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Abstract

We cast some classes of fitness landscapes as problems in spectral analysis on
various Cayley graphs. In particular, landscapes derived from RNA folding are
realized on Hamming graphs and analyzed in terms of Walsh transforms; assignment
problems are interpreted as functions on the symmetric group and analyzed in terms
of the representation theory of Sn. We show that explicit computations of the
Walsh/Fourier transforms are feasible for landscapes with up to 108 configurations
using Fast Fourier Transform techniques.
We find that the cost function of a linear sum assignment problem involves only
the defining representation of the symmetric group, while quadratic assignment
problems are superpositions of the representations indexed by the partitions (n),
(n − 1, 1), (n − 2, 2), and (n − 2, 1, 1). These correspond to the four smallest
eigenvalues of the Laplacian of the Cayley graph obtained from using transpositions
as the generating set on Sn.
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1. Introduction

From the mathematical point of view, a landscape consists of three ingredients:
(i) a set V of “configurations” which we shall assume to be finite but very large,
(ii) a cost or fitness function f : V → R that evaluates the configurations, and
(iii) some sort of additional geometrical, topological, or algebraic structure X on V
that allows us to define notions of closeness, similarity, or dissimilarity among the
configurations. The structure X , which turns the set V into the configuration space
(V,X ), is determined by the particular application, e.g. a heuristic search procedure
for a combinatorial optimization problem, or by the mechanisms of mutation and
recombination in biological evolution.

A very promising approach in landscape theory is the decomposition of the fitness
function f : V → R is terms of a basis (of the vector space RV ) that is induced in
some natural way by X . In other words, we search for a suitable spectral theory
of the combinatorial space (V,X ), which we then use to “Fourier transform” f
with respect to a suitable set eigenfunctions of (V,X ). The resulting “Fourier
coefficients”, may reveal the important features of the landscape much more readily
than f itself.

The simplest case is based on the notion of a move set. For each x ∈ V we define
the set N (x) of neighbors of x. The elements of N (x) are those configurations that
can be reached from x in a single step. Many cases naturally suggest symmetric
neighborhood relations, in which each step in the move set is reversible, defined as
x ∈ N (y) ⇐⇒ y ∈ N (x). Thus, the set

E =
{
(x, y)

∣∣x ∈ V, y ∈ N (x)
}

(1)

becomes the edge set of an undirected graph with vertex set V . We assume that
this graph is loop-free, so that x /∈ N (x). In many cases, there is a high intrinsic
regularity in the way in which the move set is constructed. This leads to graphs with
a very high degree of regularity. In particular, all configuration spaces considered
in this contribution will give rise to regular graphs.

The most immediate algebraic representation of a graph Γ is its adjacency matrix
A(Γ) with entries Axy = 1 if x and y are adjacent and Axy = 0 otherwise. In many
respects it is more convenient to work with the Laplacian matrix ∆ = D−A, where
D is the diagonal matrix of vertex degrees. For surveys on graph Laplacians see
e.g. [1, 2, 3, 4]. For D-regular graphs, D = DI, hence, A and ∆ have the same
eigenvectors and their eigenvalues are related by Λ∆

k = D − λA

k .
The eigenvalues of the Laplacian for a graph Γ are non-negative, with Λ∆

0 = 0
belonging to a constant eigenvector. The eigenvectors of graphs share some im-
portant properties with the eigenfunctions of Laplacian operators on Riemannian
manifolds [5, 6]. In particular, the number of “nodal domains”, i.e. connected com-
ponents of Γ on which the eigenfunction does not change sign, generally increases
with Λ∆

k . In addition, the cost functions of a number of prominent combinato-
rial optimization problems, among them the traveling salesman problem (TSP),
graph bi-partitioning, and certain spin glass models, are eigenfunctions of graphs
associated with search heuristics for these problems [7, 8, 9, 10, 11].

It seems natural, therefore, to try to extract information about fitness landscapes
and cost functions of combinatorial optimization problems by expanding them in a
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kind of “Fourier series”

f(x) =

|V |−1∑

i=0

aiϕi(x) (2)

in terms of an orthonormal basis {ϕi}
|V |−1
i=0 of the Laplacian matrix ∆.

A general idea on a landscape’s ruggedness can be obtained by condensing the
information of Fourier coefficients ak into the so-called amplitude spectrum [10],
defined as

βp =
∑

k: ∆ϕk=λpϕk

|ak|
2. (3)

or

Bp = βp

/ ∑

q 6=0

βq (4)

in the normalized form. Note the
∑

q 6=0 βq =
∑

x∈V (f(x) − f)2 is the variance
of the landscape. The amplitude spectrum thus measures the importance of the
individual eigenspaces.

