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Abstract

The landscapes of the symmetric and asymmetric Traveling Salesman Prob-
lem, the Graph Bipartitioning Problem, the Graph Matching Problem and
the Sherrington-Kirkpatrick spin glass are investigated by performing adap-
tive and gradient walks. The number of local optima in these landscapes is
obtained by random sampling. The number of configurations in a patch with
radius correlation length in configuration space is computed and compared
with the number of local optima.

The lengths of adaptive and gradient walks scale linearly with system size.
Optima reached at the end of walks are better than randomly found optima.
In most investigated landscapes there are O(1) local optima in a ball of radius

correlation length.



Deutsche Zusammenfassung

Die Landschaften des symmetrischen und des asymmetrischen Traveling
Salesman Problems, des Graph Bipartitioning Problems, des Graph Matching
Problems und des Sherrington-Kirkpatrick Spinglases werden durch adaptive
und gradient walks erforscht. Die Anzahl lokaler Optima in diesen Land-
schaften wird durch zufalliges Auswahlen von Punkten bestimmt. Die Zahl
der Konfigurationen in einem Ball mit Radius Korrelationslange im Konfig-
urationsraum wird berechnet und mit der Anzahl der lokalen Optima ver-
glichen.

Die Léngen der adaptive und gradient walks steigen linear mit der Sys-
temgrofe an. Optima, die als Endpunkte von walks erreicht werden, haben
bessere Werte der Kostenfunktion als zufallig gefundene Optima. In den meis-
ten der untersuchten Landschaften sind O(1) lokale Optima in einem Ball mit

Radius Korrelationslange.
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1 INTRODUCTION 6

1 Introduction

Charles Darwin described the principles of biological evolution in his famous
work “On the Origin of Species”: errors occuring during the reproduction
of organisms create variation; natural selection leads to the “survival of the
fittest”. The fittest organism is the one with the largest number of offspring
reaching the age of fertility. In future generations those types of individuals
which have more descendants will increase in number, the others will die out.
Fitness of organisms can therefore be measured in terms of their reproduc-
tive success. It is very hard to describe the features which determine fitness

instead of defining the fittest type as the one who survives in the end.

In the 1930s Sewall Wright introduced the notion of a fitness landscape. A
fitness value is assigned to every genome - the genome can be seen as the set
of parameter values of some fitness function. Variation occurs through small
changes in the genome. The new possibility is accepted if it is better - which
means that it has a higher fitness value - than its predecessor. The process
of variation and selection thus involves a local search procedure in the space

of possible genome sequences.

Evolutionary adaptation can be envisioned as a hill climbing process on such
a complex fitness landscape. This strategy seems simple, but depending on
the structure of the landscape the problem of finding the highest peak can
become extremely hard. The biggest problem is to assign the fitness a priori
instead of waiting for the outcome of the selection process in order to avoid

the tautology of the survival of the survivor.

This intuitive concept of viewing optimization as a hill climbing process on
a landscape can be applied to various combinatorial optimization problems.
Landscapes arise in physics, biology and mathematics. Examples for bio-
logically motivated landscapes are the free-energy-landscapes of RNA and
proteins, affinity landscapes of antibodies, and fitness landscapes of RNA

sequences based on estimated replication and degradation rate constants.



1 INTRODUCTION 7

One has to be aware of the fact that these landscapes are high-dimensional,
complex and rugged. Optimization on rugged landscapes, that is, landscapes
with a large number of local optima, is very difficult. In most cases it will
not be possible to reach the global optimum, so one has to settle for other

goals, like finding a very good local optimum.

Local optima are traps for optimization algorithms. What method is the
best to find a good minimum depends on the underlying structure of the
landscape, so one has to find features which characterize a landscape. The
landscapes of simple model systems can be explored and their statistical
properties can be described in detail. Such model landscapes arise from com-
binatorial optimization problems like the Traveling Salesman Problem, the

Graph Bipartitioning Problem and many others.

A thorough understanding of these model landscapes could lead to a bet-
ter understanding of biologically motivated landscapes and the evolutionary
processes which take place on them. To understand the process of evolution
on rugged landscapes it is necessary to know the constraints of a local search

procedure on such landscapes.

The overall of the landscape can be described by statistical measures like
the number and fitness values of local optima, the lengths of gradient and

adaptive walks, and the degree of ruggedness of the landscape.

One has to find a measure to compare landscapes which arise from different
problems and have different properties; the final goal is to be able to predict
the success of optimization on a novel landscape by the average behavior
of the class of landscapes it belongs to. One such classification measure is
the correlation length, the behavior of the autocorrelation function near the
origin.

In this work the value landscapes of the Traveling Salesman Problem,
the Graph Bipartitioning Problem, the Graph Matching Problem and the

Sherrington-Kirkpatrick spin glass are investigated by performing adaptive
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and gradient walks, and the number and properties of local optima are ob-
tained by random sampling. These data are compared with the features of
the minimum free energy landscape of RNA molecules, which was subject of

intensive studies carried out by Fontana et al [7].
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2 Landscapes

In 1932 Sewall Wright introduced the notion of a landscape to describe evolu-
tion as an uphill walk on a fitness landscape [31]. This very intuitive concept
of viewing an optimization process as walking on a landscape can be applied
to various combinatorial optimization problems, which occur in fields as dif-
ferent as physics of spin glasses, theoretical biology and computer science.
One has to be aware of the fact that these landscapes are high-dimensional

and discrete.

A combinatorial optimization problem consists in finding a best configuration
out of a very large but finite number of possible configurations. Usually one
searches for the global minimum (or maximum) of a cost function which

depends on many variables.
A configuration is an allowed combination (set) of these variables.

An instance of a combinatorial optimization problem consists of a set C' of
possible configurations and a cost function f that assigns a value to each
configuration[20].

f:C— R, c— f(c)

The problem is to find an & € C for which
J@) < fly)  forall yeC
Such a point 7 is called a globally minimal solution to the given instance or
a global minimum.
An optimization problem is a set I of instances of an optimization problem.

Maxima are defined analogous to minima; in the optimization problems that
are subject of this work the cost function has to be minimized, so the term

optimum in this context always means minimum.

To impose a structure on the space of possible configurations one can find a

rule that determines whether two configurations are nearest neighbours. An
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other point of view is to define a move set, that is, operations which modify
a configuration in a certain way. Nearest neighbours are reached by applying
the move rule once. Examples for move rules are single point mutations or

interchanges.

Configurations can be viewed as vertices in an abstract configuration space. If
nearest neighbours are connected by edges, the set C' of allowed configurations

becomes a graph.

In case of binary sequences of length n with the move rule point mutation this
configuration space is a hypercube of dimension n. The Hamming distance
dy(x,y) is the number of positions in which the two sequences = and y differ.
In the hypercube neighbouring sequences, which have Hamming distance
dg = 1, are connected by straight lines. Figure 1 shows the configuration

space of binary sequences of length 4.

An instance of a landscape is defined by an instance of a combinatorial opti-
mization problem and a rule that determines whether two configurations are

nearest neighbours.

A natural metric distance d(z, y) between any two configurations x and y on
such a landscape is the minimum number of moves necessary to convert x to
Y.

Different movesets result in different topologies of the landscape. The choice
of a different moveset generates a different set of neighbours, but does not

change the set of allowed configurations.
Definition: A point (configuration) x € C' is called a local minimum (local
optimum) if

fl) < fly) forall  ye N(z)

where N(z) denotes the neighbourhood of x, i.e. all y € N(x) are nearest
neighbours of z,

N(z) = {yld(x,y) = 1}.
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1000 0000

1100 0100

1001 000,
101.9/ 001
1101 010
1110 0110
1011 0011
1111 0111

Figure 1: The configuration space of binary sequences of length 4 is a 4-

dimensional hypercube

Since most of the landscapes of interest are rugged, which means that neigh-
bouring configurations can have very different cost function values, optimiza-
tion on these landscapes is a hard task. Even on very fast computers in most
cases it is not possible to find the global optimum in reasonable timespans.
So one has to be content with finding at least a very good suboptimal solu-
tion - a local optimum. To decide which optimization method will work best
on the landscape considered, one has to gather information on the structure

of the landscape.
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3 Examples for landscapes

3.1 Biologically important landscapes

Evolutionary processes take place on fitness landscapes. Since the fitness of
an organism in Darwin’s sense - that means that fitness is measured by means
of reproductive success - is hard to evaluate a priori, so far only simple model

systems like RNA sequences have been investigated.

