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Abstract

During most of the time to establish this diploma thesis a toolkit for
Self Avoiding Walks (SAWs) [34] and Lattice Polymers (LPs) was created.
The package works independently from the chosen lattice and is extendible.
Various methods to characterize and compare structures as well as to detect
secondary structure elements, in the sense of Dill’s lattice protein [6] analogy
to natural proteins are introduced. Different types of data structures for han-
dling of LPs based on relative moves, distance matrices and contact matrices
are provided.

The toolkit was used to calculate several characteristic properties of SAWs,
such as the average length ¢ of growing Self-Avoiding Walks (gSAWs on
regular lattices often terminate by self-trapping) and the shape of the dis-
tribution. The minimum length of gSAWs has been computed using exact
enumeration as well as the distribution of relative directions. Also a first
glimpse on landscapes [46] was taken.

One of the most important applications of the SAW is a model for linear
polymer molecules in chemical physics. And recognizing that proteins are
polymers one can see the aim and importance of this work to define models
for proteins.
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Zusammenfassung

In dieser Diplomarbeit wird ein Software Paket fiur “Self Avoiding Walks”
(SAWs) [34] und Gitter Polymere préasentiert. Das Paket is gitterunabhangig
und erweiterbar. Verschiedene Methoden, um Strukturen (nach DILL [6])
und Sekundar-Strukturen zu vergleichen sind implementiert. Gitter Poly-
mere werden anhand von Daten Strukturen basierend auf relativen “Zigen”
als auch Distanz Matrizen und Kontakt Matrizen verglichen.

Mit Hilfe dieses Paketes wurden wichtige Eigenschaften von “Self Avoid-
ing Walks” (SAWs) charakterisiert. Die mittlere Lange ¢ von “growing Self-
Avoiding Walks” (gSAWs auf regularen Gittern terminieren sich oft selber)
und die Form der Verteilung. Die minimale Lange von gSAWs sowie die
Verteilung der relativen Richtungen wurde auch mit Hilfe von “exact enu-
meration” berechnet . Zum AbschluBwurde das Augenmerk auch noch auf
erste Ausblicke iiber Landschaften [46] gelegt.

Man kann SAWSs auch als ein Modell fir Polymere in der physikalischen
Chemie betrachten, welches eine der wichtigsten Anwendungen von ihnen
ist. Wenn man realisiert, dafl Proteine Polymere sind, wird man das Ziel
und die Relevanz dieser Arbeit erkennen, namlich ein Modell fiir Proteine zu
erschaffen.
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1 Introduction

1.1 SAWSs

Imagine yourself standing at an intersection in the center of a large city whose
streets are laid out in a square grid. You choose a street at random and begin
walking away from your starting point, and at each intersection you reach you
choose to continue straight ahead or to turn left or right. There is only one
rule: you must not return to any intersection already visited in your journey.
In other words, your path should be self-avoiding. It is possible that you will
lead yourself into a trap, reaching an intersection whose neighbors have been
visited already, but barring this disaster you continue walking until you have
walked some large number N of blocks. There are two basic questions:

1. When will you get trapped 7
2. How many possible paths could you have followed ?

The above model is also called a Self-avoiding walk (SAW) [34]. It is a path
on a lattice that does not visit the same site more than once. SAWs play
a major role in polymer physics, where the main interest centers around
equilibrium properties such as the number of configurations or the end-to-
end distance of a polymer consisting of a fixed number of monomers n [17, 45].
Recently SAWs have received considerable attention as models for the folding
of biopolymeres, in particular of proteins, see e.g. [7].

SAWs can be generated by a random walk on the lattice subject to the
constraint that already occupied sites are inaccessible. Such a walk will get
trapped whenever there are no neighboring unoccupied sites available. In
fact, almost all SAWs constructed by this procedure terminate after a finite
number N = n — 1 of steps [27]. We will call these SAWs grown self-avoiding
walks (gSAWs). They are not only interesting in their own right [10] as re-
stricted random walks, but also because trapping is an important source of
non-ergodicity in models of polymer dynamics [35].

Myopic SAWs (sometimes also called “true” SAWs) are closely related
gSAWs in that they exactly resemble gSAWs except for the trapped steps:
myopic SAWs escape from a trap by moving to the neighbor that has been
visited the least number of times in the past, thereby violating the self-
avoidance condition [10, 15, 32].
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In the present work we present a toolkit for working with lattice polymers
and some properties of SAWs.

1.2 Lattice Polymers

Proteins are polymers !

One of the most important applications of the self-avoiding walk is a model
for linear polymer molecules in chemical physics [34].

A polymeris a molecule that consists of many “monomers”(groups of atoms)
joined together by chemical bounds. The functionality of a monomer is the
number of available bonds that it has, i.e. the number of other monomers
with which it must bond. If each monomer has functionality two, then a lin-
ear polymer is formed. If we denote a monomer by (A), then a linear polymer
may be represented schematically as

(A (A)(A)(A)(A)-. . .

One simple example is polyethylene, where each monomer is CH; (one carbon
and two hydrogen atoms). The pattern terminates either by bonding with a
monomer of functionality one, such as CHjs, at each end, or else by closing
on itself to form a “ring polymer”. By way of contrast, if a polymer includes
monomers of functionality three or more, then a branched polymer is formed;
these are often modeled by lattice trees or lattice animals.

The following chapter deals only with the topological structure of a polymer.
Properties of its spatial configuration are no less important. Polymers can be
very large; some linear polymers consist of more than 10° monomers. Thus
the length scale of the entire polymer is macroscopic with respect to the
length scale of individual monomers. Consider a linear polymer consisting of
n monomers, and label the monomers 1, ..., n from one end to the other. Let
z(7) € R? denote the location of the i-th monomer. Then the ith (monomer-
monomer) bond may be represented by the line segment joining z(: — 1) to
x(1). Typically, the length of each bond is essentially constant throughout the
chain, as is the angle between each pair of consecutive monomer-monomer
bonds. However, there is some rotational freedom for the i-th bond around
the axis determined by the (¢ — 1)-th bond. In some cases a reasonable good
approximation may be obtained by allowing the rotational angle of the ¢th
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bond around the (¢ — 1)-th bond to take three different values, say 0 and
+120 degrees, perhaps with different probabilities (an angle of 0 degrees
means that the i-th,(¢ — 1)-th,and (¢ —2)-th bonds all lie in one plane). These
angles correspond to local configurations of minimal free energy, and depend
on the details of the monomers.

We see that one possible model for the spatial configuration of a linear poly-
mer is simply a random walk in R®, and in fact this model is known as the
ideal polymer chain. Alternatively, one can work with a lattice approxima-
tion, say a random walk on Z>. The model can be embellished by turning it
into a Markov chain (or random walk with some finite memory), and it works
reasonable well in some situations. However, there is fundamental limitation
of the ideal polymer chain, namely the excluded volume effect.

Two monomers cannot occupy the same position in space: the presence of a
monomer at position z prohibits any other part of the polymer from getting
too close to x, that is, other monomers are excluded from a certain volume
of space. This is the excluded volume effect. When we take this effect into
account, it becomes apparent that a self-avoiding walk is a more appropriate
model for a linear polymer than is a random walk. The self-avoiding walk
model is best for the case of a dilute polymer solution (where polymers are
far apart, so that there is little interaction between distinct molecules) and
a good solvent (which minimizes attractive forces between monomers).

On the other hand, there are some situations in which polymers really do
behave ideally on large length scales, even though excluded volume effects
are present. One is in a dense system (or "melt”) of many polymers, where
monomers fill three dimensional space uniformly and a given polymer in-
teracts with many other monomers besides its own. Another is at certain
values of temperature and solvent quality were roughly speaking the attrac-
tive forces between monomers exactly balance the excluded volume repulsion
(the ”© point”).

Linear polymers in dilute solutions are believed to be in the “same “univer-
sality class” as the self-avoiding walk, which means in particular, that they
have the same critical exponents. For example, consider the radius of gyra-
tion of a polymer, which is the average distance of the monomers from the
center of the mass of the polymer. The radius of gyration of polymers can
be determined experimentally, for example from light scattering properties.
For a polymer consisting of n monomers, the radius of gyration is expected
to be asymptotic to DN as n — oo, where D and v are constants. The
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exponent v is believed to be universal: it should be the same for all linear
polymers (in dilute solution with good solvents), and for the self-avoiding
walk as well. Moreover the exponent v for the radius of gyration is believed
to be the same as the critical exponent v for the mean square displacement,
since polymers are expected to have only one macroscopic length scale. In
contrast, the amplitude D is non-universal: it depends on microscopic details
of the monomers and the solvent molecules. Paul J. Flory [16] developed an
effective method for computing the exponent v.

Dill [6] proposed also a model for lattice polymers. According to his model
chains are configured on three-dimensional simple cubic lattices in which
each lattice site is occupied by no more than one monomer. Monomers are
numbered sequentially, 1,2,3, ... from one end of the chain (figure 1). Con-
tacts are identified when a pair of unconnected monomers occur in nearest-
neighboring lattice sites.

2 3
1 4
6 5
7 8

Figure 1: Sample of a 3D lattice polymer according to DILL

On the simple cubic lattice for example (as on the square lattice), only
odd-order contacts are possible. Even order contacts are forbidden a priori.
Conformational freedom is affected by the presence of presumed contacts
along the chain.

One consequence is the appearance of inferred blocks, contacts that are for-
bidden by a given set of presumed contacts. This is an effect of excluded
volume.

Since the importance of excluded volume diminishes with increasing spatial
dimensionality, for a given set of presumed contacts, fewer blocks are implied
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in three dimensions than in two dimensions. In fact, it can be proved by
explicit construction that for a single presumed contact with order k£ > 3,
there is no inferred block in the three dimensional cubic lattice. In contrast,
corresponding inferred blocks are always present on two dimensional square
lattices.

The exact lattice enumerations are used to determine the number of con-
formations ¢ under various constraints. In particular ¢, is the total number
of accessible conformations with NV bonds (N 4 1 monomers), without any
constraints except for the requirement of excluded volume. Due to the ap-
proximate exponential scaling of ¢, as a function of N (N — o),

Cp ™~ NW_I/LN (1)

only short chains can be exhaustively enumerated. Dill confirmed the scaling
(1) by exact enumerations and the results are consistent with the prediction
of re-normalization group analysis. ¢, for the simple cubic lattice has been
computed by Sykes for N < 16, based on his data, ¢, for N > 17 can be
determined by extrapolation of Eq.(1), with the estimates v ~ 1.1667 for
any three dimensional chains and g ~ 4.682 for simple cubic lattices. In the
present enumerations of ¢, the two ends of the chains are considered to be
distinguishable.