Provided the configuration space is “sufficiently regular”, explicit computations
become feasible for interestingly large examples if Fast Fourier Transform (FFT)
techniques are available. In particular, this is true in the case in which the con-
figuration space is a Cayley graph, or simply has a large automorphism group, as
FFTs for many finite groups exist. For example, in the case in which the under-
lying group is abelian, the classical Cooley-Tukey FFT provides a fast algorithm.
Other groups with FFTs include symmetric groups and their wreath products, su-
persolvable groups, and the Lie groups of finite type. See [12] for a survey of recent
results.

2. Quasi-Abelian Cayley Graphs

Definition 1. Let G be a finite group and let S be a symmetric set of generators of
G, i.e., 〈S〉 = G, S = S−1, and ı /∈ S, where ı is the identity of G. A graph Γ(G, S)
with vertex set G and edges {s, t} if and only if t−1s ∈ S is called a Cayley graph.
The characteristic function of S will be denoted by Θ : G → {0, 1}.

Cayley graphs are vertex transitive and hence regular.

Definition 2. A Cayley graph Γ(G, S) is called quasi-abelian if S is the union of
some conjugacy classes of G.

Clearly, a Cayley graph on a commutative group is quasi-abelian, since each
group element forms its own conjugacy class in this case. Some interesting prop-
erties of quasi-abelian Cayley graphs are discussed in [13, 14]. Below we shall see
that certain algebraic properties of Cayley graphs with abelian groups generalize
to quasi-abelian Cayley graphs.

In the case of Cayley graphs we have to distinguish between the “Fourier se-
ries expansion” with respect to the graph Γ(G, S), equ.(2), and the representation
theoretical Fourier transformation on the group G itself. It does not come as a sur-
prise that there is an intimate connection between the two. In fact, the connection
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between the algebraic properties of Γ(G, S) and the representation theory of the un-
derlying group G derives from the following simple facts: The regular representation
ρreg of G is defined by

ρreg(s)f(t) = f(s−1t) (5)

for any f : G −→ C. Substituting Θ for f we find ρreg(s)Θ(t) = Θ(s−1t) = 1 if
{t, s} is an edge of Γ(G, S) and 0 otherwise. Thus we may write the the adjacency
matrix A(G, S) of Γ(G, S) in the form

A(G, S) =
∑

s∈S

ρreg(s) (6)

Definition 3. For any function f : G → C and any matrix representation % =
{ρ(s)}s∈G of G we call the matrix sum

f̂(%) =
∑

x∈G

f(x)ρ(x) (7)

the (group theoretic) Fourier Transform of f at %.

Consider a complete set {%1, . . . , %h} of inequivalent irreducible matrix represen-
tations of G. Let dk denote the dimension of %k. Then

f(s) =
1

|G|

h∑

k=1

dkTrρk(s−1)f̂(%k) (8)

inverts the Fourier transform.
Following e.g. [15, 8A] we assume that the irreducible representations %k are

unitary, i.e., that ρ
k(t)∗ = ρ

k(t−1) and introduce

ρ̃k
ij(s) :=

√
dkρ

k
ji(s

−1) (9)

These functions are orthonormal w.r.t. the scalar product

〈ϕ|ψ〉 =
1

|G|

∑

s∈|G|

ϕ(s)ψ∗(s) (10)

and form a new basis for the vector space of functions of G. Now we are in the
position to state the main result of this section.

Theorem 1. Let Γ(G, S) be a quasi-abelian Cayley graph with a finite group G.

(i) The function εk
ij : G → C defined as

εk
ij(u) =

1√
|G|

ρ̃k
ij(u) =

√
dk

|G|
ρ

k
ij(u

−1) (11)

is an eigenvector of A(Γ) with eigenvalue Λk = 1
dk

∑
s∈S χk(s) where χk(s) =

Trρk(s) is the character of %k at s.
(ii) All quasi-abelian Cayley graphs on G have a common basis of eigenvectors and

hence their adjacency matrices commute.
(iii) A function f : G → R can be expanded in the form

f(s) =
∑

ijk

ak
ijε

k
ij(s) with ak

ij =

√
dk

|G|
f̂ji(ρ

k) (12)
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Proof. (i) We verify by explicit computation that ρ̃k
ij is an eigenvector of the adja-

cency matrix:

∑

u∈G

Avuρ̃
k
ij(u) =

∑

u∈G

Θ(vu−1)ρ̃k
ij(u)

=
∑

u∈G

{
1

|G|

∑

r,s,t

√
drΘ̂ts(ρ

r)ρ̃r
st(uv

−1)

}
ρ̃k

ij(u)

=
∑

u∈G

1

|G|

∑

r,s,t

Θ̂ts(%
r)

∑

y

ρ̃r∗
ys(u)ρ̃

r
yt(v)ρ̃

k
ij(u)

=
∑

r,s,t

Θ̂ts(%
r)

∑

y

ρ̃r
yt(v)

