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Abstract. We use a Toy Model of chemistry that represents molecules
in terms of usual structural formulae to generate large chemical reaction
networks. An extremely simplified quantum mechanical energy calcula-
tion and a straightforward implementation of reactions as graph rewrit-
ings ensure both transparency and closeness to chemical reality, both
conditions that are necessary for the analysis of generic properties of
large reaction networks. We show that some chemical networks graphs,
e.g., repetitive Diels-Alder reactions, have the small-world property and
exhibit a scale-free degree distribution. On the other hand, the Formose
reaction does not fit well to this paradigm.

1 Introduction

Large-scale chemical reaction networks (CRN) appear as the metabolic networks
of living cells [1], they describe the chemical processes in planetary atmospheres
[2] as well as in combustion and in combinatorial chemistry [3]. Surprisingly,
their generic features have not been studied much in the past. For instance, it
is unknown whether the small-world properties of metabolic networks [4–6] are
characteristic for living systems, or whether they are common to most or all
large chemical networks, as suggested by data reported in [7].

The systematic study of these questions requires a computational model for
their generation. In a recent study we have introduced such a Toy Model in
which generic properties of extensive chemical reaction networks can be explored
in detail and that at the same time preserves the “look-and-feel” of chemistry.

In the following three section we briefly review the main ingredient of a com-
putational implementation of a purely graph-based Toy Model [8] of artificial
chemistry: molecules and the evaluation of their physical properties, reaction
mechanisms and reactivities, and the formation of large-scale networks. In sec-
tion 5 we investigate a few reaction networks in detail and provide first results
towards identifying generic properties of chemical reaction networks.
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2 Molecules

Much of theoretical chemistry is concerned with solving the time-independent
Schrödinger equation

ĤΨ = EΨ , (1)

in the Born-Oppenheimer approximation that describes the electrons in a fixed
arrangement of nuclei [9]. For our purposes, however, this is too demanding in
terms of computational resources. We therefore resort to an Artificial Chemistry
that it derived from equ.(1) by a series of approximations detailed below. In [8] we
have shown that such a model retains the “look-and-feel” of organic chemistry; it
is hence much more suitable for exploring the generic features of large chemical
networks than more abstract systems such as Walter Fontana’s AlChemy [10],
see also [11] for a recent review on AC models.

We use here a simplified version of Extended Hückel Theory (EHT). EHT
[12] is obtained from the wave function Ψ , equ.(1), of the complete molecule
by first using the Born-Oppenheimer approximation to separate electron motion
from nuclear motion. The orbital approximation then splits the electronic part
into orthogonal functions Ψα called molecular orbitals (MOs). This brings the
problem into a form tractable by the variational principle. The linear combina-
tion of atomic orbitals (AOs), the LCAO approximation, now assumes that one
can write Ψα =

∑
i cα,iχj , where the AOs χj describe the spatial distribution

of the individual electrons of an atom. The problem is thus reduced to start-
ing with a basis set of atomic orbitals χi and a corresponding overlap matrix
Sij =

∫
χiχj dτ and solving the generalized eigenvalue problem

Hcα = EαScα . (2)

Here H is the one-electron Hamilton matrix, cα denotes the vector of the AO
coefficients belonging to the molecular orbital Ψα with orbital energy Eα. The
EHT model is now obtained by parametrizing H in terms of the overlap integrals
Sij , and the atomic valence state ionization potentials Ii.

We further simplify the EHT approximation by parametrizing the values Sij

of the overlap matrix based only on the type of the AOs χi and χj at adja-
cent atoms instead of computing Sij from orbital functions in 3D space. As a
consequence we disregard the spatial embedding of the molecule and instead rep-
resent it uniquely by its orbital graph [13] which has the outer atom orbitals as its
vertices while edges represent overlaps. The orbital graph in turn is uniquely de-
termined by the chemical structure formula, the chemical graph of the molecule,
by virtue of the VSEPR rules [14]. Our Toy Chemistry is thus implemented at
the level at which (organic) chemistry is usually taught and described: the level
of chemical structural formulae. By definition, any property of the molecule can
now be computed at least in principle from its wave function, i.e., from the solu-
tions cα of equ.(2). A detailed description of the model and its parametrization
can be found in [8].

The main advantage of the Toy Model is that it incorporates a chemically
meaningful energy function that is consistent with the framework of the simpli-
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Fig. 1. Graph rewriting rule (top) and graph rewriting steps (bottom).

fied EHT theory: The total energy of atomization (TAE) of a molecule is given
by

E =
∑

occupied

orbitals α

nαEα . (3)

From this quantity it is straightforward to compute the reaction energies as the
difference of the TAEs of products and educts. The Toy Model hence has built-in
chemical thermodynamics.