Energy landscapes are generated by plotting the free energy of the folded
molecule vs. its sequence or its spatial structure. In the RNA case the sec-

ondary structure of a sequence can be computed by a recursive algorithm.

Properties like the ability of proteins to catalyze a specific reaction or the
antigen binding capacity of antibodies give rise to other biologically moti-

vated landscapes.

Landscapes arising from biological applications usually are rugged, that
means that nearest neighbours can have very different values of the cost

function.

3.1.1 Energy landscapes of RNA and proteins

The primary structure - or genotype - of an RNA molecule of length n can be
represented by a sequence of n letters, with each letter chosen from a k-letter
alphabet, i.e. the natural four-letter alphabet AUGC or the binary alphabet
GC.

I={ AUGCGCGUACGUCGGACU ...AGUCA}
RNA sequences are objects of combinatorial complexity: there are k™ possible

sequences of length n. This enormous number of sequences can be ordered

with the help of the concept of a sequence space. A natural moveset is point
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Geee ccce

GGC CGC

GCCG cc
GC;GC/ CCGC
GGC cG
GGGC cGGC
GCGG CCGG
GGGG CGGG

Figure 2: Sequence space of GC-sequences of length n = 4.

mutation, that is the exchange of a single letter in a single site. Since only
sequences of constant length n are considered, insertions and deletions are not
allowed. A metric on this landscape is the Hamming distance dg, that is the
number of positions in which two sequences differ. Neighbouring sequences
have Hamming distance one. The sequence space of binary GC-sequences is a
hypercube of dimension n (Figure 2), sequence spaces of four-letter sequences
are more complicated objects. Every sequence can be reached from every
other one by successive point mutations. The diameter of the sequence space

(the maximum Hamming distance between two configurations) is n.

The analogue of the phenotype of an RNA molecule is its thermodynamically
most stable spatial structure. The folding of an RNA molecule can be split

into two steps:
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e The folding of the string into a two-dimensional quasiplanar secondary

structure by formation of complementary base pairings

e The formation of a three-dimensional tertiary structure from the sec-

ondary structure.

While no reliable model for predicting the tertiary structure exists so far,
the secondary structure can be computed by a recursive algorithm which
predicts the minimum free energy structure of the molecule [33],[32]. More-
over it is very hard to encode the tertiary structure in a compact form,
while secondary structures are easily encoded and stored. Since the forces
which stabilize the secondary structure, base pairing and stacking, are much
stronger than the ones which influence the three-dimensional structure, the
computation of RNA secondary structures is fairly reliable. For these rea-
sons the investigation of phenotype properties was based on the predicted

secondary structure.

A landscape is obtained by assigning to every sequence in sequence space the
minimum free energy of its secondary structure. The minimum free energy
landscape of RNA molecules was subject of extensive studies carried out by
Fontana et al [4],[7].

In the case of the energy landscape of a single protein a configuration is the
set, of all spatial coordinates of the protein’s atoms; the cost function assigns
the potential energy of the molecule to each configuration. A protein usually
has many different conformations which are nearly isoenergetic, so protein
folding can be envisioned as an optimization process on a landscape with

many local optima.
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3.1.2 RNA fitness landscapes

The original idea of Sewall Wright was to construct a landscape by assigning
a fitness value to every genotype. Evolution can be considered as an optimiza-
tion process taking place on this fitness landscape. The problem consists in
finding the best out of a large number of individuals. The fitness criterion in
Darwin’s sense is the number of fertile descendants. Evolution is the interplay
of mutation and selection; mutation acts on the genotype, whereas selection
takes place on the phenotype level. In a stationary population variants with
more or more fertile offspring will increase in number and in percentage of
the population, the others will die out. In the end one single fittest type
will survive - this is the meaning of the popular catchphrase “survival of the
fittest”. A measure for an individual’s fitness has to be defined that does not
depend on the outcome of selection in order to avoid the tautology of the

survival of the survivor.

The hardest problems that arise when developing models for evolution is to
find a function which maps the genotype to the phenotype and a function that
assigns a fitness value to the phenotype. So far the prediction of phenotype
properties from the genetic information is not possible for even the simplest
organisms. Due to the fact that an a priori computation of the fitness of
organisms (instead of waiting for the outcome of selection) is out of reach, a

simpler model system had to be found.

A simple system fulfilling the minimum requirements for Darwinian evolution
- reproduction, variation and selection that leads to the survival of the fittest
- has been found in the reaction kinetics of RNA molecules. Spiegelman et
al. [23] showed that RNA molecules can proliferate in a cell free medium con-

taining nucleoside triphosphates and the RNA replicase of the bacteriophage
Qp.

The first theoretical model of molecular evolution was proposed by Eigen in

his pioneering work [3]. This model for polynucleotide replication was based
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on ordinary differential equations derived from chemical kinetics:

LYY L+,
An RNA template sequence I; is replicated with the rate constant A;, the
probability for the outcome of this process being a sequence Ij is Qy;. The
probability for error-free replication of sequence I; is @;;. Degradation of
the molecules is taken into account by the degradation rate constant Dj.
An unspecific dilution flux ®(¢) removes templates from the system. The re-
sults of this theory are: there exists a sharply defined minimum accuracy of
replication, the error threshold. Below this threshold genetic information is
unstable - random replication.
Stationary states of a population are characterized by distributions of se-
quences - the so-called quasispecies. Not a single fittest type, but the quasis-
pecies is selected by the evolutionary process.

RNA molecules can be multiplied in vitro by a replication assay containing
the QG-RNA replicase. In this case the phenotype is the 3D-structure of the
folded RN A molecule which is recognized by the Q3-replicase and determines
the replication velocity and thus the fitness of the molecule. By means of this
system the replication kinetics of RNA was explored in great detail [2]. Since
only single stranded molecules are accepted as templates by the enzyme, the
secondary structure has to melt to make replication possible. On the other
hand single stranded regions of an RNA molecule can be easily attacked by

hydrolytic agents or nucleases.

Since the secondary structure - or phenotype - of RNA molecules can be
predicted fairly well from the sequence or genotype, an RNA fitness landscape
based on estimated replication and degradation velocities of RNA molecules
and a computer model of evolution were investigated by Fontana et al.[5],[6],
4].
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3.1.3 Peptide space, affinity landscapes of antibodies

Maynard-Smith suggested that the evolution of proteins proceeds via single
mutations; mutants which have higher fitness than their predecessors will
be expressed at higher rates and ultimately replace them [16]. The config-
urations in a peptide space are all peptides of a specified length. Nearest
neighbours differ by a single amino acid in a single site (move rule: amino
acid substitution). The fitness of a peptide can be defined as its ability to
bind a particular substrate or to catalyze a specific reaction.

If the considered peptide is the variable region of an antibody a natural
measure of fitness is the antibody affinity to the immunizing antigen. The
affinity of each antibody could be derived experimentally, but given the large
number of sequences this is not feasible. To predict an antibody’s affinity for a
certain antigen from sequence, one would have to know the three-dimensional
structure of both antibody and antigen, which is also not possible at the
moment. A model for antibody evolution during an immune response was
proposed by Macken et al.[15]. Every sequence is assigned a random fitness
value, and evolution is modeled by a strictly uphill walk via fitter one-mutant

neighbours.
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3.2 Model landscapes
3.2.1 The Traveling Salesman Problem (TSP)

The TSP is one of the most extensively studied combinatorial optimization
problems [12]. Starting from his home town a salesman has to visit n — 1
cities exactly once and then has to return to his home town. Knowing all
intercity distances he will try to find the shortest tour which fulfills these

requirements.

A tour 7 can be described by listing the visited cities in chronological order
(1 € S,, the group of all permutations of the n cities). The configuration

space is the set of all possible tours.

The cost function f(7) that has to be minimized assigns the total length of
the tour to every possible ordering of the cities :

n—1

F(T) =D My + Mrmyr)
=1

where 7 is the permutation encoding the order of the n cities, 7(7) is the i-th

city visited in the tour, 7, is the distance between the cities a and b.

The distance matrix can be symmetric (7, = 7pe) Or asymmetric. An other
special case is to compute the distances of cities scattered uniformly in a unit

square.