1

|G|

∑

u∈G

ρ̃k
ij(u)ρ̃

r∗
ys(u)

=
∑

r,s,t

Θ̂ts(%
r)

∑

y

ρ̃r
yt(v)δkrδiyδjs =

∑

t

Θ̂tj(%
k)ρ̃k

it(v)

Here we have used that ρ
k(st−1) = ρ

k(s)ρk(t−1) = ρ
k(s)ρk∗(t) translates to

√
drρ̃

r
st(vu

−1) =

h∑

y=1

ρ̃r∗
ys(u)ρ̃

r
yt(v)

Next we use the fact that Θ is a class function. Hence its Fourier transform is
diagonal

Θ̂(ρk) =
1

dk

∑

s∈S

χk(s) Idk
(13)

where χk(s) = Trρk(s) is the character of the representation %k at s. We have
therefore

∑

u∈G

Avuρ̃
k
ij(u) =

∑

t

1

dk

∑

s∈S

χk(s)δtj ρ̃
k
it(v) =

1

dk

∑

s∈S

χk(s) × ρ̃k
ij(v) (14)

Changing the normalizations back to the standard scalar product of C leads to
claim (i) of the theorem.

(ii) We have just shown that {ρ̃ij} is an orthonormal basis of eigenvectors of A

whenever S is the union of conjugacy classes of G. Thus the adjacency matrices of
all quasi-abelian Cayley graphs on G share a common orthonormal basis of eigen-
vectors. Since the adjacency matrices are symmetric they commute under these
circumstances.

(iii) Follows directly from (i), the Fourier inversion formula equ.(8), and the
definition of ρ

k
ij .

Theorem 1 generalizes the following well known result (see e.g. [16]) since all
irreducible representations of an abelian group are 1-dimensional.

Corollary 2. Let G be a commutative group, and let S be a symmetric set of
generators of G. Then the irreducible characters χk of G are eigenvectors of A(G, S)
with corresponding eigenvalue Λk =

∑
s∈S χk(s).
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3. Hamming graphs and Fitness landscapes

3.1. Hamming graphs. The vertex set of a Hamming graph Qn
α consists of all

sequences of length n composed from an alphabet of size α. Two vertices x and y
are joined by an edge iff they differ in exactly one sequence position, i.e., if there
is exactly one k ∈ {1, . . . , n} such that xk 6= yk and xi = yi. It is not hard to
verify that Qn

α arises as a Cayley graph of the group Zn
α = (Z/αZ)n with a set

of generators of the form el
k = (ı1, . . . , ık−1, e

l
k, ık+1, . . . , ın), where el

k 6= ιk and ιk
denotes the identity on the k-th copy of (Z/αZ). Corollary 2 yields the eigenvalues
of eigenvectors of Hamming graphs [17, 18]. The eigenfunctions are know as Walsh
functions (see eg. [12, 19])

εI = exp

(
2π i

α
〈< x, I >

)
, (15)

the corresponding eigenvalues are Λp = pα with multiplicities (α − 1)p
(
n
p

)
, where

p = |I | is the “interaction order”.

3.2. FFTs for Hamming graphs. For the efficient evaluation of Fourier trans-
forms on groups of the form (Z/αZ)

n
, where α and n are positive integers, we

appeal to the separation of variables technique (see eg. [12]). This technique can
best be illustrated by the following example.

Let f be any complex-valued function f : (Z/αZ)2 → C. We wish to calculate
the Fourier transform of f . That is, we wish to evaluate

f̂(α1, α2) =

n−1∑

m1=0,m2=0

ωm1α1ωm2α2f(m1,m2), (16)

where ω = e−2πi/α and 0 ≤ α1, α2 < α. For a given α1, α2, evaluating the
above sum would take α2 operations. Therefore, to compute the discrete Fourier
transform (DFT) of f via this naive algorithm would take α4 operations.

We can improve on this operation count by first rewriting the above equation as
a multiple sum:

f̂(α1, α2) =

α−1∑

m2=0

ωm2α2

α−1∑

m1=0

ωm1α1f(m1,m2)

=
α−1∑

m2=0

ωm2α2 f̃(α1,m2)

Next, we evaluate f̃(α1,m2) (i.e. the inner sum) for the α many different values
of m2. That is to say, we compute α many 1-dimensional DFTs of length α, one
DFT for each m2. This can be done in at most α3 operations. (We allow for the
possibility that the individual, 1 − d DFTs are evaluated by direct sum, without
use of the FFT.) After doing this, the outer sum

n−1∑

m2=0

ωm2α2 f̃(α1,m2)

is evaluated for the α-many different values of α1. In other words, there are α-many
DFTs of length α to perform, this time one for each α1. As above, these DFTs
can all be accomplished in at most α3 operations. Therefore, by rewriting the sum
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in equ.(16) as a multiple sum, the Fourier transform of f can now be computed in
2α3 operations.