3 Reactions

With molecules represented as graphs it is natural to view chemical reactions as
rewriting rules applied to molecular graphs. A graph grammar is a finite set of
rules operating on edge and vertex labeled graphs. It typically consists of a left
graph, a right graph, and a context graph defined as the parts of the graph that
are removed, persist, and are newly introduced during a rewriting operation,
Fig. 1 [15]. This graph rewriting formalism is very flexible and can be used to
represent chemical reactions as well as chemically impossible yet strategically
interesting reactions. A chemical reaction is the breaking, forming and changing
of bonds. Thus the number and type of atoms must remain constant, which can
be implemented by conservation of vertex labels. In analogy, the conservation
of the number of valence electrons can be imposed on rewrite rules by ensur-
ing conservation of total bond order. Both principles stem from the fact that
chemical reactions are stoichiometric [16, 17].

The simulation of unimolecular reactions is a straightforward application of
rewrite rules to a molecule. A bimolecular reaction or any other similar rule is
split by into one half reaction rule for each educt molecule, and a final reaction
rule. The two half reaction rules do not modify existing bonds and atoms in
the molecules, they just add flag nodes to the atoms that will be joined during
the total reaction. They serve to identify those reaction sites for the reactivity
evaluation described in the following. The evaluation determines which pairs of
reaction sites from each of the two reactants are joined by a temporary edge.
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Fig. 2. One-mode projection from a bipartite graph to a substrate graph.

This temporary construct is then again submitted to the final reaction rule and
transformed to the product.

The reaction rate for a specified reaction mechanism is at least in principle
determined by the laws of quantum mechanics and can be expressed in terms of
the wave function. It is natural therefore to use the Frontier Molecular Orbital
(FMO) Theory [18] for this purpose. In the simplest version of FMO theory the
reactivity is inversely proportional to the difference of the HOMO and LUMO
energies Eη and Eλ of the reactants. The regioselectivity is determined by the
MO coeffcients at the reactive sites i, such that

∑
i cη,icλ,i is maximal. Again,

we refer to [8] for a more detailed description.

4 Networks

The starting point for CRN generation is an initial set of molecules L0. From this
“seed set” we exhaustively generate the network in such a way that a reaction
between the same molecules is computed only once, see [8]. While the generation
of a large reaction network is rather straightforward, its representation is much
less trivial. A plethora of graph-theoretical approaches have been discussed in
the literature, see e.g. [19] for an overview. Following [20] a chemical reaction

aA + bB + · · · → vV + wW + · · · (4)

can be described as a weighted directed hyperedge in a directed hypergraph
H(V, E) with vertex set V . A hyperedge ρ ∈ E is a pair of lists of vertices
({ui}, {vi}) where the ui are the initial and the vi are the terminal vertices of
ρ. In chemical terms, the ui are the educts and the vi are the products of the
reaction ρ. In addition we may have the stoichiometric coefficients (prefactors
in the above reaction scheme) attached as weights to each ui and vi. The sto-

ichiometric matrix S, where Sxρ is the coefficient of the chemical species x in
reaction ρ, is therefore the appropriate algebraic representation of a chemical
reaction network.

Unfortunately, a well developed theory for the structural analysis of directed
hypergraphs is not available. As an alternative, however, one can represent
H(V, E) by an equivalent bipartite weighted digraph in which each hyperedge is
“interrupted” by a special vertex representing the reaction itself. Incoming arcs
connect this vertex with the educts, out-going arcs point to the products [21, 22,
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Table 1. Characteristics of the two example CRNs in [8] and the substrate graph of
the E. coli energy and biosynthesis metabolism [23].

Network n 〈k〉 〈L〉 〈Lrand〉 〈C〉 〈Crand〉

Formose 48 3.25 3.55 3.28 0.15 0.068
Diels-Alder 40 4.65 2.15 2.40 0.72 0.110
E.coli 282 7.35 2.9 3.04 0.32 0.026

sect. 2.3.2], Fig. 2. This bipartite network graph is still a faithful representation
of the entire reaction network.

Reduced representations of chemical networks are useful in particular when
studying connectivity and clustering properties where the distinction of two
classes of nodes with completely different interpretations may lead to artifacts
in the data. In [23], for example, the substrate graph is defined as having the
chemical species as vertices and an edge connecting two species x and y if they
take part in the same reaction. This amounts to replacing each directed hyper-
edge ρ by a clique. Alternatively, it is obtained from the bipartite representation
by one-mode projection, Fig. 2, [24].