For an n-city-TSP the allowed configurations are given by the n! permuta-
tions of the n cities. By symmetry one may choose a fixed starting city, so
the problem is restricted to the permutations of the remaining n — 1 cities.
The number of possible tours grows so quickly with n, that the problem of

finding the shortest tour is a very hard task.
The TSP belongs to the large class of NP-complete problems [8]; even the

most efficient algorithms which can solve such a problem require a com-

putational effort that grows faster than polynomially with the size of the
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i+1

k+1

1 (ik T ikt

Figure 3: Move sets transposition and inversion for the TSP

problem. Computer time requirements for an exhaustive search - check all

possible tours - for the best solution of a mid-size-TSP are prohibitive.

For the sTSP the cost function value f(7) of the global optimum 7 for large
n has been estimated [18]:
f(7) — 2.08

for large problems. A possible move rule which defines whether two tours
are nearest neighbours of each other in configuration space is transposition
(i, k)7, that is the exchange of two cities ¢ and k in the tour. With this move
rule applied to the symmetric problem every tour has n(n — 1)/2 nearest

neighbours (if initial city and direction are not specified).

If the choice of the cities to be exchanged is restricted to cities which follow
each other in the tour, the move rule is called canonical transposition. An
other possibility is the 2-opt move or inversion [13]: the inversion [i, k] ex-
changes the cities ¢ and £ and reverts the path from 7 to k. Figure 3 shows

the transposition and inversion moves.

For the move set transposition the maximal distance of two tours in configu-

ration space is max d(z,y) = n—1 [22]. For inversions the maximum distance
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is also d(z,y) =n —1 [1].

A different way to encode a configuration is based on the intercity connec-
tions. A tour can be represented by a binary string, every position corre-
sponding to the connection between two cities. In case of symmetric distance
matrices the string has length n(n — 1)/2. If two cities are connected in a
tour, the corresponding position in the string is labelled by 1, otherwise by
0. A sequence encoding an allowed tour therefore has exactly n nonzero en-
tries. A 2-opt move means that two intercity connections are removed and
two other ones are inserted. Therefore the hamming distance dg between two

neighbouring tours is dg = 4. The triangle inequality implies then

8dtr(~ra y) Z dH(-Ta y) and 4dinv(x7 y) Z dH (SU, y)

3.2.2 The Graph Bipartitioning Problem (GBP)

Given is a graph V' with an even number of vertices n and an (n X n)-matrix
H with h;; being the distance between the vertices i and j (the weight of
the edge connecting the vertices i and j) [26]. The graph has to be divided
into two equal-sized subsets A and B such that the sum of the weights of
all edges connecting the vertices contained in A with those contained in B is
minimized:

FA;B) =32 > by

i€AjeB
Special cases of the problem consider a symmetric distance matrix h;; = hj;
with h;; being mutually independent random variables, or the vertices are

uniformly scattered in a unit square.

The configuration space C' of the GBP consists of the set of all partitions
of the vertex set V into two equally sized subsets A and B. The partition
can be encoded as a string of length n, the first n/2 vertices belonging to
subset A. An other possibility is to encode the partition as a binary string,

labelling a vertex by 1 if it is contained in subset A and by 0 if it is contained
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in B. In the latter case it is possible to compute the hamming distance dy
between two configurations by counting the number of positions in which the
two configurations differ.

A natural move set is to exchange two vertices: choose one vertex from the
first half of the string (from A) and one from the second half (from B) and
exchange them. Two partitions [A, B] and [C, D] of V' are neighbours of each

other if the symmetric differences

A@C:B@D:{Ul,ﬂz}
both equal the pair of exchanged vertices. The number of nearest neighbours
for this case is (n/2)%.

The definition of a neighbourhood imposes a structure on the configura-
tion space C. If neighbouring partitions (configurations) are connected by
edges, the set C of configurations becomes a graph. A metric for the dis-
tance d([A, B],[C, D]) between two configurations [A, B] and [C, D] on this
configuration graph C' is the minimum number of edges separating these two
configurations.

This distance between two configurations is related to the hamming distance
between the binary strings of the same configurations by
1

The distance sequence D.S, that is the number of configurations with distance

d from an arbitrary reference point is given by

DS(C,d) = (”C/ZQ) |

The number of possible configurations #C', and the diameter of the configu-

o=

diamC =n/2

ration space, diamC', are
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3.2.3 Graph Matching (GM)

An instance of this optimization problem is given by an even (n X n)-matrix
H with h;; being the weight of the edge between vertices ¢ and j. The problem
consists in finding a bipartition of the vertices such that every vertex in the
right part is connected to exactly one vertex in the left part and that the
sum of the weights of the edges that connect the pairs of vertices becomes
minimal [25]. A configuration can be encoded as an ordered list ¢ of the
vertices with vertices in positions 1 to n/2 belonging to the left part and in
positions /241 to n belonging to the right part, respectively. Vertex c(i) in
position ¢ is connected to the vertex c(i+n/2). In this case the cost function
which has to be minimized is

n/2

F(e) =D heiyetitns2)
=1

where he)cs) 18 the weight of the edge connecting the vertex in position a
of the configuration (list) ¢ with the vertex in position b.

A possible move set is transposition, that is the exchange of two vertices
in the list. Different variants of the problem arise from choosing different
construction rules for H. In the case of symmetric and asymmetric distance
matrices the entries are drawn from a uniform distribution, in the symmetric
case h;; = hj;. An other possibility is to scatter the n vertices randomly on

the unit square and compute the distances between them.

If the matrix H is symmetric, exchanging vertices c(i) and c(i +n/2) is a
neutral move. For the symmetric case the cost function value of the global

optimum ¢ has been estimated [17]:

2
F(6) > 71T—2 ~ 0.822

for large systems.
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3.2.4 Spin glasses

Spin glasses are alloys of noble metals (Au, Ag, Cu, or Pt) with 0.1% to
10% transition metal ions (Fe or Mn), the latter randomly distributed in a
matrix formed by the noble metal. The spins of neighbouring transition metal
ions are coupled by magnetic interactions. The interaction between spins is
sometimes ferromagnetic, which means that it is energetically favourable to
align the spins, and sometimes antiferromagnetic - align spins with opposite

signs - depending on their distance.

A configuration ¢ which describes the state of the system is given by the
orientation of each of the n spins

0= (01,09,...,0n)

with o; being the state of the ¢-th spin. The energy of a configuration is given

in general by the Hamiltonian

H(o)=3_ Jijoi0;
(i,3)
where o; can have the values +1 or -1, the sum running over all pairs of
interacting spins, and the constants J;; - drawn randomly from a distribu-
tion - describing the interactions (coupling strength) between spins i and j.
Special cases are the Ising models - interacting spins are neighbours in a two-
or three-dimensional lattice - and the Sherrington-Kirkpatrick spin glass - a

long range model with interaction possible between any two spins.

For the move set single spin flip the configuration space is an n-dimensional
hypercube. Each configuration has n nearest neighbours. The distance be-
tween two configurations x, y in configuration space, the number of spin flips
necessary to convert x to ¥, is the number of positions in which x and y
differ, the hamming distance dy(x,y). The maximum distance in the space
of configurations is n, the average distance is n/2.



3 EXAMPLES FOR LANDSCAPES 24

Since the coupling constants .J;; are randomly distributed and vary in sign,
every orientation of a spin favourable with respect to some spins means un-
favourable coupling to others, a phenomenon known as frustration. The re-

sulting landscapes are very rugged.

If p spins interact, the Hamiltonian has the form
H(o) = Z Jirig..iy0i Oy« . O
i1iz.ip

The Sherrington-Kirkpatrick spin glass is the special case for p = 2.

3.2.5 Kauffman’s n-k model

A frequently used statistical model of a landscape was proposed by Stuart
Kauffman [9],[10],[11]. The so-called n-k model gives rise to a tunably rugged
energy landscape. Consider a binary string ¢ of n bits; the energy F'(c) of
the string is the average of the contributions from each bit. The energy con-
tribution f; from bit 7 is a function of the state of this bit and the state
of k < n other bits. There are 25! possible values for f;; for every possible
state of the k41 bits on which f; depends an independent random variable is
chosen from a probability distribution. These assignments - the energy table
- are generated independently for each of the n bits. The cost function is thus
given by

The k£ sites that influence a given position can be chosen in different ways
[7]:

e Adjacent Neighbourhood (AN) - the k/2 neighbouring bits on each
side, assuming that the bits are arranged in a circle (periodic boundary

conditions)

e Random Neighbourhood (RN) - k£ randomly picked sites



3 EXAMPLES FOR LANDSCAPES 25

e Purely Random (PR) - f; does not depend on i; all k+1 sites are chosen

randomly.