By introducing multiple sums, we effectively arranged the input data f(m1,m2)
as a square array of dimensions α×α. Doing the separate sums can be interpreted
as first taking the DFT of all the rows of the array, followed by taking the DFT of
all the columns. This notion of replacing a single sum with multiple sums, one for
each dimension, is the basic idea behind the separation of variables technique.

Note that α2n operations are required to compute the Fourier transform of a
function f defined on (Z/αZ)n via the naive algorithm. The separation of variables
technique enables us to compute the Fourier transform in only nαn+1 operations.
We remind the reader that depending on how the individual DFTs are performed,
computing the Fourier transform of f in fewer operations is possible.

To actually perform the evaluations, we use an algorithm given in [20]. Philo-
sophically, the Fourier transform of a function f on (Z/αZ)n is accomplished as
follows. The data is arranged in a contiguous block of memory of length αn. Con-
secutive blocks of length α are interpreted as the rows of a αn−1 × α matrix X.

1. Overwrite each length α row of X (i.e. the consecutive length α blocks) with
that row’s DFT.

2. Replace X with its transpose.
3. Repeat the first two steps n− 1 more times.

After n iterations, the array X will contain the Fourier transform of f .

3.3. RNA Landscapes. In this section we consider a class typical landscapes
from computational biology. Ribonucleic acid (RNA) molecules are linear polymers
formed from four different monomers, guanine, cytosine, adenosine, and uracil,
designated by the letters {G,C,A,U}. These nucleotides form three types of stable
base pairs, GC, AU, GU (in the order of decreasing strength) which cause the
linear polymer to fold back on itself, see Figure 1. The actual three-dimensional
structure of an RNA molecule can be approximated by its secondary structure, that
is, the list of the base pairs that minimize the structure’s energy. The dominant
role of the secondary structure is well documented in nature by the conservation of
secondary structure elements in evolution [21].

There are efficient dynamic programming algorithms that allows the prediction
of the energetically most favored RNA secondary structure given the sequence of
nucleotides [22, 23]. These algorithm are polynomial in both run time and memory
requirements. Hence they allow a detailed analysis of fitness landscapes derived
from RNA structures, see e.g., [24] and the references therein. The computations
of the RNA folding landscapes reported below are performed using the Vienna RNA

Package, release 1.2 (Nov. 1997). This software is freely available on the internet1.
A first attempt at computing approximate amplitude spectra for RNA land-

scape were reported in [25] based on estimating the correlation function r(s) from
random walks. The usefulness of complete Fourier transforms of RNA landscapes
is discussed in [10]. Here we show that the application of FFT techniques allows
the investigations of the generic features of RNA landscapes in regime of sequence
length that it no longer plagued with the strong finite size effects that make the
interpretation very difficult when the sequences are so short that most of them do
not form a stable structure.

1http://www.tbi.univie.ac.at/
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Figure 1. The folding of the one-dimensional primary structure (sequence) of an RNA
molecule is decomposed conceptually into two steps: (i) Folding of the sequence into
a planar secondary structure by formation of complementary Watson-Crick base pairs
GC and AU as well as the weaker GU pairs. (ii) Formation of the 3D tertiary structure
from the planar pattern. The reason for this decomposition is that the intramolecular
forces stabilizing the secondary structures — base pairing and base pair stacking — are
much stronger than those accounting for the particular spatial arrangement. Thus the
free energy for the formation of the entire spatial structure can be estimated by the
free energy for the formation of the secondary structure. While the computation of 3D
structures from the pure sequence information is impossible at present, the secondary
structure can be readily calculated.

In figure 2 we compare four different RNA folding landscapes: the energy land-
scape (assigning the ground state energy to each RNA sequence), the ensemble free
energy landscape, and two landscapes based on structure distances to two different
targets. The restriction to pure GC sequences allows us to study longer sequences
in which finite size effects are less important. While the four landscapes are based
on quite different principles, energy of folding and structural similarity to a fixed
anchor point, respectively, we observe that their amplitude spectra are very simi-
lar. This is a consequence of the fact that all four landscapes can be understood
(at least approximately in the case of the folding energies) as a composition of the
genotype-phenotype map (mapping the sequence onto its secondary structure) and
a (close to linear) evaluation of the secondary structure [26]. As a consequence, all
four landscapes mostly reflect the regularities of the underlying genotype-phenotype
map.

For instance, the strong distinction between even and odd modes reflects the
dominating effect of base pair stacking, which always involves an even number of
nucleotide positions. Similarly, the increase of the contributions of larger values p
can be attributed to the increase in average stack (helix) length. The average stack
length eventually settles down to a constant value [27].