2 Biopolymeres - Biological Introduction

2.1 Protein Structures

In biopolymeres forces determining the shape of the molecule are of same na-
ture and so of same strength as intermolecular forces. Biopolymer structures
depend on those forces more than one might expect. For example globular
proteins have their biologic active conformation just in a very small range of
pH, temperature and ion-strength. One could suspect, that this could be a
contradiction to the fact, that we obtain most of our structural information
through X-ray crystallography, but if we take a closer look at the surround-
ing of the cristalls we find a lot of HyO-molecules and ions, bound onto the
protein-cristall. Furthermore there exists quite a big amount of mobile H,O-
molecules. So we could assume, that molecules in a proteincristall are in a
quasi-natural environment.

2.2 Natural Structures (Repetitive Units)

The secondary structure of a protein or biopolymer is build out of the primary
sequence, using H-bonds connections inbetween polypeptide chain members
CO and NH. It makes only sense to call a part of the secondary structure
structural element, if it is easy to recognize and represented in several pro-
teins. Following those criteria you can find three structural elements:

e Helices
e 3-Sheets
e Turns

The secondary structures are of particular interest to learn more about
the mechanism of protein folding. Using a plausible folding-model secondary
structures are developed, which serve folding of the remaining protein [30]
[1].

Secondary structures also are important for theory and prediction of protein-
structures, because conventional conceptions are build upon understanding
tertiary structures by using “forming-rules” of secondary structures.
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In the following we will discuss some structural elements of proteins. In chap-
ter 3.3 our abstract models as well as different types of displaying structural
elements will be presented.

2.2.1 Helices

The prediction of a-Helices as essential structural element in proteins made
by Linus Pauling and Robert Corey [31] turned out to be a milestone in
the understanding of biopolymeres. It is a right-handed helix (figure 2) of
the polypeptide-chain. Each Amino acid residue in a a-helix forms a h-bond
with its own CO-group and the fourth next NH-group:
k—k+4+4,k=1,2,3,.... By creating a a-helix the polypeptide chain trans-
forms into a more compact and more stabile form.

di stance 0,15 nm
100 degrees of rotation

Figure 2: o Helix: A; only a-C-atoms(C,). B; Co+ N + C of the backbone.
C; total helix
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Helical structures can be defined in several different ways. One of them is

by announcement of the dihedral angles ¢, and w (figure 3). In nearly all
structures w is approximately 180°.

Figure 3: Definition of ¢,

Another characterization builds upon the number of amino acids n com-
pleting one full turn. In addition the number m, which counts the atoms
forming a ring, by creating a CO...HN H-bond, has to be given (figure 4).

N, 3C
.
& X
Lo

Figure 4: H-bonds in a helix
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The continuation of the polypeptide-chain is indicated by the two circles.
“X” symbolizes amino acids inbetween the H-bond. The helix will be fully
described in the following manner: n,, The 2.2;-helix has got the smallest
ring, here there exists no “X”.

Still there is an important parameter: h it is a rate for the polypeptide con-
traction in the translational direction.The parameter A is measured in units

of Angstr@ms

Questions about stability you answer through (¢, ¥ )-potential-fields, which

have great similarity to Ramachandran-plots (figure 5[38]).

|

kollagen helix

left-handed
a-helix
(not occuring)

180

antiparald . |
B-sheet

i

right-handed
a-helix

I

paralell —-==""]
B-sheet

Y (degrees)g |

:

150 ¢

¢ (degrees)

Figure 5: Ramachandran plot; poly-L-ala
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In addition to the right hand sided helices there are left hand sided helices:
Ui = —tp, and ¢, = —¢,p. These helices are of course no mirror images,
because all amino acid residues,except gly, are chiral and only the L-forms
are represented.

2.2.2 [3-Sheets

In the second important form of secondary structure elements the CO...HN
H-bonds are made between two different parts of the polypeptide chain. In
consideration of the orientation you will get a parallel or anti-parallel 3-sheet.
In general they are named §-structures, because the crystalline form of poly-
L-ala forms an antiparalell sheet. The molecular properties are shown in
figure 6. We have to notice, that there is a non local problem in comparison
to the a-helix .

The side chains are alternatively orientated to both sides. There is only one
exception: L-pro, because there is no hydrogen bond to the nitrogen and in
addition it cannot rotate to the required angles (v, ¢).

Figure 6: Antiparallel 3-sheet

2.2.3 Turns

Globular proteins have mostly of spherical shape, so they can’t form longer
a helices or 3 sheets then their diameter. The polypeptide chains have to
change their directions with help of turns.
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e hairpin- or (- turns
Within 3-sheets very “sharp” turns often occur. They exist out off four
amino acid-residues. Between CO of the first and NH of the fourth
amino acid there is a H-bond. Hairpins imply following restrictions in
the occurance of certain residues in special positions of the different

types:

I. all residues are allowed on positions 1-4 except pro in position 3,
I’ positions 2 and 3 must be gly,

II:  position 3 must be gly,

IT’:  position 2 must be gly,

III: is part of a 3.010-helix (no more restrictions),

IIT’: positions 2 and 3 must be gly,

VI: must have pro in position 3 and a cis-peptide bond in front.

Figure 7: Most frequent hairpins. X marks the position where an H-atom is
required. Type III shows a strong similarity to a 3.010-helix (axes marked)

e OQ-turns
There still is a doubt whether it is correct or not to classify Q-turns
as a secondary structure element. They are turns with the length of
approximately 6-16 residues, which combine other secondary structure
elements and have an end-to-end distances of 3.7-10 A. In addition the
residue-distribution is different comparing to a-helix and J-sheets. In
particular gly and pro occur very often.



3 Self Avoiding Walks

3.1 Characterization of SAWs
3.1.1 Enumeration of SAWs

Let SAW(L,n) denote the set of SAWs of length n on the lattice £ starting
at the origin. Let ¢, = |SAW(L,n)| be the number of SAWs with n nodes
starting at the origin of some lattice £. By ¢,(z) we denote the number of
SAWs starting at the origin and ending in = € L.

The mean-square end-to-end distance is defined by

G = — 3 lelPenla), (2)

Cn zel

where ||z|| is the distance of & from the origin.

dim | Lattice Type | p ref. | v ref. | v ref.
Square 2.63820  [2][25][12] | 1.34275 [25] | 0.750 [25][12][36]
2 Triangular | 4.15076 [25][13][26] | 1.343 [25] | 0.590 [25][47]
Hexangular | 1.84777 [25] | 1.345 [25] | *
SC 4.68391 [25] | 1.161 [25] | 0.592 [25]
3 BCC * [39] | * *
FCC 10.0364 [25] | 1.162 [25] | 0.592 [25]

Table 1: Asymptotic enumeration of SAWs.

It is generally believed that

n"pH (3)

Cn ~
(Dn ~ n21/

Obviously the most interesting constant is p, the effective coordination
number of the lattice. So we have y < deg[L] — 1, the degree of the lattice.

The generating function
X(IB) = Z Cn lf " (4)

12
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is believed to be of the form

\(8) = AB) + B - ws) 0 143 cma—wo)>| )

=1

where A, B, C; are analytic and K > 1.

3.1.2 Radius of Gyration and its Relatives
1. Radius of Gyration

The radius of gyration is defined as the mean value of the quadratic
distance between the coordinates of each monomer and the centre of
mass of the chain.

st = n + 1 -1 Z S5 (6)
0
s; is the distance of the point; of the chain. n are the number of chain-

molecules.

2. End to End Distance

The vector that combines the two ends is defined as follows:

-1 (")

=1

in which I; are the binding vectors of each segment.

You can get another interesting property according to a theorem by

sSs=m+1)7% Y (8)

0<i<j<n

Lagrange:

3. Number of Contacts The number of contacts of a SAW is

= a; (9)

1<J
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a;; refers to the contact matrix (see chapter 3.3.1). By N**(n) we
denote the maximum number of contacts in a SAW of length n. The
compactness of a SAW ¢ of length n is defined as

Q&) = Ni(§)/N{™*(n) (10)

The numbers N***(n) depend on the lattice.

3.1.3 Flory Model

As mentioned before Paul J. Flory [16] developed an effective method for
computing the exponent v . Here we give a brief description of this method:
For simplicity, we ignore all multiplicative constants. Fix N and consider a
linear polymer with N + 1 monomers, represented by an N-step walk w =
(w(0),...,w(N)) in Z% (d=dimension; not necessarily self -avoiding). Let L
be the radius of gyration of w, or any effective radius of the walk. Then w
consists of N + 1 monomers (sites) through a box of volume L¢. Assuming
uniformity, this gives a density of

N

P=Td (11)
monomers per unit volume. The repulsive energy per unit volume depends
on the number of pairs of monomers per unit volume, which we approxi-
mate by p?. This is a “mean field” approximation: it uses the assumption of
uniformity very heavily, ignoring the strong correlations in the locations of
consecutive monomers along the polymer. If we accept this approximation,

then the local repulsive energy of the polymer is given by

N2

IZh
Naturally the repulsive energy is lower for highly extended chains, i.e.,

large values of L.

Now consider the free energy F' of the polymer of radius L, in the absence of

the repulsion. This is given (up to constants) by (-1) times the entropy * and

Eyep = L? = (12)

In thermodynamics we have ' = U — T'S, where U i s internal energy, T is the
temperature, and S is entropy. Here U depends on the number of monomers but not in L,
so for our purposes it is constant and hence we ignore it.
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the entropy in turn is just the logarithm of the number of walks of radius
L. Without repulsion, this can be found from the Gaussian behavior of the
ideal chain, as follows. Taking L now to denote the end-to-end distance and
fixing w(0) = 0, we have

’|

Pr{w(N) =z} ~ Nt exp(%) (13)
for every z € Z%, and hence
Ld—l _LQ
Pr{lw(N)| =L} ~ Ni exp( N ). (14)

The total number of N-step walks is (2d)" in the nearest neighbor case,
so the free energy is

Fo= —logl(2d)" Pr{le(N)| = L}]

L
= —(d—1)log L + N + terms independent of L. (15)

The term F' may also be viewed as an “elastic energy” term, which pre-
vents L from getting too large. The total energy of the polymer is now given
by the sum of the two energy terms (12) and (15):

N L2
ETGP_I_F:F—{_W_(d_l)lOgL—{_[X’ (16)
where K is independent of L. Now put L = N”. Then the total energy
(16) becomes

Erep+ F = N"" £ N* 1 —y(d—1)log N + K. (17)

The value of v that minimizes the energy (17) may be found by first
equating the first two powers of N: solving 2 —dv = 2v — 1 gives

3
Cd42
Substituting this back into (17), the first two terms become

NW@=d/(4+2)and these are the dominant terms if and only if d < 4. Therefore
this argument predicts that (18) gives the correct value of v whenever d < 4.