The adjacent neighbourhood model corresponds to a one dimensional, short
range spin glass, the random neighbourhood corresponds to a dilute, long
range spin glass. Depending on the value of k£ the landscapes range from
highly correlated single peaked to fully random uncorrelated landscapes. For
k = 0 the energy contribution of each bit is completely independent of the
state of the other bits, so each bit has an optimal state. The single global
optimum is a string consisting of the optimal states of all its bits. For the
maximum value of k£ (k = n — 1) the landscape is fully uncorrelated, which
means that one-mutant neighbours in sequence space have completely ran-
dom energy values with respect to each other. The n-k model is probably the
best studied model landscape [29]; this model has been applied to investigate
evolution on rugged landscapes. Fontana et al. compared the n-k model with

the RNA free energy landscape [7].
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4 Statistical analysis of landscapes

Since most of the landscapes of interest are rugged, optimization on these
landscapes is a hard task. Even on very fast computers in most cases it is
not possible to find the global optimum in reasonable timespans. So one
has to be content with finding at least a very good suboptimal solution - a
local optimum. To decide which optimization method will work best on the
landscape considered, one has to gather information on the structure of the

landscape.

Interesting questions are:

e Number of local optima

Cost function values of random optima and optima reached after a walk

Correlation between depth and width of optima

Length of different walks

Correlation - or ruggedness - of the landscape

What optimization algorithm leads to the best results on a given land-
scape

4.1 Characterization of probability distributions

A distribution is specified by its infinitely many moments. Usually only the
first two moments are of interest, since the cost function values of the model
landscapes of interest are Gaussian distributed. The first two moments are

the expectation value (X;) and the variance var(X;)

Expectation value:
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Variance:

var(X;) = (X — (X)?)

The expectation value and the variance have the dimension of X;, X? respec-

tively.

An instance of a combinatorial optimization problem is usually generated
by assigning lots of parameters at random, drawn from some distribution.
The entries in the distance matrices used in this work are drawn from a
uniform distribution (random numbers uniformly distributed in the interval
[0,1]; coupling constants for the SK spin glass are drawn from the interval
[—1,+1]).

For this reason there are two different types of averages for combinatorial

optimization problems:

e The average over configurations for one single instance with fixed pa-

rameters

e The ensemble average over different instances of the problem

Some properties like the autocorrelation function are self-averaging for larger

system sizes, which means that both averages give the same result.
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4.2 The autocorrelation function

The moments of a landscape do not give any information about the change in
the value of the cost function when moving from one point in configuration
space to another. To characterize the relationship between the distance of
two points (number of moves necessary to convert one into the other), and
the difference between the two cost function values, one has to define an
appropriate measure, for example the autocorrelation function [4]:

cov(X;, Xitr)
\/var(Xi)var(XHk)

(X = (Xi) (Xiw — (Xitx)))
VI = (X)) H(Xiwr = (Xin))?)

X; and X, belong to the same stochastic process. X;  is the value of the

r(k) =

random variable exactly k steps after i. cov(X;, X;1x) is the covariance of X;
and X, defined as

cov(XY) = (XY) — (X)(YV)

If stationarity of the stochastic process is assumed, the expectation values,
variances and higher moments of X; and X;,; become identical: (X;) =

(Xiyx) and var(X;) = var(X;;x). The autocorrelation function can thus be

r(k) = (X = (X)) (Xigr — (Xitk)))
((Xi —(Xi))?)
(X7) = (XiXisn)

(X7) — (Xi)?
The limits of the autocorrelation function can easily be seen from this equa-
tion: limg o 7(k) = 1, and limg_ oo (X; Xi4x) = (Xi)(Xiyx) = (X;)?, since the
two random variables X; and X;,; become independent for large k. This

rewritten as

or as

r(k)=1-

gives us limy_, o (k) = 0.
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If X, is the value of the cost function of some configuration 7 and X; the cost
function value of a configuration 7 which has distance d from the first one,
then the autocorrelation function p(d)

(X?) = (XiX;) agi j)=d

D=L —

gives us the relationship between the distance in configuration space and the
difference in the values of the cost function und is thus a measure for the

ruggedness of the landscape.

The correlation structure of a landscape can be investigated by simple ran-
dom walks: An initial configuration cq is chosen randomly, and by iterated
application of the move rule the series {cx} of configurations is obtained;
the series { X} of cost function values of these configurations is called the

random walk on the landscape.

The autocorrelation function r(s) of a random walk is given by

((Xe = (X)) ((Xiogs = (X))
(Xe = (X0)*)

where X, is the value of the cost function exactly s steps after ¢. Note that

r(s) =

d(Ct,Ct+s) S S

since applying the move rule once can increase the distance to the initial
configuration by one at most, but may also decrease the distance by one.
The autocorrelation functions r(s) and p(d) are related by the system of

linear equations
r(s) = _ dsap(d)
d=0
with ¢,4 being the probability that a random walk is at distance d from the
initial configuration after s steps [25].

For some cases the autocorrelation function has the shape of a decaying ex-

ponential, 7(s) = e **. In this case the reciprocal value of the decay constant
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A, the correlation length [ = A~! contains all information about the autocor-
relation function. The correlation length represents the value of £ at which

the autocorrelation function has dropped to e~'.

Since ¢1; = 1 (after one step the random walk is at distance one from the

initial configuration)

Smoother landscapes have larger correlation lengths.



Problem Metric ‘ max d(x,y) ‘ l p(d) r(s) ‘ Reference ‘
symmetric TSP Transposition n—1 n/4 ? ~ e ts/m [27]
Inversion n—1 n/2 ? ~ e 28/ [27],[1]
Canonical Tr. @ n/2 ? ~ = 28/m 130]
asymmetric TSP Transposition n—1 n/4 ? ~ e ts/n [27]
Inversion n—1 * ? ~ (1/2)672s/n [27]
Canonical Tr. @ n/3 2 ~ o—33/n 130]
Graph Bipartitioning | Exchange n/2 (n—3)/8 1-n1i8d 4 16 (i) | (1 -3+ %) [26]
Graph Matching Transposition n—1 n/4 ? ~ e 4s/n [25]
n-k model AN Hamming n nf(k+1) | 1=+ ey S (b +1-1) ) [7],[30]
n-k model RN Hamming n n/(k+1) ( - %) ( - %)d [7]
n-k model PR Hamming n n/(k+1) (1 - kzl)d [7]
SK-spin glass Hamming n n/4 - %[4% - (%)Z] ( - %)S [30]

Table 1: Combinatorial optimization problems and their autocorrelation func-
tions (* not defined). See also [24].
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4.3 Exploration of landscapes
4.3.1 Adaptive and gradient walks

Information about the structure of a landscape can be attained by performing
uphill (or downhill) walks on the landscape. These walks are restricted to
increasing (or decreasing) values of the cost function and always end in local
optima, so they provide information on the distribution of local optima.

A series of configurations is created by successively applying the move rule:
CQ—Cl—C —uee—Ci —Cig] e Cithk —> .-
with the restriction of decreasing cost function values
fleo) > fler) > flea) > ... > flei) > fleir) > oo > fleit) -
Subsequent configurations c;, ¢;11 in this series have distance one
d(ciyciv1) =1
so the walk occurs along the edges of configuration space.

Two kinds of walks are of interest:

o Adaptive walks start at a randomly chosen configuration, choose one
neighbouring configuration at random and accept it, if it has a better
value of the cost function (first improvement). As long as a better
solution exists, it is adopted and the neighbourhood search is repeated
from the new solution. The walk stops if no neighbour has to offer a
better value of the cost function, which means that a local optimum is

reached.

e Gradient walks are deterministic walks of step size one. They also
start at a randomly chosen configuration, but all neighbours are checked
and the one with the best value of the cost function is accepted (steepest

descent).
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4.3.2 Uniform sampling

To get information about the correlation in the landscape one has to know
the average differences in the values of the cost function for pairs of configu-
rations with different distances from each other. Since random walks provide
good samples only for small distances, a better sampling method is needed:
A start configuration is chosen randomly, and a sample of mutants is gener-
ated for distances d = 1 to the maximum distance d = d,,,q,. The value of
the cost function is computed for every mutant, and the averaged differences
are used to compute the autocorrelation function p(d).