The same generic features can be seen in the amplitude spectra computed for the
true four-letter alphabet GCAU are shown in Figure 3. The main difference is the
virtual absence of the linear p = 1 mode in the GC landscape, while the additive
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Figure 2. Amplitude spectra of RNA folding landscapes with GC alphabet as a func-
tion of the chain length n.
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Figure 3. Amplitude spectra of RNA folding landscapes with GCAU alphabet as a
function of the chain length n.
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Figure 4. Amplitude spectra of RNA folding energy landscapes with GCA and GCU

alphabet, respectively. Note the strong difference in the amplitude of the linear mode.

mode accounts for a substantial fraction of the variance in the GCAU case. This is
due to the different average strength of GC and AU base pairs, which introduced
a substantial dependence of both the folding energy and structural composition on
the G+C content of the sequence.

Artificially restricted alphabets can be useful to retrieve information on the over-
all structure of RNA landscapes. In Figure 4 we compare the GCA and GCU

alphabets. Their main difference lies in the base pairing logic: in the former case A

is always unpaired, resulting in an increase of folding energy with the A-content. In
the GCU case, there is the possibility to form GU pairs, thus reducing the effect
of the U-concentration. However, the amplitude of the linear mode increases since
C-U substitutions have a much smaller influence on the structure – and hence act
predominantly linearly.

4. Neutral Network Landscapes

Sometimes only the distinction between viable and non-viable phenotypes is
important. In this case a landscape reduces to a Boolean function f : V → {0, 1},
which we shall call a neutral network landscape. Examples arise from RNA folding,
where we may consider only sequences folding into a particular secondary structure
[28, 29], in evolving CA landscapes [30], and in random graph models such as
[31, 32]. In many cases neutral network landscapes are restricted to a (sometimes
small) linear subspace of the sequence space.

Let f be a neutral network landscape on Zn
2 , with non-zero values restricted to

them-dimensional linear subspace Zm
2 < Zn

2 . Furthermore, suppose the distribution
of 0s and 1s in Zm

2 is i.i.d., with a probability q for encountering a 1. For short we
call this model a “homogeneous neutral network with density q”.

Theorem 3. The expected amplitude spectrum of a homogeneous neutral network
of density q confined to an m-dimensional subspace of Zn

2 is

Bp = q 2−(n−m)

(
n−m

p

)
+ (1 − q) 2−n

(
n

p

)
(17)



Fast Fourier Transform for Fitness Landscapes 11

0 2 4 6 8 10 12 14 16 18 20

Interaction Order     p

0.00

0.05

0.10

0.15

0.20

0.25

A
m

pl
itu

de
 S

pe
ct

ru
m

   
  B

(p
)

....................

.......(((((...)))))
(((..(((....)))..)))
((((((((....))))))))

Figure 5. Amplitude spectra of four RNA neutral networks for the GC alphabet and
chain lenght n = 20. Typical networks, such as those of the open structure (black),
the most frequent structure (dark gray), and the maximally paired structure (light
gray) are very similar. Again, the difference between even and odd interaction orders
is clearly visible. For neutral network of the marginally stable network of the structure
(((..(((....)))..))) we observe a much smaller difference between even and odd
modes. This reflects the fact that almost all point mutations change this particular

structure.

Proof. Since Suppose f(x) = 0 in x /∈ Zm
2 we have

f̂(y) =
∑

x

(−1)xyf(x) =
∑

x∈Zm
2

(−1)xy∗

f(x) (18)

where y∗ denotes the projection of y onto Zm
2 . Thus f̂(y) = f̂(y′) whenever y∗ = y′

∗
.

In order to evaluate the expected amplitude spectrum of f , we need to evaluate

E[f̂(y)] for y ∈ Zm
2 , since

E[βp] =
∑

y:|y|1=p

E[|f̂(y∗)|2] =

p∑

j=0

∑

y∈Zm
2

|y|1=j

E[f̂(y∗)2]

(
n−m

p− j

)
(19)

The last binomial coefficient accounts for all y∗ that have p − j ’1’s in the “tail”.
A simple computation shows that

E[|f̂(y∗)|2] =
∑

x,z

(−1)yx(−1)yz
E[f(x)f(z)]

= q2
∑

x6=z

(−1)yx(−1)yz + q
∑

x

((−1)xy)2

= q2
∑

x

∑

x6=z

(−1)yx
∑

z

(−1)yz + q(1 − q)2m

= q24mδy,0 + q(1 − q)2m

(20)
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Thus we find

E[βp] = q24m

(
n−m

p

)
+

m∑

j=0

q(1 − q)2m

(
m

j

)(
n−m

p− j

)

= q24m

(
n−m

p

)
+ q(1 − q)2m

(
n

p

) (21)

The normalized amplitude spectrum is obtained by dividing this expression by∑
p E[βp] = q22n+m + q(1 − q)2n+m = q2n+m

Amplitude spectra of RNA landscapes are of course more complicated that this
idealized model. In particular, the difference between pairs and unpaired positions
is reflected by the amplitude difference between odd and even interactions orders.
The over-all shape of the amplitude spectra in Figure 5, which resemble binomial
distributions (overlaid by the even/odd distinction) with a mean somewhere be-
tween 7 and 8, on the other hand, nicely reflect the restriction of neutral networks
to lower-dimensional sub-spaces of Qn

2 .