14

(18)
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When d = 4, this argument also predicts v = 3/(4 4+ 2) = 1/2 since this is
the only value for which the first two terms of (17) bounded. Pushing this
argument further suggests that we should take the largest value in this in-
terval so as to minimize the —v(d — 1)log N term in (17), obtaining v = 1/2
for d > 4. This answer makes sense: since v equals 1/2 in the ideal case, the
addition of a repulsive energy term should not decrease v below 1/2; and so
we conclude that v = 1/2 whenever d > 4.

To summarize, the above argument makes the following predictions for v:

1 if d=1
) sjaip d=2

VFElory = 3/5 lf d = 3 (19)
1/2 if d> 4.

These predictions are known as the Flory values for v. They are known
to be correct for d = 1 and d > 5, and they are believed to be correct for
d = 2 and d = 4 as well. The Flory value for d = 3 is generally believed
to be slightly too large: numerical and field theory calculations indicate that
the actual value is probably close to 0.59. The success of Flory’s argument is
all the more remarkable when one realizes that it benefits greatly from the
cancelation of two errors: both F,., and F are greatly overestimated [11].
Last but not least, we shall recast the Flory argument in a more probabilistic
language. In (14) we calculated the probability that an N-step random walk
w (starting at the origin) has |w(N)| = L. We shall write L = N” and
choose v to maximize this probability. As above, we assume that the N + 1
sites of w are spread uniformly through a box of volume L?. Given that
w(0),...,w(k—1) are all distinct, the probability that w(k) does not coincide
with any one of the previous k sites is approximately 1 — kL~% (this is the
mean field approximation). Hence the probability that w is self-avoiding given
that |w(N)| = L is approximately

N

I1(1— kL™) ~ exp (— z_: kL_d) ~ exp(—N?/L%). (20)

k=1
Multiplying (20) by (14) yields

Ld—l L2 N2

Pr{w is self avoiding and|w(N) = L} ~ Nz exp[—w I . (21)
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To find the most likely value of L, we maximize the above probability for
fixed N. Since the logarithm of this is just the negative of the total energy
(16), we are again led to the Flory exponents.
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3.2 Representation of SAWs

We consider here regular? lattices together with a set of moves at each lattice
point with the following properties: Let ¥y = x 4+ m denote the lattice point
obtained by attaching the move m to site x, then there is a move m* such
that x = y+m™*, i.e. m* = —m is a move as well. Furthermore we require that
for all lattice points x,y and all moves m, m’ there is a symmetry operation
¥ of lattice such that y = ¥(z) and y + m' = ¥(z + m).

A walk on a lattice is completely described by its initial point, 0, and
the ordered list of the N moves. Let us denote by A = {ay,...,an} the
set of all possible moves in absolute coordinates. Not all of these M moves
can be realized at each lattice point. As an example consider the hexagonal
lattice, HEX. There are 3 possible moves at each lattice site, out of a total
of 6 absolute directions. We define the set R = {Ry,..., R, } of “relative”
directions as the subset of A consisting of all moves allowed at the reference
site 0.

The representation of a walk in terms of moves in absolute coordinates is
not always convenient. Instead we adopt a local point of view by rotating the
coordinate frame after each move Ry in such a way that — Ry, is assigned the
backwards direction B in the rotated coordinate system. In other words, for
each relative move R there is a rotation R of the coordinate system fulfilling
R(R) = —B. Note that R is not always uniquely defined. As a consequence
of the symmetry requirements above the allowed moves for the next step
expressed in the rotated coordinate system are again the relative moves R.
The coordinates of the point y; obtained as the k-th step of the walk are
given by yr = yr_1 +ay. The absolute direction aj of the k-th step is uniquely
defined by the relative direction Ry of this step, and the absolute direction
ap_1 of the previous step. Instead of defining the rotations Ry, explicitly, we
can directly consider the mapping

7 AxR—= A, (a,R)— R 'a

that — given the lattice — determines the absolute direction of a step given
its relative direction and the absolute direction of the previous step. Once
we have derived the mapping 7 we have a unique encoding of each walk as a

2We call a lattice regular if for any two lattice points  and y there is a symmetry
operation o of the lattice such that z = o(y) and if for any two pairs of neighbors (u,v)
and (&, y) there is a symmetry operation 7 of the lattice such that « = 7(2) and v = 7(y).
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string of length N over the alphabet of the m relative directions. For SAWs
we only need z = m — 1 relative directions, since the backwards direction
B never occurs. As a by-product, point mutation of these strings are pivot
moves [36].

The number of neighbors n and possible moves z are enlisted in the depicted
tabular for all the lattices:

lattice | dim
HEX
S5Q 2
TRI
KM
SC
TET
BCC 3
FCC
TDKM

=3 W O =1 O W N W

—
DN 00D DS

DO —
w

Here we explicitly give the mapping 7 for the lattices : First we will describe

the moveset of the 2D lattices SQ and TRI/HEX:

f r 1 d u b

f r 1 b F|f r 1 d u b
F|f r 1 b Rir d f b I u
Rir b f 1 L{l1 £ i r b d
L|1 f b r Did b r u f 1
B|b 1 r f Ulu I b f d r
Blb ud Il r f

The HEX lattice can be treated as a subset of the TRI lattice, only “B,L,R
moves” are relevant.

The definition of the directions for this, and all other lattices discussed here,
can be found in the following figures. The mapping 7 is invertible in the fol-
lowing sense: given the absolute directions a;_; and aj we can retrieve Ry. It
is not possible in general, however, to calculate a;_; given only a; and Rj.
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L
O
B @  J OF
® .
R ® ®
‘D R

Figure 8: Moveset of SQuare TRIangular and HEXangular lattice

A very special lattice is the KM (Knight’s Moves) lattice. as on KM the
moves do not coincide with the neighbors and moves may in fact cross each
other as long as they don’t end in the same lattice point. In this sense in not
really a 2D lattice.

T —w & F o8
o — = e o Bl

e B o o—r Ok o
w e B R o= Ok
QB o momo | —
BEo = o Or s — =
R — T B QKo
— R om0 B e 5o

nETO=ZH 1w
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Figure 9: Moveset Knight’s Moves

Tables for 3D Lattices:
In three dimensions there is some arbitrariness in the definition of the
relative directions. Note, however, that

r*xf=fxax=uz (22)

i.e. the forward step is used as a the group identity. Furthermore b re-
verses the direction of the walk, hence its action is also uniquely determined.
In a simple cubic lattice the moves R, I, U and D are equivalent with respect
to the previous step.

b f 1 r u d e = {
Bif b r I d u /
Fib f 1 r u d °
Lir 1l ud f b e
RI1 r d u b f
Uld u f b 1 r
Diud b f r 1

Figure 10: Moveset of Simple Cubic lattice
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For a Body-Centered Cubic lattice we have:

b f p x q vy r z
Blf b x py q z r
F|b f p x q vy r z
Plx p gy z r f b
X|lp xy qr z b f
Qly q z r f b x p
Y|q v r z b f p x
Riz r f b x p yv q
Zlr z b f p x q vy

P F
9

Z Q
R

Figure 11: Moveset of Body Centered Cubic lattice

22
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The Diamond or TETragonal lattice can be treated as a subset of the
BCC lattice

Figure 12: Moveset of TETragonal lattice
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X q y m z

For a Face-Centered Cubic lattice we have:
w

N g K oo+ E > E o— =

N O K2 > E a2 = —

8 E s — N g O KO "
o

E v B — = 8 N X O% .0 7/

MO E PP o oA B N

TK = EE — =0 B O 2 S

E o N g N O — = KT

A E N 2 N 240 H— oM “or

Fan\
2,

H— w0 O X% B &N 2 §

=
— L O K T B & N B8

Q= s — B oK T BN

n

H O~ = B T K E g N

[

MEE A2~ 2N~

3 SELF AVOIDING WALKS

Figure 13: Moveset of Face Centered Cubic lattice
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3D Knight’s Moves are an interesting idea, but not very promising,

because the cpu-consumption is enormous. There are 24 different moves:
Have fun with the table !
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opzZeg-HEmaNE<EXMUg<HawEmdw
H—o0om B 5T oxN0o0 I aleda s~ o
Q"“:@xﬁNs&r’ﬂmCHb—‘U‘;—ggt_‘.omE;—ug—‘bv:—‘

s 4w B A =T kB —om Tl o onNdAld
<o g w —H ol Bm o ~HO e XxoNno |

B0 0 =BT E<e X000 AEd s n =T
oMU = =HloNAOEe< oo domTH =
0 0 0 — B H N0 fawe o RE B e o
B o BAg ONGO K< [T =< u Ea
So B oE—f AN RO Th—n <o ule
~H B =D Tm oo X e AENO|—H T w g e e
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wE 4T —0RT e = Hl0NAE R X oox
oo Trm—Hn 0o FT—588-{Nofa<eoxlo
o —eduw 2058 00— BAEoNO0 K<<
Th—H < g u 5T H =m0 s ANO X<
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3.3 Contact Structures and Secondary Structure Ele-
ments

Structures, as generated by SAWs or folding algorithms are strings of length
N-1 in the notion of relational moves. They can be converted into Contact
Matrices CM, Bond Matrices BM and Distance Matrices DM. BMs and CMs can
be converted into Contact Lists CLs and BMs into trees. Two matrices, rep-
resenting two (different) structures in the same notion can be compared and
distances between them measured. A detailed description of the structure
distance measures is given in [3].

Further measures with respect to the nature of neighboring residues will be
provided. For the comparison of CLs we need a table, showing the edit costs
for each edit operation. Given a set of edit operations and edit costs, the edit
distance is given by the minimum sum of costs along an edit path converting
one structure into the other.
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3.3.1 The Contact Matrix

For a SAW ¢ on a lattice £ let A(£) be the adjacency matrix of the non-
bonding contacts, i.e.,

%:{1if@&ﬁEMQAh—ﬂ>l (23)

0 otherwise.