4.3.3 About neighbourhoods

The size of the neighbourhood of a configuration - defined by the move set -
strongly influences optimization procedures which are based on local search-
ing. A larger neighbourhood might promise better optima but takes longer
to search, so the number of optima found in a certain computer-timespan
will be relatively low. A neighbourhood has a certain strength, that means
that optima found by local search have a certain average quality [20]. This
strength seems to be related to the correlation of the cost function values
of the start configurations with those of the local optima. The quality of
local optima found with a strong neighbourhood should be independent of
the quality of the starting configuration, while in weaker neighbourhoods the
correlation between the two cost function values is supposed to be high. The
ruggedness of a landscape strongly depends on the definition of neighbour-
hood. The term ruggedness is not exactly defined - a landscape is rugged if
it has many local optima; Palmer [19] calls a landscape rugged if the number
of local optima increases at least exponentially with system size. Adaptive
and gradient walks on rugged landscapes are short compared to the diameter
of the landscape, and the nearest neighbour correlation is low [28],[10]. The
sTSP landscape is much more rugged for moveset canonical transposition
than for transpositions, as one can see from the numerical data in the next

chapter.
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5 Numerical Results

The following five model landscapes were investigated:

e symmetric Traveling Salesman Problem (sTSP)
e asymmetric Traveling Salesman Problem (aTSP)
e symmetric Graph Bipartitioning Problem (GBP)
e symmetric Graph Matching Problem (GM)

e Sherrington-Kirkpatrick spin glass (SK)

The probability of finding a local optimum by random sampling was ob-
tained and compared with the number of configurations in a ball of radius
correlation length; adaptive and gradient walks were carried out. The au-
tocorrelation function for the symmetric TSP with transposition distance

metric was computed.

The probability of finding a local optimum by random sampling decreases
with increasing number of neighbours and with increasing correlation be-

tween neighbours.

Stadler conjectures that there is O(1) local optimum in configuration space

in a patch of radius correlation length [27].
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5.1 The Traveling Salesman Problem
5.1.1 The autocorrelation function for the symmetric TSP

Permutations

Sn, the group of all permutations of the numbers 1 to n, is the natural support
of an n-city TSP [27].
| S, |=n!

A permutation x can be denoted by displaying its values:

1 2 3 ...
X =
z(1) z(2) z(3) ...
Definition: Let i, s, ...,4, be distinct integers between 1 und n. If z € S,

fixes the other integers (z(j) = j) and
.T(Zl) :Z.Q, ZC(ZQ) :ig,..., CE(ir,l) :Z.T, .CU(ZT) :il,

then x is an r — cycle (a cycle of length r)[21].

A way to denote an r-cycle is

x=(; Z ‘;’ ;L>=(1 324)=(3241)=...

There are r such notations for an r — cycle.
All 1 — cycles equal the identity permutation, which is denoted by (1).

Definition: Two permutations x,y are disjoint, if every ¢ moved by one is
fixed by the other.

Theorem [21]: Every permutation = € S, is the product of disjoint cy-
cles; this factorization is unique except for the order in which the cycles are

written.

Definition: A 2 — cycle is also called transposition.
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Example:

S M RCRICERID

Consider two possible tours (permutations) x,y of length n (number of cities);
The distance d between these two permutations is the minimum number of
transpositions necessary to convert z to y (or y to x, which is the same for
symmetry reasons). There is exactly one permutation which turns z to y; the
minimum number of transpositions necessary to get this permutation from

identity is equal to the distance between = and y and is given by

d=n—k(zy™)

1

where k(xy~!) is the number of cycles of the permutation zy ! (cycles of

length 1 are also counted!) [22].

The permutation 2y ! is computed by first applying y !, then 2. The number
of permutations in S,, with exactly k cycles is given by the signless Stirling
number ss(n, k) [14]:

ss(nyk) = ss(n—1,k—1)+(n—1)*ss(n—1,k)
Zss(n,k) = n!

One possibility p of cycle composition for n = 8,k = 4 is (1)(1)(1)(5), that
means that the first cycle has length 1, the fourth one length 5. The number
of permutations in S,, which have a certain cycle composition is

n!

11 (i) [T m(er)!

a(n, k,p) =

where ¢;(7) denotes the length of the i —th cycle of p and m(¢;) is the number
of cycles with equal length ¢; (product runs over all ¢; with m(c;) > 1). The
sum over all p gives the signless Stirling number [21].

> a(n, k,p) = ss(n, k)

p
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Computation of the autocorrelation function

The autocorrelation function for landscapes of combinatorial optimization

problems has the form [26]

<(f(.’L') - f(y))2>d(m,y):d
<(f($) - f(y))2>mndom

1

pld) =1-—
For every possible d (k) 10000 permutations zy ' are randomly generated,
distributed over all cycle composition possibilities according to their weights
a(n, k,p)/ss(n, k)
For every xy ! a permutation y is generated (n! possibilities), the permuta-
tion x is then exactly defined (n!/2 possibilities to choose pairs of permuta-

tions z,y which give exactly the considered xy!).

nla(n, k,p) nlss(n, k)  nln!
D EP Yl el
kP

k

(Number of possibilities to choose x and y from S,,). The differences in the
values of the cost function for x and y are computed and used to obtain
the value of the autocorrelation function. The autocorrelation function p(d)
for the symmetric TSP with transposition metric, system size n = 100 was

computed (up to d = 42). Figure 4.
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symmetric TSP

autocorrelation function
lO T T

0.8

0.6 -

rho(d)

0.4 r

0.2

0.0 I I I I

Figure 4: Autocorrelation function for the symmetric TSP, transposition met-
ric. The solid line is the exponential fit :p(d) = exp(—0.04503 * d).

5.1.2 Number of local optima

Symmetric TSP:

The highest number of local optima is found for canonical transpositions
- a configuration has n nearest neighbours, the hamming distance between
neighbouring configurations is always 4, which means that 2 bonds between
cities in a tour are removed and 2 other bonds are inserted. In the landscapes
arising from the move sets transposition and inversion a configuration has
n(n—1)/2 nearest neighbours, but the nearest neighbour correlation is higher
for inversion (hamming distance between nearest neighbours is always 4) than

for transposition (dy = 8 if there are at least 2 cities between the exchanged
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ones in the tour - true for n(n — 5)/2 neighbours - otherwise dy = 4, true
for 2n neighbours). For this reason the inversion landscape has fewer optima

than the transposition landscape, as one can see in Figure 5.

symmetric TSP

prob. (local optimum)
1S

0 10 20 30
° transposition n
+ inversion

canonical transposition

Figure 5: Probability of finding a local minimum by random sampling vs.
system size (number of cities) for the symmetric TSP for move sets trans-
position, inversion and canonical transposition. The lines are least square

exponential fits.
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Asymmetric TSP:

The canonical transposition landscape again has the highest number of lo-
cal optima (n neighbours), and more than for the symmetric problem, since
dg = 6 for neighbouring configurations. The number of optima for transpo-
sition metric is higher than in the symmetric case, since dg = 8 if there is
at least 1 city between the exchanged ones in the tour - true for n(n — 3)/2
neighbours, else dg = 6; this means that in the asymmetric case nearest
neighbours on average differ in more intercity connections, hence the corre-
lation in the landscape will be lower and the number of local optima will be
higher than in the symmetric case. For a 15-city-TSP the probability of ran-
domly finding a local optimum is 8.8e-07 in the symmetric case and 2.8e-06 in
the asymmetric case. For the move set inversion there are much more optima
than in the symmetric case, even more than for asymmetric transposition,
since the hamming distance between neighbours is 2(r + 1) with 7 being the
number of cities lying between the exchanged ones in the tour. Figure 6.

5.1.3 Number of configurations in a patch of radius correlation
length for the sTSP

It is known that the correlation length along the steps of a random walk for
the symmetric TSP with move set transposition scales linearly with problem
size [27]

[ =0.246m — 0.583.