5. Permutation Problems

5.1. The Representation Theory of the Symmetric Group. The irreducible
representations of the symmetric group on n symbols, Sn are in a natural one-to-
one correspondence with the nondecreasing partitions of n. Any such partition λ =
(λ1, . . . , λh) (with

∑
i λi = n, λi ≥ λi+1 > 0) of n (denoted λ ` n) corresponds to a

permutation action of Sn on the space of Young tableaux of shape λ. Within this
(in general) reducible action exists a well-defined irreducible constituent, thereby
giving the associated irreducible representation.

As several of the following examples reduce to consideration of some specific
instances of these permutation representations on Young tableaux we briefly recall
here their construction.

Let λ ` n. A Young tableau (named for the British mathematician Alfred Young)
is constructed by filling in a Ferrers or Young diagram of shape λ with the numbers
1, . . . , n without repetition. The Young diagram of shape λ is a left-justified array
of square boxes with λi boxes in row i.

(22)

If the numbers 1, . . . , n are placed without repetition in the boxes of a Young
diagram of shape λ, then a Young tableau of shape λ is defined. Two Young tableaux
of shape λ are said to be (row) equivalent if they differ only by permuting the entries
within a given row. An equivalence class of Young tableaux of a fixed shape is called
a tabloid of the same shape. A given tabloid is denoted by forming a representative
Young tableau, and removing the internal vertical lines. Equation (23) shows three
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equivalent tableaux of shape (4, 3, 1, 1) and their associated tabloid.

3 1 4 2

7 6 5

8

9

2 4 3 1

6 7 5

8

9

1 2 3 4

6 7 5

8

9

1 2 3 4

5 6 7

8

9 (23)

Let Xλ denote the set of tabloids of shape λ. The symmetric group on n symbols,
Sn, acts transitively on Xλ by permuting the entries in the tabloids. The subgroup
stabilizing a given tabloid is called a Young subgroup. Note that for fixed λ, each
such subgroup is isomorphic to Sλ1

× · · · × Sλh
. Let Sλ denote the particular

Young subgroup which permutes the sets {1, . . . , λi}, . . . , {λ1+· · ·+λh−1+1, . . . , n}
within themselves. This gives rise to an identification between Xλ and Sn/Sλ and
a permutation representation of Sn on the vector space of complex-valued functions
on Xλ. The permutation module is denoted Mλ.

The representation theory of Sn is studied by decomposing in a systematic way
the permutation representations Mλ. For present purposes it suffices to say that
within each Mλ there is a uniquely determined irreducible subspace Sλ, and letting
λ run through all partitions of n accounts for all the irreducible representations of
Sn, without multiplicity. Sagan gives a very nice exposition of the construction [33].
James and Kerber provide an encyclopedic account with many references [34].

The decomposition of the permutation module Mλ immediately gives a decom-
position of the vector space of functions on Sn defined by the associated matrix
elements. It is the decomposition of this space of functions which is of interest for
the analysis of the optimization problems. To obtain some feeling for this connection
it is perhaps easiest to work within the context of a specific example, so consider
the representation M (n−1,1), given by the symmetric group Sn acting on Young
tableaux of shape (n−1, 1). Any such Young tableau is determined by the entry in
the second row, and thus, may be identified with the action of Sn on the standard
basis e1, . . . , en given by ρ(π)ei = eπ(i), which is the so-called “defining representa-
tion” of Sn. For any fixed i, the matrix elements {ρi1, . . . , ρin} span an Sn-invariant
subspace of L(Sn). This follows from the fact that (τρij )(σ) = ρij(τ

−1σ), implying
that τρij = ρiτ(j). Thus, the set of matrix elements {ρi1, . . . , ρin} do themselves

span a copy of M (n−1,1), thereby providing n easily identified isomorphic copies of
the space M (n−1,1). The representation space M (n−1,1) decomposes as

M (n−1,1) = S(n) ⊕ S(n−1,1)

where S(n) denotes the trivial representation, spanned by the subspace of vectors
with constant coordinates, while S(n−1,1) denotes its n− 1-dimensional orthogonal
irreducible complement of those vectors whose coordinates sum to zero.