We will call A the contact matriz of £. Obviously A is symmetric. Note
that A(¢) = A(¢') does not imply £ = &' in general. In fact, all SAWs without
contacts have the same contact matrix A = 0.

The notion of a contact matrix can be generalized to p-shell matrices:

[¥] { L if dﬁ(&;fi) =pA |L_.]| > 1 (24)

“W=Yo0 otherwise
where d is the graphical distance on £. Of course, A = Al is again the
contact matrix.

3.3.2 The Distance Matrix

The Distance Matrix is symmetric and contains the distances between two
residues, where the nearest neighbors in the lattice are set to 1 by convention
d;; = || Az, x;)||. Another description:

Dij=pedl=1 (25)

3.3.3 Definition of Secondary Structures on Lattices

Within structural elements chain molecules have multiple topological neigh-
bors (21j1)(#2J2), - - .. The most elementary building block “of secondary struc-
tures” in globular proteins, i.e., helices, parallel and anti parallel sheets, is a
set of two such contact pairs [7].

A definition, based on the analogy with real proteins has been given by
Dill.
The analogon to an « helix in the case of a 2d SQ-lattice and a 3d SC-lattice
was given in [6] and is depicted in some examples in Appendix B. It is essen-
tially based on repetive units that can be found in the contact matrix which
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in turn is based on the notion of nearest neighbors.

A general definition works a s follows (¢ is the minimal turnsize, s the step-
size):

For an anti parallel-beta-sheet (APBS) we have:

Cij = Cits,jms = o = Cipsjps = | (26)

when j > ¢ upstream in the chain, p the length of (=number of contacts in)

the APBS.
For a parallel-beta-sheet (PBS) we have:

Cij = Citsj4s = - = Citpsjtps = 1 (27)

with the same conditions as above and the constraint that j > 2 4+ p for
the bend back. In both cases p > 1, so that 3 contacts are required as the
minimum to define a unit.

In the case of the a-helix analogy, however, the definition is rather ambigu-
ous. Various patterns that could possibly fit the definition are depicted in
fig 32. Characteristic measures of elements in natural proteins and LP are
summarized in table 3.3.3. The definition is essentially based on the size of
a turn, for SC ¢ = 3 (which is the minimal number to be added to a position
on a given lattice to yield a turn).

Cij = Citsjts = - = Citpsjtps = | (28)

with j = ¢ 4 turnsize (see Appendix A) and s the height of the helix. a-
helices therefore appear as repetitive patterns with some of the contacts,
corresponding to the turns, close to the diagonal.

Cij = Citujtu = - = Citpu,jpu = 1
Ckl = Chtul+u = -+ = Chgpu,ldpu = 1 (29)
Cmn =

so that a subset where ¢, 5, k, [ <i4u,j4+u,k+u,l+u<..<t+4+pu,j+pu
and at least ¢ # k or j # [, where u is the length of the repetitive structure
and p > 2 the number of units required to define a repetitive structure .

Contact Maps contain entries in an upper (or lower) triangular matrix if
two residues are topological neighbors, i.e. they are adjacent on the lattice
but not along the sequence.
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lattice | turnsize | steps
HEX
5Q
TRI
KM
TET
SC
BCC
FCC
TDKM

Wy
[S]

— = = = DN e

Table 2: Lattice constants for recognition of structural elements

a-helical conformations appear as bands parallel and near the diagonal
parallel arrangements are parallel but far from the diagonal
antiparallel arrangements (a-helices, 3-sheets) of residues appear as bands
perpendicular to the diagonal.
According to Dill secondary structures are considered necessary to gain a high
compactness as regular structures can be packed more densely [6]. Secondary
structures reflect the geometry of the underlying lattice, the best compromise
cited in [21] was the TDKM lattice.

In Appendix A a description of the program is given. In Appendix B some
samples of contact maps and structures are depicted.

3.4 Grown SAWSs and Self Trapping

As mentioned before gSAWs can be generated by a random walk on the
lattice subject to the constraint that already occupied sites are inaccessible.
Such a walk will get trapped whenever there are no unoccupied neighboring
sites available.

3.4.1 Length of Self-Trapped SAWs

The length ¢ of a gSAW is the number N of steps accepted until the walk is
trapped. It is known that gSAWs exhibit a characteristic length distribution
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with an exponential tail on the 2D square lattice SQ, and that they are
remarkably short and localized on average [27]. In table 3 we compare the
average walk lengths and the variances for a number of different lattices in
both two and three dimensions.

lattice |d | z (0) o a ~ | samples
HEX 2| 2 70.940.2 50 35.2 | 1.01 60000
SQ 213 71.740.2 50 34.9 | 1.05 60000
TRI 215 77.940.7 54 37.4 | 1.08 60000
KM 2|17 3212410 2400 | 1790 | 0.80 60000
TET 313 381+1.3 340 303 | 0.26 60000
SC 315 3997+£38 3800 | 3610 | 0.11 10000
BCC 3|7 | 224474296 | 21200 | 20000 | 0.12 5000
FCC 3| 11 | 3496341024 | 32000 | 29200 | 0.19 1000
TDKM | 3 | 23 | >2.000.000

Table 3: Length ¢ of gSAWs

The average walk length for 3D Knight-moves (TDKM) is more than 2¢°.
We could find some trapped walks before, but here we reached the limits of
our computer-resources.

It is surprising how little the three genuine 2D lattices HEX, SQ, and

TRI differ in @ = o}/{{¢) despite their different connectivities. The knights
move lattice KM cannot be compared with them, as on KM the moves do
not coincide with the lattices and moves may in fact cross each other as long
as they do not end in the same lattice point. In this sense KM as mentioned
before is not really a 2D lattice. For 3D lattices there is strong dependence
of a on the connectivity z of the lattice; not surprisingly, the average length
(€) increases with the connectivity z of the lattice.
Using v = ((¢)/o)* — 1 we find a significant difference in the shape of the
distribution function ¢ between 2D and 3D lattices. While the genuine 2D
lattices are consistent with v = 1, and the KM lattices yields v &~ 0.8, we
find much smaller values in for the 3D lattices: 0.1 < v < 0.26, see table 2.



3 SELF AVOIDING WALKS 30

The following figures describe the distributions of the walk length in the
2D lattices.

SQuare lattice HEXagonal lattice
60.000 samples 60.000 samples
800.0 T T 800.0 T
600.0 q 600.0
5 5
5 )
g g
€ 4000 £ 4000
z z
] ]
8 8
200.0 q 200.0 H
0.0 L 0.0 L
0.0 200.0 400.0 600.0 0.0 200.0 400.0 600.0
length length
. . 7T . .
Figure 14: gSAWs;Distribution of walk length SQ / HEX
TRIlangular lattice Knight Moves
60.000 samples 60.000 samples - average 20
800.0 T T 20.0 T T
600.0
5 5
5 5
g 2
€ 4000 F £ 100
z £
] 5
8 8
200.0
0.0 L 0.0 L L
0.0 200.0 400.0 600.0 0.0 10000.0 20000.0 30000.0
length length

Figure 15: gSAW; Distribution of walk length. TRI + averaging of 20 (KM)
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Within 2D lattices you don’t get so smooth curves, cause the spectrum
of different walk lengths is much broader, as you can see, by looking at (¢).

TETraeder lattice Simple Cubic lattice

60.000 samples
T

10.000 samples-average 50
150.0 T T

3.0

25
1000

20

counts (length
count (length)

50.0

15

0.0 ! e 1.0
0.0 1000.0 2000.0 3000.0 4000.0 0.0
length

Moy
20000.0 30000.0

.
10000.0
length

Figure 16: gSAW; Distribution of walk length. TET 4 averaging of 20 (SC)
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Body Centered Cubic lattice

5.000 samples - average 100
T

1.25

1.20

1.15

count (length)

1.10

105 f m

1.00

0.0 50000.0 100000.0
length

Figure 17: gSAW; Distribution of walk length.Averaging of 50 (BCC)

For the other lattices (FCC/TDKM) the same experiment was done, but
here the sample size is to low to get accurate curves.

3.4.2 Fitting of 2D lattices

Hemmer [27] proposed following fit for the distribution of walk length in the
SQuare lattice:

¢(f) ~ (£ = co)” exp(—L/a) (30)
we found this formula to fit reasonable well on the SQuare lattice as well,
but then we found a better one:

B(l) = col” exp(—L/a) =~ [a"T'T(y + 1)] 7" " exp(—{/a). (31)

Consequently we obtain (¢) = (v + 1l)a and oy = /7 + la [22]. In table
3.4.1 the values for o a and 7 are included.
In the following graphs we proudly present the results:
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SQ lattice HEX lattice

curve - fitting curve - fitting
800.0 800.0

Hemmers-formula
—— fitted-formula

Hemmers-formula
— fitted-formula

400.0 600.0 400.0 600.0

TRI lattice

curve - fitting

800.0

Hemmers-formula
—— fitted-formula

400.0 600.0

Figure 18: gSAW; Curve fitting-distribution of walk length SQ HEX TRI
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3.5 Minimal Length gSAWs

The minimum length /,.;, of a gSAW also depends strongly on the lattice.
For most lattices we have obtained the exact values of the length ¢, of the
shortest gSAWs by exhaustive search. Only for FCC the search space is too
large so that we have to be content with upper bounds on ¢,,;,. Examples for
minimum length SAWs are given in table 4 and are depicted in the following

figures.
Lattice | l,,;, | Example
TRI 6 | FDDDDR
S5Q 7 | FRFRFRR
HEX 9 | LDDDLDDDD
KM 15 | FQLQLQLQLQLQLQK
TET 8 | PQPPQRRP
SC 11 | FLRLFDFLLRU
BCC 15 | FXXYFXXZFZFYFXR
FCC 36 | FZRFLZXLRNQFWXYNRYNNQYQMFZLXWQFRZQYW

Table 4: Minimum Length £,.;, of gSAWs (©)

B
[
B o

Figure 19: SQ lattice Figure 20: HEX lattice




3 SELF AVOIDING WALKS 35

Figure 21: TRI lattice Figure 22: KM lattice

Figure 24: Minimum walk-
Figure 23: SC lattice length BCC
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3.5.1 Distribution of Relative Directions