The exact number of configurations C;_., with distances d = 0 to d = n/4
from an arbitrary reference point is

n/4

Cleey = Z ss(n,n —d)

d=0

with ss(n,i) being the signless Stirling numbers. The number of configura-

tions V' (d) that have distance d from an arbitrary configuration (number of
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asymmetric TSP

prob. (local optimum)
1S

8 | |
0 10 20 30
o transposition n
+ inversion
» canonical transposition

Figure 6: Probability of finding a local minimum by random sampling vs.
system size (number of cities) for the asymmetric TSP for move sets trans-

position, inversion and canonical transposition.

permutations of n numbers with exactly k = n — d cycles) has been approx-
imated by Sorkin [22]

V)~ (n?/2)" jd for  d<n

giving an estimate for C}

n/4

Cioappt = Z (n2/2)d/d!.

d=0

This sum can be approximated by its largest term

Ciappr = (n?/2)' /10
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The correlation length [ is

l=n/4=2an.

By applying Stirling’s formula the largest term of the sum can be rewritten

as

712 l
(5) _ _
)l (xn)! 227 (zn)!
n2:zn n2wne:cn 1

2rxn  \2x N

1

The quality of the estimates can be seen in figure 7.
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symmetric TSP
" transposition
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+ C(l-appl) n
A C(l-app2)
= C(l-app3)

Figure 7: Number of configurations in a patch of radius [ (and approxima-
tions) vs. system size for the symmetric TSP, transposition metric.
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The Stirling approximation Cj_,,,3 was computed for n = 4 to n = 30 and
compared with the experimentally obtained number of optima. There is one
local optimum in a ball of radius correlation length as conjectured by Stadler
[27]. Figure 8.

symmetric TSP

transposition

;15 |

10

-20 L L
0 10 20 30
o 1/C(l-app3) n
* prob.(local optimum)

10

Figure 8: Density of local optima and 1/Cj_u,s for the symmetric TSP,
transposition metric. There is one local optimum in a ball of radius correlation

length.
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5.1.4 Adaptive and gradient walks

Results for the symmetric TSP:

All average walk lengths grow about linear with system size. The shortest
walks are observed with the moveset canonical transposition, which has the
lowest number of neighbours, therefore the walks are quickly trapped in a
local optimum, followed by transposition and inversion. Inversion walks are

twice as long as transposition walks.

For the symmetric TSP, movesets inversion and transposition, adaptive walks
are about three times as long as gradient walks. For the move set canonical

transposition adaptive walks are only one third longer than gradient walks.

Figure 9.
symmetric TSP symmetric TSP
adaptive walks gradient walks
600.0 ‘ ‘ ‘ 300.0 ‘ ‘
250.0 -
£ 4000 |- £ 2000 |
2 2
o 2
B B
g S 1500 -
(9] (9]
o o
g g
o o
3 2000 - 3 1000 -
50.0 |-
0.0 Ls= . . . 0.0 . . .
0 50 100 150 200 0 50 100 150 200

o transposition n * transposition n
+inversion +inversion
canonical transposition A canonical transposition

Figure 9: Average lengths of adaptive and gradient walks vs. system size
(number of cities) for the symmetric TSP for move sets transposition, inver-

sion and canonical transposition.
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The average tour lengths at the end of walks (quality of optima) are the same
for adaptive and gradient walks. The best optima are found with inversions,
followed by transpositions; walks with move set canonical transposition find

the worst optima. Figure 10.
symmetric TSP symmetric TSP

adaptive walks gradient walks
80.0 T 80.0 T

tour length at local optimum
N =
S S
o o
| I
tour length at local optimum
N =
S S
o o
| h

n

S

=)
.

n

o

=)
.

0.0 | . I 0.0 | I I
0 50 100 150 200 0 50 100 150 200

o transposition n * transposition n
+ inversion + inversion
4 canonical transposition 4 canonical transposition

Figure 10: Average tour lengths at local minima attained after adaptive and
gradient walks vs. system size (number of cities) for the symmetric TSP for

move sets transposition, inversion and canonical transposition.
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For the move set transposition the optima obtained after a walk are better

than randomly found optima. Figure 11.
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Figure 11: Average tour lengths at randomly found local minima and at min-

ima attained after walks vs. system size (number of cities) for the symmetric

TSP for move set transposition.



5 NUMERICAL RESULTS 48

For constant system size n = 150, move set transposition, the following
observations can be made: The longer the walk, the better the optimum
found by this walk, and the larger the difference in energy to the start point
of the walk, but also the worse the starting point. Figure 12.
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Figure 12: Average values of the cost function of starting configurations and
of local optima attained after adaptive walks vs. walk length to the local
optimum for the symmetric TSP, move set transposition, n = 150. 10 000
walks were carried out, 10 walks per instance. Deviations at the sides arise
because walk lengths are Gaussian distributed, and hence the statistics is

pure for extremal walk lengths.
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For constant system size n = 150, adaptive walk: With move sets transposi-
tion and inversion the average start energy is about the same for all optima
- a walk ending in a good optimum has the same average start energy as a

walk ending in a bad optimum (strong neighbourhood).

This is not true for walks using the move set canonical transposition: better
optima have already started at configurations with better cost function values
(weak neighbourhood). The better the optimum, the longer the average walk

that reached it.
symmetric TSP symmetric TSP

adaptive walk, n = 150 adaptive walk, n = 150
90.0 T T 90.0 T T

80.0 | . ° A 80.0 |

700 f : ; ¢ 700 f

cost function value at start
cost function value at start

60.0 L - 60.0 - -
0.0 5.0 10.0 15.0 30.0 40.0 50.0 60.0

- transposition cost function value after walk cost function value after walk
+ inversion + canon. transposition

Figure 13: Average values of the cost function at the starting point vs. values
at the end of an adaptive walk on the symmetric TSP, n=150, for move
sets transposition, inversion and canonical transposition. Deviations at the
sides arise from pure statistics because of the Gaussian distribution of cost

function values.



5 NUMERICAL RESULTS 50

Results for the asymmetric TSP:

Adaptive walks with move sets transposition and canonical transposition are
roughly as long as for the symmetric problem, while inversion walks are very
much shorter. This seems reasonable because in the asymmetric case the
inversion of half of the tour is equivalent to randomisation of half of the tour,

while in the symmetric case only two bonds are exchanged.

Gradient walks with move set transposition are about as long as in the sym-
metric case, canonical transposition walks are roughly 17 percent shorter
than in the symmetric case, while the length of inversion walks reaches only

one third of that of the symmetric case. Figure 14.
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© transposition n * transposition n
+ inversion + inversion
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Figure 14: Average lengths of adaptive and gradient walks vs. system size
(number of cities) for the asymmetric TSP for move sets transposition, in-

version and canonical transposition.
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The average tour lengths at the end of walks are the same for adaptive and
gradient walks. Transposition and canonical transposition walks find optima
of the same quality as in the symmetric case, while the tour length at the

end of inversion walks is longer than in the symmetric case. Figure 15.
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Figure 15: Average tour lengths at local minima attained after adaptive and
gradient walks vs. system size (number of cities) for the asymmetric TSP for

move sets transposition, inversion and canonical transposition.
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5.2 The Graph Bipartitioning Problem
5.2.1 The autocorrelation function for the GBP

The autocorrelation function p(d) for the GBP can be obtained by uniform

AP (@) = £
_ @) = £ @) aegy=a
P =1 = @) = F(0)) ranaom
<(f(~73) - f(y))2>mndom = Xd:p(d)«f(m) - f(y))2>d
where

p(d) = DS(d)/#C
n/2

> DS(d)p(d) = 0

The analytical solution for the autocorrelation function for the GBP is known

26]:
p(d):1_8%<1+n12)+16<%>2<1+n12)

The autocorrelation function along the steps of a random walk is given by

26]:
r(s) = (1 - §+§)s

n  n?