These copies of M (n−1,1) are not mutually orthogonal. For example, each con-
tains the same copy of the trivial representation. Also, notice that the values of
any one row of matrix elements, {ρi1, . . . , ρin} is determined by knowing all the
other rows. In fact, the matrix elements span a space of dimension (n − 1)2 + 1
which as a representation of Sn has an irreducible decomposition isomorphic to

S(n) ⊕ (n− 1)S(n−1,1) and for any function f : Sn → C the computation of f̂(ρ) is
equivalent to computing the projection of f onto the trivial representation, as well
as the isotypic component of L(Sn),

L(Sn) = ⊕λ`nI
λ (24)
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Table 1. The lowest Laplacian eigenvalues of Γ(Sn,
� ).

λ ` n dλ χλ/dλ Λλ Remark
(n) 1 0 constant
(n− 1, 1) 1 − 2/(n− 1) n LAP, equ.(26)
(n− 2, 2) 1 − 4/n 2(n− 1) symmetric TSP
(n− 2, 1, 1) 1 − 4/(n− 1) 2n “antisymmetric” TSP
(n− 3, 3) 1 − 6/n− 6/(n(n− 1)) 3(n− 2) ?

which corresponds to the irreducible representation S(n−1,1), denoted as I(n−1,1) in
(24). These projections are the Fourier transforms at the corresponding irreducible
representations and in this sense, the projection onto I (n−1,1) encodes the pure
first order information about f . More generally, for each of the Mλ, an irreducible
decomposition has a corresponding block diagonalization of the representation, with
repeated blocks, and the irredundant choice of matrix elements corresponds to an
isotypic decomposition of the space of matrix elements.

5.2. Transpositions and Cayley Graphs of Sn. For most combinatorial op-
timization problems defined on permutations, transpositions seem to be at least
a natural move set. Reversals, or canonical transpositions are other choices that
frequently appear in practice.

For simplicity we will restrict ourselves here to the Cayley graphs Γ(Sn, τ ) in
which neighborhood is given by transpositions. By construction it is quasi-abelian,
and hence the discussion in section 2 applies.

The Laplacian eigenvalues can be obtained in this case directly from the Frobe-
nius equation

χ(λ1,λ2,...,λh)(τ)

d(λ1,λ2,...,λh)
=

1

n(n− 1)

h∑

j=1

[
λ2

j − (2j − 1)λj

]
(25)

The lowest Laplacian eigenvalues are listed in table 1.

5.3. The Linear Sum Assignment Problem. An assignment problem consists
of n facilities and n locations and a cost cik of establishing facility i in location k.
In additions, there will be costs involved in transporting goods from one location
to the other and flows of goods that depend on the facilities. In the simplest case
the cost function is of the form

f(π) =

n∑

i=1

ci,π(i) (26)

where (cij) is an arbitrary n × n matrix. We shall show below that only the
representations (n) and (n− 1, 1) contribute to f . In other words, f is elementary
and belongs to the eigenvalue Λ(n−1,1) when considered as a landscape on the Cayley
graph Γ(Sn, τ ).

Let us define the functions ρij (for 1 ≤ i, j ≤ n) on Sn by

ρij(π) = δj,π(i) =

{
1 if π(i) = j
0 otherwise.

(27)

With the usual action of Sn on the ρij we have

(σρij)(π) = ρij(σ
−1π) = ρi,σ(j)(π) (28)
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and thus

σρij = ρi,σ(j). (29)

Notice that in fact the ρij are the matrix elements for the “standard representation”
of Sn as permutation matrices (i.e., ρij(π) is the i, j entry of the permutation matrix
associated to π acting on the standard basis, e1, . . . , en.

It is easy to see that each of the sets of matrix elements {ρi1, . . . , ρin} spans an
invariant subspace Vi of the full vector space spanned by all of the ρij , which we

denote by V . Furthermore, Vi is isomorphic to the permutation module M (n−1,1)

given by the action on the Young tableaux of shape (n − 1, 1), which has as its
irreducible decomposition

M (n−1,1) ∼= S(n) ⊕ S(n−1,1)

where S(n) is the trivial representation given by the subspace of constant func-
tions, and S(n−1,1) its orthogonal complement of vectors whose coefficients (in the
standard basis) add to zero.

Notice that the Vi are not mutually orthogonal. For example, the values ρ11,
. . . , ρ1n, . . . , ρn−1,1, . . . , ρn−1,n at π determine the values ρni(π), i = 1, . . . , n. It
is not too hard to check that

V ∼= (n− 1)S(n−1,1) ⊕ S(n). (30)

The relation with the linear problem is now immediate. Defining f ∈ V by

f =
∑

ij

cijρij (31)

and substituting equ.(27) we obtain the general form of the cost function equ.(26).
Thus, since f ∈ V , we will only have contributions from the (n− 1, 1)-isotypic, and
the constant subspace.

The LAP assignment problem can be solved by a variety of techniques in poly-
nomial time. For a recent review see [35].