The relative moves R can be subdivided into symmetry classes with respect
to the set of all symmetry operations of the lattice that leave both 0 and the
backwards direction B invariant. For instance, in a square lattice there are 3
symmetry classes. One consists of the backward direction B only, the second
class consists of the forward direction ' = — B, and third class consists of the
directions left L and right R = —L. The backward direction B forms a class
by itself in all lattices, which never occurs in self-avoiding walks, of course.
Table 6 clearly shows that the relative directions do not occur with equal

| Lattice | rel. dirt Frequency gSAW | | Frequency SAW Y | |

HEX R L 1.0000 1.0000

5Q F 0.3694 ©) 0.4007 &)
R L 0.3153 (4) 0.2997 (3)

TRI F 0.2343 &) 0.2643 ®)
RL 0.2088 (2) 0.2215 (3)
UD 0.1739 (2) 0.1464 (2)

KM F 0.1470 2) 0.1888 (%)
RL 0.1420 (1) 0.1350 (3)
M QKS 0.1429 (1) 0.1353 (3)

TET PQR 1.0000 1.0000

SC F 0.2085 3) 0.2396 @)
RLUD 0.1977 (3) 0.1901 (5)

BCC F 0.1494 @) 0.1870 &)
PQR 0.1450 (3) 0.1388 (6)
XYZ 0.1385 (3) 0.1322 (6)

FCC F 0.0979 @) 0.1707 ™
MNPQ 0.0888 (2) 0.0863 (4)
RL 0.0905 (2) 0.0815 (4)
W XY Z 0.0917 (2) 0.0803 (4)

Table 5: t:The classes of relative direction s are arranged in the order of increasing angle from the
forward direction. I Data for free SAWs have been produced by the pivot algorithm. Data correspond
to SAW of length approximately (¢), although the frequencies of relative moves exhibit only very small
variations with chain length.

frequencies in SAWs. There is a strong bias towards “forward” steps, while
the directions closer to “backwards” are strongly disfavored. This effect is
not surprising, since “backward” steps lead to more restricted choices for the
next moves, and hence are more likely to lead to trapping. It is interesting
to note, however, that the bias towards “forward” moves is much stronger in

free SAWs than in gSAWs.
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3.5.2 Exhaustive Search

Exhaustive search for SAWs was performed, using a recursiv programmed
utility. We obtained the same data as Guttmann ([24][23][14]. In addition we
made calculations for our other lattices. It is obvious, that the number of
SAWs depends on the moveset and dimension of the lattice (fig. 25).

The numerical results are enlisted in the following table and compared to
the known results:

exhaustive search for SAWs
until length 20

10.0 ‘ ‘ ‘ |
8.0 -
3
> 6.0 -
c
o
>
(&)
(8]
k<
= 40 -
2
2.0 -
OO L | L | L | L
0.0 5.0 10.0 15.0 20.0

Figure 25: Exhaustive search for SAWs
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n SQ | HEX SC TET
0 1 1 1 1
1 4 2 6 4
2 12 4 30 12
3 36 8 150 36
4 100 16 726 108
5 284 32 3 534 316
6 780 60 16 926 916
7 2 172 116 81 390 2 664
8 5916 224 387 966 7 696
9 16 268 132 1 853 886 22 188

10 44 100 812 8 809 878 63 728

11 120292 | 1552 11934150 | 183 240

12 324 932 | 2 944 198 842 742 | 525 104

13 881 500 | 5 592 943 974 510 | 1 505 236

14 2374444 | 10520 | 4468 911 678 | 4 305 164

15| 6416596 | 19928 | 21 175 146 054 | 12 319 304

16 | 17245332 | 37512 | 100 121 875 974

17 || 46 466 676 | 70 800

18 | 124 658 732 | 132 900

19 | 335 116 620 | 250 336

20 || 897 697 164 | 469 536

Table 6:

literature

38

Exact enumerations of SAWs for 2d and 3d lattices, the results go exactly conform with the
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3.5.3 Structural Elements in Random SAWs

Using our secondary structure parser we looked at random SAWSs and those
SAWs after an adaptive walk (chain-length 70; cost function = minimum
gyration described in a following chapter ).

Contacts in SAWs

Two bars per lattice - left bar before ADW right after ADW
800 T T T T T

turns —
other contacts

60.0 - b

400 ]

o H ﬁ ﬂ |
0.0
SQ KM SC

BCC FCC

Number of contacts

Figure 26: total number of contacts.

The values in figure 3.5.3 represent the amount of point positions that are
part of a secondary structure. For example: 1 helices — there is on average
one helical structure in each secondary structure. You can see, that the more
complex lattices loose secondary structure elements, while performing an
adaptive walk. This tendency is not being observed within the SQ lattice
and the SC lattice as. The less complex lattices as SQ and SC follow Dills



3 SELF AVOIDING WALKS 40

Structural Elements in SAWSs
Two bars per lattice - left bar before ADW right after ADW

10.0
anti paralell beta
paralell beta -
80 - helix
12}
<
g —
o 6.0 -
w
S
>
2
S 40
=]
8
o —

: QSE HKMH ESCE Rissl== |

BCC FCC
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[6] theory, in which he finds exactly this phenomena. The more complex
lattices as you can see in the histogram loose secondary structure elements
here there is a contradiction to Dill, which will be studied in the near future.
The increase of the number of contacts is a logical conclusion for the ADW.



4 SAWSs as a Model for Heteropolymers

4.1 Hetero Polymers suitable for Folding ?

Investigating the folding and the structures of Lattice Polymers serves well as
a simplified model, that can easily be handled by computational means. Lat-
tice models like the one introduced in this work, basicly derived from Dill’s
model, are a generalized and simplified representation of Polymers. Those
models regard the excluded volume effects, the hydrophobicity as a generic
folding potential and structure formation from energy potentials.
Advantages of the model are: easy computability with integers, as there are
discrete values for coordinates and angles, simple energy potentials, great
clearness for observing and defining structures. The conformational space
therefore, is drastically reduced. Compactness and energy states can be ex-
actly defined and visualized, solvent effects can be included implicitly, energy
surfaces may be smoothened. Regularities of structural elements, often falling
together with the definition of a secondary structure, can be easily defined
and identified on regular lattices.

If these models are used for “realistic representations” of polymers, namely
proteins, there are, however, numerous shortcomings arising from the crude
resolution: The symbol-set is drastically restricted (usually 2 instead of 20);
residues are of equal size and mass; different volumes of sidechains are not
considered, 1 discrete angle of n*90 (n=1,2,3) on the cubic lattice model
instead of 2 dihedral angles with any value in the peptide - bond, bond
lengths are restricted to unity, degeneracies of ground state structures are
likely. Cross links (= long range interactions, f.i. disulfide bonds) are usu-
ally omitted. They restrict the remaining number of possible conformations
and thereby the entropy and stabilize the folded state (glutamate/alanine -
ester bonds). However an implementation of this constraint is easy to real-
ize. Further problems of previous applications of the LP - concept are: Dill’s
approach yields the minimum free energy state, which is not necessarily the
one that occurs in natural protein folding pathways for any given random
sequence. ([8] reports that, for natural sequences on a lattice the best so-
lution is within 2% of all possible conformations that fit in a volume, that
is equivalent to the space as restricted by natural observations when using
the FCC (face centered cubic lattice) lattice for simulation, lower states are
artifacts due to the insufficiencies of the model)

41
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The model is, however, perfect, to investigate the influence of various param-
eters on structure formation and, due to the computability, to date the only
model that can be used for extensive statistical investigations. Furthermore
it depends on the rules for the formation of intramolecular bonds, stabilizing
the structure, what a model like this serves for. In the case of most RNA
folding models, each monomer binds at most to one other and the alphabet
is essentially composed of a set of pairwise matching monomers. In case of
an energy rules based on Dill’s concept, the model is essentially based on the
assumption that hydrophobic forces are the major driving force for structure
formation. ( This point however seems to be undecided, recent simulations
on lattices claim the hydrophobic forces to work against the formation of a
compact-state).

4.1.1 Hetero Polymers

Nearly all biopolymeres are heteropolymers, they are build upon a combina-
tion of monomers out of a given number of classes .
You can build out of & classes

Ny(v) = r” (32)

different polymers with the length v.

Even in a binary alphabet (k = 2) the amount of different protein-molecules
is outrages and exceeds soon Avogadro number. We use a binary alphabet
for our purposes, in which the different types off amino acids are classified as
hydrophobic monomers (denoted by H), which are oil-like and interact unfa-
vorably with water, and polar or charged monomers (denoted by P), which
interact favorably with water. An example of an H monomer is the amino
acid leucine; an example of a P monomer is serine. In native conformations
of globular proteins, the H monomers tend to be buried inside the core of the
globule, implying that proteins are driven to compactness by the hydropho-
bic interactions. P monomers tend to reside on the surface of the globule,
although exceptions are common.

We have to be aware that our knowledge about biopolymeres, their struc-
ture and properties only represent a small notch of the possibilities in vivo.
We can only get a closer picture, if some properties would be redundant.
Therefore it is of extreme importance to get an order into the tremendous
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amount of different biopolymeres, by introducing measures of relatedness:
sequence-space or shape-space[37].

4.1.2 The Folding Problem

Most interest is focused on determining a stable minimum, preferable the
global minimum which in general is supposed to fall together with the native
state.

Even a simplified model like this has been proven to be NP complete very
recently [20, 44]. This fact simply states, that the computational effort for a
method to find the global minimum in any case increases exponentially with
the size of the problem.

NP completeness however only denotes a worst - case behavior and, depend-
ing on the problem it might well be that a useful solution, possibly even the
global minimum can be found within reasonable computational time. (The
application of branch and bound algorithms to a folding pathway based pro-
cedure might prove helpful.)

Very often however the goal is to understand how the folding process works.
Levinthal’s paradox is one off the most striking finding of molecular dynam-
ics properties: to find the lowest energy state of a protein, which is usually
considered to be the native state, it would take a simple protein astronomic
time scales by simple trial and error of all possible configurations of all single
bindings [33]. Actually Proteins do not fold by a random search. In fact the
ground state is found within a relatively short time, i.e. seconds or less.
Levinthal proposed the existence of a directed folding pathway. Several as-
sumptions to circumvent the difficulties expressed by the formulation of
Levinthal’s paradox have been formulated recently [48]. Zwanzig gave a rea-
sonable explanation very shortly, showing how a small bias can have a dra-
matic influence on search speed [48]. A practical method for simulation is to
reduce the conformational space by excluding all but certain directions for
bonds by a reduction of the space to lattice representation.