The correlation length along the steps of a random walk is [26]

1 n—3 1
l,wa = — = O(—)7
T m( -4 38) s 9\,

The correlation length /., for the exchange metric can be computed from the
(empirical or theoretical) autocorrelation function p(d); l., is the value of the

distance d at which the autocorrelation function p(d) has dropped to ™!,

p(lez) = 6_1
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and is smaller than [,.;, as expected.

n—1

lex = 0.098n — 0.132 =~
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Figure 16: Correlation lengths vs. system size for the GBP. Correlation
lengths along a random walk (theoretical prediction) are taken from [26],
correlation lengths for the exchange metric are computed from empirical au-

tocorrelation functions.
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5.2.2 Number of local optima

Every configuration has n?/4 nearest neighbours with hamming distance
dy = 2. A move replaces (n — 2) edges in the graph by (n — 2) other ones,
which means that (n — 2) out of n?/4 bonds are exchanged. Figure 18 shows

the probability of hitting a local optimum at random.

5.2.3 Number of configurations in a patch of radius correlation
length

The number DS of configurations with distance d from any configuration is

DS(d) = ("f) |

The number of configurations C; in a patch of radius correlation length [ =

(n — 3)/8 is thus given by:
(n-3)/8 2
n/2
a3 (W)

d=0

given by

This sum can be approximated very well by its largest term
1 2 2
nj/2 n/2
=5 () =)
d=0

Set | = xn, then the largest term of the sum can be rewritten as

(Z/nz>2 - ((:cn)! g?l xn)!>2 - ((xn)![((? 2) n]!>

By using Stirling’s formula this can be rewritten as

( (5) ) : ()" v
(zn)![(§ — ) n]! (=)™ v2ran (_(1/26_@”)(1/2—1)" o (5 —a)n

2
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(%)hn 2ran (7(1/2:”)")(17%)” 2 (

@ ] 1

:(%fﬂ” ((1/26_@”)(1—%) orTn (% - x)

95

2 (lm )21 (% B I) n2xn(12m)] 2mrxn (% — a;)

)T L

a (1—-2x)| 27an (% — a:) N
(1;295)2”” "

R

Figure 17 shows the quality of the approximations.
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Figure 17: Number of configurations in a patch of radius / (and approxima-
tions) vs. system size for the GBP.
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Figure 18 compares the probability of finding a local optimum at random

with the Stirling approximation for the number of configurations in a ball of

radius correlation length.

GBP

10* |

100

10

-10 | | |
0 10 20 30 40
= 1/C(l) (Stirling approx.) n

o prob. (local optimum)

10

Figure 18: Density of local optima and 1/Cj (Stirling approximation of largest
term) for the GBP, exchange metric. There is O(1) local optimum in a ball

of radius correlation length.
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5.2.4 Adaptive and gradient walks

The lengths of adaptive and gradient walks scale linearly with system size.
Adaptive walks are about three times as long as gradient walks. Figure 19.
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Figure 19: Average lengths of adaptive and gradient walks vs. system size
(number of vertices) for the symmetric GBP, move set exchange.
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The values of the cost function at local minima reached after adaptive and
gradient walks are the same and scale linearly with the squared system size
n?. Minima reached at the end of a walk are only slightly better than minima,

found by random sampling (Figure 20).
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Figure 20: Average cost function values at minima attained after adaptive and
gradient walks vs. system size (squared number of vertices) and at randomly

found local minima for the GBP, move set exchange.
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For constant system size n = 150, move set exchange, the following observa-
tions can be made: The longer the walk, the better the optimum found by
this walk, and the larger the difference in energy to the start point of the

walk, but also the worse the starting point. Figure 21.
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Figure 21: Average values of the cost function of starting configurations and
of local optima attained after adaptive walks vs. walk length to the local
optimum for the symmetric GBP, move set exchange, n = 150. 10 000 walks

were carried out, 10 walks per instance.



5 NUMERICAL RESULTS 61

The cost function value at the end of an adaptive walk depends on the quality
of the configuration from which that walk started.

GBP

adaptive walk, n = 150
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2850.0 -

2800.0

cost function value at start
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2700.0 ! '
2550.0 2600.0 2650.0 2700.0

cost function value after walk

Figure 22: Average values of the cost function at the starting point vs. values
at the end of an adaptive walk on the GBP landscape, n=150, for move set
exchange.
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5.3 The Graph Matching Problem

5.3.1 The autocorrelation function for the Graph Matching Prob-

lem

The autocorrelation function along a random walk has been computed by
Stadler [25].

5.3.2 Number of local optima

A configuration has n(n — 2)/4 nearest neighbours, dy = 4. There are
n(n — 1)/2 neighbouring permutations, but n/2 of them are neutral, and of
the remaining n(n — 2)/2 neighbours each permutation has a corresponding
permutation coding for the same configuration, thus the number of nearest
neighbours has to be divided by two. A transposition exchanging the posi-
tions of vertices ¢ and j in the list of numbers that encodes the configuration
affects two bonds : the bond between ¢ and its partner i +n/2 (if i < n/2,
otherwise i — n/2) and the bond between j and its partner. This move is
equal to the transposition exchanging the positions of the partners of 7 and

j. Figure 23 shows the probability of randomly finding a local optimum.
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GM

prob. (local optimum)
1S

Figure 23: Probability of finding a local minimum by random sampling vs.
system size (number of vertices) for the Graph matching problem, move set

transposition.

5.3.3 Number of configurations in a patch of radius correlation
length

The correlation lengths for the GM problem, move set transposition, have
been computed from the nearest neighbour correlation (non-neutral move)
by Stadler [25]

I(n) = % —06.

One can try to estimate the number DS(n, d) of configurations with distance

d from any configuration as for the TSP, moveset transposition. Thus an



5 NUMERICAL RESULTS 64

upper bound for DS(n,d) is given by:
DS(n,d) = ss(n,n — d).

The number of configurations in a ball of radius correlation length is

n/4
Cy < ss(n,n—d).
d=0
As one can see in the left part of figure 24 the probability for finding a local
optimum at random is much higher than the estimate. This fact does not

contradict the conjecture by Stadler, which can be explained as follows:

First of all the number of different non-neutral neighbours is much lower
(less than half) than in the TSP case. The number of permutations P;; of n

numbers representing one configuration is
n
Pa= ()2

When a non-neutral nearest neighbour of a configuration is reached (by per-
forming a transposition), the next transposition can lead to a permutation
that has transposition distance d = 2 from the starting point, but is coding

for the same configuration as this starting point.

If the crude estimate for DS(d) is corrected by a factor 2¢ for the identical
neighbours, the value of 1/C; (corrected) fulfills our hopes a little bit better,
as one can see in the right part of figure 24.
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Figure 24: Density of local optima
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5.3.4 Adaptive and gradient walks

Adaptive walks are 2.6 times longer than gradient walks (Figure 25).
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Figure 25: Average lengths of adaptive and gradient walks vs. system size
(number of vertices) for the Graph matching problem, move set transposition.

At least 10 000 walks were performed per system size, 1 walk per instance.
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Gradient walks find slightly better optima (Figure 26).
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Figure 26: Average values of the cost function at local minima attained after

adaptive and gradient walks vs. system size for the Graph matching problem,

move set transposition.
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Optima reached after a walk are much better than random optima. Figure
27.
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Figure 27: Average cost function values at randomly found local minima and
at minima attained after walks vs. system size (number of cities) for the
Graph matching problem, move set transposition.
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The longer a walk, the better the optimum it finds, and the worse the starting

solution. Figure 28.
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Figure 28: Average values of the cost function of starting configurations and
of local optima attained after adaptive walks vs. walk length to the local
optimum for the Graph matching problem, move set transposition, n = 150.

10 000 walks were carried out, 10 walks per instance.
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The quality of the solution reached after a walk does not depend on the

starting configuration. Figure 29.
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Figure 29: Average values of the cost function at the starting point vs. values

at the end of an adaptive walk on the GM landscape, n=150, for move set

transposition.
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5.4 The Sherrington-Kirkpatrick spin glass
5.4.1 The autocorrelation function for the SK spin glass

The autocorrelation function for the SK spin glass is known to be [30]

d d?
d)=1-4 4
pld) n—1+ n(n —1)

with correlation length | = n/4.

5.4.2 Number of local optima

A configuration has n nearest neighbours with hamming distance dg = 1.

Figure 31 shows the probability of finding a local optimum at random.

5.4.3 Number of configurations in a patch of radius correlation
length

The number DS of configurations with distance d from any configuration is

DS(d) = (Z)

The number of configurations C; in a patch of radius correlation length [ =

-5 (0)

d=0

given by

n/4 is thus given by:

This sum can be approximated by its largest term

=50~

(the sum is 1.45 times the largest term for n = 100).
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Set | = axn, then the largest term of the sum can be rewritten as

(xnn> ~ (an)! (Z!— an)l (a:n)![(il '— z)n)!