5.4. Quadratic Assignment Problems. In the simplest class of hard assign-
ment problems there is not only a cost cik for establishing facility i in location k
but also a flow fij between facility i and facility j, a distance (or cost rate per unit
flow) dkl between locations k and l, and a cost cij for setting up facility i at location
j. The total cost of a particular assignment π ∈ Sn is then

f(π) =

n∑

i=1

n∑

j=1

fijdπ(i)π(j) +

n∑

i=1

ci,π(i) (32)

The quadratic assignment problem (QAP) is then to minimize f(π). For a survey
see [36]. The QAP contains the Traveling Salesman Problem (TSP) as a special
case: setting cij = 0 and fij = δi,j−1 (with indices interpreted mod n) yields
f(π) =

∑n
j=1 dπ(i)π(i+1).

In the following we show that only the representations (n), (n − 1, 1), and the
two “quadratic modes” (n− 2, 2) and (n− 2, 1, 1) contribute to the function (32).
We can neglect the linear term

∑
i ci,π(i) here since we have already shown above

that it contains only components of (n) and (n− 1, 1).
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We start with the functions

ρ(i,j),(k,l)(σ) =

{
1 if (σ(i), σ(j)) = (k, l)
0 otherwise.

(33)

for i 6= j. We observe that the functions ρ(i,j),(k,l) are the matrix elements for the
permutation representation of Sn acting on the Young tableaux of shape (n−2, 1, 1),
denoted M (n−2,1,1). This has an irreducible decomposition

M (n−2,1,1) ∼= S(n) ⊕ 2S(n−1,1) ⊕ S(n−2,2) ⊕ S(n−2,1,1).

Note that this is not the irreducible decomposition of the vector space V spanned
by the functions ρ(i,j),(k,l), but V has contributions only from the irreducibles above.
If we define the function function f ∈ V by

f =
∑

i,j,k,l

fijdk,lρ(i,j),(k,l) (34)

then by (33)

f(π) =
∑

ij

fijdπ(i),π(j) (35)

and thus should only have nonzero contributions from the partitions (n), (n−1, 1),
(n− 2, 2), (n− 2, 1, 1).

If the distance matrix D is symmetric, dij = dji, we consider the symmetrized
functions

η(i,j),{k,l} = (ρ(i,j),(k,l) + ρ(i,j),(l,k)). (36)

Then,

η(i,j),{k,l}(σ) =

{
1 if {σ(i), σ(j)} = {k, l}
0 otherwise.

(37)

Thus, the η(i,j),{k,l} are the matrix coefficients for the permutation representation

M (n−2,2) and thus span a subrepresentation within M (n−2,1,1). This implies that
if we let W denote the subspace spanned by the η(i,j),{k,l} then V = W ⊕W⊥ and

that W⊥ is a direct sum of the (n− 2, 1, 1)-isotypic and a piece isomorphic to some
number of copies of (n− 1, 1).

If D is antisymmetric, dij = −dji, then the projection of f onto the η(i,j),{k,l} is
0, so that in the antisymmetric case there is no (n− 2, 2) component. Conversely,
this shows that the in the symmetric case with dij = dji, there can be no projection
onto the (n− 2, 1, 1)-isotypic.

The classification in Table 1 hence generalized to QAPs in the following way: If
D is symmetric, then f is built from (n), (n− 1, 1), and (n− 2, 2) components. If
D is anti-symmetric, only (n), (n − 1, 1), and (n − 2, 1, 1) contribute. We remark
that in general the projection onto the (n − 1, 1)-isotypic does not vanish even if
C = 0. It would be interesting to see whether the cost functions with vanishing
(n− 1, 1)-component correspond to an interesting subclass of QAP.

5.5. Higher order examples. While each of these optimization problems contain
information only in a subset of the irreducibles there are more general instances
in which the relevant data analysis can require the full set of Fourier transforms.
Data on the symmetric group can occur in the form of “ranked data”, in which a
population is asked to rank n items in order of preference. For example, Diaconis
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has used this approach to analyzed the results of the presidential election for the
American Psychological Association [37]. We give only a very brief synopsis here.

As part of the voting process, association members are given a ballot sheet and
asked to rank the candidates (labeled (1) – (5)) in order of increasing preference. In
this way, each member picks a permutation of the 5 candidate labels. This stage in
the vote thus yields a function f : S5 −→ C in which f(π) is the number of voters
with preference order π. The Fourier transforms at the irreducible representations
of S5 naturally encode “coalition” information, corresponding to the associated
partition. For example, the Fourier transform at (3, 2) reflects the popularity of
the various pairs of candidates; the Fourier transform at (2, 2, 1) can be interpreted
as the popularity of a particular threesome, but then considered as ordered within
the threesome as a pair and a singleton. Other data sets are considered in [15, 38].
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