An ansatz like this could offer a way out of this dilemma and, although we
do not present a "realistic model” of the folding process (association and dis-
sociation constants are not considered), we can simulate the formation of a
compact state, close to the global minimum, that could possibly correspond
to the so called Molten Globe state.
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The primary reason for our simulations however is, to gain insight into the
sequence space / shape space relation shown with the example of simplified
polymer models. For this reason it is essential to have a folding algorithm
that circumvents the pitfalls of the NP completeness in finding the global
minimum and enables extensive statistical investigations.

4.1.3 Energy Functions

Dependency of potentials on bond angles, lengths, electrostatic etc. are ne-
glected. A general form of the energy function can then be formulated as

follows ([28][41][4]) :

BAA) =YY Ulsesi)i i — il dy) (33)

i j>itl

so that contributions are considered for topological neighbors only. F is the
listing of pairing energies listed in a matrix, depending on the nature of the
residues s;, s; only. f is a bond-dependent function, as different types of bond
may have different distance dependency.

In particular, Dill’s potential:

U(siysi)s o — gl dij) = €[si, s]6(dij, 1) (34)

considered the simplest case only for ¢ instead of DM entries d and only
one pairing force, stabilizing the overall structure. In our implementation
contributions can be considered up to a certain cutoff distance: U = 0 if
dij > cutof f.

An interesting approach is Crippen’s empiric potential considering 4 different
classes of amino acids and distances along the chain [9].

4.1.4 Structures

Great attention has to be paid to the characterization of structures and dis-
tances inbetween [3].

In a very general model like this one, the analogy of secondary structure no-
tion to real proteins should not be overestimated. Each occupied bead rep-
resents a whole residue, different sizes of side chains and sterical hindrance
are not considered. From that point of view, a chain of, say 10 amino acids
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length could possibly correspond to a real sequence that is much longer. One
should therefore focus rather on the essence of a secondary structure: the
order in space, basicly recognizable as repitivity. For that reason we can also
investigate the occurance of any repitititive unit within an overall shape. It
is therefore not so important to find structural elements that are a geometric
analogy, but to distinguish between regularities that are intrinsic properties
of the model.

As soon we are able to characterize the comparison and distances measures
between structures we are able to apply the methods to explore the RNA
Shape Space and to investigate the mapping process from Sequence to Shape
Space as this has been done very recently on the Shape Space of RNA sec-
ondary Structures [19, 40, 29]. There the mapping turned out to be of major
importance compared to the nature of the folding process. Several features
like correlation lengths and the existence of neutral paths appeared to be
robust, thereby kinetic folding to yield a similar result as with other algos
[43].

It is however not always necessary to operate with folded states. A Density
Of States algorithm (DOS) algo of Stolorz [42] f.i. approximates the distri-
bution of low energy states without weighting them, accuracy however again
increases computational effort exponentially.

4.2 A First Glimpse on Landscapes

The notion of a landscape was introduced in the early thirties by Sewall
Wright [46] in order to describe evolution as an adaptive walk on a fitness
landscape. Nowadays landscapes appear in so different fields as in the physics
of spin glasses, in the computer science of problems of combinatorial com-
plexity, in evolution, in neural networks, in gene regulatory networks, in the
maturation of immune response and in the biophysics of macromolecules.

A geographical landscape is described by the height h over all vectors
Z = (x,y) lying in the XY-plane. Here a landscape more generally stands for
a scalar function F/(Z), which assigns to all points & = (z1,2,...,2,) of a
n-dimensional space a real value. The total of all 7 is called the configuration
space. In order to describe a landscape by its statistical properties, we need
a metric in configuration space. In a geographical landscape the configura-
tion space is two-dimensional and the components z,y of the vector ¥ are
continuous. The natural metric is the Euclidean metric. We do not restrict
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the components of Z to be continuous, in fact in all considered examples the
z; are discrete.

We can define a landscape as a triple (X, d, f) where X is a finite set,
d: X xX — R is ametricand f: X — V is a function, which maps into a
vector space with scalar product. This definition restricts the configuration
space X to be discrete, because X has to be finite. For all landscapes dis-
cussed here, the vector space Vis R . f is often called the cost function. This
expression originates from the study of fitness landscapes, where f evaluates
the fitness of a species. Landscapes have to be seen in the context of an
optimization process, which maximizes or minimizes F'(Z).

Landscapes in our context are mappings from the space of genotypes
(=sequences) into a space of real numbers that are assigned to some pheno-
typic (=structural) features, e.g. the minimum free energy, rate constants of
structure formation or an arbitrarily chosen fitness value.

A suitable method to characterize landscapes is the autocorrelation function

(D*(f (@), F () noy=n
(D2(f (@), F () random

p(h) =1 - (35)

where for example

D(f(z), f(y)) = AG(z) — AG(y)

is the difference in free energies for two sequences = and y. As analytical solu-
tions are not available for most landscapes, we use large statistical ensembles
of computationally folded RNA molecules to compute p(h). This expression
can be viewed as a measure of the average similarity of energies or structures
etc. as a function of the Hamming distance h of the underlying sequences.

A useful measure for the ruggedness of a landscape is the correlation length
[ = p(h) =1/e. It is in the order of the average distance between two local
optima and therefore characteristical for the complexity of an optimization
problem. In the case of RNA we found energy correlation lengths that are
longer than structure correlation lengths, both are very short compared to
the diameter of the sequence space [19, 18]. A generalization of the theory
of landscapes allows to directly address the properties of the folding: Folding
can also be viewed as a mapping from one abstract metric space of combi-
natorial complexity, the sequence space to another metric space, the shape
space: a Complex Combinatory Map (CCM). This will work as we can define
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a metric distance D to compare structures.

Instead of dealing with CMMs explicitly we can also use large ensembles of
random structures (structures, folded from random sequences). We compute
structure distances as well as the corresponding Hamming distances of their
underlying sequences. We then generate structure densily surfaces, express-
ing the joint probability for two sequences of constant chain length of having
a certain Hamming distance and a certain distance between their structures.

4.2.1 Adaptive Walks

Additional information about the structure of a landscape can be attained
by per forming uphill (or downhill) walks on the landscape. These walks are
restricted to increasing (or decreasing) values of the cost function and always
end in local optima, so they provide information on the distribution of local
optima. One of them is the ADaptive Walk (ADW):
Adaptive walks start at a randomly chosen configuration, choose one neigh-
boring configuration are random and accept it, if it has a better value of
the cost function. As long as a better solution exists, it is adopted and the
neighborhood search is repeated from the new solution. The walk stops if no
neighbor has to offer a better value of the cost function, which means that a
local optimum is reached.

We performed several ADWs of lattice polymers. We used the number of
contacts and in addition the radius of gyration as cost functions.

4.2.2 ADW Using Pivot Moves

Following tables are using the pivot algorithm. In table 7 we see a summary of
results, using the radius of gyration as cost function. Table 8 shows data for
ADWs with respect to the number of contacts as cost function. You clearly
can recognize that there is an expected relation between increasing number
of contacts and decreasing radius of gyration.

4.2.3 ADW Using Snake Movement

Table 9 represents data of ADWs using a snake movement to get from one
state to another. Here we are using number of contacts as cost function again.
It is remarkable how little effect the snake movement has on a walk.



SAWs: adaptive walks with pivot moves towards minimum radius of gyration

Dim. Grid  length adapt. walk no. of contacts radius of gyration end to end distance | sample
local optima  walk length | random minimum | random minimum | random minimum

2 HEX 30 0.154 2.83 4.28 4.73 11.88 5.11 109 5.8 1000

70 0.154 3.83 9.75  9.57 36.76  16.39 18.8 10.1 1000

SQ 30 0.066 5.2 10.15 11.63 6.4 2.86 84 3.6 1000

70 0.036 8.45 24.41 24.64 20.88 8.71 154 5.4 711

TRI 30 0.066  6.37 23.78 27.08 8.34 2.78 9.0 3.9 1000

70 0.051 9.22 57.98 59.44 25.98 8.51 15.8 6.2 1000

KM 30 0.886 1.19 10.0 22.0 18.5 4.8 13.0 3.9 1000

70 0.269 12.3 31.4 39.9 42.8 16.7 19.3 7.9 1000

100 0.326 13.8 48.5 57.0 66.6 27.6 24.6 10.3 129

3 SC 30 0.002 13.76 8.83 16.07 3.66 0.80 6.8 2.4 1000

70 0.002 22.88 22.83 3097 9.19 241 10.4 3.2 839

100 0.027 26.7 34.3 40.8 14.1 2.81 3.29 091 75

BCC 30 0.095 10.88 16.43 21.93 3.06 0.85 6.1 2.5 1000

70 0.241 13.95 47.0 46.2 75 2.6 9.1 4.2 1000

100 0.28 15.29 70.6 64.8 11.4 4.2 11.2 5.2 514

FCC 30 0.204 10.37 35.5 42.1 11.8 4.0 11.4 5.2 1000

70 0.378 12.35 100.97 9591 271 11.8 17.2 9.3 230

100 0.404 14.38 152.45 140.23 41.69 17.49 206 10.7 156

TET 30 0.187 5.41 9.6 10.3 4.1 1.5 6.7 3.6 1000

70 0.36 5.84 30.0 259 9.7 49 10.2 6.4 1000

100 0.395 6.3 45.9 376 146 7.9 12.4 8.0 1000

Table 7: W I¥ith pivot moves towards minimum radius of gyration (¢)
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SAWs: adaptive walks with pivot moves towards maximum number of contacts

Dim. Grid  length adapt. walk no. of contacts radius of gyration end to end distance | sample
local optima  walk length | random minimum | random minimum | random minimum

