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Abstract

Detailed knowledge of the energy landscape of a
biopolymer molecule is a prerequisite for understand-
ing its folding kinetics and its final spatial structure.
In the case of RNA we consider the energy landscape
defined on the set of all secondary structures that can
be formed by a given sequence. We show that the ex-
ploration of this energy landscapes is computationally
feasible. For this prurpose we present a recursive al-
gorithm for computing the complete density of states
and discuss its application to tRNA sequences. For
shorter sequences a more detailed analysis of the en-
ergy surface is possible using a complete list of all sec-
ondary structures. In this case we identify metastable
states and the saddle points that connect them.

The Density of States

The density of states (d.o.s.), i.e. the energy distribu-
tion of suboptimal secondary structures, is of utmost
importance for an understanding of the structural ver-
satility of RNA molecules (Higgs 1995).

For short RNA chains it is possible to exhaustively
construct all possible secondary structures and to eval-
uate their energy. To this end we first generate the
list of all possible base pairs (Watson-Crick and GU).
This list serves as the basis set spanning the space
of all structures. A complete list of secondary struc-
tures is thus obtained by recursively adding additional
base pairs and checking if the resulting structures are
valid at each step. The algorithm is structured in such
a way that additional constraints, such as minimum
stack lengths, can be included very easily.

Unfortunately, the number of secondary structures
increases exponentially with the chain length (Hof-
acker, Schuster, & Stadler 1996), and the explicit con-
struction of all secondary structures becomes unfeasi-
ble for chain length larger than some 40 nucleotides
(see table 1). This limitation can be overcome by the
recursive (dynamic programming) scheme outlined in
the box on the following page. The key observation

(Cupal, Hofacker, & Stadler 1996) is that the d.o.s. of
a subsequence [i, j] can be computed recursively from
the d.o.s. of all shorter subsequences contained in [3, j].

The algorithm closely resembles the computation of
the partition function of an RNA molecule using Mc-
Caskill’s method (McCaskill 1990). As an example we
have computed the complete density of states for the
phenylalanine tRNA from yeast, see figure 1. The al-
gorithm is rather demanding both in terms of memory
and CPU time: With a fixed energy resolution the
computation of the d.o.s. of a RNA sequence of length
n requires O(n®) operations and memory of O(n?).

The energy parameters are implemented with an ac-
curacy of 0.01 kcal/mol. In most cases, however, an
energy resolution of 0.1 kcal/mol is sufficient. On the
other hand, a resolution coarser than thermal energy
(RT = 0.6 kcal/mol) will hide the most interesting in-
formation. The CPU requirements for computing the
complete density of states of a number of RNA se-
quences are compiled in table 1. The recursive scheme
is faster than exhaustive enumeration only for chains
longer than some 30 nucleotides. Restriction to a lim-
ited energy range above ground state leads to a signif-
icant reduction of the CPU requirements.

The overall shape of N(F') is Gaussian (figure 1a).

Table 1: Performance Data for the Density of States.
CPU times are measured on an SGI Power Challange
R8000 with 1GB memory. All times are in seconds.

