D, respectively.

Lemma 7 The diameters of a tree T and a tree T' which is obtained by a
crossover on some inner edge of T can differ by at most one.

Proof. Assume without loss of generality that 4 > o, {4 > I, and Ic > Ip.
This situation can always be met by properly renaming the different parts of 7T'.

The diameter of T is

max{lA 4+, la+1+ lc}.

Consider now the trees 7, and T; which are the result of a p- and d-crossover,
respectively, of T on [u,v]. The diameters have the following values:

diam(7,) =max{la +1+1Ip,la+1+1c} and
diam(7Ty) =max{la + 1+, la + 1+ 1p,la+ lc}.

The p-crossover leaves the diameter untouched or enlarges it by at most one.
Since la + lp < lg + ¢, diam(Ty) is at most diam(7T") + 1 and at least 14 + I¢
which is as least as large as diam(7") — 1. 0

An edge is incident with a path P if exactly one of the end vertices of the edge
lies on the path. A path P = (v, v, ...vx) in a tree T, consisting of inner vertices
only, is a longest inner path if and only if k& = diam(7") — 1. As an immediate
consequence of Lemma 7, we obtain the following lemma.

Lemma 8 A tree with a larger diameter is obtained if and only if a crossover
1s performed on an edge incident with a longest inner path.

11



Proof. Recall the situation in the proof above. Consider the case where
diam(7,) = diam(T") + 1. By simply analyzing the formulas for diam(7},) and
diam(7’), we see that this happens if and only if there is a longest inner path in
T starting in A and ending in B. [u,v] is incident to this path.

Now, assume that diam(7y) = diam(7") + 1. This is true if and only if there is a
longest inner path in 7" starting in A and ending in B. Again, [u,v] is incident
to this path.

Lemma 9 The only way to obtain a tree with a smaller diameter by a crossover
15 to perform the crossover on an edge which is part of all longest inner paths.

Proof. Revisit the proof of Lemma 7 again. The only possibility for reducing
the diameter by a crossover on [u,v] is that all longest inner paths in 7" go from
leaves in A to leaves in C. 0

We are now able to prove that all trees with equal diameter define a cellular set of
Ar, . First, we will have a closer look at the trees of I';, having largest diameter.
The inner trees with the largest diameter, namely n — 3, are those isomorphic to
the path on n — 2 vertices. Note that the diameter of the inner tree 7° of a tree
T is exactly diam(7") — 2.

Lemma 10 7, (2) = 7,%™(n — 1) is a cell of Cr,,.

Proof. 7,"(2) is the set of trees whose inner trees are isomorphic to the path
on n — 2 vertices. Due to Lemma 3 and Lemma 4, 7,"1(2) is a cell of Cr,,. 0

Lemma 11 All trees in a cell of Cr, have equal diameter. Thus, T,%™(i) is a
cellular set for all 7.

Proof. The proof is by downward induction on the diameter of the trees.

We have shown already that 7, (2) is a cell of Cr,. Assume that two trees with
different diameters greater than d lie in different cells of Cr, .

Let T be a tree with diameter d < n — 1. We will show that 7" has neighbors
with diameter d 4+ 1. Observe that due to Lemma 7, the diameter can increase
by at most 1 after executing one crossover and thus, trees with diameter d are
the only candidates for having neighbors with diameter d + 1.

12



(a)

Figure 5: T° and the inner trees of the neighbors of 7" which result from crossovers
on [v;, u]

Since T ¢ 7T, (2), each longest inner path contains at least one 3-vertex. Let
(V1, -+, Vi1, Vi, Vit1, - - -, VUq—1) be such a longest inner path, v; a 3-vertex, and de-
note the third neighbor of v; by u (see Figure 5(a)). Applying the two possible
crossovers on the edge [v;, u] results in two trees with diameter d+ 1 (see Figure
5(b),(c)), realized by a new longest path P’ = (vy,va, ... 0;, U, Vig1, -, Va_1)-

Hence, T has neighbors with diameter d + 1. This completes the proof. 0

Consider some longest inner path P = (vy,v9,...v4 1) in an inner tree 7°. As-
sume that the 3-vertices on P are {v;,, vy, - . ., vy, } with dist(vy, vy;) < dist(v1, vy;),
Vi < j, holds. Let u;, i € {1,2,...,k}, be the vertex not on P which is adjacent
to vy,. If we perform both crossovers on [vy,, u;], a d-crossover and a p-crossover,
we obtain two different trees. Observe that although the inner trees might be
isomorphic, the resulting trees are different since they differ by the coloring of
their leaves.