2 HEX 30 0.28 1.8 4.2 6.5 84 5.0 96 6.1 500

70 0.25 29 9.7 13.8 26.1 15.4 16.9 10.8 500

100 0.27 3.5 13.7 18.9 43.9 26.4 189 13.7 500

SQ 30 0.25 3.3 9.7 15.0 6.9 3.5 8.8 4.9 500

70 0.21 5.6 24.5 345 21.0 111 15.2 8.5 500

100 0.23 6.7 35.3 47.5 33.6 18.1 19.2 10.7 500

TRI 30 0.22 5.1 23.5 343 58 3.0 8.0 4.3 500

70 0.22 8.8 59.0 79.2 18.7 9.9 14.0 7.7 500

100 0.23 114 84.7 1121 30.5 149 179 9.2 500

KM 30 0.08 7.0 10.0 26.5 18.7 6.8 12.8 5.1 500

70 0.28 7.2 29.8 51.0 471 22.7 10.4 8.3 500

100 0.37 6.7 47.1 71.0 66.9 37.4 24.2 14.7 500

3 SC 30 0.07 7.3 8.7 214 3.7 1.2 6.8 2.8 500

70 0.08 11.8 23.9 49.1 8.1 3.0 10.2 4.2 500

100 0.07 15.2 34.5 68.7 13.6 4.0 12.8 4.6 500

BCC 30 0.30 5.1 16.8 28.4 3.0 1.3 6.0 3.3 500

70 0.55 4.7 47.5 61.5 74 49 9.0 6.4 500

100 0.59 5.3 70.5 86.5 11.2 7.4 11.3 8.1 500

FCC 30 041 5.1 24.8 51.0 11.7 6.4 11.2 7.0 500

70 0.67 4.0 98.9 116.1 30.2  21.2 184 13.7 500

100 0.69 4.3 149.6 168.9 41.1 309 209 16.7 500

TET 30 043 2.0 9.6 13.9 4.1 2.8 6.8 5.2 500

70 0.59 1.9 30.1 35.8 10.4 8.4 10.6 9.0 500

100 0.71 1.3 44.1  49.1 14.8 13.3 12.2  11.3 500

Table 8: ADW with pivot moves towards maximum number of contacts (¢)
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SAWs: adaptive walks with snake moves towards maximum number of contacts

Dim Grid  length No of adapt. walk no. of contacts radius of gyration end to end distance | sample
neutral moves | local optima  walk length | random minimum | random minimum | random minimum

2 HEX 30 1 0.81 3.5 36 80 79 9.5 9.2 500

30 5 2.98 3.3 3.9 84 8.0 9.5 9.1 500

30 10 4.36 3.6 4.5 8.0 74 9.2 84 500

30 100 5.34 3.3 4.3 82 75 9.5 84 500

70 1 0.79 8.5 8.7 26.0 259 16.8 16.8 500

70 5 3.06 8.5 9.1 26.0 25.7 16.8 16.3 500

70 10 4.01 85 94 25.8 25.2 16.3 15.8 500

100 1 0.76 12.6  12.7 42.7 427 21.5 214 500

100 5 2.84 12.7 13.3 42.8 42.7 21.3 211 500

100 10 4.1 12.8 13.7 43.3  42.1 21.4 21.0 500

SQ 30 1 0.84 89 9.2 6.8 6.7 8.8 86 500

30 5 2.87 8.8 9.8 6.8 6.4 89 83 500

30 10 3.89 8.8 10.2 6.7 6.1 8.7 80 500

30 100 5.08 8.7 10.5 6.8 6.1 89 7.8 500

70 1 0.87 23.0 23.3 21.7 216 152 15.1 500

70 5 2.61 23.0 24.0 21.8 216 15.3 15.1 500

70 10 3.67 22.9 244 21.7  21.3 15.4 14.9 500

100 1 0.88 34.8 35.2 33.8 33.7 19.2  19.1 500

100 5 2.60 34.7 358 34.2 33.7 19.2 18.8 500

100 10 3.10 34.7 36.0 34.2 336 19.3  18.9 500

TRI 30 1 1.32 23.0 24.1 59 5.8 80 7.8 500

30 5 3.97 23.0 25.9 6.0 5.3 8.0 7.3 500

30 10 5.57 22.3  26.4 59 5.3 81 7.1 500

30 100 6.19 226 27.1 6.1 5.1 8.2 6.8 500

70 1 1.22 58.6 59.8 18.4 18.3 13.9 13.8 500

70 5 3.63 58.5 61.6 18.6 18.2 13.9 13.4 500

70 10 4.79 58.2 62.3 18.8 183 14.0 135 500

100 1 1.23 85.3 86.4 29.0 289 177 17.6 500

100 5 3.88 85.2 88.6 29.3 286 17.8 17.3 500

100 10 4.46 85.3 89.2 29.4 288 176 17.1 500

KM 30 1 0.61 9.1 96 18.8 18.5 129 12.7 500

30 5 0.79 9.3 10.0 176 16.9 12.7  12.2 500

30 10 0.90 9.4 10.2 18.7 17.7 13.3  12.7 500

30 100 0.90 9.4 10.2 18.7 17.7 13.3 127 500

70 1 0.25 30.6 30.7 46.8 46.7 20.5  20.4 500

70 5 0.38 29.8 30.0 45.1 44.6 20.2  19.9 500

100 1 0.23 479 48.0 63.2 63.1 23.2 231 500

100 5 0.25 48.5 48.6 64.1 64.2 23.6 23.6 500

Table 9: ADW with snake movement for 2D lattices (©)
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SAWs: adaptive walks with snake moves towards maximum number of contacts

Dim Grid  length No of adapt. walk no. of contacts radius of gyration end to end distance | sample
neutral moves | local optima  walk length | random minimum | random minimum | random minimum

3 SC 30 100 10.02 79 109 3.7 3.0 6.7 5.8 500
30 1000 10.02 79 109 3.7 3.0 6.7 5.8 500

70 1 1.08 22.3 227 8.8 8.7 101  10.1 500

70 5 4.37 224  24.0 8.7 86 10,1 9.9 500

70 10 6.76 21.8 24.2 9.5 9.0 106 10.1 500

100 1 1.15 33.1 33.7 13.8 13.7 12.5 124 500

100 5 4.48 33.0 34.7 13.4 13.2 12.3  12.2 500

100 10 6.76 32.8 353 13.1  12.9 124 121 500

BCC 30 100 0.95 15.2 16.2 3.0 2.9 59 5.7 500
70 1 0.32 46.1  46.3 74 7.5 9.1 9.1 500

70 10 0.38 44.6 45.0 78 7.8 9.5 9.5 500

100 1 0.26 719 721 104 104 109 109 500

100 5 0.26 69.8 70.0 10.7 10.7 11.0 11.0 500

100 10 0.26 69.8 70.0 10.7 10.7 11.0 11.0 500

FCC 30 100 0.4 34.1  34.7 11.3  11.2 119 11.8 500
70 10 0.16 99.4 99.5 294  29.5 18.0 18.0 500

100 1 0.12 150.0 150.1 40.5  40.5 20,9 209 500

100 5 0.14 148.9 149.1 41.1 41.0 21.0 20.9 500

100 10 0.14 148.9 149.1 41.1 41.0 21.0 209 500

TET 30 1 0.2 9.0 9.6 4.0 3.8 6.8 6.7 500
30 5 0.2 9.5 10.1 3.7 34 6.4 6.2 500

30 10 0.2 9.5 10.1 3.7 34 6.4 6.2 500

70 1 0.04 29.5  29.7 9.7 9.6 10.3 10.3 500

70 5 0.05 29.7 30.0 9.7 9.6 10.2 10.1 500

70 10 0.05 29.7  30.0 9.7 9.6 10.2 10.1 500

100 1 0.04 45.4  45.7 14.1 14.0 12.3  12.3 500

100 10 0.04 45.4 458 14.1 14.0 12.3  12.3 500

Table 10: ADW with snake movement for 3D lattices (©)
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4.2.4 Selected Graphs of ADWs
The following graphs show an ADW towards maximum number of contacts

(pivot moves). The table shows the walklength w, number of contacts n and
radius of gyration s? of the depicted ADW:
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In this figures you clearly can see, that the number of contacts increase
during an ADW. The walklength is quite Gaussian distributed and the value

for it is approximately about 12.
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Figure 29: ADW towards max contacts SQ 100

Here it is also clear that the number of contacts rise during and ADW.
The walklength is also quite even distributed.
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5.1

Conclusion and Outlook

Conclusion

In the present work we achieved the following data:

1.

The length ¢ of a gSAW is calculated and we yield an interesting prop-
ertiy of SAWs.

The shape of the distribution function of ¢ is strong dependent of the
connectivity within 3D lattices. 2D lattices don’t vary a lot. Only the
KM lattice shows a different form, this is due to the fact, that it is
some sort of a 2-3D lattice.

The minimum length £,,;, of g2SAWs has been computed by exhaustive
search, only for the FCC lattice it was impossible and we have to be
content with upper bounds on £,,;,.

The distribution of relative-directions within gSAWs and SAWs after a
certain amount of pivot moves show, that they do not occur with equal
frequencies in SAWs. There is a strong bias towards “forward” steps.
This effect is not surprising, since “forward” steps yield in unrestricted
choices for the next move.

Structural elements during an ADW were searched and it is obvious,
that more complex lattices loose secondary structure elements, while

performing an adaptive walk. This tendency is not being observed
within the 2D lattices.

Simple ADWSs were calculated using pivot moves, there is an expected
relation between increasing number of contacts and decreasing radius
of gyration. Snake movements didn’t yield the promised advantage to
get to higher values of contacts.

Exhaustive search for gSAWs have been performed, the obtained data
confirmed that the number of SAWs strongly depend on the dimension
and on the moveset of the lattice.
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5.2 Outlook

We developed a toolkit for lattice polymers, to determine properties of SAWs.
After having calculated a lot of properties we would like to use this approach
to model foldings of polymers. First steps were taken and we are going to
continue into this direction.



A Program Description

A.1 Summary

The toolkit is designed to compute and compare structures of Lattice Poly-
mers (LPs). The package works independendently from the chosen lattice
and can be easily extended. Various methods to characterize and compare
structures as well as to detect secondary structure elements in the sense of
Dill’s LP analogy to natural proteins are introduced [5]. At this point I would
like to thank Erich Bornberg-Bauer and Peter F. Stadler especially for their

programming.