n Sequence Num. o. | Dynamic. Prog. | Exaust.
Struct. 0.01 0.1
8 (ACGU), 5 8 <1 <1
12 (ACGU); 35 139 2 <1
16 (ACGU), 2.7-10° 1254 14 <1
20 (ACGU)s 2.2-10° 5049 51 2
24 (ACGU)s  2.0-10* | 16926 143 33
28 (ACGU);  1.810° | 41089 329 345
32 (ACGU)s  1.7-10° * 691 1298
35 random 2.0-107 * 804 10181
40 (ACGU)io 1.6:108 * 1791 38387
76 tRNA-phe 1.5-10%° * 28678 *
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Recursion for the calculation of the density of
states: Calligraphic symbols denote energy parame-
ters for different loop types: hairpin loops H(%,j), in-
terior loops, bulges, and stacks Z(%, j, k,!); the multi-
loop energy is modeled by the linear ansatz M =
Mo + My - degree + My - unpaired, e.g. (Zuker &
Sankoff 1984). The number N5 (¢) of substructures on
the substring [, j] with energy € subject to the condition
that ¢ and j form a base pair is determined recursively
from smaller fragments. The contributions depend on
the type of the secondary structure element as a con-
sequence of the energy model. The base pair (7, j) can
be the closing pair of a hairpin, it may close an interior
loop (or extend a stack), or it might close a multi-loop.
The auxiliary variables N and N™! are necessary for
handling the multi-loops (McCaskill 1990), N4 helps re-
ducing the CPU requirements. The unconstrained d.o.s.
of the substring [z, j] is stored in N;;(e). The first term
accounts for the unpaired structure. The second term
collects all structures that consist of a single compo-
nent, possibly with an unpaired “tail” at the 3’ end.
The final term arises from the formal construction of
multi-component structures from a l-component part
at the 3’ side and an arbitrary structure at the 5’ side.

This is not surprising since F' is composed of a
large number of additive contributions. The over-
whelming majority of structures has positive energy,
hence only a small subset of all possible structures
is physically important. The ground state of all se-
quences that we have considered so far is unique both
at a resolution of 0.1kcal/mol and 0.01kcal/mol. How-
ever, in general there is a substantial number of struc-
tures with a few RT above the ground state. It
is also worth noting that there is a strong correla-
tion between the size of the energy gap between the
ground state and the first “excited state” and the frac-
tion pg of ground state structure in thermodynamic
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Figure 1: a) Full Density of States of tRNAPhe
from yeast (n=76) computed with an energy resolu-
tion of 0.1 kcal/mol. The total number of structures,
14,995, 224, 405, 213, 184 emphasizes the need for a recur-
sive approach. Less than 1.77-108 structures have negative
energy, the reference state being the open structure. The
minimum energy structure is the familiar clover leaf with
E = —12.26 kcal/mol. b) The lower figure shows the region
above ground state in resolution of 0.1 and 0.01 kcal/mol.
The ground state is unique. There is, however, a moderate
number of suboptimal structures within 1 kcal/mol above
the ground state.

equilibrium. The latter quantity can be obtained di-
rectly from the partition function (McCaskill 1990;
Hofacker et al. 1994).

Higgs (Higgs 1995) found that the density of states
of natural (evolved) sequences such as tRNAs dif-
fers significantly from random RNA sequences. His
studies were based on a non-recursive algorithm us-
ing a drastically simplified energy model (Higgs 1993;
1995). Our own computations support his conclusions:
The energy gap between the ground state and the
first “excited” structure of E.coli tRNA(phe) is 1.45
kcal/mol, while mutants that have the same ground
state structure (namely the familiar clover leaf) have
an average energy gap of only 0.15 kcal/mol. A more
detailed analysis of tRNA structures will be presented
elsewhere.

Local Optima and Saddle Points

A major disadvantage of the recursive algorithm is the
fact that we obtain no information about the individual
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Figure 2: Density of states and density of local
minima for sequence ACUAGUCGCGGGGAAUACCUUGGUUCCAAC.
The ground state energy is F' = —3.54 kcal/mol. There
are a total of 671276 valid secondary structures. With in-
sertions/deletions there are 320 metastable states, when
substitutions are allowed this number reduces to 203.

structures that correspond to the low energy states. A
detailed investigation of the energy landscape is there-
fore limited for the moment to sequences for which we
can produce the complete list of all structures.

Table 2 lists the most stable structures of a typical
RNA sequence.

A structure is a local minimum (or metastable) if its
energy is lower than the energy of all neighboring struc-
tures. The ruggedness of the energy landscape thus is
critically influenced by the definition of neighborhood:
what are the elementary operations that interconvert
secondary structures. In this contributions we consider
two mowve sets:

(A) Opening or closing of a single base pair only.