We will now, for each tree, identify “largest” neighbors among all neighbors with
greater diameter. For this aim we are going to introduce an appropriate code for

genetic trees. This task requires some preliminaries.

First, define the code ¢,(T) of a tree and an inner vertex v of this tree as the
pair consisting of the length of a longest inner path from v to a leaf of 7" and of

13



some complete invariant of T, for example a suitable code for T'. We assume that
codes can be compared lexicographically.

Next, define a function ¢r(P) on the set of inner paths P of a tree T. Let
P = (v1,vy,...1;) be an inner path between two 1-vertices v; and v;. Assume
that the vertices {vy,, vs,, ..., vy, } are the 3-vertices on P. The subtree attached
to vy; is denoted by T;, and we assume dist (v, vy;) < dist(vi,vy,) if j < j'. Fur-
thermore, each T; consists of a node u; adjacent to v;;, and the two subtrees A;
and B; adjacent to u;. The vertices in A; and B; adjacent to u; are denoted by
a; and bj, respectively. The situation is depicted in Figure 6.

OO 00

vy v2 Vt,—1 Vi, Vi, 41 Vi—1 Ui
3 J ot

Figure 6: The path P in T and the subtree T;.
Let w.l.o.g. ¢4;(Aj) > ¢, (B;)- Define

cr(P) == (I, ((dist(vy;, v), €a; (Aj), 0, (By)) | 5 € {k, bk —1,...,1})).

Now we are able to introduce the following code for our trees. Define

o(T) = max {ep(T)},

where
P(T) :={P | P is an inner path in T'}

and where by “max” we mean the lexicographically largest value. We say that P
is responsible for the code of T if ¢(T') = c¢p(P). Observe that if P is responsible
for the code then it is a longest inner path in 7. Obviously, given ¢(T'), we are
able to reconstruct 7" in a unique way. A tree T is larger than another tree 7" if
¢(T) is lexicographically larger than ¢(7").

Now we examine the situation with respect to the number of 3-vertices in more
detail.
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Lemma 12 A (3 : 3)-crossover and a (3 : 2)-crossover leave the number of 3-
vertices unchanged whereas a (3 : 1)-crossover reduces the number of 3-vertices
by one.

Proof. This is easy to verify. In Figure 7(a), [u,v] is a (3 : 1)-edge and the
results of the two possible crossovers are shown in Figure 7(b) and (c).

The edge [u,v] becomes a (2 : 2)-edge. Note that the resulting inner trees are
isomorphic.

In Figure 8(a), [u,v] is a (3 : 2)-edge and the results of the two possible
crossovers are shown in Figure 8(b) and (c). The edge [u, v] remains a (3 : 2)-
edge.

Obviously, a (3 : 3)-edge remains a (3 : 3)-edge. 0

A neighbor of a tree is called longer neighbor if it has a larger diameter. A tree
is called an s-path if its inner tree is a caterpillar with s legs, i.e., is composed
of a longest inner path @) with s inner edges incident to it. () is not necessarily
unique. However, we assume that given an s-path, one of the possible longest
inner paths is selected as Q).

Figure 7: A tree and the two possible crossovers on a (3 : 1)-edge [u, v]

15



(b) ()

Figure 8: A tree and the two possible crossovers on a (3 : 2)-edge [u, v]

We first consider the set of all 1-paths and the set of all 2-paths, respectively, and
show that they form cellular sets of Ar,. Afterwards, we turn to more general
trees.

Let Q = (v1,v2,...,v4-1) be the selected longest inner path of an s-path, v; the
first and v; the last 3-vertex on ). Thus () is the concatenation of three subpath
Q1, Q2, @3, where ()1 connects the 1-vertex v; to the first 3-vertex v;, (23 connects
the last 3-vertex v; to the 1-vertex vy_;. All other vertices of (1 and ()3, if any,
are 2-vertices. The subpaths ); and ()3 are called the tails of ) of length 7 — 1
and d — 1 — j, respectively.

Oi“uiOOQ

Y

Figure 9: The inner tree of a 3-path with two choices for )

Lemma 13 The 1-paths build a cellular set and are distinguished in Ar, if they
have non-isomorphic inner trees.