A.2 Working on Lattices
A.2.1 Lattice Definitions and Handling of SAWs

header lattice_types.h

Contains the definition of the structure to be used for lattice - indepentend

SAWs (examples for SQ in parenthesis):

struct Lattice {

int dim;
int nn;
int nm;

char *names ;
char *relnames;
int **Move;
int  *xNeighbor;
int **Table;

float *x*x1lv;
int turns;
int steps;
float wlen;
+;

/*
/*
/*
/*
/%
/%
/%
/%
/%
/*
/*
/*

dimension of lattice (2)
the maximum number of neighbours (4)
the maximum number of possible moves (4)
move - names of absolute moves (BFLR)
move - names of relative moves (FLR)
possible moves in lattice coord.

possible neighbours, coordinates
transformation table rel./abs. moves
Lattice Vectors

minimum steps to nearest neighbour (3)
step (1)
average wlen, before self-traping (71.7)

a8

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
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module lattice_types.c
Global Definitions:

e char Lattice_typel[6]

To choose one out of the predefined lattices, assign the name of desired lattice
to this variable. Possible choices must coincide with one of the possibilities
as listed in  struct Lattice .

e struct Lattice L

The global structure, carrying all necessary variables during compu-
tation. the proper values must be assigned by using the procedure
define_lattices (...) .

° PRIVATE struct Lattice TRI, HEX, SQ, TET, SC, BCC,
FCC, KM and TDKM

The structures of type struct Lattice that can hold the explicit val-
ues for all variables for the available lattices TRIgonal, HEXagonal, SQare,
TETraedic, Simple Cubic, Face Centered Cubic, Body Centered Cubic,
Knight Moves and Three Dimensional Knight Moves respectively. This is
the only data type to be extended for incorporating new lattices into the
package. Some (larger) arrays with fixed size and static definitions such as
movesets and Neighbors have to be introduced in the header of the file.

Function Calls:

e void define_lattices(char *Lattice_type)

Has to be set for initializing the proper parameter set before using any other
procedures of the package. First all non-static variables for the chosen lattice
are assigned, then the contents of the structure are copied to the global

e struct Lattice L which is then the only lattice structure to be used
from there. This is the only procedure to be altered for incorporating new lat-
tices into the package, valid choices are those specified at struct Lattice.
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e void free_lattices()
Frees the space in memory after the usage of the package.

module SAW _utils.c:
Variables:

e pindx A global array, containing an index-field to address matrices.

Function Calls:

e int isSAW(char *structure)
Expects a structure in rel.moves notation and returns 0 if structure is no
SAW according to the specified lattice, a 1 otherwise.

e int isSAW_last(char *structure, int **x, int 1)
Same as isSSAW(), but checks correctness of the last move only. x must al-
ready contain the coordinates in positive integers.

e void pivotSAW(char* structure)
Applies a random pivot move to structure, returns only SAW - structures. A
pivot move can always be found due to the ergodicity.

e void pivot(char* structure)
makes a random pivot move to structure, without respect if the structure is

a SAW afterwards.

e char *trap_SAW(int len,int maxlen, double *end_dist)

Returns a SAW that continues to grow until it was trapped or maxlen
reached. len is required to initialize fields and should be of higher value
then maxlen. This function also calculates the end to end distance and re-
turns it as a pointer(end_dist).

e int isSAW_last_old(char *structure)
Same as is SAW_last (), requires no x values however
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e int isSAW_avl(char *structure)

Same as isSAW() but with usage of AVL tree.

e int isSAW_last_avl(char *struc,int **x,int pos,int last)
Same as 1sSAW_last () but with usage of an AVL tree package.

e void init_indx(int length)

Initializes the indexfield int* pindx for usage in Distance and Contact Ma-
trix for a structure of length len. The exact adressing works as follows: its
a 2 dimensional matrix index normally you would address a 2 dim matrix

XX[1][2] with pindx: XX[pindx[1]+2].

e char *Contact_Matrix (char *structure)

Returns a char containing the Contact Matrix, using pindx. Each residue
with a contact, according to the proper criterion, is denoted with a 1, each
non-contact residue with a 0.

e int CM_counts (char *CM)
Returns the number of contacts from the Contact Matrix CM.

e float *Distance_Matrix (char *structure)

Expects the structure according to the current lattice settings in relative
moves notation and returns an array containing the triangular matrix with
all pair distances. Values can be accessed as usual with the pindx index field.

e float gyr_radius(float *DM,int len)
Returns the radius of gyration from a Distance Matrix that has been gener-
ated from a structure with length len.

A.2.2 Handling of Data Structures

For handling complex tasks we programmed a hash utility cause of memory
and time savings. So just use them for big stuff.

module SAW _hash.c:
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e int hash_comp(void *x, void *y)
Compares two specific sets of coordinates returns 0 if they match.

e int isSAW_hash(char* structure)
Expects a structure in relative moves notation and returns 0 if structure is a
SAW according to the specified lattice.

e int isSAW_last_hash(char *struc,int **x,int pos,int last)
Same as isSAW_hash() but checks correctness of the last move only. x must
already contain the coordinates in positive integers. pos must be the current
position and last is a criteria for the maximal length, it should always be
bigger than pos. If last is exceeded the function returns a 2.

e char *trap_SAW_hash(int len,int maxlen, double *end_dist)
Same as trap_SAW(), just using hash-functions.

e void pivotSAW_hash(char* structure)
Applies a random pivot move to structure with use of hash-functions. Re-
turns only SAWs.

module hash_util.c

e int hash_f (int *x);

Here the hash-function is defined. In our case its a function of the following
type: f(z,y,z,...) = ax * by * cz.... In which the constants a,b,c,... are
primes.

e void define_paras();
before using any hash-functions you have to make this function call. Here the
constants of the hash-functions are defined.

e int lookup_hash (void *x);
This function evaluates whether the int pointer x is already part of the hash

table (returns 1) or not (returns 0).

e int write_hash (void *x);
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Here you can make entrances into the hash-table, if it the function returns a
0, otherwise a 1.

o void delete_hash (void *x);
Deletes a specific entry out of the hash-table.

e void kill_hash();
Releases memory uptaken by hash-functions. Should be used as the last func-
tion, to avoid memory leakage.

e void initialize_hash();
There is no purpose yet, but it could be used for new functions and param-
eters.

For medium problems (talking about length approx: 60-10000) the use of
AVL trees is convenient and fast:

module avl.c

Here are all the functions you need for the use of an avl tree.

header avl.h

Different function parameters.

module avlaccess.c

Specific functions for the use of avl-trees within our SAW package.

header SAW _avl.h

Definition of parameters.

A.2.3 Handling and Comparison of Structures

Structures, as generated by SAWs or folding algorithms are strings of length
strlen(sequence)-1 in the notion of relational moves. They can be con-
verted into Contact Matrices CM, Bond Matrices BM and Distance Matrices
DM. BMs and CMs can be converted into Contact Lists CLs and BMs into trees.
2 matrices, representing 2 (different) structures in the same notion can be
compared and distances between them measured. A detailed description of
the structure distance measures is given in [3].

Further measures with respect to the nature of neighboring residues will be
provided.
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For the comparison of CLs we need a table, showing the edit costs for each
edit operation. Given a set of edit operations and edit costs, the edit dis-
tance is given by the minimum sum of costs along an edit path converting
one structure into the other.

header CL_cost.h:

Provides the edit table for the comparison of two CLs.

module SecStr.c

Here structures can be analyzed to find number and size of secondary struc-
ture elements as defined in [?]. Values are stored in a structure SecStr and
can be retrieved from there.

e SecStr *parse_CM(char *ContactMatrix)

Takes a Contact Matrix CM and converts it from a 0/1 notion for no con-
tacts /contacts into a H/B/P/T/C/0 (for corresponding residues being mem-
ber of a Helix, antiparallelBetasheet, Parallelbetasheet, Turn, otherContact,
nOcontact respectively) notion.

header SecStr.h

typedef struct blah{

int nt; /* number of turns

int npb; /* number of parallel beta sheets

int nab; /* number of antiparallel beta sheets
int nh; /* number of helices

int others; /* number of all other contacts

int *turmns; /* list of turns by first base

int *pbeta_i; /* beginl of parallel beta sheets
int *pbeta_j; /* begin2 of parallel beta sheets
int *pbeta_l; /* lenght of parallel beta sheets
int *abeta_1i; /* beginl of anti-parallel beta sheets
int *abeta_j; /* begin2 of anti-parallel beta sheets
int *abeta_l; /* length of anti-parallel beta sheets
int *helix_b; /* begin of helix
int *helix_e; /* end of helix
int *helix_m; /* winding height of helix

}SecStr;

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
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e int ident_contacts (char *CM1, char *CM2)

Counts the number of identical contacts (= nearest neighbors) from the two
Contact Matrices CM1 and CM2 that must have been generated from two struc-
tures of same length before.

e int **CM_to_CL(char *CM)

Transfers a Contact Matrix CM into a two dimensional array, the Contact List
CL which is returned, each residue a list of contacts is assigned to. It needs
the Contact Matrix char *CM as input, and returns a matrix, which has to
be freed afterwards. The pindx field must be already initialized.

A.2.4 Graphik - Utilities
module SAW _graf _utils.c

Provides several methods to illustrate structures in postscript or pdb format.

° void SAW_PS(char *sequence, char *structure, char *fname,
char *ALPHAbet);

Generates a file named fname in postscript format, depicting the structure
with balls representing each residue in the node point and a stick for each
bond. Lattice and Alphabet must have been specified before usage.

° void pdb_out (char *struc, char *seq, char *pdb_fn, char
*alphabet, char *para_fn)

Generates a file pdb_fn. A different colour is used for each different secondary
structure element.

° void seq_pdb_out(char *struc, char *seq, char *scont,char
*pdb_fn,char *para_fn)

Same as pdb_out () , but uses different colours for different residues in the
sequence.

module SAW _dots.c
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e void LP_CM_dot(char *CM, char *string, char *ps_fn)

Needs a Contact Matrix CM that has been transformed into a H/B/A/T/C/0
notion by the use of parse_CM and produces a file in postscript format that
shows the structure in a coloured dot-plot matrix where each filled square
denotes a neighbor as well as a legend, illustrating the symbols for secondary
structure elements.

° void LP_CM_DM_dot(char *CM, char *DM, char *string, char
*xps_fn)

Similar to LP_CM_dot (), but shows both, the CM and DM , where the size of
the squares is related the distance of the two corresponding residues.



B CONTACT-MATRIX SAMPLES AND MORE

Figure 30: Sample structure SQ

Figure 31: Sample contact-matrix SQ

B Contact-matrix Samples and More
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B CONTACT-MATRIX SAMPLES AND MORE

Figure 32: Sample structure SC
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B CONTACT-MATRIX SAMPLES AND MORE

Figure 33: Sample contact-matrix SC
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