(B) Opening or closing of a single base pair or subsitu-
tion of a base pair (i,7) by a base pair (i, k).

Since move set (A) is subset of move set (B) all local
optima of move set (B) are also local optima under
(A), but not vice versa. Note that the number local

optima depends strongly on the choice of the move set
(figure 2).

Discussion

It is interesting to compare the metastable states with
respect to moveset (A) or (B) to the set of structures
that are produced by suboptimal folding algorithms
(Zuker 1989). We shall say that a secondary struc-
ture s is Z-suboptimal if there is no other secondary
structure s’ with lower energy containing all base pairs
that are present in s. Obviously, the ground state is
a local minimum with respect to any move set and it
is also Z-suboptimal. It is surprising to see, however,
that a substantial fraction of the low energy structures
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Figure 3: A variety of folding pathways starting with the
open (denatured) structure lead to the ground state, among
them a pathway with a single saddle point. Alternative
foldings, however, have a lower energy barrier. Note that
almost all saddle point contain an isolated base pair, i.e.,
they correspond to the nucleation of a novel stem.

are not Z-suboptimal. In fact, there are metastable
states w.r.t. to the move sets (A) and (B) that are
not Z-suboptimal, and conversely, some Z-suboptimal
structures are not metastable, see table 2.

All configurations that are not local minima or max-
ima of the energy surface are sometimes called sad-
dle points. For our purposes it is more convenient to
use a more restrictive definition of a saddle point: A
secondary structure s is saddle point if there are at
least two local minima that can be reached by down-
hill walks starting at s. Of course the saddle point
with lowest energy that separates the basins of two
local minima s and s’ is of particular importance.

The data compiled in table 2 can be used to extract
folding pathways. In figure 3 we display the three most
favorable pathways leading from the open (denatured)
structure to the ground state. The first saddle point
is determined by the nucleation of the first base pair.
Adding base pairs to an established stack leads to lower
energies. If the correct base pair is formed in the first
step, the ground state is found without further obsta-
cles. However, the energy barrier to the correct folding
pathway is not the lowest in our example. Most saddle
points encountered along the folding pathways contain
an isolated base pair, i.e., they correspond to the nucle-
ation of an novel stem. This is consistent with experi-
mental findings on RNA folding: while the nucleation



Table 2: Energetically Favorable Structures of Sequence
ACUAGUCGCGGGGAAUACCUUGGUUCCAAC, n = 30.
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*For the “dot-bracket” notation see (Hogeweg & Hesper
1984; Hofacker et al. 1994)

of a helix is a slow, closing additional base pairs is fast
cooperative process (Porschke 1974).

We have shown that a computational exploration of
the energy landscape is feasible for RNA molecules
of moderate chain length. For short sequences, be-
low some 40 nucleotides, it is possible to generate
all structures, while we have to restrict ourselves to
computing the density of states for larger molecules.
Our approach goes beyond previous investigations in
several respects: We use the best available energy
model for secondary structures (Freier et al. 1986;
Jaeger, Turner, & Zuker 1989), and we consider the
complete ensemble of all valid secondary structures
that can be formed by a given sequence. This is im-
portant when one is interested in thermodynamics;
Only about two-thirds of the low energy states are Z-
suboptimal, see table 2. Suboptiomal folding algorithm
are not suitable therefore for computing reliable ther-
modynamic data.

Metastable states, and hence also saddle points, de-
pend crucially on the choice of the move set. Once
local minima and saddle points of an energy landscape
are known it is straight forward to compute folding
pathways and to simulate the dynamics of folding. In-
put from experimental work will be necessary to de-
cide whether insertion/deletion/substitution is a real-
istic choice or if more sophisticated movesets are nec-

essary to correctly describe the topology of the RNA
energy surfaces. This is of practical importance for
RNA structure prediction: kinetic folding algorithms
are of course only as good as their intrinsic model of
the energy landscape.
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