Let us denote the number of vertices by n, and let m be the number of
edges of the substrate graph of a chemical reaction network. In the context of
analyzing large networks it has turned out the following measures yield useful
characteristics:

The average node degree 〈k〉 = 2 m
n

.
The average length of the shortest path between to nodes, 〈L〉, see e.g. [25].
Let dx be the degree of a vertex x and let qx be the number of edges that
connect neighbors of a vertex x. The clustering at x can then be measured
by the fraction of possible triangles, at x, i.e., Cx = 2qx/((dx(dx − 1))). The
clustering coefficient 〈C〉 then measures the overall cliquishness of the graph
[26].
The distribution of detour length can be quantified in terms of the minimal
cycle basis [7].

In the following section we will compare the characteristic quantitites of chemi-
cal networks with two classes of randomly generated graphs: Erdös-Renyi (ER)
graphs which feature statistically independent edges. For later reference we note
the expected mean path length and clustering coefficients for the ER model in
terms of the average vertex degree k = 2m/n:

〈Lrand〉 ≈
ln n

ln 〈k〉
〈Crand〉 =

〈k〉

(n − 1)
(5)

Starting with the seminal paper by [26], it has been recognized that these
real life network differ qualitatively from the classical ER random graph mod-
els by the so-called small-world property: while the graphs are very sparse on
average, the mutual distances between their vertices of both graph types are
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Fig. 3. Evolution of the network of a repetitive Diels-Alder network for different reac-
tion rate thresholds. The CRN grows as the reactivity threshold ln k is lowered (from

left to right: 108, 91.2, and 55.4). The simulation is started with
O

O

O

O .

approximately of the same size. The major difference lies in the degree of local
clustering which is much higher in the real life networks. The characteristic pa-
rameters of scale-free networks scale such as those obtained by the preferential
attachment procedure [27] (AB model) behave as follows [28]:

〈LAB〉 ∼ n−0.75 〈CAB〉 ∼
ln n

ln ln n
. (6)

The cycles and edge-disjoint unions of cycles of a graph from a vector space
(w.r.t. symmetric difference as addition) with dimension µ(G) = m − n + c(G),
where c(G) is the number of connected components. A minimum cycle basis

(MCB) is a cycle basis that minimized the total number of edges in the basis
cycles. It can be shown that all MCBs have the same numbers n` of cycles of
length ` [29]. We can therefore use the distribution of MCB cycle lengths to
characterize the cycle structure of G, see also [7].

5 Results

The Diels-Alder reaction [30] has been extensively studied thanks to its impor-
tance in natural products synthesis and because it is easily tractable by simple
semi-empirical methods. It is the typical test reaction for a semi-empirical quan-
tum calculation methods such as ours, and furthermore for the numerous ap-
proaches of reaction description [31]. It involves the reaction between two linear
π-systems of length 2 and 4, called dienophiles and dienes, and is thus called a
[2+4]-cycloaddition. The product is again a dienophile and may react again in
a Diels-Alder reaction. The reaction is used for the synthesis of polymers [32].
The generation of a repetitive Diels-Alder (DA) reaction network and a further
network, the Formose reaction, is discussed in detail in [8]. Here their properties
and those of DA networks with different reactivity thresholds are studied. The
reactivity threshold determines which reactions are allowed, i.e. those above it.
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Fig. 4. Evolution of network properties for a repetitive Diels-Alder CRN with different
reaction rate thresholds (solid) and the AB (slashed) and ER (dotted lines) model. The
AB graphs were only generated in the region of n ∈ [89, 246], where 〈k〉 ≈ 5 .
(a) Reaction rate threshold (grey) and 〈k〉 (black); (b) Cycle statistics of triangles and
cycles of size 4, 5, and 6; (c) 〈L〉; and (d) 〈C〉 vs. networks size.

The series of CRN in Fig. 3 is obtained by repetitive Diels-Alder reactions of
a simple initial mixture of dienes and dienophiles with a decreasing threshold
value.

Tab. 1 compares the network characteristics of the Diels-Alder, the Formose,
and the E. coli metabolic network. They are all sparse graphs, i.e. they have

much fewer edges than complete graphs, reflected by m � n(n−1)
2 or 〈k〉 � n.

Sparse networks are very common, ranging from the network of acquaintances
to a neural network. In both cases, there are only few connections at each node.
From the networks of Tab. 1, only Diels-Alder and E. coli fulfill the conditions
〈C〉 � 〈Crand〉 and 〈L〉 ≤ 〈Lrand〉 and thus are small-world networks in the
strict sense.