Proof. The 1-paths build a cellular set since they are the only trees with di-
ameter n — 2 and one 3-vertex and the intersection 7,72 (1) N 7,9™(n — 2) of two

16



cellular sets is obviously a cellular set.

The inner tree of a 1-path with only one tail having length greater than one is
isomorphic to the graph depicted below.

oo o

Trees having this inner tree are distinguished from the other 1-paths since they
are the only ones having four neighbors in 7%™(n — 1). All other 1-trees have
only two such neighbors.

Assume now that the trees in question have two tails of lengths /; and l,, and
that w.l.o.g. [y <lyand [; < % holds.

The proof is by induction on l;. The proof for [; = 1 just has been given. Assume
that the 1-paths with [, less than [ are distinguished if they have non-isomorphic
inner trees.

Consider now trees with [; = [. They are the only ones with /; > [ which have
neighbors having a shortest tail of length [ — 1. This completes the proof. 0
Lemma 14 The 2-paths build a cellular set and will be distinguished in Ar, if
they have non-isomorphic inner trees.

Proof. The 2-paths build a cellular set since they are the only trees with di-
ameter n — 3 and two 3-vertices, i.e., the only trees in 7,%(2) N 7,9™(n — 3). We

define [ and [, as before.

The only 2-paths which have eight longer neighbors, which obviously are 1-
paths, are trees the inner tree of which is isomorphic to the one depicted below

(ll = l2 = 1)

The length [; of the shortest tail of a 2-path T is determined by the code ¢(T") of
its largest neighbor 7", which is a 1-path. By Lemma 13, 2-paths with different

17



values of /; belong to different cells.

The remaining part of the proof is by induction on /;+1I5. The case when [; 41y = 2
has been considered already. The 2-paths with [; 415 > [ having neighbors where
the sum of the tails is shorter than [ are graphs with [y + [, = [. 0

So far, we have proven that trees the inner trees of which are caterpillars with at
most two legs, belong to the same cell of Cr,, if and only if their inner trees are
isomorphic.

Now, we treat more general classes of trees. Let T have diameter d. Assume that
there exist neighbors of 7' having greater diameter than 7". Let 7; be a largest
(with respect to the code) neighbor among those neighbors. Assume that the
crossover on 7' to obtain 7; has been performed on [v;,u]. Since the diameter of
T, is greater than the diameter of 7', each longest path in 7; must contain the edge
[v;, u|. Let P, = (v1,va,...,0_1,U, V4 Vit1,---,VUq—1) be an inner path responsible
for the code of T;. Then P = (v1,vg, ..., Vi, Vi1, ---,Vq_1) is a longest inner path
in T'. Obviously, v; is the rightmost 3-vertex of P. Otherwise, P, could not be a
largest neighbor.

Lemma 15 If the number of 3-vertices of T and T, (as defined above) is equal,
then T is determined by T} .

Proof. If T and 7, have the same number of 3-vertices, then the edge [v;, u] on
which the crossover is performed is either a (3 : 3)- or a (3 : 2)-edge.

If [v;,u] is a (3 : 3)-edge, then subtrees isomorphic to A or B are attached to the
rightmost 3-vertices (see Figure 10), namely u and v;, on all paths in P/ respon-
sible for ¢(T;).

If the crossover has been performed on a (3 : 2)-edge, i.e., if in Figure 10 B
is a single vertex, then a subtree isomorphic to A is attached to the rightmost
3-vertex on all longest paths responsible for the code ¢(7;).

In both cases, the edge on which the crossover from 7" to 7; has been performed,

is determined, namely the rightmost (3 : 3)-edge or (2 : 3)-edge, respectively, on
a path responsible for the code ¢(7}).
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Vd—2Vd—1

”.vd—2v
(b)
Figure 10:
Therefore, we are able to reconstruct 7 by only considering T7. 0

Note that for finding a responsible path P, we need the whole tree rather than
T° only, however, the coloring of the leaves in T is of no matter. Thus, what we
need is the isomorphism class of 7" which is uniquely defined by 7°.

Now, let us consider the case where the largest neighbor 7; of T has fewer 3-
vertices than 7, i.e., the crossover leading from 7" to 7 is performed on a (3 : 1)-
edge.