By using Stirling’s formula this can be rewritten as

n! N (%)n 2 —
(@n)l[(1 —=z)n]t — (%)m V2ran (@)(l_m)n 2n(l—x)n -
_ (%)n 27r1n
" (%)m (1—g)ton (%)( o 2mny/x (1 — )
B (% " 2mn B
(%)n (1—x)" (%z)m 2mny/z (1 — x)
1

B [<1—x)f 1 ]" 1 1

B z - 21z (1 — x) no
1—2\* 1 71"

< x ) 1—-=x

Figure 30 shows the quality of the approximations.
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SK spin glass
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Figure 30: Number of configurations in a patch
tions) vs. system size for the SK spin glass.
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Figure 31 compares the probability of finding a local optimum at random

with the number of configurations in a ball of radius correlation length.

SK spin glass

-10

0 10 20 30 40
* prob. (local optimum) n
+ 1/C(l) (Stirling approx.)

10

Figure 31: Density of local optima and 1/C; (Stirling approximation of largest
term) for the SK spin glass, move set single spin flip.
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5.4.4 Adaptive and gradient walks

Adaptive walks are nearly twice as long as gradient walks. Figure 32.
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Figure 32: Average lengths of adaptive and gradient walks vs. system size

for the SK spin glass, move set single spin flip. At least 10 000 walks were
performed per system size, 1 walk per instance.



5 NUMERICAL RESULTS 76

The cost function values at optima reached after adaptive and gradient walks
are nearly the same (Figure 33). The lines in the plot show the least square

quadratic fits:

fadap = 16.98 — 2.108n — 0.018n*
foraa = 11.22 — 1.768n — 0.021n°
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Figure 33: Average values of the cost function at local minima attained after
adaptive and gradient walks vs. system size for the SK spin glass, move set

single spin flip.
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Optima reached at the end of a walk are better than randomly found optima.

Figure 34.
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Figure 34: Average cost function values at randomly found local minima and

at minima attained after walks vs. system size for the SK spin glass, move

set, single spin flip.
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Longer walks find deeper optima and start at worse solutions. Figure 35.
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Figure 35: Average values of the cost function of starting configurations and
of local optima attained after adaptive walks vs. walk length to the local
optimum for the SK spin glass, move set single spin flip, n = 150. 10 000

walks were carried out, 10 walks per instance.
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5.5 Comparison

Table 2 shows the least square exponential fits for the probability of hitting

a local optimum at random vs. system size n:

—-n

prob. (local optimum) = bpe™ " = bopr A,

and the corresponding data ceons and Ao, s for the fits of the plots 1/C; vs. n.
For the sTSP, the GBP and the SK spin glass the Stirling approximation of
the largest term was taken as value of Cj, for the GM problem the corrected

value of C; was used.

The lengths of adaptive and gradient walks scale linearly with system size.

The least square fits of the plots are compared in table 3.
The landscapes of the sTSP, the aTSP and the GM problem with move

set transposition are based on the same underlying configuration space. The
probability of hitting a local optimum at random is highest in the GM land-
scape, since the number of non-neutral different neighbours is n(n — 2)/4;
a transposition exchanges 2 bonds out of n/2. For the sTSP and aTSP the
number of nearest neighbours is n(n — 1)/2, hence the probability that a
configuration is a local optimum is lower. The difference in the number of
local optima between these two landscapes arises from the fact that in the
asymmetric case more intercity connections are exchanged by a single move
(see chapter 5.1.2).

The lengths of adaptive walks are roughly the same for sSTSP and aTSP; adap-
tive walks on the GM landscape are about 12 percent shorter. The lengths
of gradient walks are roughly the same on all three landscapes.

The investigated landscapes share some features with the RNA minimum free
energy landscape; the lengths of adaptive and gradient walks scale linearly

with system size, as does the correlation length.

In all landscapes for which the number of configurations in a ball of radius

correlation length was computed, O(1) local optima were found in this patch.
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Problem move set bopt Copt Aopt Ceonf | Acons
symmetric TSP | Transposition 27.667 | 1.163 | 3.199 | 1.428 | 4.169

Inversion 151.130 | 1.505 | 4.504

can. Transposition | 1.090 | 0.487 | 1.628
asymmetric TSP | Transposition 11.290 | 1.016 | 2.762

Inversion 2.137 | 0.591 | 1.806

can. Transposition | 1.076 | 0.414 | 1.513
GBP Exchange 2.562 | 0.526 | 1.692 | 0.562 | 1.755
Graph matching | Transposition 8.292 | 0.797 | 2.219 | 1.089 | 2.972
SK spin glass spin flip 1.099 | 0.496 | 1.643 | 0.562 | 1.755
RNA mfe GCAU | point mutation >0.3 | >1.35 | 0.814 | 2.257

Table 2: Regression data for probabilities of hitting local optima at random.

In the RNA mfe landscape the length of a gradient walk is equal to the

correlation length; this is not true for the other landscapes except for the

aTSP with move set canonical transposition.




Problem move set l/n Lg“‘d/ "\ Lodapt/n | AP
symmetric TSP Transposition 0.25 0.538 1.553 3.199
Inversion 0.5 1.032 2.931 4.504
canonical Transposition | 0.5 | 0.390 0.493 | 1.628
asymmetric TSP Transposition 0.25 0.514 1.527 2.762
Inversion 0.334 0.689 1.806
canonical Transposition | .33 | 0.329 0.425 | 1.513
GBP Exchange 0.125 | 0.233 0.679 1.691
Graph matching Transposition 0.25 0.517 1.359 2.219
SK spin glass spin flip 0.25 0.414 0.718 1.643
n-k model for GCAU from [7] | spin flip 0.32 0.60 1.82
RNA mfe GCAU point mutation 0.26 0.26 0.44 > 1.35

Table 3: Correlation lengths, walkmgths and A for combinatorial optimiza-
tion problems. The RNA mfe data are taken from [7].

SLINSHY TVOIHHWNAN ¢
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6 Conclusion and outlook

6.1 Conclusion

The landscapes arising from five different combinatorial optimization prob-
lems (sTSP, aTSP, GBP, GM, SK spin glass) were explored by performing
adaptive and gradient walks; the number of local optima on these landscapes

was obtained by random sampling.

The results can be summarized as follows:

e The probability of hitting a local optimum at random scales down with

system size as a decaying exponential on all landscapes investigated.

e There are roughly O(1) local optima in a ball of radius correlation

length in configuration space.

e The lengths of adaptive and gradient walks scale linearly with system

size.

e Local optima reached at the end of adaptive and gradient walks have
very similar cost function values and are better than randomly found

optima. Adaptive and gradient walks do not reach the global optimum.
e Longer walks find better optima.

e The correlation between cost function values at the start and end of
walks depends on the quality of the neighbourhood. If a good move set
is chosen, the cost function value at a local optimum reached after a

walk should not depend on the quality of the starting configuration.

These results confirm the following conjectures by Stadler: Optimization by
algorithms is easier when the correlation increases, since the number of local

optima, which are traps for algorithms, decreases with increasing correlation
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length. A move set should be chosen which maximizes correlation length

while keeping constant the number of nearest neighbours.

6.2 Outlook

By performing simple local search procedures such as adaptive and gradient
walks one can derive important statistical features of landscapes arising from

combinatorial optimization problems.

As far as estimates for the cost function value of the global optimum are
known, adaptive and gradient walks clearly do not reach the latter.

Other, more sophisticated algorithms should not only find better solutions,
but their performance on different landscapes might also provide deeper in-

sight into the underlying structures of these landscapes.



k

1 2 3 4 5 6 7 8 9 10
1 1
2 1
3 2 3
4 6 11 6 1
5 24 50 35 10 1
6 120 274 225 85 15 1
7 720 1764 1624 735 175 21 1
8 5040 13068 13132 6769 1960 322 28 1
9| 40320 109584 118124 67284 22449 4536 546 36 1
10 | 362880 1026576 1172700 723680 269325 63273 9450 870 45 1

Table 4: Signless Stirling numbers ss(n, k)

sa[qel, e L

SHITIVL VLVd /Z
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