The change of network characteristics with DA network size is shown in
Fig. 4. Interestingly, both 〈C〉 and 〈L〉 stay constant for n ∈ [89, 246] . This
property seems to be robust in chemical networks. This is not the case for ER
and AB graphs as both 〈C〉 and 〈L〉 vary. Triangles dominate the minimum cycle
basis of the substrate graph representation of a CRNs, see Fig. 4. For comparison
we show the cycle distribution of scalefree graphs (AB model) with the same size
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Fig. 5. Rank statistics of repetitive Diels-Alder (l.h.s.) and the Formose reaction net-
work (r.h.s.). Datapoints are ranked by decreasing degree. The power-law regressions
(solid lines) have slopes of −1.19 in both cases. The Poisson distribution expected for
ER random graphs is shown for comparison as a dotted line.

and average degree. The number of triangles is ∆ ≈ µ = m−n+1 ≈ n(〈k〉−2)/2
for large n. So a linear rise of ∆ with the network size is not surprising. As shown
in Fig. 4, the fraction ∆/µ, however, also seems to be constant for increasing
network size.

Finally, the degree distributions have been calculated (fig. 5). Both networks
are scale-free, i.e. their degree distributions follow a power law. The cumula-
tive representation of fig. 5 is equivalent to

∫ ∞

k
P (x)dx vs. k. The regression∫ ∞

k
P (x)dx ∼ k−1.19 is consistent with the values reported in [33]. The expla-

nation of the origin of scale-freeness therein can be applied to the present ex-
amples. It relies on two generic mechanisms. First, the networks grows from an
initial set of nodes by continuous addition of new nodes. Indeed, in the present
case, there is an initial list of molecules, and the networks is built by adding
molecules at every iteration (sect. 4). Second, the networks grows by preferential

attachment, i.e. new nodes are preferably attached to nodes with high degree,
or in the case of molecules, species who have already spawned many new other
species are especially reactive and more likely to produce new molecules at each
iteration. The power-law regression for the Formose reaction network fails for
high k. The theoretical Poisson distribution for ER random graphs with high n,

P (k) = e−〈k〉 〈k〉
k

k! , also fails in this range. A degree distribution following a trun-
cated power law has been referred to as broad-scale [34]. Again, the exponent
of the power law is constantly around 1.18 ± 0.05 for the repetitive Diels-Alder
reaction network for sizes n ∈ [39, 246].

The Formose reaction network, in contrast, does not fit the predictions of
from scale-free models very well, Fig. 5. It includes many non-reactive species
with respect to keto-enol condensation, which leads to small cliquishness and
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longer paths. Furthermore, it has particularly reactive species (formaldehyde)
whose neighbors in the substrate graph do not react with each other: a keto-enol
isomerization must toggle the “state” of a network species from non-reactive to
reactive first. This leads in consequence to an elongation of paths and a reduction
of cliquishness of the Formose reaction network.

6 Discussion

The study of Artificial Chemistries (AC) is closely related to the field of Artificial
Life. The many models of AC can be categorized according to abstraction level
and intended application. Very abstract models simulate AC in which strings or
logical elements interact, such as in Fontana’s the λ-calculus. There, networks are
built in a bottom-up approach to be studied phenomenologically, as in Artificial
Life, for example for the emergence of structures or sustainability. On the other
hand, models for practical applications tend to be top-down. They concentrate
on describing interactions and try to predict, for example, the time and/or space
evolution of concentrations.

The graph based Toy Chemistry Model possesses qualities from both ap-
proaches. The use of graph grammars to handle reactions makes our approach
more bottom-up like, while the use of a simplified quantum mechanical energy
calculation is clearely top-down. The graph based Toy Chemistry Model provides
a very flexible and transparent framework for the exploration of the properties
of chemical reaction networks. The built-in chemical thermodynamics makes the
model self-consistent and helps to keep the resulting reaction networks close to
chemical “reality”. Since the used graph grammar (set of allowed reactions) can
be chosen freely, a wide variety of reaction networks with different ”chemical fla-
vors” can easily be generated, which is an important prerequisite for the study
of their network properties.

We found that the Diels-Alder reaction network exhibits small world prop-
erties similar to known cases e.g. the E. coli metabolic network. The Formose
reaction network, on the other hand, does not fit the prediction for a small world
network very well. We conclude that chemical networks do not fall into a single
class of the small-world network classification scheme by Amaral et al. [34]. More
detailed investigations will therefore be necessary.
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32. Morgenroth, F., Müllen, K.: Dendritic and hyperbranched polyphenylenes via a
simple Diels-Alder route. Tetrahedron 53 (1997) 15349–15366

33. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286

(1999) 509–512
34. Amaral, L.A.N., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world

networks. Proc. Nat. Acad. Sci. 97 (2000) 11149–11152