If this happens then clearly 7° looks like in Figure 11(a) and 77 like in Figure
11(b) where the path P, = (v, 9, ...V -1, Uk—1, Vs, - - - , Va—1) 1S responsible for
the code of Tj. The 3-vertices of this path are {vy,, v,,..., 01,1}

Consider now T,;, the largest neighbor of 7;. It is clear that the crossover trans-
forming 7T into T,; has been made on the rightmost 3-vertex of P, namely v, _,.
This is because all paths in 7; which are responsible for the code contain the path
from vy, | to v4_1, since this is the only part of 7; where the length of a path has
been increased with respect to 7.

For the same reason, this path is the right tail of all largest paths in 7;. It cannot
be the left tail, since dist(vg_1,vs,_,) > dist(vy, vy, ).

There is exactly one other path in I',, of length 2 from T to T}; (by reversing the
order of the two crossovers). Denote the tree on this path by T,. Obviously, Ty,
only exists if there are at least two 3-vertices on P. The situation is depicted in
Figure 11.
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Uk

v v2 Uiy —1 Vtq Vi 41 Vi _1—1 Vtp_q Vtp_q+1 Vip—1 Vip Vi1

(a) T°

Uk

Vtgp—1 Vtp_1+1 Vip—1 Vi Vip+1

(b) T*°

v1 v2 Vi1 —1 YVt Vig41 Vi1 —1 UVt \ Vip_1+1 Yt —1 Vi Vip 41

v1 v2 Vtg—1 Yty V41 Vi1 —1 Vi _\ Ytp_1+1 Yip—1 Vi Vi 41

(d) T°°

Figure 11: T" and larger neighbors
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Lemma 16 If all largest neighbors of T have less 3-vertices than T, T° is deter-
mined by T and T,.

Proof. As we have seen, there is the unique tree T,,. Since 7T} has less 3-vertices
than 7', T has only one inner vertex, namely uy (see Figure 6). Observe that
T° is determined up to the position of v, by T7.

Assume now that there are either at least two 3-vertices on P, or a subtree Y},
j < k, has more than one inner vertex. Otherwise, the tree 7" would be a cater-
pillar with at most 2 legs, for which the result is already clear due to Lemma 13
and Lemma 14.

Let P, be a path in T} responsible for the code ¢(7}). Since the distance from
the beginning of P, to the first 3-vertex in P, and of the rightmost 3-vertex on
P, are exactly as in P, a path responsible for the code ¢(T'), the position of vy,
is determined by 7T7,. 0

Theorem 17 Each [T}] defines a cell of Cr,, .

Proof. The proof is done by a similar induction as in Lemma 11. From Lemma
10 we know that 79" (n — 1) defines a cell. In fact, we even have proved that the
sets [Tk] are cells if T}, is a 1-path or a 2-path. This result has already been used
in the proof of Lemma 16.

d d+1 d+2
T,

T Ta:l
T,

Figure 12: The crucial part of [';,

Assume that the trees with diameter larger than d lying in one cell have isomor-
phic inner trees. Consider a tree T with diameter d. As we have seen before, T°
can be determined by considering only the inner trees of some longer trees with
distance one or two of 7. To be more precise, let us consider the situation in I,
as depicted in Figure 12.
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If a largest neighbor of T has the same number of 3-vertices as T (and thus
all largest neighbors have this property), then T° is determined only by T} (see
Lemma 15). Since by induction hypothesis the set [1}°] is a cell, trees having
a largest neighbor not in [T}°] are distinguished from 7'. Hence, trees having a
largest neighbor with the same number of 3-vertices lie in different cells of Cr, if
and only if their inner trees are isomorphic.

The case where all largest neighbors of 7" have less 3-vertices than 7" is more in-
volved. As proved before, we need to consider 7 together with 7 to determine
T° (see Lemma 16). In Ar,, the color of the edge (T, T,;) represents the set of
colored paths from T to T,; (compare Lemma 1 and remember what was said
about the use of the term ”color” and the end of Section 2). Hence, the color of
(T, T,;) depends on the colors of T; and T, as well. Thus, T° is determined by
the color of the edge (T, Ty;) in Ar,,.

Therefore, all trees with diameter d lie in the same cell only if they have isomor-
phic inner trees. 0

5 Summary

We have shown in this paper that the cell partition of Robinson graphs coincide
with their automorphism partition. This result can be used in order to get in-
formation about the spectra of such graphs. Some results in this direction have
been reported in [1].
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